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kS ABSTRACT
Let d(n) be the number of divisors of n. S. Ramanujan has defined

n to be highly composite, if, for any m ( n, we have d(m) < d(n). We

shall try to describe the results obtained by Ramanujan about these
numbers, and improvements and generalizations of his work. The main
problem, which is not completely solved, is to estimate the number of
highly composite numbers (or of similar numbers defined with some others

arithmetical functions) up to x.

I. Introduction and notations.

In 1915, S. Ramanujan published in the Proceedings of the London

£ Mathematical Society a memoir of sixty-three pages entitled "highly

composite numbers” and consisting of 52 paragraphs (cf. [54] and [55], no.

15). The purpose of this memoir was to study how large the number of
divisors of an integer n can be when n tends to infinity. We shall try
to describe the results obtained by Ramanujan, and the improvements and

generalizations of his work.

We shall use the following classical notations:

Py = 2, Py = 3,...,pk = kth prime;

p.P.q will denote prime numbers;
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d(n) = z 1 = number of divisors of n;
d|n

as(n) = 2 d® = sum of sth power of divisors of n

d|n

(observe that o_s(n) = os(n)/ns);

o(n) = al(n) = 2 d;
d|n

w(n)

2 1 ; ¢(n) = Euler’s totient function;
pln

dy(n) =d(n) : d(m) = )d_ (d) for k23

d|n
m(x) = 2 1: 6(x) = z log p 1is the Chebyshev function;
p<x p<x
1-¢ dt
Li x = lim [ J + Jx 1 t] is the integral logarithm.
-0 o 1+¢ 08

The notation f < g (or g f) will mean f = O(g).

If f is an arithmetical function, we shall define n as an
f-champion number if m < n 2 f(m) < f(n).

For real x , [x] will denote the integral part of x .

The memoir of Ramanujan encompasses 5 parts: Elementary results on the
maximal order of d(n)., the definition and the structure (that is to say
the form of the standard factorization in primes) of the highly composite

numbers, the superior highly composite numbers, the maximal order of d(n)
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with or without the assumption of the Riemann hypothesis, and special forms

of N.

In the last part (§46-51), the value of d(N) 1is studied for various
N's: N a perfect power, N = l.c.m. (1,2,...,n), N =n! . The smallest
integer N with exactly 9™ divisors is also determined, and this is a

good contest question.

In the very last paragraph (352) a few words are said about the
iterated d-function: d(l) =d, and d(k)(n) = d(dk—l(n)). A deeper study

of d(k) has been undertaken by Erdds and Katai (cf. [8]).

II. Elementary results concerning the maximal order of d(mn).

It was proved by C. Runge in 1885 (cf. [68]) that for fixed € > O,
(1) lim d(n)/n® = 0.

S. Wigert proved in 1907 (cf. [74]) that the maximal order of log d(n)

log n log 2 , that is to say that
loglog n

(2) —— (log d(n))(loglog n) _

lim (log n)(log 2) = 1.

For this result, S. Wigert uses the prime number theorem: w(x) ~ x/log x.
S. Ramanujan proved (2) without assuming the prime number theorem, as

is mentioned in the notes in Hardy and Wright's book (cf. [19],

Chapter 18).
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The upper bound of (2) is based on the inequality, valid for all N (5
with wo(N) = k,
Ac
k
5 . ((8(py) + log N)/k) =
<
3) () < Tlog 5,110z 7y) -+ (Tog B
1 2 k or¢
sul
and on the relation
giv
t
(4) m(x)log x - B(x) = E 1%1 dt. I1]
It is easy to deduce from the prime number theorem that, as k — o, Wri
def
9(pk) ~ P~ k log k.
but, using (4), it is possible to prove 9(pk) ~ k log k without the prime (n,
number theorem (cf. [62]), and this was mainly Ramanumjan’s idea. sma
env
Let us define the multiplicative function r(n) as follows: h.c
if p=1mod 4. r(p) = d(P5) =k + 1;
k k d'('y
if p=3mod4, r(p)=0 for k odd, and r(p ) =1 for k even;
if p=2, (2 =1 for all k.
It is known that the number of ways in which n can be written as a
sum of two squares is equal to 4r(n) (cf. [19], Chapter 16}.
An application of (2) with Ramanujan's proof gives the maximal order of
r(n) (cf. [37]):
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— (log r(n loglog n
(5) 1im (log 2)(log n)

Actually r(n) counts (crudely) the divisors of n made up of primes

= 1 mod 4; these primes are about half of all the primes, but the maximal
orders of log r{(n) and log d(n) are the same. This is somewhat
surprising and sometimes misleading. For instance, Theorem 338 in [19]

gives erroneously 1/2 instead of 1 on the right hand side of (5) .

III. Highly composite numbers.
S. Ramanujan defined an integer n to be highly composite (we shall
write h.c.) if for all m < n, we have d(m) < d(n). So, with our

definition, h.c. numbers are d-champion numbers.

For every integer n > 1, let us draw a point with coordinates
(n.d(n)) and look at the increasing envelope of these points, that is the
smallest nondecreasing function lying above all these points. This
envelope is a step function, and the vertices of the steps correspond to

h.c. numbers.

d(n)|
6 L.
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Now, let us write the standard factorization of an integer n in the

form

where only finitely many a; are non-zero. Then we have

dn) =TT (a; +1).

i=1

An integer n is said to be w.n.i.e. (with nonincreasing exponent) if

the sequence (ai)i is nonincreasing. Clearly, a h.c. number is w.n.i.e..

For a w.n.i.e. integer, we define q; = max p {so that all the primes
pln
< 9 divide n), and

q, = max p.
b
p’In

The nonincreasing sequence (qj)j>l characterizes n.

IV. Superior highly composite numbers.

Let & > O be fixed. It follows from (1) that d(n)/nE is bounded
and reaches its maximum in one or several points. Ramanujan has defined an
integer N to be superior h.c. (s.h.c.) if there exists & > 0 such that

for all n we have

R eh A
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d(n) (4N
£ £
n N

£
For n <N we have d(n) ¢ [’N—‘-] d(N) < d(N), which shows that a s.h.c.
number is h.c..

The stucture of these numbers has been completely determined by

Ramanujan. Let us define

log p '

E = {10 1+ 1/7k) . k 2 1, p primeg.

If & € E, then the maximum of d(n)/n8 is attained at only one integer

Ns' and we have
o g,

(6) No=TT pi1 with a, =[1/(p§* - 1)].
i=1

It was known by Siegel (cf. [1], p. 455) that for real A and three
different primes p,q,r, the numbers px,qx,rx cannot be all rational,
except when A 1is an integer (cf. [27] and [28], Chapter 2). This implies
that three elements of E cannot be equal. It seems very likely that two
elements of E are always distinct., but this is still unproved. If it is
true, then, for ¢ € E, the maximum of d(n)/nE is attained at two
integers. If it is false, this maximum is attained at four integers for
some & {cf. [9]. p. 71). This question was probably overlooked by

Ramanujan; for instance, the result of §44 is false in the latter case.

In both cases, the integer N8 defined by (6) is a s.h.c. number,

maximizing d(n)/na. If we set
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) X = 21/5' X, = xlog(l+1/k)/log 2 for k> 1,
Giv
0 *c
then we have X, =X and Xg = X with ; to
? n <
(8) 8 = 1°1 3/2) _ o.585 ..., 4 lar
og 2 i
and from (6) we see that
a j
p|N£ & p € x, w.n
. men
= rec
a, _k1=)xk+1 (pi Sxk.
Q(x
o ¢ —1—¢ 112=_1_°5.>.<_.2_, dif
28 -1 & 108 (log 2)
gre
(9) log N_ = } 0(x,).
1<kga,
Q(X
(10) log d(N)) = ) w(x)log(1 + 1/k). sor
lngal
.3 (11
It follows from (9) that log N, ~ x. ’
(tt
V. The mumber of highly composite mmbers up to x.
Erc
Let us define Q(X) as the number of h.c. numbers < X. It is easy to pri
see that between X and 2X there is always a h.c. number (because gir
d(2n) > d(n)), and this implies that Q(X) > log X.
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It was proved by Ramanujan that lim Q(X)/log X = +» (cf. [54], §28).
Given a h.c. number n, the idea is to construct n' as close as possible
to n, and with d(n') > d(n). Then there exists a h.c. number n" with
n <n” {(n'. Ramanujan chose n' with the same exponents as n for the

large primes, modifying only the exponents of the small primes.

The problem of estimating Q(X) was of some interest to Ramanujan. In
a joint paper with Hardy (cf. [18] and [55], no. 34), the number of
w.n.i.e. (cf. 3III) integers up to X is estimated. The introduction
mentions: "That class of numbers includes as a subclass the h.c. numbers
recently studied by Mr. Ramanujan. The problem of determing the number
Q(X) of h.c. numbers not exceeding X appears to be one of extreme
difficulty. It is still uncertain whether or not the order of Q(X) is

greater than that of any power of log X".
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P. Erdos proved in 1944 that for a positive c, we have

1+c 1

QAX) > (log X) 1. A new tool was Hoheisel's theorem (cf. [21]): for ;
some O < 7t <1, §
.

(11) m(x + xT) - w(x) > xT/log X ‘
"

111 :

(the best T 1is now 30 ~ 389 = 0-5473%..., cf. [32]). X

Erdos used it to construct n' by multiplying and dividing n by large
primes, and using the diophantine approximations of 6 (defined by (8))

given by Dirichlet’s theorem (cf. [7]).
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[+

In 1971, I proved (cf. [36]) that Q(X) € (log X) 2.

I used for this
the result of Feldmann (cf. [15]) that there exists k such that for all

integers u,v 2 1 we have:
(12) [ve - u| > v .

I also used the structure of the h.c. numbers between two consecutive
s. h. c. numbers that we shall describe in the next paragraph.
Let us define c¢(X) by

Q(X) = (log x)°X),

and let us assume two very strong conjectures: first, (11) holds for all
T > 0, and secondly, for all n > 0, there exists a positive constant

B = B(n) such that for all u,v,w in Z we have:
l i
ulog 5+ v log 3+ wlog 2| B((|Ju] + 1)(|v] + 1)) .
Then the method of [36] shows that (cf. [73])

lim ¢(X) = (log 30)/(log 16) = 1.227...
49 .
More recently (cf. [48]) I used the value k = 2 7 log 3 given by M.
Waldschmidt to show that 1im c(X) ¢ 3.48, and a new result of G. Rhin
(cf. [57]), namely k = 7.616, implies 1lim c(X) < 1.71 . I also show that

lim ¢(X) € 1.44. It was proved in [36] that

im c(X) > % log(15/8) (1 _ 1) = 1.13682...

q

VI
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2
2
W

with Mozzochi’s value T = 11/20 - 1/384.

All these results are based on diophantine approximations of
6 = lg%égégl » and similar numbers arising from the values of the function
d. Actually the 3 is d(pz) and both 2’'s occuring in the definition of 8
are d(p). Now, suppose we consider a multiplicative function &, such
2

that é(pa) depends only on a and 6 = lo fog(é{g)) is, say, a

Liouville number. Then the method of [36] no longer works (cf. [73]).
For such a function &, let Qa(X) be the number of champion numbers up

to X. It is an open question whether there exists c(6) such that
Q;5(X) € (log x)c(é).
Another open question is the following: Let n, be the ith h.c.
number. Erdos proved in [7] that there exists ¢ > O such that, for i
large enough,

ni_'_l/n1 <1+ (log ni)—c.

and deduced from this that Q(X) > (log X)1+C+0(1). But does there exist

¢’ such that n /0y - 1> (log ni)_c ? In [48] it is only proved that
174
ni+1/ni - 12 exp(~(log ni) ).

VI. The structure of highly composite mumbers.

Let n be a h.c. number, and 9 its largest prime divisor. We write

e A
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TToP
n = P
pq,
-
Ramanujan has proved that acl =1 unless n=4 or n =36. Then he 3
1 3
divides the primes from 2 to q, in five ranges and for each range gives
an asymptotic estimate of ap in terms of q;- For instance, he has .8
1.
proved that (
log q,
(13) a, log p = Toz o + 0(V1og q; loglog ql)
holds for log p = O(loglog ql).
in
is

The study of the structure of h.c. numbers takes up about half of the

whole paper. In the introduction to the "Collected Papers” (cf. [55], p.
xxxiv) Hardy has written that this study is "most remarkable, and shows
very clearly Ramanujan's extraodinary mastery over algebra of .
or
inequalities.”
T

To estimate a the idea of Ramanujan is to write d(m) < d(n) for
an appropriate choice of m < n. In [1], Alaoglu and Erdos have improved

(15
Ramanujan?’ s estimations for ap, mainly using Hoheisel’s result in the
construction of a better m.

In [36] and [48] estimates of ap are obtained with the so-called larg
"benefit" method. Let n be h.c. and N the s.h.c. number just preceding ther
n. Let &£ be any parameter such that N = Ne' and x = 21/8. Ve write
(cf. (6)) (16;
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b
N=TTpP with b, = [1/(p° - 1)].
p<x

The benefit of n "(relative to N and g) 1is

benn—log-d—(z—:‘)-- logiL]:)-
N n

(14)

z [log EP%] - r:(bp - ap)log p].
p<max(q, .x) P

From the definition of the s.h.c. numbers, each term in the above sum
in nonnegative. In [36] I proved that there exists C, such that, when n

is h.c.,

benn {C x ¥

for y=6(1-7)(xk +1) = 0.0307... with the Mozzochi and Rhin values of

7 and k. Using this I showed:

R 1 -y
if £ lo —lo[1+ ](Cx. th =b =b +1;
Z P 2 bp+1 < enap porap b
1 _ -Y _ _ )
(15) 1if log [1+bp—+T] e log p{Cx ¥, 'chenap_bp or ap_bp—l,

in other cases, a_=b .
P P
Formulas (15) show that |ap - bpl is at most 1. If 9 is the
largest prime dividing n with exponent » k, and X is defined by (7),

then we have for k < k', K = [1/(e¥'8 2 _ 1)] = 46, (cf. [48])

(18)  In(g) - wa)] € oY,
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and for k' <k ¢ g

l7(x) - m(q)| < 1.
With k = 1, we get, by Hoheisel’s theorem
(17) q =x+ O(XT) ~ log N ~ log n.

From this we can see that in (13) the error term is in fact O0(1).
Moreover, from (15) and (17), when q, is given, we can calculate ap

with an error of at most 1, for all p’s between 2 and q-

VII. Effective upper bounds.
For each integer n 2 1, let us draw a point with coordinates log n

and log d(n), and then consider the convex envelope of all these points.

.

foa d{m) {
3r 120

w.
o0
-~
=

The first s.h.c. numbers are 2,6,12,60. Observe that h.c. numbers which are
not superior such that 4,24,36,48 are close to the convex envelope, The
vertical distance from them to the convex envelope measures the "benefit”.

|

el TR

s
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Now consider all the straight lines with fixed slope £ and going through
the points (log n, log d(n)). These lines cut the y-axis in a point whose
ordinate is log d(n) - £ log n, and so, from the definition of s.h.c.
numbers, the highest possible such line, is going through (log N, log
d(N)) where N = Ns. Thus s.h.c. numbers are characterized by the
vertices of the preceding convex envelope.

It follows from (2) that there exists an absolute constant A such that

log d(n) log n
(18) Tog 2 <A Tozlog for all n 2 3

(n = 2 is not possible because loglog 2 1is negative).

. 2
is concave for x 2 e

We now observe that the function x +— Tog %
and that 2520 is the smallest s.h.c. number bigger than exp(ez). So to
prove (18) for a certain A, it is sufficient to prove it for all n ¢
2520, and then for all s.h.c. number bigger than 2520, because, if the
curve y = Ax/log x 1is above éll the vertices of the convex envelope, it
will be above all the points (log n, log d(n)).

Calculations can be carried out easily for two reasons: first, s.h.c.
numbers are rare, and secondly, their factorization into primes is known by

(6) or (9). and effective estimates of Rosser and Schoenfeld can be used

(cf. [66], [67]. [70]). The result is that

log d(n) ¢« y 5379 ... %8R = >3
log 2 loglog n

with equality for n = 6983776800 cf ([43]). By the same method more

accurate estimates can be given (cf. [61]):
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log d(n)  _log n [1 , 1.9349 ] Cny 3
log 2 loglog n loglog n

log d(n) , _log n [ N 1 , A.7624 ..

log 2 -~ loglog n loglog n ] ’ n2 3

(loglog n)2

log d(n) iog n
log 2 £ loglog n - 1.39177 ... °' n 2 56.

Under the assumption of the Riemann hypothesis, it follows from the upper
bound obtained by Ramanujan (cf. [54], §43, and (19) below), that there

exists ¢ such that

log d(n) { Li(log n) + c(log n)e
log 2
with 0 defined by (8). The above method enables one to find the best

possible c, but the calculations have not yet been done.

VIII. The maximal order of d(n).
Using the definition of s.h.c. numbers, Ramanujan has defined the
maximal order of d(n) as a certain function D (cf. [54], §38).

Consider the piecewise linear function u +—— A(u) such that for all

s.h.c. numbers N, A(log N) = log d(N), that is the convex envelope of the

set of points (log n, log d(n)) considered in the preceding paragraph.

Then Ramanujan’s D-function is equal to

D(t) = exp (A(log t))

and satisfies d(n) ¢ D(n) for all n, with equality when n 1is s.h.c.

poponn

RS SN A
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The reasons why Ramanujan chose D as the maximal order of d(n) are

not clear to me. F(t) = max d(n) might be a better choice. Anyway D
nt :

and F are very close (cf. [41], p. 13-15, where more about this notion
of maximal order can be found).

However, it was a great idea of Ramanujan to use s.h.c. numbers to ge;
a good estimate of the maximal order, that is to find an analytic function
as close as pussible to the maximal order. His estimation for D, under

the assumption of the Riemann hypothesis,

8

log D(n) _ ;. . 6, _ (log n)" _
(19) Tog 2 = Li(log n) + 6 Li((log n)") Toglog o R(log n)

+ 0[ Jlog n ]
(loglog n)3

with

R(x) = [2& +) %]/(log x)2
p

where the sum is over all the nonreal zeroes of the Rieman {-function, is
certainly very nice.

let A> 1, and let

_ log d(n) _ log n
fk(n) T log 2 A loglog n -~

It follows from (2) that lim fx(n) = -©, and therefore fx(n) has an
N

absolute maximum attained for at least one integer ﬁk (cf. [64]). Little
is known about these integers ﬁk' but they are still closer to the

maximal order of d(n) than the s.h.c. numbers themselves.
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IX. Tables.

In his memoir, Ramanujan has included a table of the first one hundred
h.c. numbers, and of the first fifty s.h.c. numbers. It is worth while
mentioning that the table on pp. 2 and 3 in the notebooks (cf. [56], Vol.
2) is a table of the h.c. numbers.

In [60]. Robin has calculated the first 5000 h.c. numbers, and
independently the same calculation was carried out by te Riele. They used
a method of dynamical programming. Let us define Sk as the set of
integers made up of primes Py.-- Py We say that n is k - h.c. if

n € Sk and if

m € Sk and m < n 3 d(m) < d(n).
These k - h.c. numbers are‘easily determined by induction, and small
k - h.c. numbers are actually h.c.
A theoretical study of 2 - h.c. numbers (of the form 2a33) has been
undertaken in [2], using the continued fraction expansion of log 3/log 2.
A more powerful algorithm is also given in [60]. It allows one to
calculate h.c. numbers between two consecutive s.h.c. numbers. This
algorithm uses the "benefit” method mentioned in §VI. First you guess a
positive real number B which should be the maximal value of the benefit of
a h.c. number. Then you calculate all integers n in the considered
range, the benefit of which is smaller than B. From these n's you
calculate an exact upper bound B' for the maximal benefit of a h.c.
number. If B’ { B, h. c. numbers are included in the calculated n's . If
B’ > B, you start again with B' instead of B.

Robin has used this algorithm to determine the smallest number which

has more than 101000 divisors. It is an integer of 13198 decimal digits,
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the largest prime factor of which is 30113.
Aloaglu and Erdds conjectured in [1] that if n is h.c.., then there
exist two primes p and q such that Np and N/q are h. c.. G. Robin

has found a counterexample to this conjecture (cf. [60]).

X. Optimization problems in integers.

Calculation of the largest h.c. numbers < A 1is equivalent to solving

;ax z log(xk + 1),
k=1
(20) ;

[+o]

E xklog Py < a=log A, X € N.
.
k=1

As Py < A, the number of variables is finite, and solving (20) with X}
real is easy using Lagrange multipliers.

In fact, it is also possible to use Lagrange multipliers to solve (20)
when the xk's are integers. Suppose that f and g are two real-valued
functions defined on a subset 1 of an, and that g is nonnegative. We

want to solve

max f(x)
x€0
(21)
(x) <C

for different values of C. Suppose that for A 2 O there exists Xg

such that f - Ag is maximal at Xq that is to say

Vx € Q, £(x) - Mg(x) & f(xo) - )\g(xo).
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Then X, is a solution of (21) for C = g(xo). Indeed, we have for

x €0, with g(x) {C= g(xo):

f(x) < £(x5) + Ma(x) - s(xy)) < £(x4)-

Such C's which can be written in the form g(xo) are called Lagrange
bounds for the problem (21). Lagrange bounds of (20) are logarithms of
s.h.c. numbers.

In general, not all possible values of C in (21) are Lagrange bounds,
and to solve (20) when C 1is not a Lagrange bound, we can use Everett’s
method (cf. [14]) which is about the same as the benefit method I used in
8VI.

A few bridges have been built between h.c. numbers and optimization
problems in integers. (cf. [38], [39]. [40]. [58]. [60]). Probably it is
worthwhile working in that area. In my opinion, optimization theory sheds
an interesting light on h.c. numbers, and from this point of view it can no

longer be said that h.c. numbers are in a backwater of mathematics.

XI. Other champion numbers.

Ramanujan’s work on h.c. numbers has been first extended to the sum of
the divisors of n by Alaoglu and Erdos (cf. [1], [51] and [69]). They
define a highly abundant (h.a.) number as a champion number for the
function n +—— o(n), and a superabundant (s.a.) number as a c ion
number for the function n = o(n)/n. Furthermore they say that n is

colossally abundant (c.a.) if there exists & > O such that for all m,

o(m)  o(n)

14 = 1+ °
m n

et i

I
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It is easy to see that c.a. ® s.a. @ h.a.

Llet n be h.a. and P its largest prime divisor. It is not knwon
whether P ~ log n, or if P2 divides n for infinitely many n’s. Let
Qh(X) and QS(X) be the number of h.a. and s.a. numbers up to X. It has
been proved in [9] that QS(X) > (log X)1+5. We don’t know whether Qh(X),
or even QS(X), is smaller than (log X)c.

More recently, Masser and Shiu (cf. [31] and [4]) have studied sparsely
totient numbers, that is to say integers n such that m > n 3 ¢(m) >
¢(n). In this case the superior numbers are easy: they are the product of
the first k primes (cf. [49], Chapter 1), but that does not make the
study of sparsely totient numbers really easier.

Landau has defined g(n) as the maximal order of an element in the
symmetric group of n elements. Let & be the additive function defined

by B(pa) = pa. One can prove that

g(n) = max M
2(M)<n

and
N €g(N) &M>N=>2(M) > &(N).
So the values of g(n) appear as a generalization of h.c. numbers (cf.

[34]. [35]. [29]. [30]).

Let us define n to be largely composite (l.c.) if

m ¢ n =2 d(m) £ d{(n).
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These numbers are not necessarily w.n.i.e. (cf. &§III), and they are much
more numerous than h.c. numbers (cf. [42]). An open question is whether
between two consecutive h.c. numbers that are large enough there is always
a l.c. number.

Champion numbers are considered in [52] for dk(n) (cf. 81), in [3]
for the function f(n), defined as the number of unordered factorizations
of n into factors > 1, in [48] for the function n + d(n) + d(n + 1),

in [10] for the function

F(n) = max [ ) 1],
t dIn
t/2<d<t

k-1
a
in [13] for the function f(n) = z qi/qi+1 where n = q; »---»q,  with
i=1
q; < 95 < ... K 9 and for the function w - f, and in [11] for the

function f, where f(n) is the largest integer k for which there

exists m such that n divides the product | [ {m + i), but does not
1<igk

divide this product if any of its factors is omitted.
Champion numbers for  are the products of the first primes.
Integers n such that

m<{n=>wo(m {wh)

have been studied in [12].
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XII. Maximal order of various functions.

It has been proved by Landau (cf. [26]) that

n Y

lim ¢(n) loglog n =

where <y is Euler's constant. In [45] and [46] it is proved that for

infinitely many n’s,

n > ey¢(n)loglog n

holds.
The maximal order of o(n) was first obtained by Gronwall (cf. [16])
who showed

T —9(n) _ _ .Y

o loglog n

Robin has proved in [63] that the property

Vn 2 5041, o(n) < e'n loglog n

is equivalent to the Riemann hypothesis (cf. also [59] and [65]).

Let a(n) be the number of abelian groups of order n. This is a
multiplicative function, and a(pa) is equal to the number of partitions
of «a. The maximal order of a(n) is a little more difficult to study
than that of d(n). The reason is that the "superior” numbers are more
complicated. Schwarz and Wirsing have proved in [71] that the maximal

order of a(n) is
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(log 5)Li [lQE—BJ + O(log n exp(- ¢/loglog n)),
improving the results of [22] and [25]. In [41] the maximal order of a(n)
under the assumption of the Riemann hypothesis is given.
When dealing with an arithmetical function, it is now a classical
problem to study its maximal order. This has been done for the
coefficients of some modular forms and especially Ramanujan’s function T
(cf. [5] and [33]), and some other functions (cf. [17], [23] and [24]).
A more general study has been undertaken for those multiplicative
functions f(n) for which f(pa) does depend on a, but not on p.
(c£. [6]. [53]. [20]. [72]. and [44]). ‘
Explicit upper bounds for d3(n) and r(n) defined in 3II can be

found in [61].

XIII. The unpublished manuscript.

In the notes on the memoir "Highly composite numbers™ at the end of the
"Collected Papers” of S. Ramanujan (cf. [55], p. 339), it is stated: "The
paper, as long as it is, is not complete. The London Math. Soc. was in
some financial difficulty at the time, and Ramanujan suppressed part of
what he had written, in order to save expense.”

During the Ramanujan centenary conference at Urbana, many documents
were displayed, and among them, I have found about 20 pages, handwritten by
Ramanujan, that belong to this suppressed part. This unpublished part ; 
deals with the maximal order of some arithmetical functions under the
assumption of the Riemann hypothesis, and generalizes the results of
§% 39-43. One type of these arithmetical functions is the number of
representations of n by a sum of 2, 4,, 6, 8 squares, or by some other

simple quadratic forms. Large values of dk(n) are also studied.
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The more interesting part of this manuscript pertains to the maximal

order of

o_s(n) = }:d_s
d|n

where s > 0. We have
o (n) = n°o {n)
s - -s

and Ramanujan studied in detail those functions as(n) which occur in
Eisenstein series. To study the maximal order of o_s(n), generalized
superior h.c. numbers are introdcued. In the case s = 1, these numbers

were rediscovered by Alaoglu and Erdos who call them colossally abundant

numbers.
Three cases are to be considered: 0 ¢ s ¢ 1/2, s =1/2 and s > 1/72.
When s = 1, Ramanujan gives the formula

Tim (a_l(n) - e'loglog n)(v1og n) ¢ e¥(4 - 2/2 + vy - log 4m)

1.39... ,

which was rediscovered by Robin (cf. [63], p. 194). In fact, Ramanujan has

estimations for every s.

I shall try to get this manuscript of Ramanujan published elsewhere.

P maritifiip fiviiaeos
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