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ON NICOLAS CRITERION FOR THE RIEMANN HYPOTHESIS

YOUNGJU CHOIE, MICHEL PLANAT, AND PATRICK SOLÉ

Abstract. Nicolas criterion for the Riemann Hypothesis is based on an inequality that

Euler totient function must satisfy at primorial numbers. A natural approach to derive

this inequality would be to prove that a specific sequence related to that bound is strictly

decreasing. We show that, unfortunately, this latter fact would contradict Cramér conjecture

on gaps between consecutive primes. An analogous situation holds when replacing Euler

totient by Dedekind Ψ function.

1. Introduction

The Riemann Hypothesis (RH), which describes the non trivial zeroes of Riemann ζ func-

tion has been qualified of Holy Grail of Mathematics by several authors [1, 8]. There exist

many equivalent formulations in the literature [2]. The one of concern here is that of Nicolas

[9] that states that the inequality

Nk

ϕ(Nk)
> eγ log logNk,

where

• γ ≈ 0.577 is the Euler Mascheroni constant,

• ϕ Euler totient function ,

• Nn =
∏n

k=1 pk the primorial of order n,

holds for all k ≥ 1 if RH is true [9, Th. 2 (a)]. Conversely, if RH is false, the inequality

holds for infinitely many k, and is violated for infinitely many k [9, Th. 2 (b)]. Thus, it is

enough, to confirm RH, to prove this inequality for k large enough. In this note, we show

that a natural approach to this goal fails conditionally on a conjecture arguably harder than

RH, namely Cramér conjecture [2]

pn+1 − pn = O(log2 pn).
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Note that under RH, it can only be shown that [3]

pn+1 − pn = O(
√
pn log pn).

See [5] for a critical discussion of this conjecture. An important ingredient of our proof

is Littlewood oscillation Theorem for Chebyshev θ function [7, Th. 6.3]. An analogous

situation holds when replacing Euler totient by Dedekind Ψ function, and replacing Nicolas

criterion by [10, Th. 2].

2. An intriguing sequence

General conventions:

(1) We write log2 for log log, and log3 for log log2

(2) The formula f = O(g) means that ∃C > 0, such that |f | ≤ Cg.

(3) The formula ak ∼ bk means that ∀ǫ > 0, ∃k0, such that bk(1− ǫ) ≤ ak ≤ bk(1 + ǫ), if

k > k0.

We begin by an easy application of Mertens formula [6, Th. 429]. For convenience define

R(n) =
n

ϕ(n) log2 n
.

Recall, for future use, θ(x), Chebyshev’s first summatory function:

θ(x) =
∑

p≤x

log p.

Proposition 1. For n going to ∞ we have

limR(Nn) = eγ .

Proof:Put x = pn into Mertens formula

∏

p≤x

(1− 1/p)−1 ∼ eγ log(x)

to obtain

R(Nn) ∼ eγ log(pn),
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Now the Prime Number Theorem [6, Th. 6, Th. 420] shows that x ∼ θ(x) for x large. This

shows that, taking x = pn we have

pn ∼ θ(pn) = log(Nn).

The result follows. �

Define the sequence

un = R(Nn).

We have just shown that this sequence converges to eγ. But Nicolas inequality is equivalent

to saying that

un > eγ .

So we observe

Proposition 2. If un is strictly decreasing for n big enough then Nicolas inequality is satisfied

for n big enough.

Proof:Assume un > un+1 for n > n0 and that Nicolas inequality is violated for N > n0 that

is

un ≤ eγ ,

then for n ≥ N + 1 we have un+1 < un ≤ eγ. This implies

lim un < eγ,

contradicting Proposition 1.

�

We reduce the decreasing character of un to a concrete inequality between arithmetic

functions.

Proposition 3. The inequality un > un+1 is equivalent to

(1) log(1 +
log pn+1

θ(pn)
) >

log θ(pn+1)

pn+1
.

Proof:The inequality un > un+1 can be written as

Nn

ϕ(Nn) log2Nn

>
Nn+1

ϕ(Nn+1) log2 Nn+1
.
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Note first that

Nn+1

ϕ(Nn+1)
=

1

(1− 1/pn+1)

Nn

ϕ(Nn)
,

so that, after clearing denominators, un > un+1 is equivalent to

log2(Nn+1)(1− 1/pn+1) > log2Nn,

or, distributing, to

log2(Nn+1)− log2Nn >
log2Nn+1

pn+1
.

Now, to evaluate the LHS we write Nn+1 = Nnpn+1 so that

log2(Nn+1) = log2(Nnpn+1) = log(logNn + log pn+1) = log2Nn + log(1 +
log pn+1

logNn

).

to obtain

log(1 +
log pn+1

logNn

) >
log2Nn+1

pn+1
.

The result follows then upon letting logNn = θ(pn). �

In fact, more could be true.

Conjecture 1. Inequality (1) holds for all n ≥ 1.

A heuristic motivation runs as follows

log(1 +
log pn+1

θ(pn)
) ≈ log pn+1

θ(pn)
≈ log pn+1

pn
.

Similarly

log θ(pn+1)

pn+1
≈ log pn+1

pn+1
.

But, trivially

log pn+1

pn
>

log pn+1

pn+1

.

Numerical computations confirm Conjecture 1 up to n ≤ 10000. Unfortunately, Proposition

4 provides a conditional disproof of this conjecture.
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3. Background material

We need an easy consequence of Littlewood oscillation theorem.

Lemma 1. There are infinitely many n such that

θ(pn) > kn = pn + C
√
pn log3 pn,

for some constant C independent of n.

Proof:By [7, Th. 6.3], we know there are infinitely many values of x such that

θ(x) > x+ C
√
x log3 x.

Let pn be the largest prime ≤ x. Thus

θ(pn) = θ(x) > x+ C
√
x > pn + C

√
pn log3 pn.

�

4. More on un

Unfortunately, the sequence un is not decreasing as the next Proposition shows, condi-

tionally on Cramér conjecture.

Proposition 4. The inequality un > un+1 is violated for infinitely many n’s.

Proof:By Lemma 1 there are infinitely many n such that θ(pn) > kn. For these n the RHS

of (1) is > log kn+1

pn+1
> log kn

pn+1
.

Using the elementary bound log(1 + u) < u for 0 < u < 1, we see that the LHS of (1) is

< log pn+1

kn
. Combining the bounds on the LHS and the RHS we obtain

kn log kn < pn+1 log pn+1.

Since the function x 7→ x log x is non decreasing for x >> e we obtain kn < pn+1, that is

pn+1 − pn > C
√
pn log3 pn,

which contradicts Cramér conjecture [2]

pn+1 − pn = O(log2 pn).

�

But is also not increasing, as the next Proposition shows unconditionally.
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Proposition 5. The inequality un < un+1 is violated for infinitely many n’s.

Proof: Suppose that un < un+1 for n big enough. Then for n large enough we have

un ≤ eγ .

If RH is true that is a contradiction by [9, Th. 2 (a)]. If RH is false that contradicts [9,

Th. 2 (b)]. �

Thus un is not a monotone sequence for n big enough.

5. Analogous problem for Dedekind Ψ function

Recall that the Dedekind Ψ function is the multiplicative function defined by

Ψ(n) = n
∏

p|n

(1 +
1

p
).

Define the sequence vn = Ψ(Nn)
Nn log2 Nn

. We proved in [10] the two statements

• vn > eγ

ζ(2)
for all n ≥ 3 iff RH is true

• lim vn = eγ

ζ(2)

Thus, like for the sequence un it is natural to wonder if vn is decreasing.

Proposition 6. The inequality un > un+1 is equivalent to

(2) log(1 +
log pn+1

θ(pn)
) >

log θ(pn)

pn+1

Proof:The inequality vn > vn+1 can be written as

Ψ(Nn)

Nn log2Nn

>
Ψ(Nn+1)

Nn+1 log2Nn+1

.

Note first that
Ψ(Nn+1)

Nn+1
= (1 + 1/pn+1)

Ψ(Nn)

Nn

,

so that, after clearing denominators, vn > vn+1 is equivalent to

log2(Nn+1) > log2Nn(1 + 1/pn+1),

or, distributing, to

log2(Nn+1)− log2Nn >
log2Nn

pn+1
.
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Like in the proof of Proposition we have

log2(Nn+1) = log2Nn + log(1 +
log pn+1

logNn

).

Combining the last two statements we obtain

log(1 +
log pn+1

logNn

) >
log2Nn

pn+1
.

The result follows then upon letting logNn = θ(pn). �

Note that inequality 2 is slightly looser than inequality 1. Still, the analogue of Proposition

4 is true:

Proposition 7. The inequality vn > vn+1 is violated for infinitely many n’s.

Similarly one can prove the analogue of Proposition 5 by using the arguments in the proof

of [10, Th. 2].

Proposition 8. The inequality vn < vn+1 is violated for infinitely many n’s.

The proofs of Propositions 7 and 8 are completely analogous to the case of Euler ϕ and

are omitted.
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