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PREFACE TO THE SECOND EDITION

SINCE the first edition was written, a vast amount of further work has
been done. This has been covered by the end-of-chapter notes. In mosat
instances, restrictions on space have prohibited the inclusion of full
proofs, but I have tried to give an indication of the methods used
wherever possible. {Proofs of quite a few of the recent results described
in the end of chapter notes may be found in the book by Ivic [3]) I have
also corrected a number of minor errors, and made a few other small
improvements to the text. A considerable number of recent references
have been added.

In preparing this work I have had help from Professors J. B. Conrey,
P.D.T. A.Elliott, A.Ghosh, S.M. Gonek, H.L. Montgomery, and
8. J. Patterson. It is a pleasure to record my thanks to them.

OXFGRD D.R.H.-B.
1986



PREFACE TO FIRST EDITION

THis book is a successor to my Cambridge Tract The Zela-Function of
Riemann, 1930, which is now out of print and out of date. It seems no
longer practicable to give an account of the subject in such a small space
as a Cambridge Tract, so that the present work, though on exactly the
same lines as the previous one, is on a much larger scale. As before, I do
not discuss general prime-number theory, though it has been convenient
to include some theorems on primes.

Most of this book was compiled in the 1930’s, when I was still
researching on the subject. It has been brought partly up to date by
including some of the work of A. Selberg and of Vinogradov, though a
great deal of recent work is scantily represented.

The manuscript has been read by Dr. 8. H. Min and by Prof. D. B.
Sears, and my best thanks are due to them for correcting a large number
of mistakes. I must also thank Prof. F. V. Atkinson and Dr. T. M. Fleet
for their kind assistance in reading the proof-sheets.

OXFORD E.C.T.
1951
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THE FUNCTION {(s) AND THE DIRICHLET
SERIES RELATED TO IT

1.1. Definition of {(s). The Riemann zeta-function {{s} has its origin in
the identity expressed by the two formulae

{s) = Zni (1.1.1)

n=1
where n runs through all integers, and
1y-1
o) = (1——) ) L2
LIt=7 e
where p runs through all primes. Either of these may be taken as the
definition of {(3); s is a complex variable, s = o-+it. The Dirichlet series
(1.1.1) is convergent for ¢ > 1, and uniformly convergent in any finite
region in which o 2= 148, 8 > 0. It therefore defines an analytic func-
tion §(s), regular for o > 1.

The infinite product is also absolutely convergent for o > 1; for so is

Shl-35

¢
' \P 7

thie being merely a selection of terms from the series 3 n~°. If we
expand the factor involving p in powers of p~2, we obtain

1 1
= —+ )
1:[( » P
On maultiplying formally, we obtain the serfes (1.1.1), since each
integer n can be expressed as a product of prime-powers p™ in just one
way. The identity of (1.1.1) and (1.1.2) is thus an analytic equivalent
of the theorem that the expression of an integer in prime factors is
unigue.
A rigorous proof is easily constructed by taking first a finite number
of factors. Since we can multiply a finite number of absolutely con-
vergent series, we have

1 1 1 1
RN S, B PR IFRE SV,
,L,,l( bt = gt

where 5y, #,,..., are those integers none of whose prime factors exceed P.



2 THE FUNCTION {(s) AND Chap. 1

Since all integers up to P are of this form, it follows that, if £(s) is
defined by (L.1.1),

-]

P

foy—1-L.1
" Ny

S I —

S@rr e

This tends to ¢ as P — co, if o > 1; and {1.1.2) follows.

This fundamental identity is due to Euler, and (1.1.2) is known as
Euler’s product. But Euler congidered it for particular values of s only,
and it was Riemann who first considered {(¢) as an snalytic function
of a complex variable.

Since a convergent infinite product of non-zero factors is not zero,
we deduce that [{s) has no zeros for o > 1. This may be proved
directly zs follows. We have for ¢ > 1

(1_%)(1_%)...(1—%)&3) = l+;nl~;+m—1;+-~-

where m,, my,..., are the integers all of whose prime factors exceed P.
zle—e—— — >

Hence
(1_%)...(1 —%)Z(S) Py~ (P1or

if P is large enough. Hence |{(s}| = 0.

The importance of {(s) in the theory of prime numbers lies in the
fact that it combines two expressions, one of which contains the primes
explicitly, while the other does not. The theory of primes is largely
coneerned with the function =(2), the number of primes not exceeding z.
We can transform (1.1.2) into & relation between {(s) and ={z); for if
o>1,

log s} = — 3 log(1— 1) = — 3 trtm—ntn—1jogf1 )
P

1 1

»n=2
- Seoloft 2t
=Zw(u)’j‘z(;_”dz — jnz(:i)l)d“- (L1.3)

The rearrangement of the series is justified since ={n) < » and
log(l—n—) = OG{n—").

1.1 THE DIRICHLET SERIES 3
P 1 1
Again — = 1 -—),
i £o) 1]( Iz
and on carrying out the multiplication we obtain
1 <>pin)
) ~.Zn e, (1.1.4)

where u{1) = 1, p(rn) = (—1)* if n is the product of k different primes,
and p(n) = 0 if n contains any factor to a power higher than the first.
The process is easily justified as in the case of {{s).

The function p{n) is known as the M&bius function. It has the

property ‘%,u(d) =1(g=1), 0(g>1), {1.1.5)

where d|¢ means that d is a divisor of g. This follows from the identity

—S1SE_Sis.

m=1 q=1" dg

It also gives the ‘Mdbius inversion formula’

glg) = zf(d), (1.1.6)
= Datd), 1
f@ g#(d)y( ) (1.1.7)

connecting two funetions f(n), g(n) defined for integral ». If f is given
and g defined by (1.1.6), the right-hand side of (1.1.7) is

dz‘q u(g) %f(r)-

The coefficient of f(g) is z(1) = 1. If r < g, then d = kr, where k| g/r.
Hence the coefficient of f(r) is

% .u(k%) = k%;.u(k’) =0

by (1.1.5). This proves (1.1.7). Conversely, if ¢ is given, and f is defined
by (1.1.7), then the right-hand side of (1.1.6) is

>> #(g)g(r),

dig rid
and this is g(y), by a similar argument. The formula may also be
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derived formally from the obviously equivalent relations

P = S0, g = LS,

el C(a) =
< fin)
where Fis) = "Z; -
Again, on taking logarithms and differentiating (1.1.2), we obtain, for
o> 1
’ U _

w25
=_21ogp24

m=1

A(n)

g
P
n=2

where A(n) = logp if » is p or a power of p, and otherwise A(r) = 0.
On integrating we obtain
log £(s) = Z A s, (1.1.9)
n=2
where A;(n) = A{n)/log %, and the value of log {(s) is that which tends
to 0 a8 ¢ - o0, for any fixed 1.
1.2. Various Dirichlet series connected with £(s). In the first
place

(1.1.8)

[3(s) = Z‘fg."_) (o > 1)}, (L2.1)

=1

where d{n) denotes the number of divisors of » (ineluding I and n itself).

For =
=2 Si- Z,,. 2,

»=1 py=n

and the number of terms in the last sum is (). And generally

S difn)
k(g) = ELL (o> 1), 1.2.2
H = 2 B o>1) (1.2.2)
where & = 2, 3, ¢,..., and d,(n) denotes the number of ways of expressing
n as a product of k factors, expressions with the same factors in a
different order being counted as different. For
¥
C (3) ;Zslvs 2—1"k Z Y1 g—*

and the last sum is di(n).

g

1.2 THE DIRICHLET SERIES 5

Since we have also
1y-2 2 3
s) = 1—] = e =) 2.
&) 1:[( P ]:[(+P‘+p,,+) (@23

on comparing the coefficients in (1.2.1) and (1.2.3) we verify the
elementary formula

din) = (my+1)...(m,+1} (1.2.4)
for the number of divisors of
n = plpf.pi. (1.2.5)
Similarly from (1.2.2}
_ (etm— 1! (kf-m,—1)! :
G = TR m i) {1.2:6)
We next note the expansions
ORI ;
o~ 2w (o> 1), (L2.7)
where p(n) is the coefficient in (1.1.4);
) ovtn) ,
o) "Zl - (o>, (1.2.8)
where »(r) is the number of different prime factors of »;
£ _ < diad)
T~ "Zl o =), (1.2.9)
L {d
and T = Z (1.2.10)

To prove (1.2.7), we have
sy _ 1rorl=p® _ 1
- L1 - L1+
» f2
and this differs from the formula for 1/{(s} only in the fact that the

signs are all positive. The result iz therefors clear. To prove (1.2.8), we
have

- £2(s) 1—p 14p=
@) (1—11“’)’ 1—p=

= l;I (]+2p“’+2p""+...),
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and the result follows. To prove (1.2.9),

—p-2 —
ig?) =11 (}—i")*’ RS (113*)’
= [T {0 +p= N1+ 2p+3p~2t}
= I;I {14+3p~ ..+ 2mtpot ),
and the result follows, since, if » is (1.2.5),
d(n?) = (2m,+1)...(2m,+ 1).

Similarly
(SO 1—p™ _ 14p*
C(2&')_n(lﬁp")‘_ gt (L—p~P?

= 1;[ (1+p){1+3p~*+ ... H{m+1)(m+2)p 4.}
= ];[ {1 dp=f (L2,

and (1.2.10) follows.
Other formulae are

Hoe)  hAm) oy (1.2.11)
Us) ,,Zl i

where Mn) = (—1)" if » has r prime factors, a factor of degres & being

counted L times;

feot) _ Soém o 2.12
W Y A
where ¢(n} is the number of numbers less than n and prime to #; and
1_2 45( —1) = Z%’:’) (o> 2), (1.2.13)
n=1

where a(n) is the greatest odd divisor of n. Of these, (1.2.11) follows
at once from

- [T - ] () [T oerione

LR =155
T b))

R S

M o e

-

A S

1.2 THE DIRICHLET SERIES 7

and (1.2.12) follows, since, if n = p™...p5%7™,
1 1
= a|le =]l ——].
s =13 }-{1=3)

19t 1-g1 1

ST T Ee—1) = - 2 —

1mes N = g [ Ly
r

Finally

1 1 1
T 1213l 151"

~ (gt T

and {1.2.13) follows.
Many of these formulae are, of course, simply particular cases of the

general formula
St _ 1—”1 S fe, )

where f(n)is a multlpllca.twe funetion, i.e. is such that, if n = phpPs...,

then fin) = f(pTOA(PE)

Again, let fi.(n) denoto the number of representations of » as a product
of k factors, each greater than unity when # > I, the order of the factors
being essential. Then clearly

ifk(_’:‘) = {UH—1F (o> 1) {1.2.14)
n=2 g

Let f{n) be the number of representations of » as a product of factors
greater than unity, representations with factors in a different order
being considered as distinet; and let f{1) = 1. Then

fla) = Zf:g(n)
Hence ) L
z =14+ {1 =1+ E;Zs)-l}

n=1

_ 1
2—{e)’
It is easily seen that [(s) = 2 for s = o, where a is a real number greater
than 1; and [{(s)| < 2 for ¢ > «, 8o that (1.2.15) holds for o > a.

(1.2.15)
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1.3. Sums involving o,(n). Let ¢,(n) denote the sum of the ath
powers of the divisors of n. Then

o 1 L) o0
Us)ls—a) = ;1; 2 Z= Z

ie. Us)E(a—0) = i 5’075"_’ @>1, a>R@+1).  (L3.1)

n=1

Since the left-hand side is, if @ #£ 0,

1 1 i it )
14+ ——4...

[T {0+ 5B
— I+p® | 14ptp* ) ( —p= )
= 14— £ = .. 1 —

]:[(+p,+p,+ 1:[+1p,,p,+

1 pymatia 1—pireta

L—p} 1—p¢

if = is (1.2.5), as is also obvious from elementary considerations.
The formulat

L(ed(s— a)f(s—b)ls—a—b) a, (n)ay(n)
Toa—a—t) 2 wb (1.3.3)

By=n

we have G,u(n) = , (1.3.2)

a1

is valid for ¢ > max{l,R(a)+1,R{b)+1,R(a+b)4-1}. The left-hand
side i8 equal to

I_[ —pisiasd
= (I—p){1—p=+*)(1—p—¥)(1—p—+e)’
Putting p~* = z, the partial-fraction formula gives

l—p"'*bz!
(1—z)1—p°2)(1—pP2)(1—p*+*2)

= 1 SR P
- (1*33“)(!~—p°){l—z_l—p“z_ T—pPe” l—p‘”hz}

=,__1_~m A Da __ sl Db ) aofm 1) n
e D e S

— P s 0)m,

1 &
=T 2

4+ Ramanujan (2), B. M. Wilson (1).

13 THE DIRICHLET SERIES 9
Hence
L) (s—a)l{s—b){(s—a—b) *P""*l"‘ l—P""“” i
fzs—a—t) =11 Z e
and the result follows from (1.3.2). If @ = b =0, {1.3.3) reduces to
(L.2.10).

Similar formulae involving o{@(x), the sum of the ath powers of those
divisors of » which are gth powers of integers, have been given by
Crum (1).

1.4. It is also easily seen that, if f(») is multiplicative, and
f(n)

is a product of zeta-functions such as occurs in the above formulae, and
k is a given positive integer, then

Z f(kﬂ)

can also be summed. An example will illustrate this point. The function
ag(n) is ‘multiplicative’, i.e. if m is prime to n

au(mn) = o (mlaaln).

Hence au(n) n Z 0(.(19 )

nwl
and, if & = [ 2" y
o gq{kn) _ < Tl #)
25 L2 e
Hence
il haid fm e
z a(kn) = ¢(s)lfs— a) [Z %ol m: )/z 7y(P )}
n=1 plk *m=0 P
Now ifae £ 0,
i ﬂ'a(f’b’m) _ 0 l_p(umu)a - l—:p“"—p““)"-f-p““)““’.
o & —pp (1—pt {1 —p~ N1 —p)
Hence
> ) — gopge—a) [TAEEZRIPE 1y
i ™ Bk —F
Meking & — 0, Z UER) _ o) IJ @+ 1170 (1.4.2)

n=0
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1.5, Ramanujan’s sums.t Let
2nh:
culn) = 3 e-onirik — Z cos "k sl (1.5.1)
where & runs through all positive integers less than and prime to k.
Many formulae involving these sums were proved by Ramanujan.
‘We shall first prove that

cp(n) = Z ,u(’:;) d. (1.5.2)

dlkdin

k=1
The sum nln) = 3 e-zmeilk
m=0

is equal to & if k[n and 0 otherwise. Denoting by (r, d) the highest
common factor of r and d, so that (r, 4) = 1 means that r is prime to d,

cAn) = e-tnrmijd — 7).
=3 3 )

Hence by the inversion formula of Mébius (1.1.7)

) = 3wt

dlk
and (1.5.2) follows. In particular
1) = plk). (1.5.3)
The result can also be written
ol(n) = ; pird.
drwhdin

) _ 5

Hence k’

dr=ldln
Summing with respect to &, we remove the restriction on #, which now
assumes all positive integral values. Hencef

<o epln) Md‘* _ ©1-4n) (1.5.4)
2w = 2= ey
the series being absolutely convergent for o > 1 since [cy{n)] < o,(n),

by (1.5.2).
We have also

Semosls )

=1 dikdn

- %F(fﬁ) dé:lm{)s = ) % .u(g) dts. (L55)

1 Ramanujan {3), Hardy (5).
1 Two more proofs are given by Hardy, Ramanujan, 137-41.

15 THE DIRICHLET SERIES 11
We caw also sum series of the formt

S cl)f(n)
n
m=1
where f(n) is a multiplicative function. For example,

o

d - &(n) k
St S0 5 wf
= A=l 1he,Sin

=0y 81--',u(§) [Te+1-%

8k pot]
ifd =[] If & =] thesumis
K\ f
eI k= 3 (7 00 IT a1+
kN1 "
+ (—) P—-Q-Dp A~ A-Dp~} T A+1—2p")—..
3’;“ PP v';;l}r’

1 -
= f1-e H [(A-{-I—Ap*‘)—pl—_.{l—(ﬁ—l)ﬂl }}

1 1 I
=T 1-c+aMri—=1—-—||.
,.{ p+( P‘)( ;0“)]
Hence

i ck(ﬂ;:ff(ﬂ) = (s} 1;[ [1 _%+;\(1 __;)(1 —pll_,)}. (1.5.6)

n=1

& culgn)fn)

We can also sum por

a=1
For example, in the simplest case f(n) = 1, the series is

< 1 K
- By -).
nzlnaﬁlk, an- (8
For given 3, # runs through those multiples of 8/g which are integers.
If 5/g in its lowest terms is 5/g,, these are the numbers 3,, 25,,....
Hence the sum is
AR K
Z 8."('5) z s e Z 5.“(5)5:—3-
Sk r=1 3k
t Crum (1).
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Since 8, = 8/(¢,8), the result is

k)

adan) _ (P a5y
>H S {5 o7 (187)

n=al
1.6. There is another class of identities involving infinite series of
zeta-functions. The simplest of these isf

S % - i @log Tns). (1.6.1)
» nen]
We have log I(s} = ,Z,, Z E;l,"m—: = mz‘;@,

where P(s) = > p~*. Hence

El’i?mg{(m) = ZE%),;:P(%&! = i @ Z mln).

r=1 wlr
and the result follows from (1.1.5).
A closely related formuls is

o

) gy S m)
“Zl = c(s)nzl - log{(ns), (1.6.2)
where »(») is defined under (1.2.8). This follows at onee from (1.6.1) and
the identity > vfn) E 1
v(n

25 2w
n=1 m=] r

Denoting by b(n) the number of divisors of » which are primes or
powers of primes, another identity of the same class is

Z t% = {(s)%@log t(ns), (1.6.3)

n=1

where ¢(n) is defined under (1.2.12). For the left-hand side is equal to

o lofl, 1 1

E—— E —t =t ),

m (7’ T
and the series on the right is

s Bin) < 1 .
2 2 D= 2 2 > 40

Since >h(n)=wv,
the result follows. »

1 8ee Landau and Walfisz (1), Estermann (1), {2),

11

THE ANALYTIC CHARACTER OF {(s), AND
THE FUNCTIONAL EQUATION

2.1. Analytic continnation and the functional equation, first
method. Each of the formulae of Chapter I is proved on the supposi-
tion that the series or produet concerned is absolutely convergent. In
each case this restricts the region where the formula is proved to be valid
10 a half-plane. For {(s) itself, and in all the fundamental formulae of
§ 1.1, this is the half-plane « > 1.

We have next to inquire whether the analytic function {{s) can be
continued beyond this region. The result is

THEOREM 2.1. The function {(s) is regular for all values of s except
g = 1, where there is a simple pole with residue 1. It satisfies the funclional

equation {(s) = 2°n*-1sin farT(1—8){(1—3). (2.1.1}

This can be proved in a considerable variety of different ways, some
of which will be given in later sections. We shall first give a proof
depending on the following summation formula.

Let ¢{x) be any function with a continuous derivative in the interval
[a, b). Then, if [x] denotes the grealest integer not exceeding x,

b 3
a<§<a $in) =! $(z) dx +J (& —[z]—1)¢ () dz+
+(a—[a]—Hpla)—(b—[6)—1)(). (201.2)

Since the formula is plainly additive with respect to the interval (a, &)
it suffices to suppose that n € ¢ <b < n+1. One then has

b b
j' (- n—DE(x) dx = (b —n — PB) — (@ —n — Pebla) - j )z,
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on integrating by parts. Thus the right hand side of (2.1.9) reduces
to ([b]—-n)¢(b). This vanishes unless b= n+1, in which case it is
¢{r + 1), as required.

In perticular, let ¢(n) = n-2, where s # 1, and let & and b be positive
integers, Then

b —8__pl-a
> a=e fx 13 g 41 —a). (213)

- +1
ne=atl 1 =

«

First take ¢ > 1,2 = 1, and make b > o0. Adding 1 to each side, we
obtain

ls)=s f ["]_”HJH +— (2.1.4)

Since [#]—x+4 is bounded, this integral is convergent for o > 0, and

uniformly convergent in any finite region to the right of o = 0. It

therefore defines an analytie function of s, regular for ¢ > 0. The

right-hand side therefore provides the analytic continuation of {(s) up

to @ = 0, and there is clearly a simple pole at s — 1 with residue 1.
For 0 < o < 1 we have

1 1 ®
[:c]ma:dx _ 1 s de l
P s—1" 2}z 32
0 o 1

and (2.1.4) may be written

=

L) =+ f [ﬂ—:fdz (B <o< 1) (2.1.5)

Actually (2.1.4) gives the analytic continuation of [(s) for ¢ > —1;
for if #
foy =2+t f@ = [fw)dy,
1

then f, () is also bounded, since, as is easily seen,

k1

| rydy =0 ,

&
for any integer k. Hence
[ 1@, _ [f‘—(ﬂ]n+(s+l) I‘fﬁ(%dz,

i+l 3+1

L
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which tepds to 0 as 2, - o0, ¥, =0, if 0 >> —1. Hence the integral in
(2.1.4) is convergent for ¢ > —1. Also it is easily verified that

1
— 1 1
sf%dx:m+- (@ < 0).

2
Hence te) = aj [”];_f_;"*d,z (—1 < o << 0). (2.1.6)
0
Now we have the Fourier series
[6] 4} — Z smj:m:, (2.1.7)
n=1

where # is not an integer. Substituting in (2.1.8), and integrating
term by term, we cbtain

SR LR

o (2na) smy dy
T i

= %(21,)8{—1"(-8)}51:'1 3eml(1—s),

i.e. (2.1.1). This is valid primarily for —1 < ¢ < 0. Here, however,
the right-hand side is analytic for all values of s such that o < 0. It
therefore provides the analytic continuation of {{s) over the remainder
of the plane, and there are no singularities other than the pole already
encountered at s = 1.

We have still to justify the term-by-term integration. Since the
geries (2.1.7) is boundedly convergent, term-by-term integration over
any finite range is permissible. It is therefore sufficient to prove that

sin 2
hm z f 1“_1” =0 {—1<e=<0)

Now

o
811'12%7?1: sin 2nme o cos 2nmx]®  8+1 { cos2nmx dzx
T 2naettl ly  2am 41

A

and the desired result clearly follows.
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The functional equation (2.1.1) may be written in a number of
different ways. Changing s into 1—g, it is
L1—s) = 2'*n* cos Esal'(s){(s). {2.1.8)
It may also be written

ts) = x(a){(1—s), (2.1.9)

where x(8) = 2m*-15in jen (1 —s) = noF F([‘%(;f)”), {2.1.10)

and x(8)x(1—s) = 1. {2.1.11)

Writing £(s) = Ys(s— Lja BT (38)L(s), {2.1.12)
it is at once verified from (2.1.8) and (2.1.9) that

£(s) = £(1—3). (2.1.13)

Writing E(z) = £(3+1iz) {2.1.14)

we obtain E(z) = B(—=z). (2.1.15)

The functional equation is therefore equivalent to the statement that
E(z) is an even function of z.
The approximation near s = 1 can be carried a stage farther; we have

1
Lo = Ly 011, (2.1.16)
where y is Euler’s constant. For by (2.1.4)

@

133:{:(3)—3—_‘—]] = f belotiy, .y

i [
A0 X
1

-1 m+1d
. £
=hm[m§1m f ;i“k'g”’_H}
m

' ) A=l 1
= vlin;{mzlh—_l_—l-{-l—logn] =y.

2.2, A considerable number of variants of the above proof of the
functional equation have been given. A similar argument was applied
by Hardy, not to {(s) itself, but to the function

& (=1t
n‘

= {(1—21-9)L(s). (2.2.1)
nm=l
t Hardy (8).
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This Diriohlet series is convergent for all real positive values of 5, and
80, by a general theorem on the convergence of Dirichlet series, for all
values of s such that ¢ > 0. Here, of course, the pole of {{s) at s = 1
is cancelled by the zero of the other factor. These facts enable us to
simplify the discussion in some respects.

Hardy’s proof runs as follows. Let

)

- sin(2n4 1)z
&= > =gt
A=0
This series is boundedly convergent and
flz) = (—1yn for mm <z < (m+lm (m=01..)
Multiplying by 251 {0 < s < 1}, and integrating over (0, o0}, we obtain
© {(mt o 1
r > (=1 J‘ 2 ldx = T'{sisinfsr » ——0e
27 ) 2w
= T{g)sin $en(1—2-5-1){(s-1).
The term-by-term integration may be justified as in the previous proof.
The series on the left is

2+ E (—imfomt 1p—m]

‘This series iz convergent for s <C 1, and, as a little consideration of the
above argument shows, uniformly convergent for R{s) < 18§ < 1.
Its sum is therefore an analytic function of s, regular for R(s) < 1.
But for s < 0 it is

QLA 264 B9} = F(1—294){(—s).
Its sum is therefore the same analytic function of s for R(s) < 1.
Hence, for 0 < 8 < 1,

wH .
T (1= 29)(—2) = Dls)sin Jom(1—2-1s-+1),
and the functional equation again follows.

2.3. Still another proof is based on Poisson’s summation formula

.,i_ fin} :i ff(u)oos%—nua‘.u. (2.3.1)

If we put f(x) = |z[~*and ignore all questions of convergence, we obtain
the result formally at once. The proof may be established in various
ways, If we integrate by parts to obtain integrals involving sin 2nnu,
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we obtain a proof not fundamentally distinct from the first proof given
here.} The formula can also be used to give a proof dependingi on
(1—21-*)L{s).

Actually cases of Poisson’s formula enter into several of the following
proofs; {2.6.3) and (2.8.2) are both cases of Poisson’s formula.

2.4. Second method. The whole theory can be developed in another
way, which is one of Riemann’s methods. Here the fundamental
formula is

1 [zt
Us) = ™ f_ax_ldx (e > 1). (2.4.1)
(]

To prove this, we have for o > 0

w0 o
1 I'(s)
—1¢— = — —to-¥ =—"
fz' e"’dx_nlfy‘e dy pory
o o
Hence
T(s)(s) = 5: f alen g = f Jf'li e dr — f Camp
n=ly i n=1 0 e—1

if the inversion of the order of summation and integration can be
justified; and this is so by absolute convergence if ¢ > 1, sinece

x*-le—m= g = (e){(o)

M3
e

LEDY

is convergent for ¢ > 1.
Now coneider the integral

281
I(&) = fe’—ldz’
(5
where the contour ¢ starts at infinity on the positive real axis, encircles
the origin once in the positive direction, excluding the points J-2ém,
=+ 4iw,..., and returns to positive infinity. Here 21 is defined as
¢le—Liows

when the logarithm is resl at the beginning of the contour; thus I{logz)
varies from 0 to 27 round the contour.
We can take € to consist of the real axis from oo to p (0 << p < 27),
the circle |z| = p, and the real axis from p to ©0. On the circle,
21| = elo-HoRisitargs < [zla-1agmhl,
le—1] = Az[.
+ Mozdell (2). 1 Ingham, Prime Numbers, 46.

-
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Hence the integral round this circle tends to zero with pif ¢ > 1. On
making p - 0 we therefore obtain

m 4 z8-1 m(rezﬂ)l—l
10 =— ﬁ~1dx+fﬁ‘dx
[ o
= (e#*—1)T(s){(s)
24orei s
- T Lis).

Henco Us) = M_g%'i) f e:'_'_"li . (2.4.2)
L

This formula has been proved for ¢ > 1. The integral I{s), however,
is uniformly convergent in any finite region of the s-plane, and so defines
an integral function of s. Hence the formula provides the analytic
continuation of {{s) over the whole s-plane. The only possible singu-
Iarities are the poles of I'(1—s), viz. s = 1, 2, 3,.... We know already
that [{s) is regular at s = 2, 3,..., and in fact it follows at once from
Cauchy's theorem that 7(s)} vanishes at these points. Hence the only
possible singularity is & simple pole at s = 1. Here

1(1)=f;:zi=2ﬂ,
(5}

. 1
and rl—e)= _m+....
Hence the residue at the pole is 1.
If 5 is any integer, the integrand in J{s) is one-valued, and I(s) can
be evaluated by the theorem of residues. Since
z

22 24
o I—§z+Bl-2L!~Bﬂ4~!+..‘,

where B,, B,,... are Bernoulli’s numbers, we find the following values
of Z(s):
(=1)"B,
D) = ~%,  U—2m) =0, I[{l—2m)= oy =12,
(2.4.3)
To deduce the functional equation from (2.4.2), take the integral
along the eontour C, consisting of the positive real axis from infinity

to (Zn-+ L), then round the square with corners {2a+41)m(L144), and
then back to infinity along the positive real axis. Between the contours
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C and C, the integrand has poles at the points 4 2¢w,..., 4-2inw. The
residues at 2minr and — 2mir are together
(2maetinp=14 (Zmmetimp-1 — (2ma)*-leime-12 cos fm{s—1)
= —2(2mmP-let™ gin }ms.

Hence by the theorem of residues

I = jeftll

Ca
Now let ¢ < 0 and make # > co. The function 1/{e*—1) is bounded
on the contours C,, and 22! = O(|z|°-?). Hence the integral round C,
tends to zero, and we obtain

1{8) = 4miet* gin ns i (2mmyr-t
m=1

"
dz+drietssin drs Y (2ma)-l
m=1

= dmrie™ sin Jora(2w)P {1 —s).
The functicnal equation now follows again.
Two minor consequences of the functional! equation may be noted
here. The formula

em—. 0y Bm
R =

follows from the functional equation (2.1.1}, with s == 1—2m, and the
value cbtained above for {1—2m). Also

I'(0) = —1log 2n. (2.4.5)
For the functional equation gives

(m=1,2,..) (2.4.4)

L(l—s i) Elsy
~Hi—a) = —log 27— Jor tan Jew + = Te) + L DR
In the neighbourhood of 5 = 1
_ 1 L May Iy _
Intanjer = —E+0(]sﬁl\), ) _I‘(_l)+ Yt
{'(s) —{1}(s—1)}+-k+... 1,

d 2 = = —— .
an 9 eI Pe—DF ..~ 1Tt
where k is a constant. Hence, making ¢ — 1, we obtain

ro _
_E(O_) = —log 2n,

and (2.4.5) follows.

2.5, Yalidity of (2.2.1) for all s. The original seriea (1.1.1) is naturally
valid for ¢ >> 1 only, on account of the pole at 8 = 1. The series (2.2.1)
is convergent, and represents (1 — 2!-*){(s), for ¢ > 0. This series ceases
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to oonvergé on ¢ = 0, but there is nothing in the nature of the function
represented to account for thiz. In fact if we use summability instead -
of ordinary convergence the equation still holds to the left of ¢ = 0.
THEOREM 2.6. The series E (—1)#-1n~9 45 summable (A) to the sum
=1
(1—21-2){(s) for all values of 8.
Let 0 << =z < 1. Then

(ul)n-l (A l)n-lxn fe*"“uﬂfl du
..Z, s Te
g~1 Lo Rg—iu —_— we~ e
P()f” ,.Zl(‘l) e r(a:f Tz

This is justified by absolute convergence for o = I, and the result by
analytic continuation for & > 0.
We can now replace this by a loop-integral in the same way as

(2.4.2) was obtained from (2.4.1). We obtain

N RPTES § —imy . o=

{(—1}) gt l"(l‘ 8) w1 xe i,
Z n* 2my 1+ xe-
n=1 Pel

when C encircles the origin as before, but excludes all zeros of 1+4-ze-®,
i.e. the points w = logx+(2m+4 1)ém.

Tt is clear that, as z - I, the right-hand side tends to & limit, uniformly
in any finite region of the s-plane excluding positive integers; and, by
the theory of analytic continwation, the limit must be (1--21-%){(s).
This proves the theorem except if 8 is a positive integer, when the
proof is elementary.

Similar results hold for other methods of summation.

2.6. Third method. This is also one of Riemann’s original proofs.
We observe that if ¢ > 0

fx§l—le—at’n: dz = %:%_
Hence if o > 1
P(tf)g(‘q) J ghs-1p-ntmz Jp — )’ i1 z g~wmE g

a=1

the inversion being justified by absolute convergence, as in § 2.4.
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Writing ®
Ha) = 3 erine (2.8.1)
ne=]

we therefore have , =
) = Fag J sH) dr (o> 1), (2.6.2)

Now it is known that, for x > 0,
L] l ad
b g-ntar . Z g-rime,
P vz
n=—x

Hence (2.6.2) gives et - ;}5{2'#(51:)_!_1}' (2.6.3)

A BLGs)Le) = f ws-(z) der+- J' eb-1(z) da
0 1

X

- i g [

s—1 s

— L_.l_f_ !1 m%'—‘!:,b(%) da+ lf:v%kl,'t,(z) dr

1 F T 8=
= Rm_]_ f {zte- 4 ade-t)hia) da.

The last integral is convergent for all values of s, and so the formula
holds, by analytic continuation, for all values of 5. Now the right-hand
side is unchanged if s is replaced by 1—s. Hence

=BT {3a)(s) = m- BTG —1s)t(1—s), 26.9)
which is a form of the functional equation.
2,7. Fourth method; proof by self-reciprocal functions. Still

another proof of the functional equation is as follows. For o > 1,
(2.4.1) may be written

1 L
1 1 1 231y
= | |z—=—cjwtde it — it
tore — | (e,,_1 x) bt [,
o i
and this holds by analytic continuation for o > 0. Also for0 <o < }
-
1 __ J' 7 .
x
1

5—1
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Hence g(s)r(a),—“f(ez_ifi)xs—ldx ©<o<l) (211
]

Now it is known that the function

1 1

Sy = m—m (2.7.2)

i3 self-reciprocal for sine transforma, i.e. that
AT,
flx) = J(;) ff(y)smxy dy. (2.7.3)
[

Hence, putting = = £,/(2n) in (2.7.1),

UsiTte) = (2m)ie [ fipr g
Q

= e /() f gt g f Fowingy dy.

If we can invert the order of integration, this is
gherbatet | fy) dy j £-Ysin £y d¢
] [
= 2letinde-} J‘f(y)y-" dy I w-iginu du
o o
= obtbade( 2 -1 — —y T
21 et (2oL —s)(1 8)2005%”1-,(1“3).

and the functional equation again follows,
To justify the inversion, we observe that the integral

| fxsingy dy
o

converges uniformly over 0 << 3 < £ < A. Hence the inversion of this
part is valid, and it is sufficient to prove that

w© 8 ©
g;.injf(y)dy(a[+a[)f=-1sin5yds=o.
] ]
Now [ etsingy dt = [ 0o ty) de = Opvy)
[} o

and also = y* | wlsinu du = O(y-9).
0
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Sinee f(y) = O(1) a8 ¥ > 6, and = O(y-1) as y - <o, we obtain

@ &
[#w)dy [ g-rsingy ag
o [}

1 18 @
= [ 0@y dy+ f OF"+) dy+ | Oty dy = 0(%) - .
0 i 12
A similar method shows that the integral involving A also tends to 0.

2.8. Fifth method. The process by which (2.7.1) was obtained from
(2.4.1) can be extended indefinitely. For the next stage, (2.7.1) gives

r(a)t(-e)—f( ! %+) —ldr__+f(r_,)ws-xdx

and this holds by analytic continuation for o > —1. But

P |
i i[iz‘*dr_—ﬂ (—1 < o< 0)
ence -
Tie)lls) = f (em—l_i—,%'_-l—%)x’" fz (~l<o<0). (281
o
’ 1 1 —
Now a1 E_E Z ) 2+xz (2.8.2)
Hence
L) 1 = o
T(a)(s) = f ) f e —
a1 iy
- T T
22 (Znmy- Zoosdsm cosler con gen

n=1
the functional equation. The inversion is justified by absolute con-
vergence if —1 <C o < 0. .

2.9. Sixth method‘ The formulat

Us) = f {P’(H‘z)
—fo

P(l+z)—logz}zv’dz (—=1<ec<0) (291)
is easily proved by the caleulus of residues if ¢ > 1; and the integrand
is O{|z|~2-1), so that the integral is convergent. and the formula holds
by analytic continuation, if ¢ > 0.

1+ Kiloosterman {1).

2.9 THE FUNCTIONAL EQUATION 2

We may next transform this inte an integral along the positive real
axis after the manner of § 2.4. We obtain

sinme [ Ir'i+z)
= — s dx {0 1).
¥e) 7 [ (St —oefrr e @ <oy
(2.9.2)
To deduce the functional equation, we observe thatt

M'z) I tdt
T = %75 [ ey
0
Hence
I'(14-2) I(x)
m—logx Tia) +7~10g.x

1 tdi o[t 1LYy,
=) Eree—n = P g ] Rl
a 0

Hence (2.9.2) gives

© ©
2sm1-rs e 1 1
e | dt
fz dxft“rxz(e”"‘ 1 271't)
0

o
® ©
2sm-ns 1 zt
-1 LAY
f (ez"‘ 2nt)! @ f 2t
0

0
ginms I 1
= — et
©os s J (e‘"‘ —1 Zwt)
0

1
== 28 1| [— ——]u—rd
2sin dms(2m) J-(e“*l u)u i
[

= 2sin }rs(2mpP-1T'(1—s){(1—s)
by (2.7.1). The inversion is justified by absolute convergence.
2.10. Seventh method. Still another method of dealing with {{s),

due to Riemann, has been carried out in detail by Siegel.i It depends
on the evaluation of the following infinite integral.

glutiiam +aw
Let Dla) = f— dw, 2.10.1)
ev—1
Z

where L is a straight line inclined at an angle }= to the real axis, and
1 Whittaker and Watson, § 12.32, example. 1 Biegel (2).
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intersecting the imaginary axis between O and 2mi. The integral is
plainly convergent for all values of a.

We have
(e(aﬂ)tw_eaw) dw

Pla+1)—b(a) — j
— J‘ eitwttnrme o
- f ehitw—2imaflr yimat T,
L

= ¢gina’ f et®m ZI7,

where W = w—2ina. Here we may move the contour to the parallel
line through the origin, so that the last integral is

w
i J et dp = Zreltr,

Hence Blat1)—dleg) = 2metrt+h, (2.10.2)

Next let L’ be the line parallel to L and intersecting the imaginary
axis at a distance 2z below its intersection with L. Then by the theorem

of residues " Yoot
L ke g .
T dw— [ £ T dw = omi.
ew—] e—1
i
But
ediwm raw dw = ediw—2min yatw-2mi} du
e¥—1 e —1
1iuftr 12—t ol L) i
= f gxtm et dw = —e*o0(g+1).
Hence —e-tria(a+ 1) —P(a) = 2mi. (2.10.3)

Eliminating ®(a—+ 1), we have
D Dmeinial2at

ooy = - (2.10.4)
or a) = g 2081870 —3) irgon, (2.10.5)
cosSma
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If o = 4iz/mr+}, the resuit (2.10.4) takes the form
etiwtm Jimeim o Pl omi P i
f el T "_e"T'
L

Multiplying by 2*-1{¢ > 1), and integrating from 0 to we-%i", we obtain
3 N we—imw
AN o [ ebimetngss g
er—1
[] we—
e-tiFn+ls

— 2mi{s)L(s)—2mi f T

[

The inversion on the left-hand side is justified by absolute convergence;
in fact

we= —ctpekin, 2 — pe-tim,
where ¢ >> 0, go that Rzzw) = —erjv2.
Now
we= T

Fruwtmar-1 — phime ¢ iy e-1 — ghim| ¥ -
;‘.e wings-ldy = ¢ Je voimye-l gy — ex .(Zﬂ‘) (s),

we— Hw

—}im s —Hetm s
and ¢ Caldr = L . o P dz,
ef--1 1 g-tsm e—1
z

where L is the reflection of I in the real axis. Hence

;un(2ﬂ): iw'lw+§w w e——a-]w+§-z _—
) = f o+ fyi e f @,
or
BT (ds)l(s) — edimo-D2-1rb-1T(hs) f A s o
e-‘x- el

Tpde (2.10.6)

febimg-sp-to-i0(p—bs) f
Fa

This formula holds by the theory of analyfic continuation for all
values of s.

If ¢ = }+it, the two terms on the right are conjugates. Hence
Ji&) = 1T (15){(s) is real on ¢ = }. Hence

J&) = flo+it) = fl—ait) = fl—o—it) = f(1—a},

the functional equation,
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2.11. A general formula involving [(s). It was observed by
Miintz} that several of the formulae for {(s) which we have obtained
are particular cases of a formula containing an arbitrary function.

We have formally

=1

>a [vroa
=1 0

=Us) [ y2F () dy,
0

where F{z) is arbitrary; and the process is justifiable if F(x) is bounded
in any finite interval, and G(z-*), where « > 1, as x - c0. For then
©
exists if 1 << o < &, and the inversion is justified.

Suppose next that F'(z) is continuous, bounded in any finite interval,
and O(z—#), where § > 1, as z -»c0. Thenasz—0

j?a:’—l le(nx) do=3 fx'-‘F(nx)d:c
I n= I

1
s

f Iy Fy)| dy

3 Finz)— fF(u:c) du—z fF'(uz)(u_[u]) du
=1 H b
1z £
= zf 0(1)du+xj' O{(ux) 5} du = O(1),
o Uz

ie. "SlF(m) - % f Flo)de+001) = £ 0Q),
0

say. Hence

J. -1 EIF(ﬂz) dx

n=1

= j n:"lLilF(m:)— ;}dz+a%l+ f:v’“‘ i Finz) de,

and the right-hand side is regular for ¢ > 0 {except at s = 1). Also

for ¢ < 1 -
LI

ot il 1[ a2y,

t Mantz (1).
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Hence wa have Miintz’s formula

Tis) -[ v F(y) dy — f o { > Fiuz)--! f Fv) a'.v] dz, {2.1L1)
5 n=1 * 1
valid for 0 << ¢ < 1 if F(x) satisfies the above conditions.

If F(x) = e~* we obtain (2.7.1); if F(z) = e—"*" we obtain a formula
equivalent to those of § 2.6; if F(x) = 1/(1+2?) we obtain a formula
which is also obtained by combining (2.4.1) with the functional equation.
If FP{z) = x~isinnz we obtain a formula equivalent o (2.1.6), though
this F(z) does not satisfy our general conditions.

If F{z) = 1/{14-z}* we have

i F(m:)~£f Fv) dv :,2:1(14'—17“’)2—;-‘
L]

=1

1fd# 1
B Eﬁ[dﬁl"g F‘H”Lm‘i'
(1—s)r

Hence -
gin s

Is) — fg,,,{d%log P(G-+1) ) d

and on integrating by parts we obtain (2.9.2).

2.12. Zeros; factorization formulae.

THEOREM 2.12. £(s} and B(2) are integral functions of order 1.

It follows from (2.1.12) and what we have proved about (s)
that £(s) is regular for ¢ = 0, (s—1){{s) being regular at s = 1. Since
£(s) = H{1—=), £(s) is also regular for o < 1. Hence £(s) is an integral
funetion. '

Also
IT{a) = f e-uyde-1 dul < 'f e~modo-1 dy — T(e} = O(e471%7) (o= 0),
' ’ 2.12.1)
and (2.1.4) gives for o = 4, le—1| > 4,
{(s) = O(Iel f %‘)4—0(1) = O3]} (2.12.2)
1
Hence (2.1.12) gives £(3) = O(edisiloghl) (2.12.3)

for oz 4, |¢| > A. By (2.1.13) this holds for & < } also. Henee £(s)
is of order 1 at most. The order is exactly 1 since as s 0 by real
values log {(s) ~ 2, log £(s) ~ 4slogs.
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Hence also E(z) = Ofedeioglsly  (1z] = 4),

and E(z) is of order 1. But E(z) is an even function. Hence E(+2) is
aleo an integral function, and is of order . It therefore has an infinity
of zeros, whose exponent of convergence is 3. Hence E(z) has an infinity
of zeros, whose exponent of convergence is 1. The same is therefore
true of £(s). Let p,, py,... be the zeros of £(s).

We have already seen that {(s) has no zeros for o > 1. It then follows
from the functional equation (2.1.1) that {{s) has no zeros for o << 0
exoept for simple zeros at s = —2, —4, —6,...; for, in (2.1.1), {{1—s)
has no zeres for o << 0, sin 4sw has simple zeros at s = —2, —4,... only,
and I'{1—s) has no zeros.

The zeros of {(s) at —2, —4,..., are known as the ‘trivial zeros”. They
do not correspond to zeros of £(s), since in (2.1.12) they are cancelled
by poles of I'(3s). It therefore follows from (2.1.12) that £{s) has no
zeros for o > 1 or for ¢ < 0. Its zeros p,, p,,... therefore all lie in the
strip 0 < o <C 1; and they are also zeros of {(s), since s{s—1)I'(44) has
no zeros in the strip except that at s = 1, which is cancelled by the
pole of {{s).

We have thus proved that [{s) has an infinity of zeros p;, py,... in
the strip 0 < ¢ < 1. Since

(1—2t-0y(s} = 1_%4_31,—... S0 0<s<l) (2124)
and £(0) # 0, {{s) has no zeros on the real axis between 0 and 1, The
Z€erog p,, p,,... are therefore all complex.

The remainder of the theory is largely concerned with questions about
the position of these zeros. At this point we shall merely observe that
they are in conjugate pairs, since {{s) iz real on the real axis; and that,
if p is a zero, so is 1—p, by the functicnal equation, and hence so is
1—5. If p = 84y, then 1-—5 == 1—f+iy. Hence the zeros sither lie
on ¢ = 4, or cecur in pairs symmetrical about this line.

Since £(s) is an integral function of order 1, and £{0) = —{{0) = 4,
Hadamard’s factorization theorem gives, for all values of s,

£(x) = Jeto (l—i')e"ﬂ, (2.12.5)
where b, is & constant. Hence

ad )
) = ge=nrgern [ 11— (212.)
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where b == by-1- }logw. Hence also
V), 1 _ITGst N
T TSI e Thern T Z( ) @12.7)
Making s — 0, this gives
0 5y 1T

oy T eTay
Bince {'(0}/£(0) = log 2w and T'(1) = —y, it follows that
b=log2r—1—1}y. (2.12.8)

2.13. In this section} we shall show that the only function which
satisfies the functional equation (2.1.1), and has the same general charac-
teristios as £(s), is L(s) itself.

Let G{s) be an integral function of finite order, P(s) a polynomial, and
J(8) = G{s){P(s), and let

fis) = - (2.13.1)

be absolulely convergent for o > 1. Let

FeP el = gl — )T {3 —§s)ot0-9, (2.13.2)
= 5,
where g(1—a) :g‘;n—l——"

the series being absolutely convergent for o < —a < 0. Then f(s) = C{(s),
where O is a constant,

We have, for z > 0,
2o

$lw) = = f FTGayrtrts ds

2 1o
2+iw

2“—:; f T(hs)imntz)-bs ds
240

Ma

]
-

n

®
=23 a, e,
=1

Algo, by (2.13.2),
1 2+ éo
Ha) = ) J' 1) (F— o) k1911 ds.

We move the line of mtegra.‘olon from g = 2to ¢ = —1—a. We observe
+ Hamburger {1)-{4), Siegel {1).
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that f(s) is bounded on ¢ = 2, and g(1--s) is bounded on ¢ = —1—a;
since T(hs)
Ti—3s)
it follows that g(1—s) = O(/2]}) on ¢ = 2. We can therefore, by the
Phragmén-Lindeltf principle, apply Cauchy’s theorem, and obtain

= 0(|t]*H),

—a—14tin
1 m
— - —bs)n—ban
=5 [ oD porienriast 3R,
—a- 1
where R,, R,,..., are the residues at the poles, say s,,..., 8,,. Thus

3 B, = 3z imQ,logw) = Qw),
where the @,(logz) are polynomials in logx, Hence

—a—1tic

$le) = 2% [ -ty dotoe

—ax—1=—1im

Z b e Q).

ﬂ-]
1. 1 L]
Henoe Sapeme— 4 S baemtet 3000
= n=1

Multiply by e~ (¢ > 0), and integrate over (0,c0). We obtain

n g—2und —gh;
Z ﬂ(zum*) Z ;e Hf Q)e="™ da,
and the last term is a sum of terms of the form
jx“logb:re'”"l dz,
[}

where the b's are integers and R(a) > —1; i.e. it is a sum of terms of
the form #logft.

w©
Hence 2 a"(;-f— ! )—-an t} = 2o Z b, e-2mnl,
1

t4in ' t—in

where H(t) is a sum of terms of the form ¢*log?t. ,

Now the series on the left is a meromorphic function, with poles at
+in. But the function on the right is periodic, with period ¢. Hence
(by analytic continuation) so is the function on the left. Hence the
residues at ki and (k+ 1) are equal, ie. a, = a,_, (¢ = 1, 2,...). Hence
@, = a; for all k, and the result follows.
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2.14. S8ome series involving {(s). We have}
fo -ty = - polter -1 e by 1)

for all values of 5. For the right-hand side is

@&

1 (s—1s 1  (s—1)s(s+1) 1
1“5’—_1" i 1{ 12 7 1.3 }
1 = 1 1\l-¢ g1
=P (B Iy
1< 1 1 s—1
= I*Q,Zz{(n_l)s—x“ﬁ*vj
1
={g———

The inversion of the order of summation is justified for ¢ > 0 by the
convergence of

< islaflel+E) 1 =1 1y }

) Zna l (k_i_l)T_ﬂHz'—nZﬂ’; 1—; —1
The series obtamed is, however, convergent for all values of s.

Another formula} which can be proved in a similar way is

(1—2-9L(s) = c(;j;ll)+3('izl) C(Zj;:)_'_ (2.14.2)

also valid for all values of s.
Either of these formulae may be used to obtain the analytic con-
tinuation of £(s) over the whole plane.

2:15. Some applications of Mellin's inversion formulae.§
Mellin’s inversion formulae connecting the two functions f(zx) and F(s)
are o atim

§0) = | faettde,  fl@) = f Flsyes ds.  (2.15.1)
1]

o—im

The simplest example is
flz) = e, Fley = (s} (o >0} (2.15.2)
From (2.4.1} we derive the pair

1
f@ =2 S =TFbs) >1), (2.15.3)
1t Landau, Handbuch, {1 Ramaswami {1).
§ S ;5”0 Titel hmarsh In&?oduchmn to the Theory of Fourier Integrals, §§ 1.5, 1.20,
2.1, 2.7,
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and from (2.6.2) the pair
F@) = Pz),  §) = mTE2s) (0 >3).  (2154)

The inverse formulae are thus

a+in
1 U |
i -[ T{s)i(s)w—rds = 1 (e>1 {2.15.5)
1 a+in
and 5o J =D)L (28)x~ ds = (x) (o > }). (2.15.6)
a—im

Each of these can easily be proved directly by inserfing the series for
{(s} and integrating term-by-term, using (2.15.2).
As another example, (2.9.2), with s replaced by I—s, gives the Mellin

pair
_ I'(14=) _ w19 .
Fl) = m —logz, fle) = —=——— (O <o<1) (2157)

The inverse formula is thus

o+ i
I'(1+2) _ 1 e L, 2158
I‘(I-|-a:)_10gx T Ty gnms (2.15.8)
o—dw
Integrating with respect to z, and replacing s by 1--s, we obtainl
otiw
1 {(s)a”
— = —— 0 1). (2.15.9
log D(1+x)—zlogz+= 5 ssinnsds <o) ( )
o—1n

"This formula is used by Whittaker and Watson to obtain the asymp-
totic expansion of log I'(1-x).

Next, let f(x) and §{(s) be related by (2.15.1), and let g(x} snd G(s)
be similarly related. Then we have, subject to appropriate corditions,

ot 1o o
5:;. I Fs}B(w—s) ds = f Falglome-tde.  (215.10)

Take for example F(s) = B(s) = I'(s)i(s), so that
flz) = g(=) = 1{e*—1).
Then, if R(w) > 2, the right-hand side is
pw-1

0 [ (et et ge-t g e g,
Tt f (25 Te-324 Be=o . Jpo-1dx
0 0

— (Gt gt - T0) = Twgle—1)— o
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TFhus if 1 « ¢ << R(w)—1
1 et+iw
3 f T{a)T{w—a)l{s)i(w—a) ds = T(w){{(w—-1)—Ikw)}. (2.15.11)
e—1iw

Similarly, taking §(s) = ®(s) = ['(s){{2s), so that
F@) = g(z) — dla}m) =’§:]e""=,
the right-hand side of (2.15.10) is, if R{w) > 1,

L. - \ @ ] 1
w4 gti-1 gy — T —_—
This may also be written

ref; > 1ol gew)

where #(n} is the number of ways of expressing » as the sum of two

BQuAres; oI 4z T{w){{ (win(aw)--L(2w)},
where p{w) = 1~ 3w 50— .,
Hencef if § < ¢ < R(w)—}

1 £+

Zmi
=i (2.15.12)

2.16, Some integrals involving E(). There are some cases} in
which integrals of the form

D) = j?f(t)E(t)msxt dt

— J‘ T(s)T{w—8){(28){(2w—29) ds = D(wll(w)n(w)—L{2w)}.

can be evaluated. Let f{f) = I;(it)l’ = ¢(it)(—it), where ¢ is analytic.
Writing y = ¢,

O@) =} [ dlisp(—inEy* a1

=1 [ plikp(—in(h+itp ds
- $tio

=g | S Dok ds
}—io
J+im

~ gy | He— A== U0+ Loy de.
}-im

t Hardy (4). A generalization is given by Taylor (1). 1 Ramanujan (1).
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Taking ¢(s) = 1, this is equal to

;*1752 TF{[‘(Z—i—is)—%I‘(l_y—;,s)](%)
Al g
S P T

= ;/ﬁ i (W) P bz z( v ) 2e —nfajy?
T AT,

[ Et)cosat di = 2mt 3 (2mnte-seft3nte-Sat)exp(—ntne—),
H h=l

8

(2.16.1)
Again, putting $(s) = 1/{2+1}), we have
}-Hw
0@ =~ [ AL der bl ds
1w
3+iw
= —rl\/y J’ T(3s)m-B(s)yr ds
e
" 1
——gvl)
in the notation of § 2.6. Hence
f ziﬁ)} cosat dt = fmfedr—2e-dah(e)). (2.16.2)
1]

The case $(s) = I'(}s—3) was also investigated by Ramanujan, the
result being expressed in terms of another integral.

2.17. The function (s, @). A function which is in a sense a generali-
zation of {(s) is the Hurwitz zeta-function, defined by

g(s,a)mg(nﬁf’ <a<gl, o>1)

This reduces to {{s) when & = 1, and to (2°—1){(s}) whena =§. We
ghall obtain here its analytic continuation and funetional equation,
which are required later. This function, however, has no Euler pro-
ducet unless & = } or @ = 1, and s0 does not share the most characteristic
properties of {(s).
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Asin§2.4

a‘q—lg—az
—n+alz -
o) = 5 il )f” e = F(a)f = &
(2.17.1)
We can transform this into a loop integral as before. We obtain
e“”‘I‘(l—s) ze-lg-a3
Us,a) = T (13 J' Ay (2.17.2)

This provides the analytic continuation of (s, @) over the whole plane;
it is regular everywhere except for a simple pole at s = 1 with residue 1.
Expanding the loop to infinity as before, the residues at 2mmi and
-~ 2mai are together
(2mmetin)s-le-tmmic | (2mpyelin)p-1gtmmia
= (2mr)r-letme-112 cos{im{s— 1)+ Zmaa}
= —2{2mm)*-le* sin(Yns+ Zmma).
Hence, if ¢ << 0,
_eT{1—s)f . S cos Zmmn < 8in 2maa
{(s,0) = @y |0 s iz eos b Z _ml_s_)_
m=1 Ml
(2.17.3)

If & = 1, this reduces to the functional equation for {(s).

NOTES FOR CHAPTER 2

2.18. Selberg (3] has given a very general method for obtaining the
analytic continuation and functional equation of certain types of zeta-
function which arise as the ‘constant terms’ of Eisenstein series. We
sketcha form of the argument in the classical case. Let # = {z = x +iy:
¥ > 0} be the upper half plane and define

m y.
E(z, 8) = —_— H, o>
@=L imram @<Ho>D
{erd)=1
and
y »” #,0>1)
8) = {(28)E(z, 8) = —— (ze¥,0>1),
Beo) = eiBes = T ot
(oo d) #1000

these series being absolutely and uniformly convergent in any compact
subset of the region R(s) > 1. Here E(z, 5) is an Eisenstein series, while
B(z, 8) is, apart from the factor y¢, the Epstein zeta-function for the
lattice generated by 1 and z. We shall find it convenient to work with
B(z, 8} in preference to E(z, s).
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We begin with two basic observations. Firstly one trivially has
B(z+1, 8) = B{—1/z, s) = B(z, s). (2.18.1)

(Thus, in fact, Bz, s) is invariant under the full medular group)
Secondly, if A is the Laplace-Beltrami operator

¢ 02
A= (axz 5)

y ¥
A(W) =81 =8) =S, (2182)

AB(z,5) = s(1—-s)B(z,8) (¢>1). (2.18.3)

then

whence

We proceed to obtain the Fourier expansion of B(z, s) with respect to x.
We have

B(z,8) = i a,(y, s)ePxins,

where

g~ 2rinz dy
e (y,8) =y" Zjlcx———“+d+wy|2,

= 25,y (26) +2y° 3, z e-trimdx
=Y VL& ch+d+wy|25

with &, =1 or 0 according as n = 0 or not. The d summation above is

c - e-ninx gy c H e 2ninx gy
k; ,Z |c(x+1)+k+my|23 -k lex + &+ icy|2#
o
w©
e-minyugy «©
=g 284l-28 P eZ:mkIc
7 W L,

—o

and the sum over & is ¢ or 0 according as ¢[n or not. Moreover

j =iCs—Y
{v2+ 1)# = I's)
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and 5

L3

o Zxinyr . -
j T —dv = 2r*{|niy)

K,y @2n)nly)

o (n %9,

-

in the usual notation of Bessel functionst.
We now have

B(z, 5) = ¢(8)¥* + ¥(g)y~*+ Bylz,8) (5 >1), (2.18.4)
where F( 5 %)

Bls) = 20(28),  ls) = 2n? {(2s-1)
and
B2, 8) = Basyt i 7o, L) cos(Znnx)M_ (2.18.5)
n=1 * O]

We observe at this point that
K<t tet (- o)

for fixed u, whence the aeries {2.18.5) is convergent for all s, and so
definés an entire function. Moreover we have

By(z,8) €e> (y— ) (2.18.6)
for fixed 5. Similarly one finds
By(28) v (3 0). 2.18.7)
dy

We proceed to derive the ‘Maass—Selberg’ formula. Let D = {ze.5"
12| =1, IR(2)| < }} be the standard fundamental region for the modular
group, and let Dy = {ze D: 1{(z)< Y}, where ¥ > 1. Let R(s), R(w) > 1
and write, for convenience, F = B(z, 8), G = B(z, w). Then, according to
(2.18.8), we have

{s(1 —8y—w(l —w)} -[l-FG

¥

dx dy

drdy J(GAF FAG)
y

J](FVZG — GVEF)dxdy

Ik

_[ (FVG —GVF)-dn,

3Dy

t see Wataon, Theory of Bessel functions §6.16.
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by Green's Theorem. The integrals along xr= +3} cancel, since
F(z+1) = F(2), G(z + 1) = G(2) (see (2.18.1)). Similarly the integral for
|z] = 1 vanishes, since F(—1/z) = F(z), G(—1/2) = G(z). Thus

e
dxdy aG aF
{8(1 —8) —w(l — w)} jFG = - J;(Fg(x, Y)—Ga(x, Y))dx.
> s

(2.18.8)
The functions y® and y! % also satisfy the eigenfunction equation (2.18.3)
(by (2.18.2) with ¢ = 0, d = 1) and thus, by (2.18.4) s0 too does B(z, s).
Consequently, if Z > Y, an argument ana]ogous to that above yields

dxdy

{s(1—s)—w(l— w)}IJFG

L
f( aGD(xZ) G (x,Z))dx
§

- j( "(x ¥)y- G l](x, Y))a!x,
-1

where F, = B((z, 5}, G, = By(z, w). Here we have used Fy(z+1) = Fy(2)
and Gy(z+1) = Gy(2). (Note that we no longer have the corresponding
relations involving — 1/z.) We may now take Z — w0, using (2.18.6) and
(2.18.7), so that the first integral on the right above vanishes. On adding
the resuli to (2.18.8) we obtain the Maass—Selberg formula

[s(1 —8) —w(l — w)] JB(;: s) B(z, w)d"dy
3

- [5G,y G

= } 6y —(x ¥)- (1. Y))dx

1
- j( o(x, Y)- G "(x, Y))dx
-4

= (60— ) {Y() Y(a0) Y1+ — h(s) ) Yo+ 1)
+—s—w) {(E W) Yo r — (@) ) Yo}, (218.9)
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where .
A B{(z,s) (<Y)
Bz, 5) =
(@ 5) {Bo(z, 8 > Y).

2.19. Inthe general case there are now various ways in which one can
proceed in order to get the analytic continuation of ¢ and . However
one point is immediate: once the analytic continuation has been
established one may take w = 1 —s in {2.18.9) to obtain the relation

sy (L —3) = (s}l —s), (2.19.1)
which can be thought of as a weak form of the functional equation.
The analysis we shall give takes advantage of certain special
properties not available in the general case. We shall take ¥Y=11in
(2.18.9) and expand the integral on the left to obtain

(s — whals + wigls)(w) + fls, wI(s) + (s, whlw) + 8(s, w) =
(2.19.2)

where
b3
a(w) = (1 —-u) -H‘y*"dxdy -i=-2 j(l —pr)Hi-ulgy
) o

and B, 7, § involve the functions ¢ and By, but not ¢. If we know that {(s)
has a continuation to the half plane R{s) > g, then ¢(s) has a
continuation to R(s) > 45, so that a, §, 7, 4 are meromorphic there. If

(s — wals + whrlw) + p(s, w) =0 (2.19.3)
identically for R(s), R(w) > 1, then

B(s, w)
(8 —wals + w)’

gr(w) = — (2.19.4)
which gives the analytic continuation of y(w) to R(zz) > $0,,. Note that
(s — w)a(s + w) does not vanish identically. If (2.19.3) does not hold for all
s and w then (2.19.2) yields

(8, wh(w) + 5s, w)
(8 — w)als + whplw) + B(s, w)’

which gives the analytic continuation of y{s) to R(s) > {5, on choosing
a suitable win the region R(w) > 1. In either case {(3) may be continued
to R(s) > o,— 1. This process shows that {(s) has a meromorphic
continuation to the whole complex plane.

Py = — (2.19.5)
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Some informa—t_ion on possible poles comes from taking w =3 in
(2.18.9), so that B(z, w) = B(z, 5). Then

- dxd
@o—1) Hm(z, Sz :2y = (¢ Y21 —jy(s)(2y1 -2}
D

Uiz Y it — Hlg) ¥-2i
PPN OT7OR St (0102 Gl
2it
If t + 0 we may choose ¥ > 1 so that the second term on the right
vanishes. It follows that

[We)2 Y127 < | p(a)|2 ¥2° -1

for o = §. Thus ¢ is regular for # > } and ¢ # 0, providing that ¢ is.
Hence {(s) has no poles for R(s) > 0, except possibly on the real axis.

If we take } < R(s),R(w) <1 in (2.19.5), so that ¢(s) and ¢(w) are
regular, we see that y(s) can only have a pole at a point s, for which the
denominator vanishes identically in w. For such an s,, (2.19.4) must
hold. However a() is clearly non-zero for real u, whence ¥{t) can have
at most a single, simple pole forreal w > §, and thisisat w = 8,. Sinceit
is clear that {(s) does in fact have a singularity at s = 1 we see that s,
=1

Much of the inelegance of the above analysis arises from the fact that,
in the general case where one uses the Eisenstein series rather than the
Epstein zeta-function, one has a single function p(s) = ¥(s)/¢(e) rather
than two separate ones. Here p(g) will indeed have poles to the left of
R(s) = 4. In our special case we can extract the functional equation for
{{#) itself, rather than the weaker relation p(s) p{1 —s)=1 (see (2.18,1)),
by using (2.18.4) and (2.18.5). We cbserve that

ns-U2g, . (n)=nl2-sg, ()
and that X (2) = K (2), whence 7~*T(8)B,(z, 8) is invariant under the
transformaticn s — 1 —s. It follows that
¢ [(5)B(z, 8) — - T {1 —5)B(z, 1 —a)
=A@ Al -9y +{AG-D- A0 -9}y, ‘

where we have written temporarily A(s) = 2r-*T(s){(2s). The left-hand
side is invariant under the transformation z —» — 1/2, by (2.18.1), and so,
taking 2 = iy for example, we see that As) = A3 —s) and A(s—3) =
A(1 —s). These produce the functional equation in the form (2.6.4) and
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indeed yield .-
T (s)Blz, 8) = n®[(1—8)B(z, 1-s).

2.20. An insight into the nature of the zeta-function and its func.
tional equation may be obtained from the work of Tate [1]. He considers
an algebraic number field & and a general zeta-function

(o= If(ﬂk(a) d*a,

where the integral on the right is over the ideles f of k. Here fis one of a
certain class of functions and ¢ is any quasi-character of J, {that is to
say, a continuous homomorphism from JJ to € *) which is trivial on & *.
We may write ¢c(a) in the form c.(a)lal®, where ¢ (e} is a character on o
(ie. |ega)l=1 for aed). Then cy(e) corresponds to y, a ‘Hecke
character’ for &, and {(f, © differs from

0= l;]{l—2((1’)(1‘11’)*'}‘1

(where P runs over prime ideals of %), in only a finite number of factors.
In particular, if k = Q, then {(f, ¢) is essentially a Dirichlet L-series
L(s, ). Thus these are essentially the only functions which can be
associated to the rational field in this manner,

Tate goes on to prove a Poisson summation formula in this idélic
setting, and deduces the elegant functional equation

Wha=uho

where [ is the 'Fourier transform’ of f, and &a) =cu(—a)|a|1-=. The
functional equation for {(s, y) may be extracted from this. In the case
k =0 we may take ¢, identiczally equal to 1, and make a particular
choice f = f,, such that f, = f;, and

[ fo |-18) = n 1T Qs)(6).

The functional equation (2.6.4) is then immediate. Moreover it is now
apparent that the factor —a I'{3s) should be viewed as the natural term
to be included in the Euler product, to correspond to the real valuation
of Q.

2.21. Itisremarkable that the values of {(s) fors =0, —1, —2,..., are
all rational, and this suggests the possibility of a p-adic analogue of {(s),
interpolating these numbers. Infact it can be shown that for any prime p
and any integer n there is a unique meromorphic function { malS) defined
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forseZ,, (the p-adic integers) such that
C,.n(k) =(1—p*k) for k<0, k=n(modp-—1).

Indeed if n # 1 (mod p —1ythen{, (s) will be analyticon Z_,andifn =1
(mod p — 1ythen [ (s) will be analytic apart from a simple pole ats = 1,
of residue 1 —(1/p). These results are due to Leopoldt and Kubota [1].
While these p-adic zeta-functions seem to have little interest in the
simple case above, their generalizations to Dirichlet L-functions yield
important algebraic information about the corresponding cyclotomic
fields.

I

THE THEOREM OF HADAMARD AND
DE LA VALLEE POUSSIN, AND ITS
CONSEQUENCES

3.1. As we have already observed, it follows from the formula
1\-1
§) == 1—— > 1 3.1.1
=] (f—5)" @>n 3.11)

that {{s) has no zeros for o >> 1. For the purpose of prime-number
theory, and indeed to determine the general nature of {(s), it is necessary
to extend as far as possible this zero-free region.

It was conjectured by Riemann that all the complex zeros of [{s) lie
on the ‘eritical line’ o = }. This conjecture, now known as the Riemann
hypothesis, has never been either proved or disproved.

The problem of the zero-free region appears to be a question of
extending the sphere of influence of the Euler product (3.1.1) beyond
its actual region of convergence; for examples are known of funetions
which are extremely like the zeta-function in their representation by
Dirichlet series, functional equation, and so on, but which have no
Euler product, and for which the analogue of the Riemann hypothesis
is falze. In fact the deepest theorems on the distribution of the zeros
of {{s) are obtained in the way suggested. But the problem of extending
the sphere of influence of (3.1.1) to the left of o = 1 in any effective
way appears to be of extreme difficulty.

By (1.L4) ﬁ o= ”::) (@ = 1),
n=1

where |u(n}| < 1. Hence for o near to 1

1 < 1 4
‘m} Q’Z;;F, = {(o) < poay 1

ie. [4(8)] > A{e—1).
Hence if {(s) has a zero on ¢ = I it must be a simple zerc. But to prove
that there cannot be even simple zeros, a much more subtle argument
is required.

It was proved independently by Hadamard and de la Vallée Poussin
in 1896 that L(s) has no zeros on the line ¢ = 1. Their methods are similar
in principle, and they form the main topic of this chapter.
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The main object of both these mathematicians was to prove the

prime-number theorem, that as x -» oo

z

w{x) ~ lo_g; .

This had previcusly been conjectured on empirical grounds. It was
shown by arguments depending on the theory of functions of a complex
variable that the prime-number theorem is & consequence of the
Hadamard—de la Vallée Poussin theorem. The proof of the prime-
number theorem so obtained was therefore not elementary.

An elementary proof of the prime-number theorem, i.e. a proof not
depending on the theory of {(s) and complex function theory, has
recently been obtained by A. Selberg and Erdés. Since the prime-
number thecrem implies the Hadamard—de la Vallée Poussin theorem,
this leads to a new proof of the latter. However, the Selberg-Erdés
method does not lead to such good estimations as the Hadamard-
de la Vallée Poussin method, so that the latter is still of great interest.

3.2, Hadamard’s argument is, roughly, as follows. We haveforo > 1

loglls) = 5 e = i) @3.2.1)
p m=1 F

where f(s) is regular for ¢ > . Since {{s) has a simple pole at s = 1,
it follows in particular that, as ¢ = 1 (o > 1),

1 I
-~ log ——. (3.2.2)
z‘p" oc—1

Suppose now that ¢ = 1+it, is a zero of {(s}. Then if s = g--it,, a8
o=>1(e>1)

s
>, coslo 08P} _ tog 1) ~R/(0) ~loglo—1). (329
Fd

Comparing (3.2.2) and (3.2.3), we see that cos(t,log p) must, in some
sense, be approximately — 1 for most values of p. But then cos(2¢, log p)
is approximately 1 for most values of p, and

1 5y~ cos{ 24, log p) R | _ 1

og|(o+2ity)] Z A Z L Pt
so that 14-2if; is a pole of {(s). Since this is false, it follows that
{(14-itg) # 0. :

To put the argument in a rigorous form, let

=51 = 5 ©S(tlog p) cos(2ty log p)
S—Z:Pw P—-Z'—F—; Q=2—;, .

3.2 AND DE LA VALLEE POUSSIN 47

Let 8, P', ¢ be the parta of these sums for which
(Zk+1)r—a < flogp < (2h+1)wto

for any integer %, and « fixed, ¢ << o < {. Let 8°, ete., be the re-
mainders. Let A = §'/8.
If € is any positive number, it follows from (3.2.2) and (3.2.3) that

P < —(1—€)§
if ¢—1 is small enough. But
Pz —8=—A8

and P" > —8"cosa = —(1—A)Scosa,
Hence —{A4+(1—A)cosa}S < —(1—e)8,
ie. (1—A)1—cosa) < e.
Hence A>1laseo— 1,

Also Q) = & cos2a, Q=9
so that Q = S(Acos 2a—142).

Since A — 1, 8§ - oo, it follows that @ > o0 as ¢ > 1. Henee 1424, is
a pole, and the result follows as before.

The following form of the argument was suggested by Dr. F. V.
Atkinson. We have

{Z oos(tologp)}’ _ {Z cos(ty log p) i}z
» Pg P Pk’ P*”
cos’(tylogp) <~ 1
< T
2 2
_ 1<z 1+cos(2logp) 1
-j3 et o,
Fl e »

i.e. P g H8+Q)S.

Suppose now that, for some ¢, P~loglo—1). Sinee 8 ~log{lj{{e—1}},
it follows that, for a given ¢ and o—1 small enough,

1 1 1 1
(1—etlogt 1 < i{(l+s)logm+0}(l+e)log;-_—l,

1

oul‘_

05 [

Hence ¢ - 00, and this involves a contradiction as before.

—I—e}log
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3.3. In de la Vallée Poussin’s argument & relation between [{CE=T]
and {{s+2it} {s also fundamental; but the result is now deduced from
the fact that

3+4cosptcos2p = 2(14-cosd)? = 0 (3.3.1)
for all values of ¢.
We have {(s) = ex
DR
lo )
and hence 18{s)t = exp oos(mt gp
32w

Hence
o) | Lo+ it) 4| Lo+ 2it)|

_ EXP{Z i 3+ 4 cos(mtlog p) -+ cos{2mtlog p)
mpmw

}. (3.3.2)

P mm=1
Since every term in the last sum is positive or zero, it follows that
Ble)lie i) |ie+2it)] =1 (o> 1). (3.3.3)
Now, keeping ¢ fixed, let ¢ 1. Then
Plo) = Ofle—1)"3,
a:nd, if 14-it is & zero of {(2), {(e+it) = Ofe—1). Also {({a+2it) = O{1),
since {(s) is regular at 142if. Hence the left-hand side of (3.3.3) is
Ofu—1), giving & contradiction. This proves the theorem.

There are other inequalities of the same typo as (3.3.1), which can
be used for the same purpose; e.g. from

548003+ 4008 24 +c05 3¢ = (14-cond)(1+2cosd)t 3= 0 (3.3.4)
we deduce that

L)L (a+it) | Lo+ 26t 4| L{o+-3it)| = 1. (3.3.5)
This, however, has no particular advantage over (3.3.3).

3.4. Another alternative proof has been given by Ingham.t This
depends on the identity

Pls)istai)i{s—ai) _ <> |ogln)]?
) —’Z in' (o> 1),

where ¢ is any real number other than zero, and
agy(n) = % dat,

t Ingham (3),

(3.4.1)
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"This is the particular case of (1.3.3) cbtained by putting ai for ¢ and
—ai for b.

Let o, be the abscissa of convergence of the series (3.4.1). Then
oy < 1, and (3.4.1) is valid by analytic continuation for ¢ > oy, the
function f(s) on the left-hand side being of necessity regular in this
half-plane. Also, since all the coefficients in the Dirichlet series are
positive, the real point of the line of convergence, viz. s = gy, is a
singularity of the function.

Suppose now that 1-ai is & zero of Z(s), Then 1—ai is also a zero,
and these two zeros cancel the double pole of 2(s) at s = 1. Hence f{s)
is regular on the real axis as far as § = —1, where {{25) = 0; and so
o, = —1. This is easily seen in various ways to be impossible; for
example (3.4.1) would then give f{}) = 1, whereas in fact f(}) = 0.

3.5. In the following sections we extend as far as we can the ideas
suggested by § 3.1.

Since {(s) has a finite number of zeros in the rectangle 0 < o < 1,
0 <t << 7" and none of them lie on ¢ = 1, it follows that there is a
rectangle 1-8 < o < 1, 0 < ¢ { T, which is free from zeros. Here
8 = §{T) may, for all we can prove, tend to zero as 7' — oo; but we can
obtain a positive lower bound for 8(T') for each value of 7.

Again, since 1/(s} is regular for 0 = 1, 1 < ¢ << 7, it has an upper
bound in the interval, which is & function of 7. We also investigate
the behaviour of this upper bound as # — 20, There is, of course, & similar
problem for {(s), in which the distribution of the zeros is not imme-
diately involved. It is convenient to consider all these problems
together, and we begin with {(s).

TrEOREM 3.5. We have

L{s) = O(logi) (3.5.1)
uniformly in the region
A
2 { o),
T logt Ko (>
where A 13 any positive constant. In particular
£(1+4t) = Oflog?). {3.5.2)
In (2.1.3), take ¢ > 1, a = N, and make & - co. We obtain
;(a)— f ”]*“L%dup —}N-T,  (3.5.3)

n-l. N



50 THE THEOREM OF HADAMARD Chap. I

the result holding by analytic continuation for ¢ > 0. Hence for ¢ > 0,

t>1, w
Yo)— z L (z f ;;,‘%)+o($’)+ouv_a,

n=1

(0 ,) +O( )+O(N-") (3.5.4)
In the region considered, if n < ¢
A
—34| — p-0 — g-vlgn — ~1gd
3 == e < exp{ (1 logt)lOgn} < n-led,
Hence, taking ¥ = [¢],

- Sof)sofi) of o[y

= O(log N}4-0(1) = O(log?).
This result will be improved later (Theorems 5.16, 8. 14), but at the
cost of far more difficult proofs.
Tt is also easy to see that
['(8) = Oflog?) (3.5.5)
in the above region. For, differentiating (3.5.3),

{'(s) = Z logn+ f [x]——.a:+§( 1—slogz} de—
axy
__Ni-elogN N
s—1 (8 l.)
and a similar argument holds, with an extra factor log ¢ on the right-hand
side. Bimilarly for higher derivatives of {(s).
We may note in passing that (3.5.3) shows the behaviour of the
Dirichlet series (1.1.1) for ¢ <{ 1. If we take o == 1, ¢ £ 0, we obtain

—— - dNlog N,

N
L1-Hit)—

= (L+) f [=1- 2fu+f dz+ N1,

which oscillates finitely as & —>co. For ¢ << 1 the series, of course,
diverges (oscillates infinitely).

A.6. Inequalities for 1/{(s), {'(s)/L(s), and log Z(s). Inequalities of
this type in the neighbourhood of # = 1 can now be obtained by a slight
elaboration of the argument of § 3.3. We have for o > 1

(U Lo+ 2i)|t = 0{(’“'3;;}]. (3.6.1)

|§{9+it)
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Also ' i —Llatit) = — [ L(utit) du = Offo—1log™} (3.6.2)
for ¢ => 1-—A/logt. Hence !
[E(1+é5)| > 4,

The two terms on the right are of the same order if o—1 = log=%.
Hence, taking 0—1 = Aglog—", where A, is sufficiently small,

‘“_2 — Aglo—1)logtt.

{1 +it)} = Alog-T. (3.6.3)
Next (3.6.2) and (3.6.3) together give, for 1 —Adlogt <o < 1,
|E(a-it)| = A log~t—A({l—o)logh, (3.6.4)

and the right-hand side is positive if 1—a < dlog=%. Hence [(s} has
no zeros in the region o > 1—Alog=%, and in fact, by (3.6.4),

1 3.6.5
o Oflog™) (3.8.5)
in this region.
Henee also, by (3.5.5),
L) _ 0ftogne (3.6.6)
) = O(log?),
and log {(#) = J‘ i((“:‘:)) dutlog{(2+if) = Ollogh),  {3.6.7)

both for o > 1—A log—&.
We shall see later that all these results can be improved, but they
are sufficient for some purposes.

3.7. The Prime-number Theorem. Let ={x) denote the number of

primes not exceeding x. Then as x > co
~ 3,7.1)
(@) logx (

The investigation of m{z) was, of course, the original purpose for
which {(s) was studied. It is not our purpose to pursue this side of the
theory farther than is necessary, but it is convenient to insert here a
proof of the main theorem on =(z).

‘We have proved in (1.1.3) that, if o > 1,

7{x)

Z(@=1)

log(s) = s
3

We want an explicit formula for 7(z), i.e. we want to invert the above
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integral formula. We can reduce this to a case of Mellin’s inversion
formula as follows. Let

_ =(a)
)= | e 4
H]
Then 13@_@(3) - f ) . (3.7.2)

2
This is of the Mellin form, and w(s) is a comparatively trivial funetion;
in fact since w(¥) <X x the integral for w(s) converges uniformly for
o = }+3, by comparison with

f dz
y xH(xHu-l)'
Henoe w(s) is regular and bounded for o = }+3. Similarly so is w’(s),
since @
w'(3) = f alxflogx

2

1— 22
S 1)

We could now use Mellin’s inversion formula, but the resulting
formula is not easily manageable. We therefore modify (3.7.2) as
follows. Differentiating with respect to s,

o
Lle) , loglis) | o [7l@Mogw
'-eT(sJ-E- &3 +e'le) = 5 .

Denote the left-hand side by ¢(s), and let

_ [ w(w)ogu _ f glw)
o) = I e
[1] o
=(x), g(x), and A{x) being zerc for < 2. Then, integrating by parts,
dls) = J'g’(x)a:"’ do =g f glaye~s-1 do
H [

=5 Waprde = 8 [ Maptde (o3> 1),
f [1]

${l—a) [ hiz)_,_
or o = [ P
[]
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Now k() is continuous and of bounded variation in any finite interval;
and, since m(x) < w, it follows that, for z > 1, g(x) << xlogz, and
hz) < zlogz. Hence h(x)r*-? is absolutely integrable over (0,cc) if
k < 0. Hence

k+io
BMz) 1 H1—a)

M [ Bl k<o,
I i
or o) = = ?ai"’_)x-ds (> 1).
e—io

The integral on the right is absolutely convergent, since by (3.6.6) and
(3.6.7) ¢(s) is bounded for ¢ 2> 1, except in the neighbourhood of s = 1.
In the neighbourhood of s = 1

1 1
#(s) = =l +108&_—] + ey

and we may write bl3) = ELI +ii(3),
where {s) is bounded for ¢ 2> 1, |s—1] > 1, and {s) has a logarithmie
infinity as s > 1, Now

1 c+in o 1 !H'(m#’( )
4
Ma) =g J. o g f e
e—im ¢—ioo

The first term is equal to the sum of the residues on the left of the
line R{¢) = ¢, and so is

z—logz—1.
In the other term we may put ¢ = 1, i.e. apply Cauchy’s theorem to

the rectangle (1-4-¢7, ¢4:i7), with an indentation of radius e round
§ = 1, and meke T > o0, ¢ + 0, Hence

Fp(1+it)
(1fap

a¥ di

kiz) = z—logz—1 +£

2w

The last integral tends to zero as 2 — o, by the extension to Fourier
integrals of the Rismann-Tebesgue theorem.t Hence

h{x) ~ 2. (3.7.3)

t Bee my Introduction to the Theory of Fourier Integrals, Theorom 1.
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We have for o > 1
ﬁR{@} = hgpcos(mtlogp).
2
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To get back to ={z) we now use the following lemma:
Let f(x) be be positive non-decreasing, and as x > o0 let

ff(—q-"-) du ~ x. b "
{ u Hence, for ¢ > 1 and any real y,
Then fla) ~ . _3le)_ g llotiy) g Lot 2iy)

Uy Uotiy) Lot 2iy)

If § is a given positive number,

(1—8)z < f@dt <148z (&> zd)
rm

_ L)

L(a}

{'is) 1 1
_Z(-:;) = 0(1031)—2 (;;4';).

where p = f+iy runs through complex zeros of {(s). Hence

Hence for any positive ¢ Now < .Ll +6(1).
o

T a0 [
U U U
2 1

Also, by (2.12.7),

< (143)(1Fe)z— (1 —8)x
= {28 +e—+Be)x.

But, since f(z) is non-decreasing,
2{i+e)

w(1+€) {2 4e)
d du . . .
f f (::)du > fla) f I"' > fl) J et 1_; fiz)- Since every term in the last sum is positive, it follows that
x z x

—R ﬂi’} < O(log1),

Hence flay < x(l+c)(1+5 +2§) L(s)
and also, if B+iy is a particular zero of {{s}, that
Taking, for example, ¢ = +8, it follows that I'(otiy) 1
- ~ Rt ) ; _r
1imf:(;z') <1 {C(«r+iv) < Ollogy) o—f
. From (3.8.2), (3.8.3}, (3.8.5), (3.8.6) we obtain
Similarly, by consideri Mdu, 3 4
y, by eonsidering R m—m+0(logy) =0,
. . flx) 3 4
we obtain 1227 =1, OT 38y :—:8 = —Alogy,

and the lemma follows.

Applying the lemma twice, we deduce from (3.7.3) that Solving for §, we obtain

1—8 > I—(a—1)4,logy

g(z) ~ =, 3fle—1)+4,logy
and hence that w(z)logx ~ z. The right-hand side is positive if ¢—1 = }4,/logy, and then

3.8. T=roREM 3.8, There 15 a conslant A such that {{s) i not zero for a
2

8>t

ez la—e (1)

logt the required result.

i
= Z %%?{3-{-4 cos(my log p)+ cos(2mylog p)} = 0.

“Mga) = os=3 [ty

(3.8.1)

(3.8.2)

(3.8.3)

(3.8.4)

{3.8.5)

{3.5.6)
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3.9. There is an alternative method, due to Landau,t of obtaining
results of this kind, in which the analytic character of {(s) for o <L O
need not be known. It depends on the following lemmas.

LEMMA . If fis) is reqular, and
fla)]
f (30)
in the circle |s—g,| < 7, then
£ > < gomsi <10
where p runs through the zeros of f(s) such that lp—S| < &,

The function g(s) = f(s) '[I (s—p) is regular for |s—so| < v, and nob

<eM (M>1)

zero for [s—s,| < $r. On ;a—sol =7, Jsa—p] = §r = [8,—pl, 80 that
g _ | fls) S8
g(so)| (30) H ( ) f (%0)

This inequality therefore holds inside the cirels also. Hence the funoction

< M.

R(s) = log{g((:))

where the logarithm is zero ai s = sy, is regular for |§—8,| < 7, and
h(s,) =0,  Rh(s)} < M.
Hence by the Borel-Carathéodory theorem}
M)l < AM (ls—si < Br), (3.9.)
and 2o, for |s—3,| < .
1 k(z)

i (::—.9)z
le—8l=1ir

Al
.

1) = <

This gives the result stated.
Lusma 8. If f(s) satisfies the conditions of the previous lemma, and
has no zeros in the right-hand half of the circle |s—so| < 7, then
I'(80) } AN,
—R <
[ Sso) T
while if f(s) has a zero p, between 30—1}7 and sy, then
— bl (%)} 1 .
R{ Flag) <7 T &—po
+ Landau {14). + Ti sh, Theory of F tons, § 5.5
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Lemma a-gives

M) < 2R

and since R{1/(s,—p)} = 0 for every p, both resuits follow at once.
LevmMa y. Lel f(s) satisfy the conditions of Lemma w, and let
f (80)
<
f (%)

Suppose also that f(s) + 0 in the part o = oy—2r' of the circle |s—sg| <
where 0 << r' < }r. Then

r "

i M
{;'(—S? AT (le—8) < 7).
Lemma « now gives
—R{f ‘3’} <a¥_ R——P <a¥

for all & in [s—s) < §r, 0 2 0y—2¢, each term of the sum being
positive in this region. The result then follows on applying the Borel-
Carathéodory theorem to the function —jf‘(s)/f(s) and the circles
|s—sg] = 2", |§—go| = r'.

3.10. We can now prove the following general theorem, which we
shall apply later with special forms of the functions 8(t) and ¢(2).

THEOREM 3.10. Let
L(s) = O(e#)
as t —» oo in the region

1 <e<2 (320),

where ¢(t) and 1/6(t) are positive non-decreasing functions of ¢ for t = 0,
such that 8() < 1, $(t) - 0, and

) _
W= o (e$D), (3.10.1)

Ther there is a constant A, such thal {(s) has no zeros in the region
f(2t-1)
1—4,— 1.,
13214 T)
Let f-+iy be a zero of {{s) in the upper half-plane. Let
1+e-¢(2y+1} Loy <2,

(3.10.2)

8y = ogtiy, 8o = op+2iy, ro= 8(2y-L1),
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+ both lie in the region

58

Then the circles [s—s,! < 7, ls*%l

= 1-8(t).
1
| <
row Tew -
and similarly for ). Hence there is a constant A, such tha
E(-’) < et BEYED, {(s) < pdalZy+D),
o) Lis}

in the circles |s—g| < 7, [s—| <7 respectively. We can therefore
apply Lemma § with M = A, d(2y+1). We obtain

L (ou+2w)} A2y 1) (3.10.3)
- {c(umw) 6(2y+1) 1os
and, if B> o-o—j(;, i l {3.10. |
Uit Aap@y+l) (3.10.5
_R{;(a:+iy)}< 3(2v+1> o P
c (“n)
Also a8 09> 1 g(ﬂn) Ty ‘1

e @ (3.10.8)

Hence E(Un)

where @ can be made as near L a8 we pleaae by‘ choice of a;.
Now (3.8.2), (3.10.3), (3.10.5), and (3.10.8) give
30, 5dyd(y+1) 4 oo
a1 2yt B
sa | 5d, ¢(2y+1)} :

w—pf = {4(.; 71)+T B2y +1)

oy KDL
ﬁ?[4(17,,-1 "’T 8(2y+1) ¢ )
A
32 54, ﬁlﬂlﬂiu}/[ﬁ_ +5_4§ %E_QY_JrT)}
I S A TN ) Hoo—1) "

To make the numerator positive, take a = §, and
1 H2y+1)

a—1 =;_40A3 95’—(2)/4-1)’ . '
this being eonsistent with the previous conditions, by (3.10.1), if ¥ is
large enough. It follows that

8(2y+1)
1—8 2 12104, 4@y +1)
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ag required. If (3.10.4) is not satisfied,
1 d2y+),
—jr=1 ~30(2y+1),
S op—dr = +40A LHE D 1%(2y+1)

which also leads to (3.10.2). This proves the theorem.
In particular, we can take 8(t) = }, ¢(f) = log{t+2). This gives a
new proof of Theorem 3.8.
3.11. TEEOREM 3.11. Under the hypothesea of Theorem 3.10 we have
L) 0{¢(2t+3)} —0 ¢(2z+3)}
W) \e@ErI)” C(S) 6(2¢+3)
(8.11.1), (3.11.2)

uniformly for o> 1_%1 :gzigi (3.1L.3)
In particular
L{14it) O{¢(2t+3)} 1 0{¢(2:+3)}
F4ay |23y £{1-+1t) 82+ 3)]°

(3.11.4), (3.11.5)
We apply Lemma y, with

A, 0(21,+3)
o= 145 St

In the cirele [s—s,| <
L) _ { Ll } 0[95(2‘“4“3) eWH-”} Ofeadivnia,

ity T = 8(2,+3).

sy o1 82,4+ 3)
' (s9) $(24,+3) ¢(2iu+3)
and Use) O{ao_ l) 0{0(2e0+3)} { }

We can therefore take M = Ag(2ty + 3). Also, by the previous theorem,
{(s) has no zeros for

020+ 1)+Y) |, 82, +3)
shEn Z 14 ) T A1¢(2tn+3)'
34, 8(2,+3)
"2 {2, +3)
Tl8) _ ofd(2t3)
He 20
e o =l ors)
for [s—8g] < % 6(2t,1-3)

. 4 $(2t+3)
and in particular for
= 4, 8(24,4-3)
DR )

Hence we can take 2 =

This is (3.11.1}, with t, instead of t.
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. A, 8243 8(2t+3) 3.11.6
Also, if 1— 'y ¢(2H‘3) < +¢(2£+3) ( )
—R1
g 775~ 18 L) s
IR Es
8(2¢+3) g (u+ﬂ) du
58 H2U+3)
8(2t+3) P
<rogtlit gl | of ) &
A28
< logm'l'o(l)-

Hence (3.11.2) follows if ¢ is in the range (3.11.6); and for larger o it
is trivial. .

Since we may take () ~ §, $(t) = log(t+ 2), it follows that
£ ologt — O(logt) (3.11.7), (3.11.5)
T = Oos). gy = O
in a region o 3> 1—A/logt; and in particular

{ 1-4-4t) = O(log1),

Ologt).
i+ o)

1
{4
(3.11.9), (3.11.10}

3.12. For the next theorem we require the following lemma.

@

Lemma 312 Let  f(8) = 2 ‘;-'; (o> 1),

n=1
where a, = Ofp(n)}, filn) being non-decreasing, and
< leal _ { 1 }
z ne 0 (e—1)
n=]

as o~ 1. Then if ¢ > 0, o+c > 1, z is not an integer, and N is the
integer nearest to x,

e+iT
Ed ¢
Zn’ 2m J- f(s+w)ﬁdw+o{T(0+6ﬁ1)“}+

e—iT
+0{¢(2z)x;:"]ogz} 0 PN~ (3.12.1)

Te—N|J
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If x is an integer, the corresponding result is

1 ciT
%, 8 1 g =
Zl 2T o 2pg f fletw) w dw+O{T(o‘+c }+

n= c—if"

+0{¢v(2x)x“"log1} +0{¢(’”}f‘ } (3.12.2)

Suppose first that z is not an integer. If n << z, the caloulus of residues

i il e+iT  —m+i
gives -+ i n‘. w_
nl w ’

1

m( J- + j +
—c—iT  ¢—iT T

cj'ir(f)"’dil)_ (z/n)w ]c+iT + 1 f (x)“’dw
- n! w2

g™ ‘ wlogzjn] __ m lng/n_mnr nf w

{ (zfn)y } (zfn) du

Tlogzin +0 log z/n f w4 T2

= Ol

Now

and similarly for the integral over {—oo—iT,¢—iT). Hence

1 ¢+iT w g ( / )
x (7] x/n)y
- d Ity | 1
2mi (n) w + O{Tlog x/n}
e—iT

If n > = we argue similarly with —co replaced by -0, and there is
no residue term. We therefore obtain a similar result without the term 1.

Multiplying by &, %~ and summing,

etil

ff(erw)_-dw_z +{ zn‘””llfgé’lx/”[}

c—il

If» < 4z or n > 2, |logz/n| > A, and these parts of the sum are

o3, el = of i)

=1

IfN<n 2, let n = N4r. Then

N4r Ar
NH) P>

log?—; = log
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Hence this part of the sum is

0[5&(2.7:)3:1—"—" > ] Ofp(2z)at-—log z}.

1<r<e
A similar argument applies to the terms with jr << n < N, Finally
ol _of o) | = o)
Newejlogz/N| ~ | No+log{l+(x—N)/N} Je—N|
Hence (3.12.1) follows.

If x is an integer, all goes as before except for the term
i

dw _ a, e+l ag . (l)
_f v = 5 Bep = g T }

it
c—=ilf

Hence (3.12.2) follows.

3.13, TueoreM 3.13. We have

(3) 2 .u(n)

at all poinis of the line o = 1.
Take g, = u(n), « = 1, 0 = 1, in the lemma, and let x be half an odd
integer. We obtain

plr) _ J'
< nd Zm L’ s+w) w

ool

The theorem of resndues gives
e+iT w 1 1 =8—iT —&+iT e+iT,
)
omi ) Terw)w “’*ﬁﬁ*m( [+ ]+ )
e—iT o —iT
if 8 is so small that {(s-- w) hag no zeros for
R{w) = —8, |Ls+w)| < |{|+T.

By § 3.6 we can take § = Alog—*T. .Then
—-+iT

—§=iT  —&+iT

; -8
). e ety ”0( og’® f J(sﬂ+v2))
Fidt)
=o[ﬁlogw' j ud” g)} = Ofz~3log*T),
—TIBV[ e
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a o flog?T ; " _ pf=log?
C(s-l—w) W= 0( T J;x du) = O(TT)'

and mmﬂnrly for the other integral. Hence
ufn) 1 x og x ¢ log? 1" oI
_— —0|x ogx {23
25—t olm) o) o) o0
Take ¢ = 1/log, so that ° = ¢; and take T = exp{(log )19}, so that

log I' = {logx)¥1%, § = A(logx)—¥19, 2% = T4, Then the right-hand side
tends to zero, and the result follows

e+iT

In particular ,u.(n) = 0.
3.14. The series for '(s)l(s) and log L(s) on o = 1.
Takingt a, = A(n} = O(IOgn) a =1, ¢ = 1, in the lemma, we obtain

Z Aln) _ 1 C’(s+w) x"’d +0( )+0(10g x)

= 2m R L{st+w) w

In this case there iz & poIe at w = I —s, giving a residue term
o) _ =1y 1 =1
T 18 s a—logx (s=1),

where @ is a constant. Hence if s # 1 we obtain

B
Taking ¢ = 1/logz, T = exp{(log z)lfm}, we obtain as before
Am)  T(s) &
2 - +Ts)"1—s_°m' (3.14.1)

The term x'~#/(1—s) oscillates finitely, so that if R(s) = 1, ¢ £ 1, the
series 3 A(n)n~? is not convergent, but its partial sums are bounded.
If s = 1, we obtain

A
> _7(:‘_) = logz+0(1), (3.14.9)
or s' LT
, since
Afn) logp < logp _ <~ logp
A slsry EE - N 18R oqy,
72: " ;Z;v P -mznkm"‘zcz Pm ;z 4
82 _ Jogzto001). (3.14.3)
p<z P

t Soe (1.1.8).
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Since A, (n) = A(n){logn, and 1/log » tends steadily to zero, it follows
that z As(m)
e

is convergent on o = I, except for t = 0. Hence, by the continuity
theorem for Dirichlet series, the equation

w
_ Aqy{n)
log {(s) = ’Zn e
holds for e =1, ¢ = 0.
To determine the behaviour of this series for s = 1 we have, as in the
case of 1/L{s),
A,ln) 1 T zv og 2
s L5 S jadl o=
Z = J- log {(w+1) - dw+0(| d ),
n<E e—iT

where ¢ = I/logx, and 7 is chosen as hefore. Now

c+iT —~&—iT  =84iT c+iT
L[ loglwt )2 dw = L + [+ [ )+
e | % w T T )’
e—iT c—ifr 84T -3+iT ¢
where (' is a loop starting and finishing at s = —35, and encircling the

origin in the positive direction. Defining 8 as before, the integral along
o= —3§ is O(z-81og!*T), and the integrals along the horizontal sides
are (2T log® T'), by (3.6.7). Since

L 1
P {bg Lw+1)—log E}
is regular at the origin, the last term is equal to

1 1 zv
— { log—-Zdw.
,fogww o

= — o Dogh(seim)—logi(3e-1n)} — —log3,

this term is also equal to

2m
[

— j log;;xm;I dw—log 3,

Take C to be a circle with centre w = 0 and radius p (p < &), together
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with the segment {—8, —p) of the real axis desoribed twice. The
integrals along the real segments together give

P 3
1 1 Vgu—1 1 1 \z-+—1
— == | log|—— duy— — —_ )
21 Og(u'e*“’) —u T I f log (uef") —u du
3 P

8 N Sloge
—t._ - _
= — f 5_':—_] dy = — e i dy
k'3 v

P plogz

1 Leagm dlogx ~
= j m: dy J. E@T dv+log(dlogx)

plogz 1

= y+log{8logx)+o0(1)

if plogz — 0 and 3logz - co. Also

logif%l dw = O(plog;ilogx),

Iwl=p
Taking p = 1/log®r, say, it follows that
A
S %"_) = loglog o b-y-Fo(1). (3.12.4)
n<x

The left-hand side can also be written in the form
1 i
fup ..
As x —+ o0, the second term clearly tonds to the limit

L

> 1
mpm’
m=2
1 - 1
Henee Z = logl — —_—
D;p oglogz+y mzz Zmp7n+o(1). (3.14.5)
P

3.15. Euler’s product on ¢ == 1. The above analysis shows that

foro=1,¢%0,
1 Aqlg)
log Z(s) = E —+ QE "qu’

»
where p runs through primes and ¢ through powers of primes. In fact
the second series is absolutely convergent on o = 1, since it is merely

& rearrangement of P
Z Z mp™e
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which is absolutely convergent by comparison with
- 1 1
Z Z F_Z plp=1)
Hence also . z 1. Z Z
og (s} = »  mp

= Z Z mpe
1

m=1

=Z‘logl__F (g=1, t #0).
r

Taking exponentials,

Ls) = I_Il_lp_s, (3.15.1)
»

i.e. Buler’s product holds on ¢ = 1, except at { = 0. ]
At 5 = 1 the product is, of course, not convergent, but we can obtain

an asymptotie formula for ite partial PIOdUCtB, viz.

H(l___) @ (3.15.2)

PET
To prove this, we have to prove that

fia) = —log U(l 1) = loglogz+y+0().

Now we have proved that
glx) = z‘llfbf_’”_) = loglog x+y+o(1).

nsL

Also
@) —glx) = Z "Zl e E Z —
1
- §z|’§(t p=+ 3 xi<zp.§z a+

o 1
<% 2
pux

which tends to zero as z-»<0, since the double series is absolutely
convergent. This proves (3.15.2).
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It will also be useful later to note that
1—[(1_,.1) ~ w__:r‘;g"_ (3.15.3)
PET p
For the left-hand side is

1-—1/11 —~ evlogz  Berlogz
eﬂogzl—[( ) e - =

pa

Note also that (3.14.3), {3.14.5) with error term O(1), and (3.15.2)
can be proved in an elementary way, i.e. without the theory of the
Riemann zeta-function; see Hardy and Wright, The Theory of Numbers
(5th edn), Theorems 425 and 427-429. Indeed the proof of Theorem 427

yields (3.14.5) with the error term O(L)
logx

NOTES FOR CHAPTER 3

3.16. The original elementary proofs of the prime number theorem
may be found in Selberg (2] and Erdés [1), and a thorough survey of the
ideas involved is given by Diamond [1]. The sharpest error term
obtained by elementary methods to date is

a(x) = Li(x) + O[x exp{ — (log )t~} ], (3.16.1)
for any ¢ > 0, due to Lavrik and Sobirov [1). Pintz [1] has obtained a

very precise relationship between zero-free regions of { (s) and the error
term in the prime-number theorem. Specifically, if we define

R(x) = max{{n(t) - Li(®)}: 2 € ¢ < x},
then

logR’(‘x) ~ min {(1-Plogx+loglyl}, (x— ),
the minimum being over non-trivial zeros p of £ (s). Thus (3.16.1) yields
1 -Plogx+logiylx (log Bt ¢
for any p and any x. Now, on taking log x = {1 — §)- log|y| we deduce
that 18> qlogly) o,
for any & > 0. This should be compared with Theorem 3.8,

3.17. It may be observed in the proof of Theorem 3.10 that the bound
{(8) = O(e?®) is only required in the immediate vicinity of s, and 3. It
would be nice to eliminate consideration of s, and so to have a result of
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the strength of Theorem 3.10, giving a zero-free region around 1+t
solely in terms of an estimate for {(s} in a neighbourhood of 1 +it.

Ingham’s method in §3.4 is of special interest because it avoids any
reference to the behaviour of {(s) near 1+2iy. It is possible to get
quantitative zero-free regions in this way, by incorporating simple sieve
estimates (Balasubramanian and Ramachandra [1]). Thus, for exam-
ple, the analysis of §3.8 yields

logp 1 1
€ ——— ——+ O(log 7).
p);m e {1 +cos(myloga)} € — o—F +00esn)
However one can show that
{1+cos(ylogp)} » X
¥ cos(y log p) g X

K<pg2X
for X = y2, by using a lower bound of Chebychev type for the number of
primes X < p < 2X, coupled with an upper bound O(h/log h) for the
number of primes in certain short intervals X' <p < X' + k. One then
derives the estimate
2l ~a)

{1+cos(ylogp)} » P

log p

3

pzyt
and an appropriate choice of & = 1 +{A/log y) leads to the lower bound
1-f3 (logy)-L

3.18. Another approach to zero-free regions via sieve methods has
been given by Motohashi [1]. This is distinetly complicated, but has the
advantage of applying to the wider regions discussed in §§5.17, 6.15 and
6.19.

One may also obtain zero-free regions from a result of Montgomery
[1; Theorem 11.2] on the proliferation of zeros. Let n(t, w, A) denote
the number of zeros p = f+iy of {{s) in the rectangle 1-w< <1,
t—4h <y < t+4h. Suppose g is any zero with § > &, y > 0, and that &
satisfies 1 —§ < & < (log 1) ~%. Then there is some r with § € r < 1 for
which

n(y, r,r)+n2y,r,r) s (3.18.1)

r3
s2(1-py
Roughly speaking, this says that if 1 — § is small, there must be many
other zeros near either 1+iy or 1+2iy. Montgomery gives a more
precise version of this principle, as do Ramachandra (1] and
Balasubramanian and Ramachandra {3]. To obtain a zero-free region
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one couplea hypotheses of the type used in Theorem 3.10 with Jensen’s
Theorem, to obtain an upper bound for r{Z, r, r). For example, the bound

(E<Q+T-")log T, T=|t+2,
which follows from Theorem 4.11, leads to

nit,r,r) <rlog T+loglog T +log % (3.18.9)

On choosing § = (loglog y)/(log 1), a comparison of (3.18.1) and (3.18.2)
produces Theorem 3.8 again.

One can also use the Epstein zeta-function of §2.18 and the
Maass—Selberg formula (2.18.9) to prove the non-vanishing of {(s) for
a=1 For, if s = } +it and ¢(s) = 2{(2s) = 0, then

W+ = Y(e)(i — sy = Ppis)d(l -8} = [$(}+iD[2 =0,

by the functional equation (2.19.1). Thus (2.18.9) yields

J‘J.B'(z, s)ﬁ(z, w) dzjy =0
D

for any w #s,1—3s. This, of course, may be extended to w=3s or
w =1—s3 by continuity. Taking w = § — it = § we obtain

Huﬁ(z, DL

¥
]

sothat B (z, 5y must be identically zero. This however is impoassible since
the fourier coefficient for n = 1 is

Basy K, (2ny)/E(s),

according to (2.18.5), and this does not vanish identically, The above
contradiction shows that {{2s) # 0. One can get quantitative estimates
by such methods, but only rather weak ones. It seems that the proof
given here has its origins in unpublished work of Selberg.

8.19. Lemma 3.12 is a version of Perron’s formula. It is sometimes
useful to have a form of this in which the error is bounded as x — N.
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LeMma 3.19. Under the hypotheses of Lemma 3.12 one has

c

cHif
o, 1 V2 dirt+ O /i——}
Y T fls+w) T{o+c—1F
nex c—iT

+ O{@Zx_;:l_ogix}+ O{W(N)x*" min (’ﬂéﬁl' 1)}

from Lemma 3.12 unless x — N = O(x/T). In the

This follows at once om the term n = N

latter case one merely estimates the contribution fr

as
e+iT LaAl)

Fa(roe- | apro@)

[
ay c+iT 01}
=ﬁ{1ogc Tt (1}

= O[PNIN-°},

c—irT

and the result follows.

IV
APPROXIMATE FORMULAE

4.1. Ix this chapter we shall prove a number of approximate formulae
for {(s) and for various sums related to it. We shall begin by proving
some general results on integrals and series of a certain type.

4.2. Lemma 4.2, Let Fix) be o real differentiable function such that
F'(z) is monotonic, and F'(x) zm >0, or F'(x) € —m < 0, throughout
the interval [a, b]. Then
b

f &F d

a

4
<z {4.2.1)

Suppose, for example, that F'(z) is positive increasing, Then by the
second mean-valus theorem
v >
f cos{F{x)} dr = f &;?(Li)ﬂi)} dr
a

3

§
1o sin{ F(£)}—sin{ Fa))
=. F =
) f (x)eos{ F(x)} de ) ,
and the modulus of this does not exceed 2{m. A similar argument
applies to the imaginary part. and the result follows.

4.3. More generally, we have

LemMya 4.3. Let ¥(x) and G{x) be real functions, G(2)/F'(x) monotonic,
and F{x)/G(z) 2m > 0,0r < —m < 0. Then
4

<a

3
[ G@pere &

The proof is similar to that of the previous lemma,
The values of the constants in these lemmas are usually not of any
importance.

4.4. LevmMa 4.4, Let F(x) be a real function, twice differentiable, and
let F'(z) 227 > 0, or F"(z) < —r < O, throughoutthe intervel [a, b].
Then

H 8
a[eﬂwdx[ <z (4.4.1)
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Consider, for example, the first alternative. Then F'(») is steadily
increasing, and so vanishes at most once in the interval (a,5), say at ¢.
Let =3 ol

1—jem=>dx j + f + f = B+ L+,

where & is a positive number to be chosen later, and it is assumed that
atdLeg b8 Ink,

x
Fle) = J‘ Fr(t) dt > riz—c) = 8
Hence, by Lemma 4.2, 1] < %

1, satisfies the same inequality, and |f;| << 25. Hence
g
« - 428
Hl = 5+

Taking § = 2r-%, we obtain the result. If ¢ < a+3, or'c > 6—3, the
argument is similar.

4.5. Lunaa, 4.5, Let F(x) satisfy the conditions of the previous lemma,
and let G(x)/F'(x) be mmzottmic and |G(z)| < M. Then

8M

R doe b <
T

The proof is similar to the previous one, but uses Lemma 4.3 instead
of Lemma 4.2.

4.6. LEMMa4.6. Let F(x) be real, with derivatives up to the third order.

Let 0 <A < F') < ANy, (4.6.1)
or 0 <A < —F"z) < ANy, (4.6.2)
and [ F™(z)| < AX,, (4.6.3)
throughout the interval (a,b). Let F'(c) = 0, where

<e<h (4.6.4)

Then in the case (4.6.1)
b
J' £ dp — (2m)

«

L ehim+iFl
L ot
VT + O s +

1
O{min(,‘, ‘i)} O{min(,— ‘*)}. 4.6.5
R S Vo TR i b b TR T
In the case (4.6.2) the factor eti™ is replaced by e~tix, Jf F' "(x) does not
venish on [a, b) then (4.6.5) holds without the leading term.
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If F'{(x) ddes not vanish on [a, b] the result follows from Lemmas 4.2
and 4.4. Otherwise either (4.6.1) cr (4.6.2) shows that F'(x) is monotonic,
and so vanishes at only one point c. We put

Jomoa= T 0 [,

assuming that a4-8 < ¢ { b—3. By (4.2.1)

c+d

]
L o{lF(c+8)} [/ f e dx. 8&)
Similarly T = 0(%).
Also ¢
c+8 ¢+

c _f = I iR+ o) )+ e oo+
+ile—eP P {o+bz—e)}] de
= eiﬂe{]::e HE-PP 14 Of(x—cA,)] dx
c+3

— ¢iFl) J' ehle-PFUE g L O(BR,).
=35

Supposing F"(c) > 0, and putting
Hz—e)'F () = u,
the integral becomes
1888 (e)

2% etw efe
{Fep ) == {F”(c)}[ o 2 +O(5w\)]

(2mfledic 11 J
= (e o 1)
o+
Taking & = (A;3;)1, the result follows,
If 6—8 << ¢ < &, there is also an error

c+8
£iFo f Mot P gy _ 0{

b

F—iy ] {FF (b)I] and also OfAz h;

and similarly if @ < ¢ <C a+3.
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4.7. We now turn to the considerstion of exponential sums, i.e. sums
of the form 3 et

where f(n) is a real function. If the numbers f(n) are the values taken
by a function f(z) of a simple kind, we can approximate to such a sum
by an integral, or by a sum of integrals.
Lemma 4.7.1 Let f(x) be @ real function with @ continuous and steadily
decreasing derivative f'(z) in (a,b), and let f'(b) = o, f'(a) = . Then
3
I L j ermitfa+a) dz - Oftog(B—a+2)},  (4.7.1)
alnsh a—p<p<f+n g
where v 18 any positive constant less than L.
We may suppose without loss of generality that 9—1 << a < 7, s0
that v = 0; for if k is the integer such that n—1 < a—k < 7, 8nd
hiz) = flz)—ke,
then (4.7.1) is

)
Irihin) — 2ari{e) v —35) oz - O o2,
a<§£be w— gk prn ] € +Oflog(8'—o'+2)}
where o’ = a—#k, 8 = f—Fk, i.e. the same formula for A(z).
n {2.1.2), let ${x) = et~@®. Then

3 b
3 eamirm = f g2mifial dy 4 f (x—[a]— §)2mif " (x)e2mifD du+O(1).

acnsh

1 <~ sin 2vrx
Also z—[x}—4 = —-;.Zl —
if « is not an integer; and the series is boundedly convergent, so that
we may multiply by an integrable funetion and integrate term-by-term.
Hence the second term on the right is equal to

0 P
—9% z J‘ sin 2wxe‘2ﬂ\'f¢r{f’(x) o
v
v=1 7
= (e—ﬂﬂvz_egmvz)eﬁmﬂz{f (CE) dx.
53

The integral may be written

-3 b
1 @) geamiisar-va =) il f () 49
% Fa— d( -2l — m Fere dfermilfizivzy),

1 van der Corput (1).
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Sy
)ty

is steadily decreasing, the second term is

°lg)

by applying the second mean-value theorem to the real and imaginary
parts. Hence this term contributes

Since

@

o2 ) = (2 o2

»=1 vif v=g
= Oflog(8+-2)}+-O(1).
Similarly the first term is O{8/(v—@)} for » 2= B+, and this contributes
_B ! g
o ;_% e RN L 9 %)
v, 7 Brnsv<2p vz2f

= Oflog(8+2)}+0(1)-

Fina.}.ly

BXU ramttiim—var)s A )
Z ezrri(}‘(z) voif () da = z Z eimlfl.r)—v;r) de,
=1 T omly =
13

v=1

and the integrated terms are O{log(8+2}}. The result t.herefore follows.

4.8. As a particular case, we have

Lavma 4.8. Let f{x) be a real differentiable function in the interval [a, b,
lef f'(x) be monotonic, and let |f'(x)| < 8 < 1. Then

b

D . J' i g4 O(1), (4.8.1)
a<nsh H

Taking n < 1—8, the sum on the right of (4.7.1} either reduces to the
single term v = 0, or, if f'(z) = qor € —9 throughout fa, 5], it is null,
and 5
j 2l dz — (1)
a

by Lemma 4.2,

4.9. TreEorem4.9.1 Let f(x) be a real function with derivatives up to the
third order. Let f'(x) be stcadily decreasing ina < x < .‘._7, and f'(b) = a,
f'(@) = p. Let x, be defined by

Filz)=v (e<<v<B8)

1 van der Corput (2).
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Let Ay IS "()) < Ady, ") < AXg
Then
eFmifiny _ gt em{l(zv)—vm
e<nh Zis Jf {z v”
+Ollog{2+ (p—a)ho} ]+ Of(b-—a)d M)
We use Lemma 4.7, where now
B—a = O{(b—a)r,}.
Also we can replace the limits of summation on the right-hand side by
(a+1,8—1), with error O{A73). Lemma 4.6. then gives
b

f e fEy vz}t do — p—Tiw
atl<pc -1 5

+ 0+

etmi{fizv)—vas}

a+1<ref-1 1 (,) B

Y, 1 1
+ ) {0( ) 0( ))
“H<§<ﬂ . 5+ u+1<Z<,8-1 v - By,
The second term on the right is

O{(B—atal} = O(b—apd A},
and the last term is
Oflog(2+A— 3} = Oflog{2+(b—a),]]
Finally we can replace the limits (-1, —1) by («, 8] with error O(AzH),
4.10. LeMa 4.10. Let f(x) satisfy the same conditions as in Lemma 4.7,

and let g(x) be a real positive decreasing function, with @ continuous
derivative g'(x), and let |¢'(z)| be stewdily decreasing. Then

E g(n)ez—nij(n) —
a<nsd a— v,<v<ﬂ+n

J' glajermiliarra) dr 4
+{gla)og{f—at2)}+ Oflg'(a) ).
We proceed as in § 4.7, but with
$(x) = glajermia,
We encounter terms of the form

j g(x) f{ (=) d(g2wi{j(x)¢vz))

5
and also () d{e2milfamava),

PENCES

4.10 APPROXIMATE FORMULAE kij
The former-lead to Ofg(a)log(—a12)} as before. The latter give, for

example, w
> T ogg@,

=1
and the result follows.

4.11. We now come to the simplest theoremt on the approximation
to {{s) in the eritical strip by a partial sum of its Dirichlet series.

THEOREM 4.11. We have
L(s) = Z e + Ofx—) (411.1)

nsx

uniformly for o z oy >0, |t| < 2mxfC, when C is & given constant
greater than 1.

We have, by (3.5.3),

& 1w m[u]~~u~|»§ -
;(a)=§;;_m+adeu—§N
n= N

i 1
- ni__N_+o(|"‘)+0(N—a) {4.11,2)
n=1
—if
The sum 1 ®
nt ne
z<nEN g N

is of the form considered in the above lemma, with g(x) = u-°, and

O

I’
Th IF)] € 7 <7
us oz =< a°

Hence ¥

1

i d—u+0(m—")

z<ne N
1-8 1
= £—+ Ofx-7).

Hence {(s} = Z Pl + Ofz- ")+O(I’9I+l).

Making N - oo, the result follows.
t Hardy and Littlewood (3).
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4.12. For many purposes the sum involved in Theorem 4.11 contains
too many terms (at least At]) to ba of use. We therefore consider the
result of taking smaller values of z in the above formulae. The form
of the result is given by Theorem 4.9, with an extra factor g(z) in the
sum. If we ignore error terms for the moment, this gives
2l i) -vaw)

2rifin) m, g~ ki (xv)_
s K%@g(n)e oSits TRt 4
‘sking 1!

glwy = u-e, fw) = 52
. ¢ # ¢

frw)= o’ Folu) = ot
Ly

z, = ﬁ’ f (xv) = T’

and replacing e, b by 2, N, and i by —i, we obtain
1 . o -l logilzay) -2
S dean S

2
oEtn ™ vionSctans 2P EmAOR
AL ST 1
=5 ¢ ==

HeaN <v<hInx
Now the functional equation is
L(s) = x(s)5(1—s),
where x(8) = 21 sec dan/T'(s).
In any fixed stripe <o < B asi>®
. 1
log T{o—-it) = (o-+it—Hlog(it)—it+ }log 2”“'0(?)‘ (@12.1)
Hence I(o4-it) = tv+ﬂ-ie~%wf—a+%iﬂo-%>(2n)%{1 + 0(%)}, (4.12.2)
() = (QT")"‘““"emw{x +O(¢l)}' (4.12.3)
Hence the above relation is equivalent to
1 1
L LD
zL<REN 2N <ystfenz
The formulae therefore suggest that, with some suitable error terms,

1 ~S Lhxa > e

nex vay
where 2nzy = |t
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Actually the result is that
1 1
U= > St xle) D oyt Ol H Ok o™ (4124)

nET nsy
for 0 << ¢ < 1. This is known as the approximate functional equation.t

4.13. TurorEM 4.13. If h i3 a positive constant,

0<o<l, 2may =1, z>h>0, y=>h>0,
then
1 1
) = Z 2o b X0 > s 0T logle+- Oty (413.0)
nEx nay
This is an imperfect form of the approximate functional equation in
which a factor log|t| appears in one of the O-terms; but for most
purposes it is quite sufficient. The proof depends on the same principle
as Theorem 4.8, but Theorem 4.¢ would not give a sufficiently good
O-result, and we have to reconsider the integrals which oceur in this
problem. Let ¢ > 0. By Lemma 4.10

N

1 grnivy . ] I

Z i Z J - du+ O{r “log(;—l—v-g— 2)},
alnEN YN -y <vsytn ;

and the last term is O(z—¢log{). If 2rN5 > ¢, the first term is v = 0, iL.e.

~
du va!_x14
W 1—s

Hence by (4.11.2)

N
1 2wivu
=S at > [ dutO-rlogn 0wy,

u@
n<r 1<t g
ginee 21-4/(1—5) = Ofz~%) = O{z~"logt).
¥ gamive -
Now J‘e du = 1"(1—.9)(21,”) 1,
u i

and by Lemma 4.3 ¢

Ju_ae_zm((nzﬂ)lnxuwu} du — 0( N~ ) — O(N_;),
N

v—(t/22N) v
x xz
J' w—telmive oy — [""14 esmu]z _ 2mv I wl—te2mivy gy
1—s o l—s

o L]
_ (10’ » :,,,.1—0
= O(T)+O(iv_ﬁ_“‘(t/:z«rx))'

1 Hardy and Littlewood (3), (4), (8), Siegel {(2).
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Hence
¥ 2ivy Fie-1
f“ua du:(T?’) M- 3 L+
lvgy—7 l%v#rlfqy
~ 1o v
+O(N-"logy)+0(% +0( Z _)
t v—1,
vy -
_ 22—l 1 - xl-o, ]0 I
_(T) r(1—s) z S O - logtH-O(__?ii)_
1Ti—3

There is still a possible term corresponding to y—n < v < y+ =; for this,
by Lemma 4.5, *

J‘ul—aeim'vu du = O{xl—q(i)_%}
2 |

a
giving a term

(AN 1
O{i-{xl“"(?) 0{:: ”(t) } Ofat-ot-1) = Ogit-oye-1),
Finally we can replace v < y—17 by v << ¥ with error

o s

x(8) = 2%m-1sin for T(1—s)

1] = O(tt-oy=-1).
Also for t > ¢

= ] -%rf)]r(l—s)

_ (2%’)"11“(1—3){1 +0(e).

Hence the result follews on taking ¥ large enough.

It is possible to prove the full result by & refinement of the above
methods. We shall not give the details here, since the result will be
obtained by another method, depending on contour integration.

4.14. Complex-variable methods. An extremely powerful method
of obtaining approximate formulae for [(s) is to express {(s) as a contour
integral, and then move the contour into a position where it can be
suitably dealt with, The following is a simple example.

Alternative proof of Theorem 4.11. We may suppose without loss of
generality that x is half an odd integer, since the last term in the sum,
which might be affected by the restriction, is Oz}, and so is the
possible variation in 23-#/(1—s).

4.14 APPROXIMATE FORMULAE a1

Suppose first that ¢ > 1. Then a simple application of the theorem
of residues shows that

T4io
Us)— I n? =3 n* = —l_ f z—fcotmz dz
n<x RS 2
Z~ b
x 4 i
1 xl-*
=5 f (cot mz--1)z—* dz—f f (cot mz4-i)z—9 dz— o

z—im
The final formula holds, by the theory of analytlc continuation, for all
values of s, since the last two integrals are uniformly convergent in any
finite region. In the second integral we put z = x+ir, 80 that

. 2
— —2
|eotwzt-i| = e < Qe
and !z_gl — \z{"’e"‘m‘ < x_nemarctan(r,'.r) < I—Be\t\riz.

Hence the modulus of this term does not exceed
I_wf e=tnriitrs gy —
o
A similar result holds for the other integral, and the theorem follows.
It is possible to prove the approximate functional equation by an
extension of this argument; we may write

-
2a— [tz

& gignsmis

_ e varis_y S8

cob w2 z_2zZe +
=1

Proceeding as before, this leads to an O-term

-0 =2+ ar—ilriz —_ L
O[x uf &2+ Lymr vt dr] = O(2(n+l)n-—[ti/x)’

and this is Ofx—") if 2(n+1)m—|t|/x > 4, i.e. for comparatively small
values of #, if » is large. However, the rest of the argument suggested
is not particularly simple, and we prefer another proof, which will be
more useful for further developments.

4.15. Taeorem 4.15. The approvimaie functional equation (4.12.4)
holdsfor 0o <\ Lz >h >0,y >h > 0.

It is possible to extend the result to any strip —k < o < k by slight
changes in the argument

Tor o > 1 sy = P(S) J' 28— le'mz



52 APPROXIMATE FORMULAE Chap, Iv
Transforming the integral into a loop-infegral as in § 2.4, we obtain

m i " w
foy= > ST s) [

P
[+]

n=1
where € excludes the zeros of ¢”—1 other than w — 0. Thig holds for
all values of 5 except positive integers.

Let t > 0 and x < 4, 50 that < J(i2m). Lot o < 1,
m=[a]  y=ti2m), g=[y) 7 = 2my.

We deform the contour ¢ into the straight lines ¢, €, G, C, joining oo,
entin(l+te), —en-t-in(l—c), ~69—{(2¢+ 1), oo, where ¢ is an absolute
constank, 0 << ¢ {4 If 5 is an integer, a small indentation is made
above the pole at 1w — 7. We have then

1l &1 e=mP(l_g)
{(s) = ,ZITF'FX('S)’Z;;;:‘!‘T(I + f + f + f)
a &6 4 4
Let w = u-tiv — peié (0 < ¢ << 2a). Then
Iw:-ll = p"‘la“'ﬁ.
OnCud>imp> Ay, and [e*—1| > 4. Hence

f J = o(,?oqe%wt J' p— d'u) = Ofemer-fm) Otete-tm),
Iy ey

OngG, é > -&rr+a.rctanl—iz > dnte+A where 4 0, since
[ [

arctan§ = _'i_”_>f_d”_=_0_
§ 1T e T I

Hence
up-lg-mw _ 0(,‘,045-1:;'”“4»»“) = 0(1’,\1—18—«}14—4))

and [¢”—1) > 4. Hence
J' = OfyFe-tinay,
On C, Jer—1] > gev, Hence
wp-lg-mw
e¥—1

Since m+1 2 x = ¢y, ana

= O[‘q"‘lexp{-t arctan a 4:)77 —(m+ l)u” .

d{ (1+c)y u) (14-¢) 1
dglretan—— b (lte)y 1
du v Tty i Foppty > O
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we have
1
arctan (—IJ;—C‘M +2 a.rct&n# +e
7

[
= §w+c-a1cba,nm = ir+ 4,

since for 0 << 8 < 1 8
du [/
aroctan 8 <J.(—I?#-F =17
I

Hence
m )

j — O(TIV—lfe—(%r+A)¢ du)+0(ﬂ"—1 r P du)
[} e

[a5%
= O(n7e- 49 1. O(ge-te—mmm) — G(goe—m )

Finally consider C,. Here w = in-Aedtn, where A is real, [A| < 2.
Hence
Wt = exp[(s—1}ir+ log(-+e-tm]

= exp[(s—— I){'}in-l-lcg 7 +38'%"’—% ge'%‘"+o(§)}]
{5

) w0, — 0(@) @<,

Also

g @ —m—1h
er—1

er-—1 d1—e=
which is bounded for « < —4» and 4 > }7; and

|e=w] = g-Minvz_

Hence the part with |u] > }r is

T 128 A
O[Wo-lg‘%ﬂf f GXP[[—§,'7"=E O(?)}t] d/\}
-2
= o{no-le—{mf P d)\} = O(yot-de-im,
The argument also applies to the part |u| < 3z if [e*—1) > 4 on this
part. If not, suppose, for example, that the contour goes too near to
the pole at w = 2¢mi. Take it round an arc of the cirele |w—2gmi| = dar.

On this circle, W = 24 Joret?
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and

log(uw—te=™) = —fmme'?-| (s— 1){Fin+log(2gn+ dme®/i)}
= —bmme®— i+ (s—1)log(2gm} + % +O(1).

! 2mgm—t

Since m:-r—z—q i = 0(1),
this is ~—§nmt+(s— Dlog(2gm)+O(1).
Hence [t -le-m2| = () go-lg-im),
The contribution of this part is therefore
O ek,
Since =™l —5) = O{t-rel™)

we have now proved that

=2 ui,—f-x(S) > L Ofptote- st ot ey,
a=1

nl-9

n=1

The O-terms are

ool ol
X X

= Qe+ O(x~°) + O $a1-0) = Olz—).
This proves the theorem in the case considered.

To deduce the case = 2 y, change s into 1—s in the result already
obtained. Then

Wes) = Y 1= > L4 oo
naT ngy

Multiplying by x{s), and using the functional eqnation and

x(8)x(1—a) =1,
we obtain L8} = x(s) Z ,,,Tl_g"' Z 7%4_ O(-o-1),
RET nEY

Interchanging = and y, this gives the theorem with = > 4.

4.16. Further approximations.t A closer examination of the
above enalysis, together with a knowledge of the formulae of § 2.10,
shows that the O-terms in the approximate functional equation can be
replaced by an asymptotic series, each term of which contains trigono-
metrical funetions and powers of ¢ only.

1 Siogel (2).
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We shall «consider only the simplest case in which = y = \/{¢/2r),
7 = 4f{2nt). In the neighbourhood of w = iy we have

(o Dlog ; — (o—og 1+ 1)

. .
- <a+,::_1)[wl__;r_§(w_ﬁm) +}

= g (w—in) 4 o (o—in)t ...

Hence we write

P i) = glpfEmiw—in)i Xw—(v)‘¢(:,j?2:;),
where 2 )
$(z} = exp{(a- l)log(l + :"E) —1zv’t+§u’}
= i tlnz”,
=0
say. Now i
dp _fe—1 . .  o—14i# )
=T e s iviiz|h(z) = prreva #(z)
Hence (z1-+t) i N, 21 = (o—1--1z%) an,n 2",
n»n=1 -

and the coefficients &, are determined in succession by the recurrence

formula )
(n+1t.a,,, = (o—n—1g,+iz,, (r=23..),

this being true for » = 6, n = 1 also if we writea_; = a_;, = 0. Thus

—1 {o—1)o—2)
ay =1, aiz%, a,:T,
It follows that a, = Oft-irtin) {4.16.1)
(not uniformly in n); for if this is true up to n, then
ey = O(-bHkel-}) 4 O in-94Rn-21-3) = O(-He+D4iknen,

Hence (4.16.1) follows for all # by induetion.
N=1
Now let #(z) = zoanz“drr,v(z).
=

D[ bl

Then rylz) = 5o o w—7) w,
?
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where I' is a contour including the points 0 and z. Now

log $la) = (s— l)log(l + %)+§a’w2—iw\/t

_ AT o iy A

Hence for |w| < §vt we have
5 |

8
Rilog ()} < |a—l[10g5+\'w|"’. B

Let |2 < #+%, and let T be a cirele with centre w = 0, radius py, where

Bzl < oy < P2
Then e(s) = O(1zlp5 i,
The funetion p~Ne®"8* has the minimum (5e/2NVE)E¥ for p = (2NVH/5);
px ¢an have this value if

21 ¥ 3
— = =t
=17 \( <z

5

2N
5
Hence

Se \I¥ 27 20(2NViNE
ryle) = O[rz:N(m) ) [F<Bu ki< ﬁ(T) )

For |z| < §+¢ we can also take py = 3}z, giving

rwiz) = O[3} foxp sz )] = ofesp(gg=1)} (il < 40

Now consider the integral along ), and take ¢ = 2-%. Then
Mol

ws—lg-mw )i ~ 27 Hnf2a)w—in)—mw w#iﬂ n
—_— i — - a,| —— ] dw
o f (in) 1 > "(1,\/(217) +
& & =0

(d/dm e — At Ho2m i — i) —mw o — 1
rye-1€ 7 .
+ f () P ”(Mzw ) w
[

If |e*—1] > A on G, the last integral is, as in the previous section,
ANV . v Px] .
O[n”"e*%f"[ f e4‘f4W(V,_(2 )) (rfi@)a dA-+ f g~ WlimH{7N2om) d)t”

] i ANt

— 0| po-te-im 5e }Nzgzvr N — At
n°"e SN AN +3)+e

— Of ot ANV

i
for N <Z At. The case where the contour goes near a pole gives a similar
result, as in the previous section.
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Tn the first N terms we now replace (; by the infinite straight line
of which it is & part, Cj say. The integral multiplying a, changes by

0 ﬂw—ze-;-m f A HRA2ZTY2)-(m 4 EXA D), ~,L n,ﬂ .
(2
in
Since m+1 2= ¢y = pf(2a), this is
3 A e
0! po-1e-int f equw( ) dAl.
[” Jiem)
i
We can write the integrand as

A \n
R
V(2m)

and the second factor is steadily decreasing for A = 2/(n7), and so
throughout the interval of integration if # < N < At with 4 small
enough. The whole term is then

O{n"’"e-'}"l—(n‘lsan’)(zvt(";;)) "J = Ofno—le- trt-anemLypym

Be \in
Also @y = (Tl = 0{(m) }
Hence the total error is

N-1 N-1 1
Geg \i» Set\hn
a—Lg~Fal—{{f16m) = a—Lg—ni—{l16m) il
O{-q g nzo (%W)N(En«ﬂ) ] O[n g ﬂgo (1611,) J

Now (t/n}}» increnses steadily up to 7 = tje, and so if n < A4¢, where
4 < e, it is Ofekid o 11),
Hence if N < Af, with 4 small enough, the whole term is
Ofe-tr+ay),
‘We have finally the sum
(it NZ" a, J* SR N~ —mio

= z"(?n)f"u_‘ 1

(w—1in)™ dw.

The integral may be expressed as
- f exp[i (w+2mni—i'q)2+1(w—|-2m1r£—in)—mw) %
7 4z 2n

(w0 2mmi— i)
X

where L is a line in the direction argw = }r, passing between 6 and 2w,



88 APPROXIMATE FORMULAE Chap. IV

This is »! times the coefficient of &* in

— j exp{%’_ (w+ 2mmi —in)*4
L

gk (104 2mmi—in) —

:—mﬁm%m@~mﬂnﬁw—+% hwm

T

= —2-pa-‘]/‘(——2m—{-g’-)e::p[m(?7 2m+§) 58 +

+‘i(2m"—n)(§£—ém+§)},

2_g_ 1
where Yia) = E‘%ﬂaﬂﬂ),

= 2q(—1 )m—lg‘}ﬂ—(ﬁinia)‘]f(g —2mi g)e;sng’
v

&< (ézwé‘)’
= 2a(—1y-le Fut—{Binm w;("? 1 )
2 2
Hence we obtain
~Lie_(5infs) nln
edime-1(2pt)ie-i2a(— 1 m-1e-Fht zﬂ g T X
n=0

2\ in-v
]
I, T

Denoting the last sum by Sy, we have the following result.

TErEOREM 4,16, Jf 0 < o <L 1, m = [Jf(#/27)], and N < At, where 4
is a sufficiently small constant,

w=> LS L+
n=1 A=l N
+(A1)m—le-z}im-u(gﬂt)h—}e-}a-(msar(1_a){SN+O{(#V).N]+0(e_4i)]_

4.17. Special cases
In the approximate funetional equation, let & = } and
x =y = {t/(2a)}E.
Then (4.12.4) gives
L+it) = 3 a4y () +-it) ; nbri Ot (4.17.1)
ner nar
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Thia can‘also be put into another form which is sometimes useful.

We have xlb i —it) = 1,
so that Ix(3+it) = 1.
Let 8 = ¥{t) = —Jarg x-+i),
s0 that x(34-it) = e-vd,
Let Zit) = ePUy+it) = {xUhHi) R+ (¢.17.2)
: T+ ity w‘%“l"(i-l-—i—it)
8 )% = o4 =
e Iuldvir { RS =TT e
_ E(e)
we have also Z(t) = m (4.17.3)
The function Z{t) is thus real for real ¢, and
1B = 15(&+it)].
Multiplying (4.17.1) by ¢, we obtain
Z(t) = &® 3 piHie® F noivt L 0p-dy
nGE nsE
=2 3 n-icos(S—tlogn)+ O(F1). (4.17.4)
P

Again, in Theorem 4.186, let N — 3. Then
— ag¥(—2m) = LA 1)
8 = ao‘I"(ﬂ 2m)+2i(ﬂ_) a, P (1: 2m)
Byl _ Lo _
oy (ﬂ 2m)+ & ‘I’(ﬂ 2'm)

= ‘I’(g ~ 2m) Loy

_cosft—(2m+-1),/(2nt) —}=} 3

= o + 044,
and the O-term gives, for {(s), a term O(t~t-1), In the case v = } we
obtain, on multiplying by ¢ and proceeding as before,

ZH =2 Z coa(é‘;;logn)_'_

=1

— 1ymeyf 2\ Eoos{t— (2m 4 1)y/(2at)— 4o _
= l(T) 208 J(2arl) +0¢d). (411.5)
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4.18. A different type of approximate formula has been obt.a.in(:‘sd' by
Meulenbeld.t Instead of using finite partial sums of the original
Dirichlet series, we can approximate to {(s) by sums of the form

ZM

n*

NET
where ¢(u) deereases from 1 to 0 as % increases from 0 to 1. This reduoe:s
congiderably the order of the error terms. The simplest result of this
type is .
1—njz
sy =2 Z T:'/-i-x(&) Z poy iy
ST sy
1 2x{s—1) 1 3_ 1 1
O D et 3t Ol )
Y<n 2y y<n<By
valid for 2mey = 8], {t| = (z+ 1)}, —2 < o< 2. o
There is also an approximate functional equationt for {{(#)}%. This is

- S d{n) 4o 4.18.1
Ly = ; SRR 'g’ St OGtclogt),  (4181)
whemogagl,zy=(t/2n)ﬁ,z2h>0,y>h>0. The proofs of
this are rather elaborate.

NOTES FOR CHAPTER 4

4.19. Lemnmas 4.2 and 4.4 can be generalized by taking F to be k times
differentiable, and satisfying |[F®(x)| > 4 > 0 throughout [a, b]. By
using induction, in the same way that Lemma 4.4 was deduced from
Lemma 4.2, one finds that

&
'[ eiF(m)dx <, A-1k,
a

The error term O{iz#i; %) in Lemma 4.6 may be reptaced by
Oy li}, which is usually sharper in applications. To do this one
chooses § = ).3_* in the proof. It then suffices to show that

Ll
j e i) 1y dr < (15)-1, 4.19.1

-3
if f has a continuous first derivative and satisfies f(x) € x33-3,

t Moulenbeld (1).
1 Hardy and Littlewood (6), Titehmarah (21).
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f*(x) < x%5- 2. Here we have written A=4F"(c) and
f(x)=Fix+c)- F{c)— 3x2F"(c).

If § < (i6)- ! then (4.19.1) is immediate. Otherwise we have

s (g (Ad)-1 Il
Y
R -dp @)

The second integral on the right is trivially O {{418)-1}, while the third,
for example, is, on integrating by parts,
L]
(@idxeiteny €01
{(49)-1

dx =
2idx *

4

e")--"ﬁf(t_l i _ eilx’i eifn -1 dx
2idx Y5 dx \ 2iix
{4

L]
f(x) Tif (X)) — (giftnr 1)
D<M ey T i dx
(4d)-t
é
13(5‘3
-1
DR J et |
“h-t
< (18)-1

asrequired. Similarly the error term Q {(b — a).1 443} in Theorem 4.9 may
be replaced by O{(b—a)i}}.

For further estimates along these lines see Vinogradov [2; pp. 86-91]
and Heath-Brown [11; Lemmas § and 10). These papers show that the
error term O{{b— a):l.ﬁ,i 5) can be dropped entirely, under suitable
conditions,

Lemmas 4.2 and 4.8 have the following corollary, which is sometimes
useful.

LeMMa 4.19. Let f(x) be g real differentiable function on the interval
[a, b], let f'{x) be monolonic, and let 0 < J 1féx) < 8 <1. Then

Y eTmim g 1-1,

a<nEd
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4.20. Weighted approximate functional equations related to those
mentioned in §4.18 have been given by Lavrik [1] and Heath-Brown [3;
Lemma 1], [4; Lemma 1]. As a typical example one has

L{s)k = i d (n)n-sw, (2) +x(s* Y d, (mn-lw, _, (E)
1 x 1 ¥
+O(x'-"log* 2+ x)e 1Y) (4.20.1)

uniformly for ¢ > 1, l01< }i, xy = (¢/2n)%, x, ¥ » 1, for any fixed positive
integer k. Here cuio
.1 —ere TN ade
w(u) = i J ((5‘) TG u-*e p
e—i® (¢ > max(B, —a}).

The advantage of (4.20.1) is the very small error term.
Although the weight w, (i) is a little awkward, it is easy to see, by
moving the line of integration'to ¢ = + 1, for example, that

O@w-1) (z 21),

wa(u): \k
1+ 0@+ O{u‘(log;) e‘ﬁ"} O<u<l),

uniformly for 0 € 6 < 1, t > 1. More accurate estimates are however
possible.
To prove {4.20.1) one writes

©

Sdom o, (2) =g [ (a0-pTEED i | oo
1

2ni I'{Ls)
o {c > max (0,1 —o}),
and moves the line of integration to R(2) = —d, d > max(0, ), giving
—dyiw
1 LTk +2)) )” .4z
- be_ 2V 0 T 2 g%
i J. ((’5‘) rgs ‘et )=y
4w

+¢(8)t +Res(z = 1—9).

The residue term is easily seen to be O{x1-° log* (2 +x)e ="/}, In the
integral we substitute z = —w, x = (t/2x)*y-1, and we apply the
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functional’ equation (2.6.4). This yields

—dyiw

1 e T{d+2)) A L
[ I ((5‘) /2‘1_(;‘}—5(3*'2))16 -

—d—jx

d4fw
e e TGO —s +w)}
2ni f (‘*') a9

d—iom

k
(-5 +w)) ywe"’gitg
w

— (s i dy(nyns-1 "”1_5(2)’
T ¥

as required.
Another result of the same general nature is

|C(‘i‘+“)|2k = i dk(m)dk(n)m’i""n‘9*""W‘(mn)+ O(e—ssﬂ)

mn=1

(4.20.2)
for t > 1, and any fixed positive integer k, where

lei
W) = 1 I (,,_, {3+ u+_z)} r{%(%fl:l 2} B
ni C{3d+in} T{E—ie)} z
1-i
This type of formula has the advantage that the cross terms which
would arise on multipling (4.20.1} by its complex conjugate are absent.
By moving the line of integration to R(2) = + 4 one finds that

W,(u) = 2+o{u#logk(§)} 0<u<1),

and W, (u) = O(u - }) for u > 1. Again better estimates are possible. The
proof of (4.20.2) is similar to that of (4.20.1), and starts from the formula

+ ¥ 1 d, (m)d, (mym ~} =ity —H W, (imn)

Ny 1]_-'°° (n_zr{§(§+u+z)} r{i(-it+2)}
Zmi TG +iniT{3G—if}

1-i=

C{§+it+z)£(}—it+z))kez‘d?z.



94 APPROXIMATE FORMULAE Chap. IV
4.21. We may write the approximate functional equation (4.18.1) in

the form (s _ (s, )+ 1(6)2 S 5, 9)+ R(,%).

The estimate R(s, x) < x1~°logt has been shown by Jutila (see Ivic [3;

§4.21) to be best possible for

the

t
" |« th
x 21:'«

Qutside this range however, one can do better. Thus Jutila (in work to
appear) has proved that

R(s, x) < tix-?(log ) log (1 +%) +i-txl=7(y" +1og §

for 0 < ¢ € 1 and x » ¢ » 1. (The correaponding result for x < ¢ may be
deduced from this, via the functional equation.) For the special case
x = y = /27 one may also improve on (4.18.1). Motohashi [2], [3], and in
work in the course of publication, has established some very precise
results in this direction. In particular he has shown that

x(l—s)R(s, ;7) = -(?)%(i)ﬂ-oah

where A(x) is the remainder term in the Dirichlet divisor problem (see
§12.1). Jutila, in the work to appear, cited above, gives another proof of
this. In fact, for the apecial case o = §, the result was obtained 40 years
earlier by Taylor (1).

v
THE ORDER OF {(s) IN THE CRITICAL STRIP

5.1, Tar main object of this chapter is to discuss the order of (s} as
t > oo in the “critical strip® 0 < 0 < 1. We begin with a general dis-
cussion of the order problem. It is clear from the original Dirichlet
series (1.1.1} that {(s) i bounded in any helf-plane ¢ > 1-+3 > 1; and
we have proved in (2.12.2) that
{a)=0(t) (o=
For o < 1, corresponding results follow from the functional equation
£(s) = x(8}{(1—s).

In any fixed strip o < o < B, 88t > @
¢\t
21~ (5]
&

L) = 0(t-°) (o —5 < D), (5.1.1)
and Us) = Oy (¢ = —3).
Thus in any half-plane ¢ = o,
) = Ot k= ko),

i.e. {(s) i & function of finite order in the sense of the theory of Dirichlet
series.t

For each ¢ we define a number u(s) as the lower bound of numbers £
such that Yatit) = Oefe).
It follows from the general theory of Dirichlet seriest that, as a function
of 4, (o) is continnous, non-increasing, and convex downwards in the
sense that no arc of the curve y = (o) has any point above its chord:
also u{o) is never negative.

Since {{s) is bounded for o 22 148 (5 = 0), it follows that

by (4.12.3). Hence

plo) = 0 (¢>1), (5.1.2)
and then from the functional equation that
#o) = 3—a (o< 0), (5.1.3)

These equations also hold by continuity for o = 1 and ¢ = 0 respec-
tively.

1 Bee Titchmarsh, Theory of Functions, §§ 9.4, 9.41.

t Ibid,, §§ 5.65, 9.41.
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The chord joining the points (0,3) and (1,0) on the curve y = p(o) is
y = 3—}o. It therefore follows from the convexity property that

wo)<i—3e (0 <o< 1) (5.1.4)
In particular, u(d) < 1. ie.
L(3+it) = Ot (5.1.5)

for every positive «.
The exact value of u{o) is not known for any value of o between 0

and 1. Tt will be shown later that x(}) < %, and the aixlnplesf. poasible
bypothesis is that the graph of u{e) consists of two straight lines

po)=1—c < 0 (@> ] (5.1.6}
This is known as Lindelof’s hypothesis. It is equivalent to the state-
ment that L3+in = O (5.1.7)

for every positive ¢. ]

"The approximate functional equation gives a slight reﬁnem’ent on the
above results. For example, taking o = }, = y = JJ{t/2n) in (£.12.4),
we obtain ) .

Wt = > a0 > o

nEYL2m) nEV(H/2m)

:0( > %)Jrou—i)
a<viem ©*

— o). (5.1.8)

5.2. To improve upon this we have to show that a certain amount
of cancelling occurs between the terms of such & sum. We have

n-t — p—Cp—itlogn

n=a+1 n=a+i

and we apply the familiar lemma of ‘partipl summation’. Let
biBby . 20,20
and 8y = G+t H iy,
where the a’s are any real or complex numbers. Then if
18l <M (m=1,2.)

|y byt g Byt ... Ha, by < Mby. (5.2.1)

For
a, b+ ta b, = bya+ Bo(8y—8y) -4 (8,— 80 1)

8,{b,—b,) +83by— bs) +otsy albyy— bn) +8n b,

i
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Hence
[y byt oA, by | < M{By—byt ..y —b, +D,) = Mb,.
If0 < by < b, < ... < by, we obtain similarly
lay b+ +-a, b, < 2Mb,.
If g, = e-itlofn p — n—o, where v 2 0, it follows that

nE = O(CF" max g=iflog » ) {5.2.2)
n=d+1 a<eshin=a+1
This raises the general question of the order of sums of the form
[}
D=3 etriftn (5.2.3)

n=a+1
when f(z) is a real function of . In the above case,

—tlogn
fm) = 2
The earliest method of dealing with such sums is that of Weyl, |
largely developed by Hardy and Littlewood. This is roughly as follows,
We can reduce the problem of & to that of

b
8= z g2riotn)
n=ad+1

where g(n) is a polynomial of sufficiently high degree, say of degres L.
Now .
S22 = 2riigim)—gin) — 2rilg(n-+v)—g(n)}
sP=3Ee 37
< | T errtlutnti-gmd) (5.2.4)
v R

with suitable limits for the sums; and gln+v)—gin} is of degree k—1.
By repeating the process we ultimately obtain a sum of the form

3
Sk: 5_‘ pTTiAR41)

f=a+1l
We can now actually eatry out the summation. We obtain
1 — g¥mih—md 1
& =W L 2.5
15 ' 1—e2 | = Tgingh| (8.2.8)

If | cosec #A| is small compared with b—a, this is a favourable resuit, and
can be used to give a non-trivial result for the original sum 9.
An alternative method is due to van der Corput.§ Tn this method wo
approximate to the sum I by the corresponding integral
b

J' 27U doe

&
T Weyl (1), (2). 1 Littlewood {2), Landau (16},
§ van der Corput (1}-(7), van der Corput and Koksma (1}, Titchmarsh (8)-{12).
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and then estimate the integral by the principle of stationary phase, or
some such method. Actually the original sum is usually not suitable
for this process, and intermediate steps of the form (5.2.4) have to
be used.

Still another method has been introduced by Vinogradov. This is in
some ways very complicated; but it avoids the k-fold repetition used
in the Weyl-Hardy-Littlewood method, which for large % is very
“uneconomical’. An account of this methed will be given in the next
chapter.

5.3. The Weyl-Hardy-Littlewood method. The relation of the
general sum %o the sum involving polynomials is as follows:

Lemma 5.3, Lei & be o positive integer,

b—a

t=1, < LR,
a
'l fm  1m? (— 11w
and ’Zlexp‘vit(;—§§+u.+—m‘)} <M (pKb—a)
-]
Then | 3 etlern| o AM.
n=d+1
For
-n
| eg-itlogn| — ze—ﬂlﬂﬂ(a+m)|
n=a+1 m=1

= ] bif eXP{*it(%— = IIZ:;:mk)_itGi:; )1’;7:::-}- )}
exp{-—it(g_ _._+(—lk)t’;lmk)} i e,(t)(%)v
»=0

i e:z(f)::za mY exp{ Ait(;i-— +(_—1,%:—:Tl;k)}

—g =1

<2t S 1o (Y

=0

< 2Mexp{tw/(l _mlL:—a)} < 2Met

ak+l

» 8ay,
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5.4. THé simplest case is that of L%+ i

: ~+i), and we begin by workin,
this out. W i = ; .
s on e require the case & = 2 of the above lemma, and also the

LEMMA. Let 8= i ebmiiosm’+fm)
m=1
f i §
Then 1812 < pi-2 rg] minfg, |cosec 2mar|).
i
For 8= 3 ﬁ glrilom® +fm—am’ —fm?)
m=1m'=1 ’

Putting m’ = m—r, this takes the form
z‘ z e2miamr—artfr) Kt LI
m o \F=z}¢+1l§€ WJ,

where, corresponding to each valu
vhere, e of 7, m runs over at mos -
tive integers. Hence, by (5.2.5), 4 conseon

gl
I8P ¥ min(g, [cosec 2mar))
=it

p—1
=p+2 rgl minfu, jcosec 2war|).

5.5. THEOREM 5.5.  [(}+it) = O(ehloglt).
Let 283 L g « At, b < 2¢, and let
then # = [{at-3]. (8.6.1)
b . Qg a+2n &
3= z e—Hlogn
- Z + E +n.++§p+l= 21+zn+'--+zN+lv

r=a+l etp+1
where N = [2:—'1] = 06) = O(t3)
" .

By § 5.3, T, == O(M), where M is the maximum of

5.3 ez L)

me=i

for p < p. By § 5.4 this is

0[{#-}- Zlmﬁn( \

cosec mTi_’—ﬂw‘ )” L
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Y

Hence

N+
T O{(N+l).u%}+0“ S
=1

Nirp-1l tr

G0 —————

2 mim (’J., COS 2(ﬂ,+lly;)a
1r=1

=

= o{v-+ 1!y +0| ¥+ DY :Ni:min (1 |coseo e i

Now tr tr _ trpf2at (vl
HatvpP Ao +rlp 2etwplet e’

which, as » varies, lies between constant multiples of tru/a® o.r, l?y

{6.5.1), of rju?. Hence for the values of v for which }fr/(a-+-vp)® lies in

a certain interval {im, {{4-4)}, the least value but one of

- b
lsm —2(a+vp,)2
is greater than Arfu?, the least bub two is greater than 2Ar,’,u',]the least
but three is greater than 3d4r/p?, and so on to O(N) = O(fs) terms.
Hence these values of v contribute

w = 0(&21 t) = O(*flo t).
PL+0(-?_'+2T+---) #t - o8 Pl

The number of such intervals {im, (14 4)=} is

O{(N+1) LANE 1}.

L
Hence the v-sum is .
O[(V - Ljtog £} +- o("T log t).

Hence

g 0{(N+1)#%}+O(N+l}x'f[ ‘S {(N—{—l)logt—k’%glogl”}

= O{(N -+ Up+ OV + Latlogin +- GHN + Diulog )

= Olat tt loght) + O(at-# log).
If 2 = O(tt), the second term can be omitted. Then by partial summa-
tion b 1 , s

Z i = Otlogl) (b < 2a).
a1
By adding O(log#) sums of the above form, we get
;ﬂ“ = O{t¥ logit).
b nit/emt
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5 1 1 1
Also > G 0( 22;,?7“) = O(th).
<

n<at

The result therefore follows from the approximate functional equation.

5.6. We now proceed to the general case. We require the following
lemmaa,

LevMa 5.6, Let flz) = k...
be a polynomial of degree k with real coefficients. Let
S = z g2mifim)

where m ranges over at most y consecutive integers, Let K — %1, Then
for k=2
IS[ < BELE-L 2KuE 5 mingy, |coseo(mak! ry...r, )]}
Theeafi-1
where each r varies from 1 ta p—1. For k — 1 the sum is replaced by the
single term min(pu, |cosec mal).

We have IS)E=3 Z e2milfim)—fom)}

"oy

=3 3 etmilm-fon-rdl (3! — m—y,)
mr

-l
£ AR
<, 2,
where 8, = Z etmilm—fm—ry) z gEmitadorant =iy}
.ow w

and, for each r;, m ranges over at most x consecutive integers. Hence
by Hélder’s inequality

[Siz < ( Pil l)1~mK(r .“Z—I{Ll[Sl‘%K)NK

= 1

==
e :
e A N T EY
r=mpil
where the dash denotes that the term r, = 0 is omitted. Hence
= s
IS < (upE -ty TS g8, jtx),
r=—p+1

K the theorem is true for £—1, then
| Slléx < QKF_-}K—1+
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Hence
|SiE < 2hepELy

+2%KMK"1+2KFLK*"T > min{u,|cosec(mak! ry...5)),
e AN

and the result for £ follows. Since by § 5.4 the result is true for k — 2,
it holds generally.

5.7. LemMMA 8.7. Fore <b << 2a, k> 2, K =21 g=0(@),t> Ly,
¥ i a—H O(ul-1/Ktlf{(k+l)K)]0g'l.'Kt)_|_O(ﬂt—l/((k-é—l)xf].og’ffxt)_
n=a+l
If @ < 4gUk+D) then
¥ — O(a,) — O(H‘l_quuI(kJrl)KJ)

as required. Otherwise, let
= [ém-lf(ku)]'

and write
. atp atzu h
E= 3 4+ 3 4t T =E4.45.,.
n=e+l atp+1 a+Ap+1

Then E, = O(M), where M is the maximum, for p’ < u, of

& L om 1 m2 N mk
S=2 “‘I’{*”(&Tv’fﬁ’iwm)ﬁ"'“_”k G )

m=1
By Lemma 5.6
y . k—1)1ry e, |\ \VE
— - KK t0 1 Tg1
8, = o ux)JrO[#l {ﬁ’lé_:mm(p,llcosec Ba Fopt )J J
Hence
E = OfN 4 1)1
& R He— 1) ry..re |V |HE
1-ifE e 1) rptey
ol S 3 a2

[l B ST

= O[V + 1) 4E) 4

N+l
+o[m—kﬂfuv+l)km{ > > minfu
v=1 ry,

TRt

=1 ryr

cosec SaLop)t

)]

by Hélder’s inequality.
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Now as + varies,
He—Ulrymy  HE—1)ry.r,
T 2etwF | Za -1 i
lies between constant multiples of #(k—1)!r,.._, ua—*1, ie. of
(B—1)lry..ry,_ p~% The number of intervals of the form {Im, (I4+3)w}
containing values of $¢(k— D)y y(@+vp)* is therefore

OV +1)(k—1) iy g p*e 1}

The part of the y-sum corresponding to each of these intervals is, as in
the previous case,

u* #*
”"'O(UF i rl...rk_1)+0(2.(k— 1):r1...rk_1) -

Flogi *log ¢
o #-log _ p7log
- #TO((Ic—l)Irl...rk_l) - O(rl»..rk, ’

Hence the v-sum is
1
O{(N +1)log t}+o(ﬂ$i).

FioFeoy
Summing with respect to r,,..., #4-1, We obtain

O{(N+1)k-11og )4 O(uk logkt).,
Hence

I = QN4 1)pd-VE} Of(N 1)t -VE logUR}+ O{{ N+ 1)1-¥E, loghky,
The first term on the right can be omitted, and since
Nii= o(!’;"_,_]) = Oty
’.L
the result stated follows.

5.8. TeroreM §.8. Ifis a fiwed integer greater than 2, and I = 2-1
then ifs) = QDD logiityy (5 o 11/, (5.8.1)
The second term in Lemma 5.7 can be omitted if
@ < t2hks B]ggl-ky,
Taking k = I and applying the result O(log?), times we obtain
L noit= O(N - VLU + Belgg 1ty (5.8.2)

n<N
for N < 1242+ Djogl-1y, Similarly, for k < I, we find
=¥ = QN -V G+ DE ogrkg)

Lk BDlop-ht <p g N



104 THE ORDER OF {(s) Chap. Vv

for 24k +Dlog-#t < N < 21k + Dlog'-*{ The error term here is at most
O(N1-YiFlogh i) with

Y S0 WSS SPPRY (SU PR
T\ETE re2 +DE T ON\L K] K

Thus f < 1/L. When k =[—1 we have

_(1.2\2 2 2 L
Ll 2 R T AR TR AR TS 1Y A

and for 2 < k < [—2 we have

ofL o1y o1 k-1 <<t
*= ik K)k+r2 ®k+DE- T 2R+DGE+DK - @+DL
It therefore follows, on summing over k, that (5.8.2) holds for
N < tilog-1t. Hence, by partial summation, we have

Z n—*%f= o(,u{(n l)L}logH IILI)’
n g (/2n)t

Z nt-l= O(tz"l“/'W*UL}[ogl/‘L;),
n < @2k

and the theorem follows from the approximate functional equation.

5.9. van der Corput’s method. In this method we approximate
to sums by integrals as in Chapter IV.
TaeoreM 5.9. If f(z) is real and fwice differentiable, and

V<R <@ EM, (or My < —f"2) <A

throughout the interval [a, b], and b > a + 1, then

3 et — Ohb—anf)+00gh.

alngh
If A, 3> 1 the result is trivial, since the sum is Othb—a). Otherwise
Lemmas 4.7 and 4.4 give
O{(B—a+1 14 Oflog(B—a+-2)},
where f—a = f'la)—f"(b) = Of(b—a)hd}.
Sinee o018 41 2) = O(B—at2) = Ofb—a)ir}+O(1)

= Of(b—a)k}-+0(1),
the result follows.
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5.10, Liwma 5.10.  Let f(n) be a real function, ¢ <% < b, and g
itive 1 not ding b—a. Then
Z e2mifn) }*.
a<ngh

For convenience in the proof, let "™ denote 0 if n e or > b.

Then
Zezmltn) - z 2 gRmifim +m)

n om=1

a

Fy d

‘443 +4 [b —at g2t en—fn

r-l a<nsb—r

the inner sum vanishing if # <{ a—¢q or n > —1. Hence

'3
Z ernifin| 1 z z eRmifim+n)
= g

e

SPDHIEE

Since there are at most b—a-tg < 2(b—a) values of » for which the
inner sum does not vanish, this does not exceed

{2(b a) 3| 3 eseime Z}é,

n im=1

Now
2
3 e 3§ eentvmen-s

n=1 m=1 =1

=g+ 2 z gamilfon+n)—fu+ad z E a2 ifm4R)~fip+nl)
pm m

Hence .
i eirri!(wwn)‘g \<\
m=1
In the last sum, fim+n)—flu-+n) = flv+r}—f(¥), for given values
of vand r, 1 < r < g—1, just g—r times, namely p = 1, m = r-+1, up
to p = g—r, m = g, with a consequent value of » in each case. Hence
the modulus of this sum is equal to

Hb—a)g+2 ‘ 33T errilfimenfun|
npm

)

|q§:‘(q_1) 2 gmilfiv ) -fol| o qﬂill 5 ezwiU(v+r)*flv))!. (5.10.1)
r=1 v rall »
}%

Z emifn)| o

"

Hence

{4(b—a)==q+4(b a)g Z

r=1

z BRI+ -10)

»

and the result stated follows.
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5.11, TuEorEM 65.11. FLet () be real and have continuous derivatives
up to the third order, and let Ay < f"(x) < k2, or Ay <L —f"(x) < Ry,
and b—a = 1. Then

o, ST = OfRHb—aI}- Of(b—a)tAH).

Let glz) = fletr—fiz).
Then §'(2) = et r—F"(2) = 117 (@),
where x < ¢ <_ x+r. Hence
A < g7(x) < Brdg,
or the same for —g"(z). Hence by Theorem 5.9
€2 — O{E(b—a)rﬂé}-}-()(r—h;%)_

a<agh—r
Henee, by Lemma 5.10,
2mifin) b—a b-a Sy, Wrrbch |t
3 e =0l )+o -‘72{ (b—ayriaft a1}
ra=i

a<ngh q
- ,
- o(-;ﬁ—“)+0{h(b—a,)=q%f\;‘+(b-cv)q-h\g*}?r

= O{(b—a)g-H}+ Ofip—a)girl)+ Of(b—aytg-1A 1}
The first two terms ave of the same order in A, if g = [A;%] provided
that A, < 1. This gives
O{h%(b—a)z\§}+ Of(b—a)ini}
a8 stated. The theorem is plainly trivial if A, > 1. The proof alse
requires that ¢ < b-—a. If this is not satisfied, then b—a — 0()(3—%),
b—a = Of(b—a)yird},
and the result again follows.
5.12. THEOREM 5.12.
{(3+it) = Ofthlogi).
Taking f{z) = —(2x)-Ylog z, we have

) = — =

Hence if b < 2a the above theorem gives

Zart = oo frofai() )
= Ofattd) +Ofai-$),
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and the second term can be omitted if @ < #5. Then by partial summa-

tion 1
z = 0). (6.12.1)
a<nsb
Also, by Theorem 5.9,

3 - = O - Ofar-d),

a<ngh

and hence by partial summation

Lo offt\t 2\

>, = oG ol
A< nsh
Hence (5.12.1} is also true if {3 <@ <<f Hence, applying (5.12.1)
O(logt) times, we obtain
1
Z e v i Olthlogt),

a<i
and the result follows,

5.13. TrEOREM 5.13. Let f(x) be real and have continuous derivalives
up o the k-th order, where k = 4. Let ), < f®(x) < k), (or the same
Jor —f®(x)). Letb—a =1, K = 281 Then

3 €I — O[RE(h—a)\IE-9) 4 O{(p—a)-HRAF UOE-B),
LI

where the conslants implied are independent of k.

If A = I the theorem ie trivial, as before. Otherwise, suppose the
theorem true for all integers up to #—1. Let

gle) = fle+r)—flz).
Then gENz) = flE-Big{r) — f(z) — 7f o g),
where 2 < § < @+r. Hence

iy < g*-Y(z) < b,
Hence the theorem with t—1 for & gives

| i) < Ay R (b—a)PAHE -t Ay(b—a)i-HE(hy) MR-
aRsh—r

(writing constants 4,, 4, instead of the ('s). Hence
—1
), 3, e < Aoy

+2A2(b _a)l—llqu—li(ftd);\k-lﬂx—!)

g-iE— < 2g1-WE-D

Q
q=1
i —E-2) “UR-2 Jp —
since 'er <J‘r dr T—Tk—3) <
o
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for K > 4. Hence, by Lemma 5.10,
L2 P Ay(b—alg - A b—a)lgHA IR ) BT
+ 24, (b—a ) ~HEG UK -BA - RE -2k
< dylb—alg-t+ 4, AT RE(D—a)qUIE-a)LE 0
+4,(24, (b —a)VEg UK —G) R,
To make the first two terms of the same order in A, let
q = [A;Htx—n]+]_
Then AFHE S € g < ATUK-D,
q]/(ﬂK—d)A,lc{(EK—ﬂi é 21/(2K—4)A,y(25.’—l)(1—lf(K—l)) g zhé/(zx—ﬂ),
q7u(2K-q);\k—1](2K-;) < ;\k—lin -9,
and we obtain

z gemifin)
e<nsh

S (4ot 24, ADIIEB—a )2 PE-0 4

+A‘(2A2)§(b—a,)l'yxhk’”(’x"’.
This gives the result for %; the constants are the same for k as for k—1
i At24,4F < 4, AgAN < 4,

which are satisfied if 4, and 4, are large enough,

We have assumed in the proof that ¢ <{ b—a, which is true if
2N UME-Y < b—a. Otherwise

T et o b—a < (b—a)¥(2A7 VE-D)E < 2H(b g )l-HEN VBE-D),
e<nsh
and the result again holds.

5.14. TEEOREM 5.14, If1 > 3, L = 21, ¢ — 1 }j(2L—2),
I{s) — O(peE-2logy), (5.14.1)
We apply the above theorem with

_ _tlogz oy (—DFE—1)1e
fo) = —=52=, [Pz = B
Ifa <<n < b < 2a, then
k—1)¢ @) {k—1)1¢
S Za)F < ) < =g
and we may apply the theorem with
_ (e=1)ts — ok
N = iTa) h = 2k,
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e ol ol ]

— O(dl—kl(2K~2)llJ(2KA2))+ 0(a!ﬁsz+kf(2K—2)t—1j(2Kf2))' (5.]4.2)
The second term can be omitted if

Hence

asn<d

& < AtFICE-2K13) (5.14.3)
Hence by partial summation
> nf = O(ql-o-HEE-2yleK-2) (5.14.4)
a<nsh
subjeet to (5.14.3). Taking ¢ = 1—I{(2L—2),
¥ nt = O(aH2l-D-HRE-BUeK-2) (5.14.5}
aln<h

First take k = I. We obtain
> nt = Q-9 (g < ALML-2EAD)

a<nsh
Hence ; o
nglﬂfll =242} “L,‘lU:—%L+‘1)<.ngti/(lLA'Zlfh
= O{WeL-2) | Qlel—o) 4
= O(t¥eL-D]ogi). (5.14.8)
1
Next Z v Z -+ Z + oy
P+ DY Han<t  Hani
and to each term ¥ corresponds a k < I such that
Pl 2T+ ]
{ENR+DE 2K +1} < -y g PEIRE 2K 12),
Then l —_ O{t(u’(zL_z)_k,‘(zx—ﬂ))Kl((kH)K—zK +l)+lJ(2K—2)}_
s

2Rt 2l
The index does not exceed that in (5.14.6) if
1 k K 1 1
(2L—2_2K—2) (k+1)K42K+1+2K—2 Sz
which reduces to L—K 2 {I-kK,
ie. 2kl =1k
which is true. Since there are again O(logt) terms,

1
== O(ieL-2]og ¢).
PLOL—2L 0 et
The result therefore follows. Theorem 5.12 is the perticular case
1=3, L =4
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5.15. Comparison between the Hardy-Littlewood result and
the van der Corput resuit. The Herdy-Littlewood methed shows
that the function (o) satisfies

1 1
J—— — 5.15.1
W1 g) < e (e.15.1)
and the van der Corput method that
“(1 _z‘iz) = 2‘12‘ (5.15.2)
For a given &, determine I 30 that
I—1 1 !
1- 213 <1 2k 1‘<‘1—2‘—2'
Then (5.15,2) and the convexity of u(o) give
11 -1 1
1 g 2 ) i3 71 1
“(l_iﬁ) Dy w2 Wy ey R S
FE_B T A3 Ai_g A2
k1 < 1
TP 2 T (k126
if (b 1)(2-1— 28-1)  (I—2)2-14- 2.
Since 2¢-1 = (2~%—2)/(I—1), this is true if
9-1_2
(k+1)(2"‘— —1 ) < (1—2)2-142,
ie, if k41 <11
o
Now 9k-1 2‘2_2 = < 78

if{ > 8. Hence the Hardy-Littlewood result follows from the van der
COl'Put result if I 2= 8.
Fora ¢ < 7 the relevant values of 1—o are

H.-L. P
v.d. C. 2 0L & B
The values of & and 7 in these cases are 3, 4, 5 and 5, 8, 7 respectwely

Hence k < 12 in all cases.
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5.16. THEOREM 5.16.

L logt
L1-it) = O(IOglog t).

We have to apply the above results with k variable; in fact it will
be seen from the analysis of § 5.13 and § 5.14 that the constants implied
in the (s are independent of k. In particular, taking o — 1in {5.14.4),
we have 1

Z = O(aHEK-BRK-D) (g < b < 2a)

pl+it
alnsh

uniformly with respect to L, subject to (5.14.3). If

(I DE K41 o« g  gRIRK-2K D)
it follows that

Z % = O({HER-D-RE[RE-D(E-K+1}) — (- 1HE-DK+2),
ﬂ('n{bn

e I
Writing = + .

.y
uif(t--nnu(,nsxn Ynge  p<mxde

and applying the shove result with & = 2, 3,..., or r, we obtain, since
there are O(logé) terms,
1

pl+il
iR -DR Y opgy

Let r = [loglog¢]. Then

= O(t-VZr-DR+2 Jog f), {5.16.1)

2R < gomoel — (logt)or?,
and

logt
LR DR > exp((logtm—————uiogﬁ—m) > expf{{log )4} > Alogt.

Hence the above sum is bounded. Also

1
= O(log tRir-DR1)y — o{

Rlogt }
1

(r—HR+1
- O(IOgt) O(- logt )
loglog ¢,
This proves the theorem.

The same result can also be deduced from the Weyl-Hardy-Little-
wood analysis,

B 1R+
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5.17. THEGREM 5.17, Fort > A

(loglog £)®
= ¢ —o B 5.17.1
{(s) = Ollogh), o2=1 Togt ( )
) £ 0, o314, 088! (5.17.2)
logt

{with some A,), and Ll __p logt (5.17.3)

" L0+ loglog )’
Sldi)  pof logt ) (5.17.4)

L1 +it} loglog?

We cbserve that {5.14,1) holds with & constant independent of !, and
also, by the Phragmén-Lindeldf theorem, uniformly for

¢ 2 1-1/(2L—2).

Let ¢ be given (sufficiently large), and let
1 logt

= [log 2 log(loglogt

Then L << 20ftog tlogdog tloglog -1 —

—

]

1 logt
“ a]oglogt’

and similarly

Hence
i < i - loglog t—logloglog t—log 2 loglog ¢ - (loglog £)®
2L—2% 2L% log 2 logt = logt
for ¢ > A (large enough). Hence if
_ (loglogi)?
ozl —T(;gT
b
2L—2’
Hence (5.14.1) is applicable, and gives
{(s) = O@YeL-Dlogt) = O logt)
= O(thloglostllogl)log = O(IOg"'t).
This proves {5.17.1). The remaining results then follow from Theorems
3.10 and 3.11, taking (for ¢ > A)

then cz=1—

_ (loglogt)* _
o) = “ogt $(¢) = 5loglog?.

5.18 IN THE CRITICAL STRIP us

5.18. In this section we reconsider the problem of the order of
{(3+it). Small improvements on Theorem 5.12 have been obtained by
various different methods. Results of the form

L3 +it) = O(tloght)

163 2o a9 19 15
® = 988’ Ted' 1302’ 116" 92
were proved by Walfisz (1), Titchmarsh (9), Phillips (1), Titchmarsh
(24), and Min (i) respectively.t We shall give here the argument which
leads to the index #;. The main idea of the proof is that we combine
Theorem 5.13 with Theorem 4.9, which enables us to tra.nsforin a given
exponential sum into another, which may be easier to deal with.

with

THEOREM 5.18.
L(h4it) = O,
Consider the sum
3, = e ~itlog n
t a<n<bn ﬂ<§<he ’
where @ << b < 2a, a < 4+1. By §5.10

L, = 0(5%)-%0{(3"5 lzﬂl)*}, (5.18.1)

r=1
where ¢ < b—a, and
X, = g~ilog(n 4ri-tog n},
2 a<n§bfr

We now apply Theorem 4.9. to X,. We have

¢ K ey o
Sflz) == —E{log(x—w)flogx}, fw) = Trale 7]
oy b Zxdr wpn b7 3xi-Ber -t
T = g e 7 = ey
We can therefore apply Theorem 4.9 with A, = tra-3%, A; = tra~*. Thus
R N L { 2 ‘1)} “_”)
B xggﬁif”(x,n%*o ) T OB+ gl O )
(5.18.2)

where ¢(v) = f(z,)—vz,, & = f'(b—7), B = J'(a). Actually the log-term
can be omitted, since it is Otdria—%).
Consider next the sum
S e (< y <P
alvLy

1 Note that the proof of the lemma in Titchmarsh (24) is ineorreet. The lemma
should be replaced by the ponding theorem in Titeh h (16).
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The numbers z, are given by

tr . 2tr
S e

Hence

$) = {f’ (:C..)—v}———x =z, = érA_(ﬂ.FgE)t

by tr CHm\Yl w1

#70) = 2rrvg(r2+2tr/m)"i _ §(2Tr) (H_Il- }+)'
. trd t
since L rf(a) = mzmz(qur) < 2;12 Sz
It follows that

Bl g < Bl iy,

where K;, K,,..., and #. depend on & only. We may therefore apply
Theorem 5.13, with £ = 0(1), and

A = K(nitrja?)i-k = Ky(trp-Fade-1,
Hence

. tr | o1 VK- tr\1-2K [ 2k-1 \-1UfeE-3)
e2rido) = OfF, tr a
F, e ol ol

Also |f*(z,)|~% is monotonic and of the form O{i-}r-la?). Hence by
partial summation

etmidty)
= Of(tr)F—k- B -2k-1}2 K -2~}
2= o et

+ O{(t;r)%—ﬂEkal)l(ZK—2JaﬂK~é-(2k—1)[(2K-a)}.

Hence

Z |Z,) O{(tq)§4k4:;(zK_mam_uksx—m—;}_l_
r-l
- Of(tq) K HE-DIEE -9 K kDR O{(tq)-tai}4- O{(tg)ta-t}.
Inserting this in (5.18.1), and using the inequality

X4+Y 4 0 < XV
we obtain KTt )b < XFi+

3, = O(Qq-;)_|_0{(tg)%—up—mu(-Aja(skgw(ax—au}}_|_
+ Of(tgH- 1Rk -N K—gHE -2 E -0}t Oftag)-bad}-+ O{ttg)bats).
The first two terms on the right are of the same order if
g = [aBR -2k DRk By K RO -k-2],
and they are then of the form
O(aPE-BEBE-E-DigK XK -k-2l) — Q(SE-H-BUBE-E-1Y) (g < Aty
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For k = 2,3, 4, 5, 6,..., the index has the values

13 s 17T

2 712 4l 17e’m
and of these 1 is the smallest. We therefore take & = 5,

g = [ai‘.it-ﬂ] (& > 638),
and obtain
%, = O(akti) 4 O(adtitdh) 4 O(alilt-i) 1 Ol
This alse holds if ¢ 3> 6—a, since then
I, = O(b—a) = Ofg) = Ofalti-il),

|
which is of smaller order than the third term in the above right-hand

pide.
It is easily seen that the last two terms are negligible compared with
the first if @ = O(+%). Hence by partial summation

z M = Q(adsthd) -+ Ofa— 5t (a > by,
a<nh
Applying this with @ —= N, b= 2N—1; g = 2N, b — 4¥—L... until
b == [A+}], we obtain
1
A= O(t267) - O(N -Hrér)

Nng ANt

— O} (N > 1)
We require a subsidiary argument for n < 3%, and in fact (5,14.2) with

EIc_4g1ve>sl

T asit — Ofait) (& < A),

a<REh

1 Ee
Z o i Olaiitis),
aALh

and by adding terms uf this type as before

ﬁ‘—‘ O(ttfif*’li) = O(hlx“u) == O(tﬂ:r().
Ty

The result therefore follows from the approximate functional equation.

NOTES FOR CHAPTER 5 '

5.19. Twe more completely different arguments have been given,
leading to the estimate
€ Hh <k (6.19.1)



116 THE GRDER OF {(s) Chap. ¥

Firstly Bombieri, in unpublished work, has used a method related to
that of §6.12, together with the bound
11
Il
to prove (5.19.1). Secondly, (5.19.1) follows from the mean-value bound
{7.24.4) of Iwaniec [1). (This deep result is described in §7.24.)
Heath-Brown [9] has shown that the weaker estimate u(}) < f
foliows from an argument analogous te Burgess’s [1] treatment of
character sums. Moreover the bound uh) < 9 which is weaker still,
but none the less non-trivial, follows from Heath-Brown'’s [4] fourth-
power moment (7.21.1), based on Weil’s estimate for the Kloosterman
sum. Thus there are some extremely diverse arguments leading to non-
trivial bounds for u(3).

Y exp{Zni(ax + f9)}| dadp < P*log P,

lsx<P

5.20. The argument given in §5.18 is generalized by the ‘method of
exponent pairs’ of van der Corput (1), (@ and Phillips (1). Let s, ¢ be
positive constants, and let# (s, c) be the set of quadruples (V, 1, f, y) as
follows:

() N and y are positive and satisfy yN—= 2> 1,
(i) I is a subinterval of (N, 2N1,

(ii}) f is & real valued function on I, with derivatives of all orders,

satisfying

€c

dn dar
s (x)— —(yx—* —(yx ). 5.20.1
fireD(x) dx,,(yx } dx"(yx )} ¢ )
forn 2 0.
We then say that (p, ) is an ‘exponent pairif0<p<j<g<land if
for each s > 0 there exists a sufficiently smallc = ¢(p, ¢, 8) > Osuch that

E[exp{ﬁnif(n)} <, g (PN-2IPNS, (5.20.2

uniformly for (N, I, f, ¥ eF(s, ¢).

We may observe that yN-* is the order of magnitude of f'(x). It is
immediate that (G, 1) is an exponent pair. Moreover Theorems 5.9, 5.11,
and 5.13 correspond to the exponent pairs (4, 3, (4, §), and

1 ak—k—1
gk—2' 2x-2 )
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By using Liemma 5.10 one may prove that
p ptag+il
A, q) = (7, e
P=l\2pr2 prez
is an exponent pair whenever (p, g) is. Similarly from Theorem 4.9, as
sharpened in §4.19, one may show that

Bp,g)=(@—Lp+})

is an exponent pair whenever (p, 9) is, providing that p+2¢ > §. Thus
one may build up a range of pairs by repeated applications of these A
and B processes. In doing this one should note that B2(p, ¢) = (p. @).
Examples of exponent pairs are:

B{0.1) =@, ), AB@. 1) =, 5. AXBO, 1) =({,
AB(0,1) = (&, §8),  BA*B(O,1)= (4 4), AB@O 1) = (3D,
BAB(@0,1) = (33, 3§), ABA2B(1,0) = (%. i),
BA*B(0,1) = (3%, 1), ABASB(O, 1) = (3. §D).
ABAZB(0,1) = (&, 3§), BABAZB(0,1) = (&, {}).
To estimate the sum X, of §5.18 we may take

[

t
f(x)—ﬂlogx, y=5 =L

80 that (5.20.1) holds for any ¢ > 0. The exponent pair (i}, §3) then yields
pIR titalt
whence
Y nhoitgpdhad g ot
a<n<h

for @ < th. We therefore recover Theorem 5.18.

The estimate u(}) < #&%- of Phillips (1) comes from a better choice of
exponent pair. In general we will have

P <ip+q-P),
providing that ¢ > p+4. Rankin [1] has shown that the infimum of
.}(p+q —14), over all pairs generated from (0, 1) by the A and B processes,
i8 0-16451067.... (Graham, in work in the course of publication, gives
further details)) Note however that there are exponent pairs better for
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certain problems than any which can be got in this way, as we shall see
in §§6.17-18. These unfortunately do not seem te help in the estimation

of p(3).
5.21. The list of bounds for p(}) may be extended as follows.

158 = 0:164979. .. Walfisz (1),
o = 0164634 . .. Titchmarsh {9),
Pafy = 0164511 ... Phillips {1}
0-164510. .. Rankin [1]
i =0163793. .. Titchmarsh (24)
33 =0-163043... Min (1)
£ =0162162... Haneke [1]
T = 0-162136... Kolesnik [2]
#ify = 0:162037... Kolesnik [4]
Y = 0162004, .. Kolesnik [5].

The value £ was obtained by Chen [1], independently of Haneke, but a
little later.

The estimates from Titchmarsh {24} onwards depend on bounds for
multiple sums. In proving Lemma 5.10 the sum over r on the left of
(5.10.1) is estimated trivially. However, there is scope for further savings
by considering the sum over rand r as a two-dimensional sum, and using
two dimensional analogues of the 4 and B processes given by Lemma
5.10 and Theorem 4.9. Indeed since further variables are introduced
each time an A process is used, higher-dimensional sums will occur.

Srinivasan [1] has given a treatment of double sums, but it is not clear °

whether it is sufficiently flexible to give, for example, new exponent
pairs for one-dimensional sums.

Vi
VINOGRADOV’S METHOD

6'.1' SmiLL another method of dealing with exponential sums is due to
Vu'fograduv.]‘ This has passed through a number of different forms of
which the one given here is the most successful. In the theory of the zeta-

function, the method gives new results in the neighbourhood of the line
=1

Let F) = apaf o ntbog
be a polynomial of degree k > 2 with real coeflicients, and let ¢ and ¢
be integers,
Sig)= 3 e,
a<nsatq

i

Jgh = | ‘..flw(q)w dots... oy

The question of the order of J(g,I) as & function of ¢ is importantin
the method.

Since 8(g) = Olg) we have trivially J(g,I) = O(g®). Less trivially,
we could argue as follows. We have

{S(q)}k: z e2rtoytnt o nB.

7y, M

| 8(g) = =2

TN

ezmie it tmf—nt—u—nb+..
*
On integrating over the 4-dimensional unit cube, we obtain a zero factor
if any of the numbers
mipbmi—nl— . —nf (b =1,., k)

is different from zero. Hence J(g, k) is equal to the number of solutions
of the system of equations

mhtmp = wittnd (h=1,.,k),

wherea <m, < a+tg¢,a < n, < atq.
But it follows from these equations that the numbers n, are egual (in
some order) to the numbers m,. Henco only the m, can be chosen

¥ Vi dov {1)~(4), Tehudakoff (1)~(5), Titch h (20), Hua (i)
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arbitrarily, and so the total number of solutions is O(g*}. Hence
J{g. k) = Og")

and Jig.)) = O{g T (g, k)} = O(g").

This, however, is not sufficient for the application (see Lemma 6.8).
For any integer I, J(g,1) is equal to the number of solutions of the

equations
mib L ml =alnd (h=1,2..,0),

where ¢ << m, < a+q, @ < n, < a-+¢. Actually J(g,1) is independent
of a; for putting M, = m,—a, N, = n,—a, we obtain

I I
X (Map =3 (Ntaf (=1 k),
which is equivalent to
Su—EN =10,
v=1 yo=1

and 0 < M, < q,0< N, < ¢
Clearly J(g,) is a non-decreasing function of g.

6.2. Lenma 6.2. Let my,..., my, Ry,..., 1y be two sets of integers, let
E I
ay=2mh G =>u
»=1 1

and let oy, o), be the h-th el tary 8y iric functions of the m, and n,
respectively. If |m,| < g, |»,| < ¢, and

(o] < @ (= 1 B, (6.2.1)
then oyl < F2RQPY (= 2o, K. {6.2.2)
Clearly I8 < hg?, [3h| Icq )
and loh < (89" <
Now gy = '}(affa,).
Hence |og—a}y] = 3(83—85)— (577 —83)|

< s —8)s+8) +$loy 8

< kyt3g < Hy,
the result stated for b = 2.

Now suppose that (6.2.2) holds with & = 2,..., j—1, where 3<{j <k,

so that [en—dl] < (ZgP1 (b == 1,..., j—1).
By a well-known theorem on symmetric functions
8,—0y 8 +agdy y—...--(— 1oy, =0
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Hence

Icr}fa';-‘ iaj“‘%l"‘ Zlahgji. ﬂ'h _al

Jo=l

_ a1 | 13 , , ,
= f_JL +o 2 [on—ah3esn-tails;_n—8 )|

+ z{(MFI)"'lf»q""+(kq)"q‘ a1

{ + 2(2" ‘Jrl).u-}

Am]

=

T
q_ $ hph ¢ 12ky—1
J Z S

; 2%
< (Y < k) < k)
sinee 2%/(2k—1) < 2 and § 3 3. T’hls proves the lemma,

6.3. LEMMa 6.3. Let 1 < @ < g, and let Fuse-e Gy be integers satisfying

l<g <gp<.. < g <G, PG > 1, (6.3.1)

For eack value of v (1 < v < k) let m, be an integer lying in the interval
—a+g,—1)g/G < m, < —a+tg,q/G,

where 0 < & < q. Then the number of sets of such integers m,,..., my for

which tke values of &, (h = 1,..., k) lie in
given intervals of 1
exceeding q-1, is < (4.":G)1’°(" 13 o lonatis

If  is any number such that l#! < ¢, the above lemma gives
!(:c—ml),..{x—mk)—(xAn,)...(a:wnk)i < i |oy— oy )|z k-4
& A=1
<1+ 3 i

= q,k-l{l +i (25];1 _2":} (2kq)k—l
since k 3> 2. If ny,..., n, satisfy the same conditions as #ly,..., My, then
Jm—n, | Zq/Gforv=1,2,.. k-1. Hence, putting z = =, ,
- (q/@y- 1fmk_"k| X (Zhg)t-t,
ie, |mmp—mg| < (20G)%-1,
th':‘;:;; tl;;r;u::,:e:xzi'e r:iumbers m,, satisfying the requirements of the

(2141 < (dkGye.
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Next, for & giver value of m,, the numbers m,,..., m,_, satisfy similar
conditions with £—1 instead of %, and hence the number of values of
my,_y is at most {4(k—1)G}*-* < (4kG)*-2. Proceeding in this way, we
find that the total number of sets does not exceed

(4R G)*-DHE-D+ — (4EG)HE-1,

6.4. Lemma 6.4, Under the same conditions as in Lemma 6.3, the
number of sets of integers m,,..., my, for which the numbers s, (h = 1,..., k)
lie in given intervals of lengths not exceeding cq®-1%, where ¢ > 1, does

nat exieed (20)H (45 Q) Hitk-2gha-1,
We divide the Ath interval into
.Y

parts, and apply Lemma 6.3. Since
&
TT (2eq'-H¥) = (2c)kght-D
Am1

wo have at most (2c)eqt®*—D gets of anb-intervals, each satisfying the
oonditions of Lemma 6.3, For each set there are at most (4kG)it-1
sclutions, so that the result follows.

6.5. LeMMA 8.5. Let k <!, let f(n) be as in §6.1, and let

1 1
1= [ [ 1By o B 2 Sg9) 300 e ... oy,
[

where 2 = g2miftn)
{or—L)2"™g<n<m2 ™y

and the g, satisfy {(6.3.1) with 1 < G =2 < q. Then
T < 20hHm DRk -1 -mk(]__ pyefdrte-Dgdh—3  (g1-1k, | L),

We have 11
I= ¥ \F(Nl,_",N;)J J‘e!ﬂi(Nmt+...+Nm;)J SlgA-ve) 22 o .. do,
N 0 [

Nyeoy Ny
1 1
1-1ky | 2¢-R)
gNEN:F(M,...,Nk)! nf | S(qt-1%) -8 g, ., dog,

where ¥(N],..., &) is the number of solutions of the equations
myt i —nd =N, (h=1..,k)

for m, and g, in the interval (g, — 1) 2-™¢ < x < g,2-™g. Moreover LA
runs over those integers for which one can solve

'k
Ny =nd . —mb— —mik,,
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where m and r, lie in an interval @,a+g-V*] As in §6.1 we
can shift each range through —a, j.e. replace by 0. Then N, ranges
over at most 2(I - k)g™!- 12 yalues. Hence by Lemma 6.4, for given

values of ..., n,,, the number of sets of (my,..., m,) does not exceed
{40— k)}k(zmwkﬁh(k—nqm-n_

Also (n,,..., n,) takes not more than (1 +2-mg)k < (21-mg)* values,

Hence

NIEN"F(M,.,., N} < {A(— Rkt Doms Dbk 1) - i s 2 g~

and the resuit follows,

6.6, LEMMA 6.6. The result of Lemma 6.5 holds whether the g's satisfy,
(6.3.1) or not, if m has the value

!
M- [%fg%]. {6.6.1)
[Z319,] < 2-Mg 41 < 210y,
12349, - Barg,i? < (21-Pgy2i,
it is sufficient to prove that

(21-Mgyek zﬂkw'—("ﬂ-ﬂ)ik(k—l)—}wk(lm k)kk-}k(k—qu%k—-}'
or that il 2(M+=)%k(k-1)+mk;—m_u’

orthat  (Jk+-$)logg < (k- 1) M log 2+ ik — Llog 4k,

Since

or that logg < k¥ log2 —|-]-‘(£——l) log 4k.
, k41
Since logg
M > klog2 L
this is true i klog2  ¥E=D)
og 2 < PTT log 4k,

or log2 < -’tllog 4k,

S E1 ’

which is true for & > 2,

6.7. LEMMA 6.7, The set of integers (g,,..., ¢,), where k < 1, and each g,
ranges over (1, G, is spid to be well-spaced if there are af least & of them,
BY Gyreees Py S0bitfying

G, > 1 (v=2,.,k.
The number of sets which are not well-spaced is at mogt [} 3k,
Let g3,..., g; denote ¢,,..., #; arranged In increasing order, and let

f,=¢,—¢,_,. If the set is not well-spaced, there are at most &£ —2 of
the numbers £, for which f, > 1. :
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Consider those sets in which exactly & (0 < & <{ £—2) of the numbers
[, are greater than 1. The number of ways in which these & f,’s can be

—;Ll). Also each of the  f,’s can take at

most @ values, and each of the rest at most 2 values, Since g) takes
at most G values, the total number of sets of ¢, arising in this way is

at most 11
( W )gn+1g¢-h-1_

chosen from the total I—1 ia (l

The total number of not well-spaced sets ¢, is therefore

S h+1pi-h-L k-1 N -t % -1
gZ(k)G'm <@ Z(h)2
b=t k=0
< Gk‘l(l-l»2)"l < FGk-1,
Since the number of sets g, corresponding to each set g, is at most {!, the
result follows.

6.8. Lemma 6.8, Ifl 2 H2+5k and M is defined by (6.6.1), then
J{g, 1) << max(1, M)48H{EkE IRk -Vg2-kik + 3k} F g1k ||,

Buppose first that M is not less than 2, i.e. that ¢ 2> 2% Let u be
a positive integer not greater than M —1. Then

< logg 1, e el glik,

B Floge ™
Let 8 $ 2mifin) _ & z
- i) — ,
¢ @ ﬂzl w—naﬂ'qzqanue agl pa
say. Then Sy =% le ZMU

where each g, runs from 1 to 2, and the sum contains 247 terms,
We denote those products Z,,, ... Z,, with well-spaced g’s by Z
The number of these, M, say, does not exceed 2#. In the remaining
terms we divide each factor into two parts, so that we obtain products
of the type Z, .y, ... Z,,14, each g lying in (1,2¢+1). The number of
such terms, M,,, say, does nobt exceed I!32e0-D2! — 71 gigak-D by
Lemma 6.7. The terms of this type with well-spaced g's we denote by
Z, .1, and the rest we subdivide again. We proceed in this way until
finally Z), denotes all the products of order M, whether containing

well-spaced ¢’s or not. We then have
Y4
S =3 ¥ 2,
M e a
IS < M 3 132, <M 3 M, 3| Znl (8.8.1)
m=pu m=p
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where M, is the number of terms in the sum 3 Z;. By Lemma 8.7,
A, < 13201l — I oDk D gy~ )
Consider, for example, 3 [Z,[®. The general Z,, can be written
Zl‘-ﬂ‘l - ZF»@I ZFJH-I " ZI‘-M'
where g,,..., g, satisfy (6.3.1) with @ —= 2«. Now, since the gecmetric
mean does not exceed the arithmetic mean,

1 <
Ziess e Zal® < g;] [ Zy g 65,
Wo divide these Z, g, into parts of length g1-1%_) (or less), The number
of such parts dees not exceed
2

2-rg 2-1q
[+ < P R A T

since g1-Yk > gk > 9M > 4 Bach part is of the form §(g'-¥%), or with
¢*~V* replaced by a smaller numper, Henece by Hélder’s inequality
| ZIM,’M—J:) & (2-Hglkyi-lo-1 z | S(ql-lfk”ﬁ(l—k)‘

—H
175;‘:_’_ 27,(1—1qlfk < 21-—p.q11k'

Hence
. (21-pglfy2d-—R)-1 1
PRYALES %*)L z (Zygy e Fyg it gﬂz | S(gt-tiky |2t
or »=

Hence by Lemma 6.5, and the non-decreasing property of J(g,1} as &
function of g,

1 1
5[ 5]' ZNZ,1" doy ... day < (21 -4qUkyt-R- b, o1
X 23&—+{u+2)§—k(k—1)—pk(l_ ]‘;Jkk%k(k-l)qik—%,f(ql‘l’k, I—k)
— ng’-ﬁ-’ikvl’){mﬁ.k’.‘.kﬂ[p (I— k)kk%k(k-l)qﬁ(l—k)lk%k—g- J gk 1 k),
A gimilar argument applies to 2, with g replaced by m. Hence
T < M 3 omiwedemyy

Also X QR k(] k)kk%k(k—l)g!(l-k)/k{.}k—é S (gt-tk, 1 k).

M
A,
Af
S AP HE-d S gm0y agagum- 101
m=utl
o
= 2N L (N2 § omcbe i fk--me-D
m=g+1
K 262 < 21269,

1 Here S(g'~'*} denotes any sum of the form S(p) with p « ¢'—1%
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since we can start with an integer p such that 2*' < I1. (Indeed we may
take g = 1.) Hence
Jg. D < Mozl +k* +k+](“)2624[kk§k(k— llqzcl—k)/kh)k—i(](ql —]/k’ 1~k

. -
and since 2B Rkt 162 < 96lghl _ 482

the result follows.
If M < 2, ie. g < 2%, divide 8(g) into four parts, each of the form

8(q'), where ¢’ < }q < g2V, By Halder’s inequality
]S(q”'y g 4A-1 z |S(q’)\‘” g 42!4?2}:(1-1{1:) Z |S(q')|w-m'
Integrating over the unit hypercube,
J(q,l) o At-1gk-n z Jig' I~k)
g 4ﬂq2k(1—l,‘k)J(q1-1"k, l__,{-)!

and the result again follows.

6.9. Lemma 6.9.  If ris any non-negative integer, and [ 2 1k% + 3k +kr,
then Jig, 1) < Krlogrg q¥- P,
where 8, = ék(k—H)(l _i) K = a8¥{)eiien-,

This is obvious if # = 0, since then §, = (k1) an(.1 Jig, D) < g8
Assuming then that it is true up to r—1, Lemma 6.8 (in which M < logq)
gives

J(g,D) < Klogq.g™-Hik-t, Krtlogr (g %)
X q(bllk}(ﬂ#—kl‘%k{kﬂ)iﬁ,-1)’

and the index of ¢ reduces to 21— 3k(k+1)+38,.
6,10, Limma 6,10, If == [k log(k®+k) + I2-Lk]+1, k= 17,

J(g 1) < IR ogPq, gt-IAE1HE,

1 r
We have 5, < 4 if k(k+l)(l-—i) <

k
e if log{k(k+1)} < rlog =i
This is true if loglk(k+1)} < #/k,
or if r = [klog(k*+-k)]+1.
Since r << klogdk+1 < 4klogk, 1< i3,
and

log K < 2llog 48-1 2llogi+klogl4-3k(k—Dlogk
< bllogl4-llogk < 16llogk,
the result follows.

6.11 VINOGRADOV'S METHOD 12%
6.11. Lavwa 6.11. Let M and N be integers, N > 1, and let $(n) be
a real function of n, defined for M < n < M4 N—1, such that
S lntl)—dtn) <cb (M <n < M4 N—9),
where 8 > 0, ¢ 32 1, ¢b < 4. Let W>0. Let & denote the difference

between = and the nearest integer. Then the number of values of n for
which $(n) < W3 is less than

(NeB+1)}2W +-1).
Let o be a given real number, and let & be the number of values of n
for which ath < ) < athis
for some integer k. To each % corresponds at most one =, so that
G = hy—~hy 1, where k, and k, are the least and greatest values of A.
But clearly
B <oty tB,  athy < HM+N—1),
whence hg—hy—8 < HM-FN—1)— (M) < (FN—1)c5,
and G (N—1)eb+5+1 < NeS -1,
The result of the lemma now follows from the fact that an interval of

length 2W§ may be divided into [2W+1] intervals of length less than
(< B

6.12, LEMMA 6.12. Letk and Qbeintegers, k 27, Q@ > 2, and let f(x)
be real and have comtinuous derivatives up io the (k-+1)th order in
[P+1L, P+QLlet 0 <l <1and

el P SR
SR T (Prl<z < P+Q) (6.12.1)
or the same for —fo+V(z), and et
Mg <A (6.12.2)
F+Q
Then I 3 etritn] < AgsklekQiplog @, {6.12.3)
n=F+1
where p = (2¢k2logh)- 1,
Let g=[iMh+D] 4,
30 that 2 < g QU4 < g,
R PiQ
and write J= 3 gtriftm,
n=F+1

Tin) = ’élemm»ﬁn}-ﬂml (P+1<n < PHQ—gq)



128 VINOGRADOV'S METHOD Clap. VI

S “I p2mifin
ql ‘ m=1n % +1
PiQ-

\{ 2 e%ﬂ'i}(n)l_*_ i q

m=1n=Ft1+m
P+O

Then

e‘hn](m +n)

+q¢*

'mul 'nB

ezﬂif(m+ﬂ)

+4¢*

LI P+l m=1

Pi
T 2
gﬂzﬁ-}'ll (n”+q
<@l S T ™ g (6.12.4)

by Holder’s inequality, where I is any positive integer.
We now write A = A (n) = [ (n)/r! for 1 <r<k, and define the
k-dimensional region (1, by the inequalities
le,—Al<4g" (r=1...,k). 6.12.5)

If we set
8{m) = f(m+n)—f{m) —(eym* + ... +a,m),

then, by partial summation, we will have
q

T(n) = S(ghetniscw) - 2 j S8 plerkrdp.

0
However, by Taylor’s theorem together with the bound (6.12.1) we obtain

R
@) =f@+n) -3 rap-?
1

=Finy+pf'(n)+... + fk(n)+ f"““(n+9.0) Zm bt

(k 1)r
- f HA, — o)1+ 20k + 1)AY b,
where 0 <3, ¥ < 1. If (6.12.5) holds it follows that
18() < ir -rgr-1+3kigh < phiq-1+ 3kigk < 25+9kg-1,
1

by our choice of ¢. We therefore have

1Tm)| < 2%+ kn(}S(g)| +$ I |S(p)|dp) = 2%+ *k=S,(q),

6.12 VINOGRADOV'S METHOD 129

say. Integrating over the region Q,, and dividing by its volume, we
obtain

| T |2t 5 (2% +km)Righhn+ D J flsﬂ(qnﬂdal...da,,. (6.12.6)

The integral of | S,(g)|? over £, is equal to its integral taken over the
region obtained by subtracting any integer from each coordinate. We
say that such g region is congruent (mod 1) to Q,,. Now let », »’ be two
integers in the interval [P +1, P+ @ —¢], and let Q_, Q) be the corre-
sponding regions defined by (6.12.5). A necessary condition that Q,
should intersect with any region congruent (mod 1) o ), is that

Afm)— A, @) < g% < Mg, (6.12.7)
Let ¢(n) = A (n)—A(n'). Then

lut1)— ¢(ﬂ)~—{f‘*’(n+1)—ﬁnn)} %,

where n <C £ <X n+1. The conditions of Lemma 6.11 are therefore
satisfied, with ¢ = 2 and § = A(k+1). Taking W = ¢/{(k-1), we see
that the number of numbers n in [P+1, P+ @~ ¢] for which (6.12.7) is
possible, does not exceed

2q 2q
2, 3 1Y4_“4. e 3
{2QMk+ 1)+ }(k l+1) = (2k+3)( l+1) < kg
Since this is independent of ', it follows that

P
J flsf,(q)lﬂdm1 cda, < 3qu IS(G)I2‘da| .da,
n~P+1
.13
cince 3kq2 Jig, D), (6.12.8)

Sylqy < 22~ 1(IS(q)I“+ fFS(p)Iz‘dp)
0

Defining ! as in Lemima 6.10, we obtain from (6.12.4), (6.12.6), {6.12.8)and
Lemma 10

18] 28+ 8kn@Qt-3ig- {gi%* + D3kg (g, 1}}3 + ¢
< 2k+5k.,tQ1-i{gkeeuklog*kq%}%}ogq +q.
Now g < 21- 4%+ D £ 2Q4/k+ 1, Hence

18] < Ap¥klortk g1 —dr + 31k + D} o0 @ | 9Kk 1
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and the result follows, since 4~ —3/{{k + 1){} = 4r and } < 3&2logh.

6.13. Lzvma 6.13. If f(=) satigfies the conditions of Lemma 6.12 in on
interval [P+1, P+ N}, where N< @, and
Q<A (6.13.1)

e \ pgw - 33k logQt-plog Q. (6.13.2)
+1

If X% < N, the conditions of the previous theorem are sabisfied
when @ is replaced by N, snd (6.13.2) follows at once from (6.12.3).
On the other hand, if X1 >> N, then

[ Pf o] < N < A < QF < Qrov,
R=F+1

and (6.13.1) again follows.

6.14. THEOREM 6.14.
Z(1+it) = Of(logtloglog )i},
_tlogz {— 1)t
Lot fl) = -GBS [RE) =
Let a <z < b < 2a. Since (— 1)*+f®+(z) is steadily decreasing, we
can divide the interval [, b]into not more than &+ 1 intervals, in each
of which inequalities of the form (6.12.1) hold, where A depends on the
particular interval, and satisfies
1 b4
LA 1 e 6.14.1
2rr{k 4 1){2a)*+! dm(k+ Latt { )
Let@Q=a<t, 10gu>2logﬂ and
logt
= loga] 1
Then Q < ak+y-1 ‘<- QS.
Clearly A < @, while A = §-% if Q@ 2> 2¥+*a(k+1), or if
logt logt 2
loga = (@ + 3)10g 2+log(l—0ga +2)+logw,
and this is true if £ is large enough. It follows from Lemma 6.13 that
e—t‘flnan = O(ke""""lc'g""a‘"loga),
adwsh
where p is defined as in § 6.12. Hence
Z L O(ke33klon*hg—¢log a)
nl+¥
a<agb

loga
- 2)
= O{logtexp(33klug k T )}
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Suppose that klogk < Alogla,
with a sufficiently small A4, or
loga > A{logtloglogt}i
with a suﬂiciently large A, Then

—Alogha
Z ;IT'“ = O{IOg.C exp(log't leglog t)]

sanse = Ologtexp{— A4 logti(loglog £)%}],
and the sum of O{logt) such terms is bounded.

Since k 3> 7, we also require that @ < t*. Using (5.16.1) with r = 8,
and writing 8 = {127 x12841) wg obtain

ity = Z M+0(1) = Oflog o)+ 2 1T“.|_0(1)
3 u<nsﬂ
The last sum is bounded if
loga = A{logiloglogt)}
with a snitable 4, and the theorem follows.

6.15. If 0 < ¢ <C 1, we obtain similarly
Z n—um = O« exp{— 4 logti(loglog t)i}log ],
a<ngp
and this is bounded if

1o A(leglogt)?

logt
with a sufficiently small A. Hencs in this region

i) = 0(2%)4—0(1)

= 1—agy,

nEx
- o( "‘”")Jrou)
1—a,,
logit
_ 1 i3 g2
O[exp{A logtt(loglogt)a},—S5—— floglog 4t
We can now apply Theorem 3.10, with
A(loglog ¥
8it) = (‘?fg%;g—) $(t) — A logli(loglog 1),

Hence there is a region
A
1—- .15,
.2 logit(loglog )} (6.15.1)
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which is free from zeros of {(s); and by Theorem 3.11 we have also
| 2 Lty 2 3

i = Oflogii(loglog )3}, e = O{logit(loglog t)i}.
(6.15.2), (6.15.3)

NOTES FOR (zHAPTER 6

6.16. Further improvements have been made in the estimation of
J{g, 1. The most important of these is due to Karatsuba [2] who used a
p-adic analogue of the argument given here, thereby producing a
considerable simplication of the proof. Moreover, as was shown by
Steckin [1), one is then able to sharpen Lemma 6.9 to yield the bound

J(q, l) < Ckaloghqzl—}k(h-bl)-!-é,’

for I » kr, where k > 2, ris a positive integer, C is an absolute congtant,
and §, = 342(1 — 1/kY. Here one has a smaller value for 4, than formerly,
but more significantly, the condition [ > 1k2 + 1k + kr has been relaxed.

§.17. One can use Lemma 6.13 to obtain exponent pairs, To avoid
confusion of notation, we take fto be defined on (@, &], withe < b < 2a
and A< e < A-1. Then

Z e2vlf(")
a<nEd
Now suppose that (N, I, f, ) is in the set # (s, }) of §5.20, whence

ek < AV
dnam S T

< AeBPEg1 -2 og g,

< et

with
_ s(s+1)..(s+k-1)
%= k+1)!

We may therefore break up I into O(s+ %) subintervals (g, b] with
b < (§}4=+M g, on each of which one has

1)
1< | f%+ 0 (@)
(kR +1)
with 1 =ga,a-5-*, We now choose ksothat 1 -4 < N < 2N < i-1forall
a in the range N € ¢ € 2N. To do this we take k 3= 7 such that

Nk-1 N*

<§N1-eg (6.17.1)
o1 %

< 24,
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Note that N*/a, tends to infinity with &, if N > 2, so this is always
possible, providing that ’
N6
- <GNi-s (6.17.2)
6
The estimate (6.17.1) ensures that 2N < 1-1, and hence, incidentally,
that 1 < 1. Moreover we alsc have

N® < %ah—lNz_’ < fo,2-7-kNB-s
if N>2+%+2 and so 4~} < N. It follows that
T 2 g ke REN p1o0 N (6.17.3)

nef

for N 2 25+%+2 gubject to (6,17.2).
We shall now show that

. q)= ! 1- !
' 26(m —2)m2 log m’ 25mzZlog m ®.17.9

is an exponent pair whenever mn = 3. If yN2-+-m 3 | then (yN-=pNe
2 N, and the required bound (5.20.2) is trivial. If (6.17.2) fails, then
yN-¢<_ N?® and, using the exponent pair (s BY) = ASB(0, 1) (in the
notation of §5.20) we have

Y E W g (yN-grk Nt ¢ NI ¢ Na < (yN-swNe
nred

as required. We may therefore assume that yN2-s-m < 1, and that
(6.17.2) holds. Let us suppose that N > max (28+m+2, 2(}s+ 1)™). Then
(6.17.1) yields

58 s5+1 s+2 s+k-2
No-1 2 2,20 2728 ZTh78 Ai_s
1273 1 N

k—1
< g(max (% 1)) yNL=2 < 2(}s + 1)1 Nm-1,

whence

N k-m
(ﬁ) < 2(#8 +1)7-1,

Since N > 2(}3 + 1) we deduce that & < m. Moreover we then have
Nz 20+m+2 284542 go that (6.17.3) applies. Since & is bounded in
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terms of p, g and &, it foliows that
zlehfﬂ") €N Plog N NT
ne

END, .. L and the required estimate (5.20.2) follows.

§.18. We now show that the exponent pair (8.17.4) is better than any
pair {2, f) obtainable by the A and B processes from (0, 1), if m > 106. By
this we mean that there is no pair (a, fywith bothp > candgq > B.Todo
this we shall show that

f+bat =L, 6.18.1)

Then, since 5¢25m? log m < (m—2)° for m > 105, we have g +5pt <1,
and the result will follow. Certainly (6.18.1) holds for (0, 1). Thus it
suffices to prove (618.1) by induction on the number of A and B
procesges needed to obtain (x, ). Since B2(a, f) = (x, £) and A0, 1)
= (0, 1), we may suppose that either (a, iy = A{y, 8y or (a, f} = BA (y, 6),
where (7, 0) satisfies (6.18.1). In the former case we have

1 9 _ gyl H
PP Rt oY (N AN RPN e luidr NPT N iy RS
proal="0r o +igre) T ez \mez)”

for 0 < y < §,and in the latter case

Zy+1 FER I | 3 N
Browt=g 9 +5(2y+2) iz +5(2y+2) =1
for 0 < y < §. This completes the proof of our assertion.

The exponent pairs (6.17.4) are not likely to be useful in practice. The
purpose of the above analysis is to show that Lemma 6.13 is sufficiently
general to apply to any function for which the exponent pairs method
can be used, and that there do exist exponent pairs not obtainable by the
A and B pracesses.

6.19. Diiferent ways of using J(g, }} to estimate exponential sums
have been given by Korobov [1] and Vinogradov [1] (see Walfisz [1;
Chapter 2] for an alternative exposition). These methods require more
information about f than a bound (6.12.1) for a single derivative, and s0
we shall give the result for partial sums of the zeta-function only. The
two methods give qualitatively similar estimates, but Vinogradov's is
slightly simpler, and is quantitatively better. Vinogradov's result, as
given by Walfisz [1), is

n-tt gal-? (6.19.1)

a<nsh
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fora<b<2et=1, wht-are
1k g g g U=,
k =19, and
-1
60000%2
The imphied constant is absolute. Richert [3] has used this to show that

p

Lo +if) € (1+11900-9% n50 T (6.19.9
uniformly for 0 € ¢ < 2, ¢ > 2. The choices
o(t) = loglog ¢}, ¢(t) = loglog ¢
100 log ¢

in Theorems 3.10 and 3.11 therefore give a region

o 21— A(log ) ¥(loglog
free of zeros, and in which
{"(s}

o < (log &) (loglog B,

1
—— <€ (log Hi (L 5
6 (log £ (loglog
The superiority of (6.19.1) over Lemma 6.13 lies mainly in the elimi-

nation of the term exp{33k? log k), rather than in the improvement in
the exponent p.

Various authors have reduced the constant 100in (6.19.2), and the best

result to date appears te be one in which 100 is replaced by 18.8 (Heath-
Browm, unpublished).

620 We shall sketch the proof of Vinogradov’s bound. The starting
point is an estimate of the form (6.12.4), but with

q N
Z 1 eﬁnl{f(uwrn)—f(n)} (6.20.1)
uru=

in place of T'(n). One replaces f(uv+ n)—f(n) by a polynomial
F(uvy= Ajuv+ ...+ A utvr
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as in §6.12, and then uses Hélder's inequality to obtain

t ¢
s¢-ly

v

=g'-! Z n(w) (Z eZsziF(uu))’

¥ ePrift) ¥ o)

u

=gi-1 Z n(O’l,...,O'h)E)}(U)Ehm("“"""*;"),

LA v

where |7(v)| = 1, n{g,,..., 6,) denctes the number of solutions of
wh+ . +ut =0, (L<h<Rk),

and
Glo,en,0,50) = Ao v+ ..+ A, o, 0,

Now, by Hélder's inequality again, one has

lz eriF(uu)

202 2.2
s_q“'*"(zn(f’p-w"k)) x(zn(al,...,ak)z)

(2, ")

Z n(u)ezﬁG(ul,,...a, 1)

v

Here
Y nlo,...,6,)=¢,
Cpreens Gy
and
Y nly,...,0,02=d{g D
L N
Moreover

2t

z

LN

Z rp(u}ez'"ﬂ

"LE

n*(t,,...,t,‘) z P PR LR r,‘),
T 4

1 [N

where
H(gy,o 03T ) = Aoyt + .+ Ao, 1,

and n*(r,,...,7,) is the sum of n(v,)...n{v,,) subject to

vk Lot h— o= (LSRSR)
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Since [n*(zy,..., 1, )| < J(g, I), it follows that

; 2% [
ZeEMF(w) < qazxqu(q, 1)2 I‘[ (Z Z exp (ZﬂfiAh ahth) )
h=1 X1l o,
3
< @i -4dg, D2 [] (Z min {Ig", | csc zAhrnl)).
A=1\71,

At this point one estimates the sum over 7,,, getting a non-trivial bound
whenever ¢-22 < |4, | € 1. This leads to an appropriate result for the
original sum (6.20.1), on taking ! = [ck2?] with a suitable constant ¢. If we
use Lemma 6.9, for example, to estimate (g, 1), then

(KZr)(ﬂ‘)*i <1,

One therefore sees that the implied constant in (6.19.1) is indeed
independent of k.



VII
MEAN-VALUE THEOREMS

7.1. The problem of the order of {(s) in the critieal strip is, as we have
seen, unsolved. The problem of the average order, or mean-value, is
much easier, and, in its simplest form, has been solved completely. The
form which it takes is that of determining the behaviour of

T
7 [ i
1

as T’ — oo, for any given value of 0. We also consider mean values of
other powers of [(s).

Results of this kind have applications in the problem of the zeros, and
also in problems in the theory of numbers. They could also be used to
prove O-results if we could push them far enough; and they are closely
connected with the Q-results which are the snbject of the next chapter.

We begin by recalling a general mean-value theorem for Dirichlet
3eries,

TagoreM 7.1, Let
© 4 =
ra=3m =3t
n=1 n=1
be absolutely convergent for @ > oy, 0 > o, respectively. Then for a > ay,
B> ay,

hm — ff ax-Hit)g{B—if) dt = Z’;fg (7.1.1)
=l
For
. R 2, =
Fflotitlg(B—it) — jﬁmﬁ: -2 ,;+Z$Zmunﬁ( )

the series being absolutely convergent, and uniformly convergent in any
finite t~ra.nge Hence we may integrate term-by-term, and cbtain

_ ”’ a,, b, 2sin{T logn/m)
57 f forigE—itd = ), ,,,mZZm menf 9T lognjm

The factor involving 7' is bounded for all T, m, and , so that the double
series converges uniformly with respect to 7; and each term tends to
zero as I' —» oo, Hence the sum also tends to zero, and the result follows.
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In particular, taking b, = &, and « = 8 = o, we obfain

T
1 . < i
im o flf(u+u)|2dl, = El‘;% (¢ > ay). (1.1.2)
“r =

These theorems have immediate applications to {(s) in the half-plane
o > 1. We deduce at once

lim = f[€{0+l£)]’ dt = l(20) (o> 1), {1.1.3)

and generaily
>

lim oo f [t it)B—it) dt = (et B) (x> 1,8 1), (1.1.4)
-T

Taking a, = d,(n), we obtain

Jim oo f|§(d+l£)|”‘ dt = i LN {7.1.5)

By (1.2.10), the case k = 2 is

T
. {4(20)
= 1 — !
o7 f[{(cr+1t)f @~ 08 (o). (1.1.6)
—_r

The following sections are mainly concerned with the attempt to
extend these formulae to values of o less than or equal to 1. The
attempt is successful for k < 2, only partially successful for k > 2.

7.2, We require the following lemamas.
Lrypa. We have
= O{T*%log T 7.2.1
[.;,,;q.z: Tm“n“ 1og nim { ) { )
Jor } < o << 1, and uniformly for } < 0 < 6y < 1.
Let %, denote the sum of the terms for which m < §n, 2, the remain-
der. In X, logn/m > 4, so thas

Li<4 33 mome < A( 3w VP < Afe-a,

In 5, we write m = n—r, where 1 < 7 < In, and then

logn/m = —log(l—rin} > rfn.
Hence
<4 Z Z (n—r)=%n—" <A Z nl-2 Z %< ATe-rlog T.

rin
BT rdn / A<y e ki
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~{mn)
LEMa. I ofseeriogl). (1.2.2)
m*n?logn/m 3
Pm<n<a

Dividing up as before, we obtain
5 =0 < _q_8n2:032u_a,
s = Of( Snee)] = 0oy

el n
and Ty = O( Z nl-20g-5n z ;) = O(B*"‘Hog %)

R=1 =1
TueorEM 7.2. P

lim - f [L{oti)? dt = {(20) (o > }).

1
We have already accounted for the case o >> 1, so that we now sup-
pose that 3 < o < 1. Since + > 1, Theorem 4.11, with = = ¢, gives
{s) = 3 n~4-0(t=%) = Z+0(~),
n<l

say. Now
f 125 dt = j [,E‘m_a_ugtﬂku] dt

- Z Z m*'-'n*"f(;%)u dt (T, = max{m,n))
T

ML W<l
a (nfm) T —(n/m)iT
—_ — a _ - el
o ng " -+ Z#TZ men [ log n/m
1
=T —20__ 120 ¢)
ug!'n ngrn - (0;-(;1" mone log n/m)

= T{{(20)+ O(Tr -2 + O(T2-20) + O({ T2 log T),

provided that o < 1. If o = 1, we can replace the ¢ of the last two terms

by %, say. Ineithercase
| 1Z]2de~ TL(20).
i

Hence

T 7 r r
[itepa = [ 1zpaof [ 12w a+of f e a)
i i 1 {

T T T 4
= [z cEH-O( j |z de | z—=vat¢) +0(log T)
i 1 i

a

= 1212 d14- O[T 1og T)3} -+ Olog 1),

1
and the result follows.
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It will be useful later to have a result of this type which holds
uniformly in the strip. It is}

THEOREM 7.2 (A).
T
1[ [Go+inp dt < ATm'm(log T, z,i*%)

uniformly for 3 < o < 2.
Suppose first that } < ¢ < §. Then we have, as before,

T
[1zpa<T 3 0T ¥ log T)
1 "<

uniformly in o. Now
St Yol AlogT
T

T
£ A
and also < I+ f w2 du < 'y
Similarly i log T TlogT,

and also, putting # = (26— 1)log T',
T1-2log T = 1Twe*/(s—}) < }Tj(o—}).
This gives the result for ¢ < §, the term O(-*) being dealt with as
before.
If } < o < 2, we obtain

flzlw < T3 03+ 0(THog T),
i n<T

and the result follows at once.

7.3. The particular case o = } of the above theorem is
e

[ 14+inpe de = o(Tlog 7).
1
We can improve this O-result to an asymptotic equality.} But Theorem

4.11 is not sufficient for this purpose, and we have to use the approxi-
mate functional equation.

TrEOREM 7.3. As T >
r
s+ dt ~ Tlog 7'
o

 Littlowood (4). t Hardy and Littlowood (2), (4).
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In the approximate functional equation (4.12.4), take o = 4, £ > 2,
and = = ¢/{2avlogt), y = logt. Then, since y(}-+it) = O{1),

{a+in = 3w ro( 3 act)Otlogh)+ Oflog k)
= ngz r—d-UL Oflogit)
— Z+ O(loglt),
say. Since J?(logh)z dt = O(TlogsT) = o(T'log T),
)
it is, as in the proof of Theorem 7.2, sufficient to prove that

T
I[Z\zdt~TlogT.
o

T Fa
Now |' |zt dt = J‘ z m:g—uz n-h g,

Tn inverting the order of integration and summation, it must be
remembered that x is a function of &. The term in (m, ») occurs if
% > max(m,n) = T,/(2rvlogT})
say, where T, = T)(m,n), Hence, writing X = Tj(2nvlog T),

x T
..[ |Z|2dt = mzngt 1-.[ m—i—tg -t gt

Sy ks e

.:ie__.__!

X m#En
1 Ty(n, n) ( )
=TS 2 0 Lin,m)
Zavl 2 S

The first term is
Tlog X+ O(T) = Tlog T-+o (Tlog 7).
The second term is
O(nng'logn) = O(Xlog X) = O(T),
and, by the first lemma of § 7.2, the last term is
O(X log X) = O(Tlog T).

This proves the theorem.
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7.4. We shall next obtain a more precise form of the above mean-
value formula.t

THEOREM 7.4,
T
J‘ L3+ 2 dt = Tlog T'+-(2y—1—log 2m)T+O(Ti+e). (7.4.1)
[}

We first prove the following lemma.

Lemma.  If n < Tf2m,

FHiT
ﬁiL w(l—s)n-s ds — 2+o(m)+o(%. (7.4.2)
Ifa>T2rc>},
LS ¥ L .
ﬁﬂ_fﬂ x(1—8)n— ds = o(m%m)-)-o(fg). (7.4.3}
‘We have

21-871-3

X1 = 2tmteonborT) = g LT

This has poles at s = —2p (v == 0, 1,...) with residues

(_ 1 )v2|+2vﬂ2u
(2v)!

Also, by Stirling’s formula, for —v4-3 < arg(—s} <X »—38

Y e e R

The calculus of residues therefore gives

=Ty PR —o4iTy
( j + f | )x(l—s)ﬂ*ds
—a-iT, —iT, 3+
=, [—1)v21+2egry2r
ot 2t
= 2¢082mh = 2.
Also, since ela 8rBl—3) — (j(ednt),

+ Ingham (1) obtained the error term O(T!log T'); the method given hers is due to
Atkinson (1),
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—w+iTy ] 9 i e
1—sin-rds = O J- (~L)2 e—n7 do
A x [ o4y
Ty —w

i
— - T, Gt . 4__1_____)
- O[n ' J- (2"’8") da} a O(ﬂ’ﬂog(.’l"l/?nen) ’

and similarly for the integral over (—oo—iTy, 3 —iT)).
Again, for a fixed o,

e 8 e w2

Hence
T T
I y(1—sn=* ds = n-detim J. &% di+ O(n-tlog T7),
3+iT T
where Ft) = Llogi—t(log 2w4-1+logm),

F'(t) = logt—log 2mn.
Hence by Lemma 4.2, the last integral is of the form

1
O(log(T/21rn))
uniformly with respect to T;. Taking, for example, 7} = 2¢T > dnen,
we obtain (7.4.2). Again

edi T c—} T
f w{l—syn- ds = n—ce-i¥" f (é%) etF 0 dH—O(n-c J' 3 cis),
e+t 1 1

and (7.4.3) follows from Lemma 4.3.

In proving (7.4.1) we may suppose that 7/2x is half an odd integer; -

for a change of O{1) in T alters the left-hand side by O(T%), sinee
L{3+it) = O(¢), and the leading terms on the right-hand side by
O(log T). Now the left-hand side is

T T
§flaarined = ¢ [ l+intg—ide
- -T

; 4T 1 +ir
= f L= ds = 5. [ xt1—e) do
yor = er
y H amy, 1 T d(n)
== x(1—8) —da - o x(1—8)| {*(s) — . —T)da
% 4:[1- ns;mr » % &:‘::,. ( nng!ar ®

= L+ L, say.
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By (7.4:2),
- d(n} @)
L=z 3 dm+ 0(“;% Hiog(T] 2Tm))+ O(log Tn;’:h et

The first term is}
Tr. T T 1
2w{ﬂlog§;+(2y—l)2—w+ O(Tz)}
=T log T4 (2y—1 —log 25) T+ G{TH.
Sincet d(n) = O(n¢}, the second term is

1 1
0( z ;{_—s)-"o{Tz €
nsTldm T <<ns T/2m
The last term is also clearly of this form. Hence

I, = Tlog T+(2y—1—log 2m) T+ O{T+s).

1

@ = 0T

Next, if ¢ > 1,
e-dT 44T,
1 din)
fa=2—i( [+ J.)x(lfﬂ(i’(s)— > ) a0y

1 efir nsTigm

i etil’
t3i 2 ) | xti—anrdod,

STt el

A being the residue of mx(1-—s){3(s) ab s = 1.
Since y{1—s) = Oft=-}), and {¥o+iT) and Y d{n)n* are both of
n&Titn

the form
o(To+) (oe<1), OT) (0>1),

the first term is O(Th+e) O(Te-te),
By (7.4.3), the second term is

ol 3, 4 e )

w1 log(2mn/T)
1 1
S, 3, sl 3,2
Tfang:sriw n—(T}2m) n>zrinnc <
= QT4+,

Since ¢ may be as near to 1 a8 we please, thig proves the theorem.

A more precise form of the above argument shows that the error-
term in {7.4.1) is O(Ttlog?T"}. But o more complicated argument,§
t See §12.1,or Hardy and Wright, An Introduction to the Theory of Numbers, Theorem 320.

} Ibid. Theorem 315.
§ Titchmarsh (1Z).
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depending on van der Corput’s method, shows that it is O(T5log?T);
and presumably further slight improvements could be made by the
methods of the later sections of Chapter V.

7.5. We now pass to the more difficult, but still manageable, case of
18(8)|t. We first provet

THEOREM 7.5.
Vi

lim f Lloig)s de =

T

{20)
{(4w)

(o> $).

Take x = y = J(¢/2r) and o >> } in the approximate functional equa-
tion. We obtain

U= > Six) S 0w = 2z roph,

ni—s
(i, V(L)
AL 2 ) Bl 2m) (7.5.1)

B Z 1 ar\i
T L (mugy (ﬁ) '

where each variable rung over {1, /(t/2s)). Hence

say. Now

T

! EALE . fzm (;g%)“dt
T .
= | )

W RN TR P
where T; = 27 max{m?, nt, u2,2)

i
ngpv (mn)2
The number of solutions of the equations mn = pv —  is {d(ryy® if
7 << J(T{2r), and in any case does not exceed {d(r)}®. Hence

72 T, 3 ol )

y2o
mr=pur <K Ti2m) HTitmi<r<Tidm

< {dirP 5 5420)
~T ZT” =7 . (1.6.2)

1 1
S, O o) -

e E oy

{(40)

1 Hardy and Littlewood (4).
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Next ’ Z (mf;l)ao< Z 217(m2+n3+}.,2+vz),

(mnpr)®

mu=py mR=py

and the right-hand side, by considerations of symmetry, is

m? m? d{mn) . 2y 20
1 2, G < 7 2. e = O I )
= O[T(TH-2{ Nog T} = O(Ti-+ )4 O(Te).

The remaining sum is

d{q)dir) _ € 1 — 220+ €
O(o<q<2<:rpzﬂ (‘IT)"-l‘i’E("/'Q)) - O(T Z (gr)?log ("/Q’)) = o,

by the lemma of § 7.2. Hence

T
14420)
Zdi~T .
lf EAL T 4

Now let ) = ﬂ ns—li‘ dr.
1

2
< f2m
The caleulations go as before, but with ¢ replaced by 1—a. The term
corresponding to {7.5.2) is

O(re) e
T z JCRCT R o[ty
T<AT

and the other two terms are O( T+ o+<) and O{T?+<) respectively. Hence
J(T) = O(T3+e),

and, since y(s} = O(t-7),

r T
f Zodt < A [y e
i i

T
= A[E-49()] T+ A(4a—2) f i) de

7
— O(T’*““)-l-O(J' 2o “dt) = O(Tz-2+e),
i

The theorem now follows &s in previous cases.

7.6. The problem of the mean value of [{(}+it)/* is a little more
difficuls. If we follow out the above argument, with ¢ = 4, as accurately
as possible, we obtain

7
[1@+itedt = O(T logtTy, (7.6.1)

1
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but fail to obtain an asymptotic equality. It was proved by Inghamt
by means of the functional equation for {{{s)}® that

T]ag T

J' [Qth it dt — - O(T log®T). (7.6.2)

Tlog‘.’!‘

The relation J.IC(H-M)I* dl ~ (7.6.3)

is a consequence of a result obtained later in this chapter (Theorem 7.16).

7.7. We now pass to still higher powers of {{s). In the general case
our knowledge is very incomplete, and we can state a mea,n-value
formula in a certain restricted range of values of o only.

TEREOREM 7.7. For every positive integer k > 2
T
i L e gy o R _I
lm Tf]:;(a+u)| dt_“ZlnT ox1-p). (1)
; =

This can be proved by a straightforward extension of the argument of
§ 7.5. Starting again from (7.5.1), we have

°
]Zlizk_z ! e nk) B
(my..my g} \mymy,

where each variable runs over {1, /{t/2m)}. The leading term goes in the
same way as before, d(r) being replaced by d{r). The main O-term is
of the form .

O(T€ z Z u('q,)—all(g;/—q) = Q(TM1-ai+e),

0<g<r<AD
The corresponding term in
T
i(T) = a1 (% gy
J( ) J- n<%’2n)ﬂ {
is O(Thﬂ—s),

and since [y|* = O(tk-2*°), wa obtain OT*1-%+¢) again, These terms
are o(T) if ¢ > 1—1/k, and the theorem follows as before.

7.8. It is convenient to introduce at this point the following notation.
For each positive integer # and each o, let p,{o) be the lower bound of
positive numbers ¢ such that

r

7 [ 1ty de = ogrey.
1

1 Ingham {1).
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Each pifo) has the same general properties as the function p(e)
defined in § 5.1. By (7.1.5), pi{o) = 0 for o > 1. Further, as a function
of o, julo) is continuous, non-inereasing, and econvex downwards. We
shall deduce this from a general theorem on mean-values of analytic
functions.t

Let f(3) be an analytic function of s, real for real s, regular for o 2 o
except possibly for a pole af ¢ = 8y, and Oe)as [] - oo for every positive €
and o 2 «. Let o << B, and suppose that for all T > 0

T
[ i de < C(Te4-1), (7.8.1)
lJT
j |f(B+it)|e de << C'(TP+1), (7.8.2)

where ¢ =0, b =0, and O, C depend on f(3). Then for a <o < B,
T>2 o
I o) |2 de < K(CTeyB-onBo( o Toylo—olfi—o), (7.8.3)

where K depcnda ona, b, o, B only, and is bounded if these are bounded.
We may suppose in the proof that « > 1, since otherwise we could

apply the argument to f(s+§—o). Suppose first that f(s) is regular for
¢ = x Let

atin
f T(s)f(s)ztds = ¢lz) (o = o, largz| < i)
o ~in
Putting z = ixe- (0 < 3 < }r), we find that
T{g-+it) flotitje-torikdm—d  d(jpe-i8)
are Mellin transforms. Let

2mi

= T |D{o+4it) flo-+it) | 2e7 -2 di.

Then, using Parseval's formula and Hélder’s inequality, we obtain

o) = 27 j? {live=i8) [2p20-1 gz
[

< 211(j‘-D |2 d:z)ﬂ B )(J. b 1tl.z)
o
= {J{a)}B-oNE-8 I(B))to -k,

+ Hardy, Ingham, and Pélya (1), Titchmarsh (23).

(o—afif-n)
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T

Writing F(T) = [ Iflatit)*dt < C(T+1)
0

we have by Stirling’s theorem (with various values of K)

Io) < K J. (2014 1) fla 4t} [Ze =20 dt
[

K

P28t 1) —(2a—1)t=e -5 d

g

< K€ [(za+1)25(nﬁa-1+1)e—2& dt
i

< K¢ j (o214 1)5e-2%
0

= KO f {(%)u+h>:+ 1}@*2“ du
1]

< KO@B-o-torly 1y < K (50—,

Similarly for I(8). Hence
I(o) < K(054‘sn+1)(,8-onf(,ﬂ4)(C/ggblzﬂ+l }:a-mmﬁ_a)
= KB~ +1((§~ayB-oMB-eo(r§-b)io-aiB—o), .

Also 18 1/8
Ho) > K [ |flo-titypee=tde > K821 [ | flatit)[2dt.
1j28 128

Putting § = 1/7, the result follows.

If #(5) has a pole of order k at 8, we argue similarly with (s—s,)}f(s);
this merely introduces a factor 7% on each side of the result, so that
(7.8.3) again follows. )

Replacing T in (7.8.3) by 17, 17'...., and adding, we obtain the result:

If T T
[ forinpde = o, [1fB+in?de = O,
[] Q
il
then J' fletit)2dt = O{T(n(ﬂ‘—a)-(—b(n—m)}t(,ﬂ—ud}_
o

Taking f(s) = {¥(s), the convexity of u,{c) follows.
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7.9. An dlternative method of dealing with these problems is due to
Carlson.¥ His main result is

Taeoresm 7.9. Let oy, be the lower bound of numbers o such that

T
%f L{o+it)|® dt = O(1). (9.1
1
» 1—«
Then o) < max(l-—-l+yk(a), 1, rx)

for 0 < a << 1.
We first prove the following lemma.

LeuMa. Let f(s) = f @, n~* be absolutely convergent for o > 1. Then
n=1

c4in

S B ,3n — L —_ & 10
2 Pl Py f T{w—s)f(w)de dw
n=1 e—d
Jfor 3>0,¢c>1,¢>o0.
For the right-hand side is
1 i - o 1 e4-im
B T Y )y
= f toe) 2 587w = > Sy | Twmaiony =
£-"ico n= c—fm
» 1 e=a+im
o, . [
= s (2" {3n)~ dw
n=1 c—g—im
P
=2 e
nel

The inversion is justified by the convergence of
i . SICAP
J' ITfe—o-tito—o) > Palgoe o,
= n=1

Taking a, = d,(n), f{s) = {*(s), ¢ = 2, we obtain

w0 2+in
dk(n) —8n __ 1 . L7 -1t

Moving the contour to R(w) = a, where 0—1 <2 a < o, we pass the pole
of I'(w—s) at w = s, with residue {*(s), and the pole of Zkw)at w =1,
where the residue is a finite sum of terms of the form
K, T —5)logn . 8e-1,
¥ Carlson (2), (3).
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This residue is therefore of the form G(§9-1+<g~4M), and, if & > [}|4, it
is of the form O(e-4%). Hence

atiw .
v = Ao [ Tt dotoe-ss)
ne=1 x—{a

Let us call the first two terms on the right Z, and Z, Then, as in
previous proofs, if o > 4,

[ ranofr 5ol 5 SR

i
M+
— om)- +0(Z > ws-iogmial)

= O(T)+ 0@~
by (7.2.2). Also, putting w = q+-iv,

1Z,] < %; f | Dfw—s) Lot} | do

<¥ “[ J ITw—s)] dv f IT( w—s)gﬂk(w);dv] .

The first integral is O(1), while for [¢| < T

-27

(J+ T )\F(w#s)l;”‘(w)\d”#(f +] )e-AwvaH"dv— Oe=7).
Henq;e

T r T
j |zzt=m=0{azv4w f [Law) | do j lI‘(w—a)Jdt}—i—O(ﬁ*"““)
3T

= o{szv e j L tin) [ dv}+0(8“° )
~2r
( Sza =271 +p.~(a)+r:) R
Hence

T
| L)1 dt = O(T)+ OB -4-) - OFeo-sa amiodie),

T
Let 8 = T-#l+podii-a), 30 that the last two terms are of the same order,
apart from e’s. These terms are then O(T) if
1—ua

]l
7 T T @
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For such values of o, replacing T by 4T, }T...., and adding, it follows
that (7.9.1) holds. Hence o, is less than any such o, and the theorem
follows.

A similar argument shows thas, if we define o} to be the lower bound
of numbers o such that

T
7 | ki = ogre, 192
1

then actually o} = a;. For clearly o} < o;; and the above argument
shows that, if « > a}, and ¢ << «, then

T
j [o+at) ™ de = O(T) - OB2-2-¢) 1 O(3oo-tag+e),

Taking & = 7'} where 0 << X < 1/(2—20), the right-hand side is o).
Hence oy, < o, and so o, < o},
It is also easily seen that

T
7| i SR
1

n=1
For the term O(T) of the above argument is actually
%TZ dk(“)e 20 sz dk(ﬂ)_i_ (7),

LIS

and the result follows by obvious modifications of the argument. This
is a case of a general theorem on Dirichlet series, 1

Trgonem 7.9 (A). If plo) is the p-function defined in § 5.1,
l-—g
l-gp 2 Tkl
% Z T ulay )
Jor k=12,
Since [(atit) = Ofgpirte),

T 4
[ ity ds = of e o piyen-s )
1 1

and hence 140} < 2u(a)-+ pyafa).

Since py. \(op_,) = 0, this gives pylog 1) < 2pfo,_,), and the result
follows on taking & = o_, in the previous theorem.

t See E. C. Titchmarsh, Theory of Functions, §9.51.
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These formulae may be used to give alternative proofs of Theorems
7.2, 7.5, and 7.7. It follows from the functional equation that

#rll—a} = pyla)+2k(c—3).

Sinee piloy) = 0, pfl —oy) = 0, it follows that oy, 3= 4. Hence, putting
« = 1—a0, in Theorem 7.9, we obtain either o), = } or

L
K et}
ie. 201, —1 < 2h{op— 1 1—ay).
Hence o,, = §, or
1< klmay),  op < 1. (7.9.3)

k
For k = 2 we obtain oy = }, but for £ > 2 we must take the weaker
alternative (7.9.2).
7.10. The following refinementt on the above results uses the
theorems of Chapter V on u(a).
TuECREM 7.10. Let k be an tnteger greater than 1, and let v be defermined

by w—D2241 < k< o241, (7.10.1)
r+1

—_T 7.10.2

Then o, % 1 FTr b ] { )

The thecrem is true for &k = 2 (v = 1). We then suppose it true for
all I with 1 < I << &, and deduce it for &.

Take ! = (v—1)2*-241, where v is determined by (7.10.1). Then
pet) = 0, provided that

1
a > F—

—

Y =1
Pl I

Taking o = 1—2-*+14-¢, we have, since
T 4
1 : sy 2z w-1t) |2
7 [ 1teting < max akin vy, f ot it)
1

%) K 2E—Dpda)-Fple)
= 2(k—Djpula)
2fk— (v—1)27—2—1}
R
1 Davenport (1}, Haselgrove (1}).

<
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by Theorem 5.8. Hence, by Theorem 7.9,

2k42v—2 ‘1_ _ vl

The theorem therefore follows by induction.
For example, if & = 3, then v = 2, and we obtain

op < §
instead of the result oy < £ given by Theorem 7.7.

o < ]_2—v+1(

7.11. For integral k, dy(n) denotes the number of decompositions of n
into k factors. If k is not an integer, we can define d,{x) as the coefficient
of n~* in the Dirichlet series for {%(s), which converges for ¢ > 1.

We can now extend Theorem 7.7 to certain non-integral values of k.

TEROREMT 7.11. For 0 <<k < 2

T
1 N — dt
Jim = f |o-+ity| dt = Zld;(,f) >4 (1111
1 n=

This is the formula already proved for k = 1, ¥ = 2; we now take
0<k<<2 Let
1
We =] [ ) = ellate).
P23y

The proof depends on showing (i) that the formula corresponding to
(7.11.1} with £y instead of { is true; and (ii} that Zy(s), though it does
not converge to {(s) for ¢ < 1, still approximates to it in a certain
average sense in this strip.

‘We have, if A > 0,

da(n)
A - N
ewtol? = T —pmt = > 52,
say, where the series on the right converges absolutely for o > 0, and
di(n) = dyn) if = << N, and 0 < dj(n) < dy(n} for all . Hence
T
.1 . o {di(n))?
Jim 7 [ tuoinge de = 21{;—} @>0), (112
1 =
and
N—ow T—wo

T
lim lim%f Lwlo-+it) |2 ds =;%}f @>1. (1113

1 Ingham (4); proof by Davenport (1).
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We shall next pmve that

fim hm [E(o+it)~Inla+it)|*dt =0 (o> ) (7.11.4)

Nesco Toeo 1
By Holder’s mequa.hty
T T T
1 ) 1 11181 - hez-k)
7 [ 1< [? | m-—wdt} {P [ Mt] :
i i i (7.11.5)

Now [ny{s)—1}? is regular everywhere except for a pole at s = 1, and
s of finite order in £. Also, for o >},

T
J' lqulotit)—13dt < f{1+2V|§ st} de = O(T).
1

Hence, by a theorem of Carlson,}

@

r
.1 . e
tim 7, [ Intorit) =1tz = > B0
2 o

1

R=

for ¢ > }, where py is the coefficient of »-# in the Dirichlet series of
{nals)— 1. Now pyln) = 0 forn < N, and 0 < py(r) < d(n) for all n,
Since ¥ di{n}n-2¢ converges, it follows that

T
lim lim . .JM.\'("*’”)*IP dl = 0, (7.11.6)
Nosen Ton 1

1

{7.11.4) now follows from (7.11.5), (7.11.6), and (7.11.3).
‘We can now deduce (7.11.1) from (7.11.3) and (7.11.4). We have]

{fm%dt}

fivrt-sial”

1

it an)" [ fie-goeeal”
i i

where R = 1 if 0 < 24 < 1/2& if 2k > 1. Similarly

|

1

<

1, R =
{ f et < f g dr]”+{fjc4;\.:2* al’
and (7.11.1) clearly follows.

1 Bee TH Theory of I £ § 9.51.
1 Hazdy, Littlewood, and Pélya, Inequalities, Thoorem 28,
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7.12. An alternative set of mean-value theorems.t Instead of
considering integrals of the form

T
KT) = [ |ito-+in) de
0
where T is large, we shall now consider integrals of the form

J(8) = r1§(o+it)\=*e—5* dt
H

where 3 is small.
The behaviour of these two integrals is very similar. If J(8) = 0(1/5),

then T

IT) < eJ |8{o—-it)|2e 47T dt < eJ(1/T) = O(T).
Conversely, if (7} = O(T), then

JB) = [ I're-¥de = [Iitye-¥]7+5 f I(R)e3 dt
o ']

- o(sfte—& de) = 0(1/5).

Similar results plainly hold with other powers of T, and with other
functions, such as powers of T multiplied by powers of log 7'.

We have also more precise results; for example, if I(T) ~ CT, then
J(8) ~ O}5, and conversely. .

If I(T') ~ CT, let [ I{T)-OT| < T for T = T,. Then

T ) w
IE) =5 [ Ie-#dets [ (It~ Crje-¥ dit-C3 [t .
(] o To

The last term is Ce-3%(T,+1/8), and the modulus of the previous term
does not exceed e(7y4-1/8). That J(5) ~ C/5 plainly follows on choosing
first 7, and then 5.

The converse deduction is the analogue for integrals of the well-known
Tauberian theorem of Hardy and Littlewood,} viz. that if a, >= 0, and

Sa,a (& >1)
n=0
N
then >a,~N.
n=o
+ Titchraarsh (1), {19).
1 Soe Tite Theory of Functions, 3§ 7.51-7.53.
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The theorem for integrals is as follows:
If f(t) 22 0 for all £, and

ff (Ble¥ dt ~ S (7.12.1)

s 8-> 0, then jf(t) dt~T (7.12.2)
0

as T'— 0.
We firat show that, if P(2} is any polynomial,
1

J‘ F(t)e- B L) di ~ % f Pz) dx.
[ o

It is sufficient to prove this for P(x) = z*. In this case the left-hand

side is @ '
1 1
DB B L
jf(t)e A Sf:n d
0 o
Next, we deduce that
L 1
f fityeFg(e ¥ di ~ % f gz} de (7.12.3)
o o

if g(x) is continuous, or has a discontinuity of the first kind. For, given
€, we cant construct polynomials p(x), P(x), such that
plz) < gle) < Plx)
1 1

and [ —p}dz <o, [{PE)—gla)de< e
Then ! !

Tim —Blg(a— Iim B (Bt

16135 nff(t)g g(e~¥) dt < géa(f(t)e Ple-5) dt

Plz) dz < j glz) dz +e,

1:'—_“_.

and making ¢ — 0 we obtain

1
hma J’ FlOeg(e=5y dt < f glx) dz.
0

Similarly, arguing w1t]1 p(z), we obtain
o« 1
Lim3 [ f(t)e~gte™) ds > | glx) e,
e ] 1]

and (7.12.3) follows.
t See Ti sh, Theory of £ §7.53.
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Now it
gl =0 <z<e), =1z (elga<]).
@ 5
Then f Fedgle®) 4t = f foa
and fg(x) de = f
e

18
Hence ff(t) dt ~ %,

o

which is equivalent to (7.12.2).
If £} = 0 for all t, and, for o given positive m,

8, (7.12.4)

ff (a8 dt ~ mlog
13

ther f Fit)ydt ~ TlogmP. {7.12.5)
o

The proof is substantislly the same. We have

Feesnbigy o 1 1 m]
f ("+1)5 e {(k+1)8} TRl S

and the argument runs as before, with -é replaced by %logmz.
3

We shall also use the following theorem:

I jf(s)e—w; ~ O3 (x> 0), (7.12.6)
1

then fz-ﬂf(:)a-ﬂ di ~ CF_(;‘;_).B)SB_., 0<B<a) {7.12.7)

1

Multiplying (7.12.6) by (S—n)¥-1 and integrati
obtain ki tegrating over (n, o), we

JrO @ [ oM 105 = © [ 3tto0 ay) 5ot .
ki 7
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Now © @
[e3E—npras = j e-viaB-1 dx — e~"-BT(B),
7 0

[oin s [ & s ,,,P(B)I‘(m )
]

and the remaining term is plainiy o (77-*) a3 5 - 0. Hence the result.

%7.13. We can approxzimate to integrals of the form J(8) by means of

Parseval’s formula. If R(z) > 0, we have
241
ot f Tls){*(s)z~ ds — k("’ J' T(s)nz)y ds = 2.1 (n)e-ne,
2

the inversion being justified by absolute convergence. Now move the
contour t6 ¢ = & (0 < a << 1), Let Ry(z) be the residue at ¢ =1, 80
that Ry(z) is of the form

(a""-}-a Fllogzt...+af!, logh-1z).

Let $ul2) = 3 dufmle ™~ Byfe)
o+ i
Then L J‘ D(s}k(a)e— ds = dy(z)- (1.12.1)
2m Y

Putting z = ize~®, where 0 < § < }m, we see that
&y lize1T), I(5)tk(s)e—ikm—Dm (7.15.2)

are Mellin transforms. Hence the Pamseval formula gives

L I T+ it) <o~ it) [2en -0 df = .f |y (e~ 1) 2o 1 dor.
{7.13.3)
Now as |t| >0
|T{o+it)] = e-¥mtjg|o-1 f(2m){1 4 O(-1))
Hence the part of the t-integral over (—ao, 0) is bounded as 8 — 0, and
wo obtain, for } <o << 1,

[ B Ou oy dt = f | ulire-B)jtaso-1 a4 0.
’ (7.13.4)
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In the case o = §, we have
IT(44-i8)|* = reechat = 2me—YI4 Ofe—371),

The integral over {—0,0), and the contribution of the O-term to the
whole integral, are now bounded, and in fact are analytic functions of §,
regular for sufficiently small |5|. Hence we have

f [L(E it [2e—2Bt dt — f|¢k(i:ce*"5)i=d:t—{-0(l). (7.13.5)
o [

7.14. We now apply the above formulae to prove
THEOREM 7.14. As § >0

f Kb ity ite ¥ de ~ %Iog%‘ (7.14.1)
0

In this case B, (z) = 1/z, and

i) = Fem—o o 1oL

e—1 z
Hence (7.13.5) gives

dz+0(1).
(7.14.2)

The z-integrand is bounded uniformly in § over {0, ), so that this part
of the integral is 0{1). The remainder is

f L3+ inre dt = j

m u;r‘a

o 1 1 1
[ e ze%) 1 —3}{—Pm+—s} d=

@

- f dx +ie‘3 J‘ I d.'c_
{oxp(ize=®)—1{{oxp(—ize)—1} exp(—ize®)—1 =
T 1 dz
it
i€ fexp(m:s‘i‘)—l - J. (7.14.3)

The last term is a constant. In the second term, turn the line of i integra-
tion round to (=, w+3ioc). The integrand is then regular on the contour
for sufficiently small |3|, and is Ofz'exp(-—wxcosd)} as x > oo. This
integral is therefore bounded; and similarly so is the third term.
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The first term is
o

f zm i exp(—imae= B4 inxeid) dx
> Mo1RSL

< exp{— (- n)w sin —i{m —n)r cos 8}
(m~+n)sin 3+ i(m—n)cosd

w=lnwl
2, p-2nmsind ) m—l(m,+n)sin8cos{(m—n)rrcosS}e_(m_mﬂ,amsv
= z 2nsind + (m—+n)?8in?d - (1 —n)? cos?d

n=1 m=2 n=1
"l m—n)eosd sin{(m —n)= cos 8} qmspmsin 3

2 i
- Z,,. <o {m-tn)?sin® 4 (m—a) 60s’
= Z; Tyt 2,
the series of imaginary parts vanishing identically. Now

=) dog L Liog)
1= 5iing Bl_e-tnems 35 B3

® m—1 : @

2m sin & _mwsing _ _mmein ) _ Ol

el < 222 Zl(m——n)zoo?%e nriné = 03 3, me-nmtn) — 0f5),
m=2 nu=

and, since |sin{(m—n)w cos 8}[ = |sin{2(m—n)rsin? }8}| = Of(m—n)5%},
I, — o3 ,,.2, :21 e-mreind) = O[5 3, memmie 5 = O().

This proves the theorem. )
The case } << ¢ <C 1 can be dealt with in a similar way. The leading

term is
K pro-L

©
o0
—2n.e8in §p20-1 = - —_dx
f Z Pt d 2201 = J- Ty dx
g n=1 -

1 yEﬂ*l l y‘zﬂ—l
= e f =1~y | w1
27sind a
o
(28

@

T(20)L(20).
Also (turning the line of integration through — {x)

©
J. g~ln+n)810 itm ~noos Blrylo~1 do

-
w

= O{e4m+n)gsln8 j e—tm-my on (a1 |y 2a-1) dy]
?

ofereey @10

m—mn
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and the ferms with m #= n give
w0 m-—1
1 1 1
—m Sin S — Zlog =
oS S oftgl),

me2
@

T'(20)L(20)

Henge f 20| Lo i) 22~ dt -~ Stagts (7.14,5)
L]
Hence by (7.12.6), (7.12.7)
J' E{oit) e it @ (7.14.6)
(1]

7.15. We shall now show that we can approximate to the integral
(7.14.1) by an asymptotic series in positive powers of 3.
We first requiret

THEOREM 7.15. As z 0 in any angle larg 2| < A, where A < $ar,
3 atmpene 27082 2L S o, s
=1 n=o
where the b, are constants,
Near s = 1
1 21
Ta)Pe)z* = {l—y(a—l)-{-...}(:—l--l-y-j-...) == Dlogz+..}

1 y—logz 1

= z_'(a—lT=+ el
Henes by (7.13.1), with k = 2,
a+ix
,.‘Ejld(")e_"z = yﬁ_iogz'l'giﬂ f T@)skds (0 <o < 1).
&=t
Here we can move the kne of integraticn to o = —32N, since

T{s) = O(1t|%e-3m4), [%(s) = O(¢{E) and z-* = O(r—e¥). Tho residue
at s = 0 i5 {%(0) = }. The poles of I'(s) at 2 = —2r are cancelled by

zeros of {%(s). The poles of I'(s) 6t ¢ = —2n—1 give residues
Rl BV 2l o Bra 2n-+1
g V(T2 = T @iy

The remaining integral is O{l2/2Y), and the result follows.

The constant implied in the O, of course, depends on N, and the
series taken to infinity is divergent, since the function 3 din) e
cannot be continued analytically across the imaginary axis.

t Wigert (1),
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We can now provef

TaroREM 7.15 (A). As 3+ 0, for every positive N,

3

o ey g, y—logdwd X N4l
“f e ine-dde = ¥ 2B 5 e b0

the constant of the O depending on N, and the c, being conslanis.
We observe that the term O(1) in (7.14.2) is

@ 1]
%J' |L(3+1t) [2e~=+ 0¥ sech ot di—4 j [L{3+it) |22 sech nt d2,
(1] -

and is thus an analytic function of 8, regular for |3 < = Also

7 1 i 1 +L}
‘J. {exp('i:ce—‘s)— 1 ixe*‘ﬁ} {exp( —iwe®)—1 ' e
is analytic for sufficiently small |8]. We dissect the remainder of the
integral on the tight of (7.14.2} as in (7.14.3). As before
o0 1o
1 dr __ 1 dz
j exp{—ize®)—1 & ,,f exp(—ize®)—1 %’
and the integrand is regular on the new line of integration for sufficiently
small |3], and, if 8 = £+in, 2 = vy, it is OfyLexp{—ycosfem)} as
y-+co. The integral is therefore regular for sufficiently small |3/,
Similarly for the third term on the right of (7.14.3); and the fourth
term is a constant.
By the calculus of residues, the first term is equal to

- 1 b

i 'Zx i~ exp{— 2inme?®)— 1 +
w &

* J [exp{iim—ge- ) Llfoxpl i 1B —11

As before, the y-integral is an analytic funetion of &, regular for 13|
small enough. Expressing the series as & power series in exp(2ime™?),
we therefore obtain

I [E(h i) |22 dt = 2meid i d(n)exp(2inmed) 4 f:oﬂns" (7.15.2)
=1 n= :

']
for |8| small enough and R(3) > 0.
1 Kober (4), Atkinaon {1).
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Let z = Zin{1—e?®) in (7.15.1). Muitiplying by 2re®, we obtain

2me® 3 dinjexp(Zinerd) — Y= log(EmePaind) 1
a=1 25ind 4

N1
+ Zﬂbﬂ{giﬂ(l_ezia)}kn-}l_l_O(SzN)’
and the result now easily follows.

7.16. The next case is that of |Z(}+it)[e.
In (7.14.2) the contribution of the z-integral for small & was negligible.
We now take (7.13.5) with & = 2, and

$alz) = ﬂild(n)e‘mm?’:%. (7.16.1)

In th‘is cage the contribution of small # is not negligible, but is sub-
stantially the same as that of the other part. We have

&+ i

9‘2(%) = 5:; I T(a}fi(s)erds (0 <« < 1)

o—dwm
1 1-a+io
=35 T{1—8)2(1 —s)t—* ds
1—e—fn
1—a4 i F(
= 2 1—s} -
i [ e

Now
F(1—s}/x2(s) = 2227~ cos? fsn[ts)['(1—s)
= 2271~ oot Lanl'(s)
. ~int
= 21—231;-1‘2’“—5-}- O(Isignl}s'lrf)) D{s) (¢—+ 4o0).
Iz = ire® (2 >z, 0 < 8 < Inr), the O term is
1-o+im

—nt
O{xl_iﬁ, m—e}me; D) efdm—o41 4 [g))zat "”} = O(z*),

uniformly for small 3, Hence

I—atfo

N

¢s(;)=2_: J‘ 21-Bal-2T (5% 5)s~ ds+ O(z%)
I—a—fo

= — 2oz, (4n%) + O™, (1.16.2)

where « may be as near zero as we please.
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We also nse the results
3 dmye = o(_I log? 1), (7.16.3)
W1 PR

flnzdﬂ(n)e-nn = 0(,]—13 log? %) (7.16.4)
2

as 71— 0. By (1.2.10)

2hic 244w
o | Toi -y Zcz*(n) j Lio)nn) do
N S
:ildz(n)g—nm (7.16.5)
Hence .

= 1T o
3 dmem = R J’ F”cé?) ~ds (}<c<)

c—io
= B4-0{y),
where R is the residue at s = 1; and

r=! (alog“l+blogzl+610g£+d),
K] 1 1 5

N

where a, b, ¢, d are constants, and in fact
11
312 A
This proves (7.16.3); and (7.16.4) can be proved similarly by first
differentiating (7.16.5) twice with respect to ».
We can now provet

THEOREM 7.16. As8->0

a =

[ e s di~e o L glogts.
o
Using (7.13.5), we have
f 153+ it) %62 dt == [ {(ize D) dz+-O(1),
o 1]

and it is sufficient to prove that

f | polize—t8)|2 dz ~ e log %

1 Titchmarsh (1).
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For then, by (7.16.2},

2 w
!lsﬁs(m-’“)wx: J’

It is then sufficient to prove that

3

|2~y (antize-2)+ O 2 22

18w

= [ Iatize4)+-Oz=1)2 da
o

1fem

x

SR

2

dJ: J‘

22

#2 (170:""5)

167

2 da
%t

©<a<h

= _[ | palize=3)2 dx+0( f | ylize=18)|2 dax _f-’”““g dﬁ)i'}'
S o o7

= s 5lowt g 05 log3) 00,

and the result clearly follows.

J

2w

Z d(n)exp(—inze~5)

n=1

d:z:ﬂ-'

o arar)

2m

B =81°g 8

for the remainder of (7.16.1) will then contribute O(3-+log®1/5).
Ag in the previous proof, the left-hand side is equal to

3

2%

n5s
—2 i mz d{m)d(n)

Now

E 4nw 8in

5

2'n sin S

m=2 n=]

1=

m=3 n=1

2sm8

~2-rr

n=1

dm)d(n) {m+-n)sin & cosf 2(m—n)r cos 3}

e-m+nywsind__

{m+-n)sin®8+ (m—n)E cos?d

{m—n)eos & sin{2(m—n)m cos §}

¢—trnsin IOE""

= Bt sme

211'

(4 sin 8) dy ~

(1—g-tmsin3) z o-taneind Z d2(v)

»=1

e—Ymnm gng

(m—+-n)tinB -+ (m--n)® cos?d

=L 4T+,

f g—4mz sin Eloglx dx

1 1
8% log* 5
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A zz za‘.(m)d(n) 2maind _yoraes

= —n)? cos®d

_41113 —2mmein M
_m‘szzmd(m)e wn Zl -

=2 LS md(midim - rje-trmins,

cos?d 7
r=1 m=r+I

The square of the inner sum does not exceed

i mzdz(m)e—hrmslnB i dz(m_,)e-zmnms
m=ritl

mid2(m)e-2rm sinjd E d¥(m)e-2m 8ind
m=1

mz-l
1 3 —_ — -
O( log g)O(glogl’g) = O(b_‘log“ S)
by {7.18.3) and (7.16.4). Hence
1 1
B, = O(Elqgsﬁ)'
Finally (as in the previous proof)
Z,= 0(55 E m1+:e—2m1rsin5) = O5).
max3
This proves the theorem,
Tt has been proved by Atkinson (2) that
[1etrinpe-sa
[}

=%(Alog‘%+Blog +Clog? —+D10g8+E)+0{( )ﬁ+ }

where A — L B —-;(210;;211— 6y+24C (2))

)
,n.z

A method is also indicated by which the index }§ could be reduced to §.

7.17. The method of residues used in § 7.15 for |{{}--42)|? suggests
still another method of dealing with |{(3+4#)}*. This is primarily a
question of approximating to

[l g sttt - |3 ]

@

_ ] B dx B
- Zl . J. {exp(imze—¥)— 1H{exp(—inze®)— 1}
mel a=lgw
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In the terms with n 2> m, put z = £/m. We get

DI
Fo A {exp(ife=8) — 1}{exp(—inm-1£e¥) —1}

Approximating to the integral by a sum obtained from the residues of
the first factor, as in § 7.15, we obtain as an approximation to this

e 1
27etd — - -
—03 Y
”Zlm’zm rZﬂ exp{— 2i(nr{m)me?¥}—1
2 2 @ o>
= Dgefd il 2 2i5
i Z m Z ( i

sl ©— < exp(2igrme?i®)
— et 5L p(2ig -
SDNDIP) T—exp|Zi(grimimnei®)

m=1  re=m g=1
I ¢~ 2arn oin 28
(,,Zl 2 2] o)
_ = _1— i d(v)e-tmsinzd
=0 2, 2 - mimesre )

The terms with m |v are

( z Z d(ﬂe—zi::n 23) O(é Z Z @ -tvmsin u)

m=1
- ) pemwin st liop)
O(S Z e =0 Elog 3

ya=l
The remaining terms are

o153 ety

m
m=l k=l Il

~ o( i z -tk i 33 Z d(fcﬂ;-i-l))

mm1ic=1

O( i Z g~2kmmeln 28 Z d(kﬂ;—{-l])

m=1k=

o d(v)e—trmsin 25 Z w)

0

(
f
(

I
b
V
L

Vs
ol

i d(»)d(y4-D)e2rmein 25)
=t

—irain 25
: i z d{v)d{v+l)e—av—nmsin ga)

wm=i

L]
e

]

0

i

lJ
-
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Using Schwarz's inequality and {7.16.3) we obtain

g-tmalnzh |
O(Z Lo ) o( log* )

=1

Actually it follows from a theorem of Ingham (1) that this term is
0(% log® 1)
7.18. There are formulae similar to those of § 7.16 for larger values

of &, though in the higher cases they fail to give the desired mean-value
formuls.t

We have atin
n_ 1 X (g)ze
#f3) = o | T
&~ o0
1 1-a+im
- J' D(L—38)H(1—s)7-* da
l—a—im
i KL=
‘9 ke, —
z:n f E*(s)z~* ds.
1-x—io
Now

T(I—s)y~*(8) = 2k-ker-ks cogt}sm%(s) (1 —s)

= 2k-kop1-kt cogk L cosec ma[%-1(g),
For large s [E-L{g) mo gik—Dle=}ig—k-1)s( 2, yktk-1),
Now P{(k—1)s—~ k4 1} ~ {{k— L)aj-to—Por fo—k-Daa )k,
Hence we may expect to be able to replace E-1(s) by

(k1) i3 2 M0k 1)s— 4+ 1).
Also, in the upper half-plane,
—2

costfam cosec g ~ (Jettomys 5

— — QU —kjg—femtik-1),
=

We should thus replace I'(1—s)y*(s) by

—i. iRt hag-ton(Ph-(f 1y~ 1o (o) B-O{ (£ — 1)a— 3T 1.1},
Hence an approximation to ¢,(1/z) should be

4,,‘( ) = —i(2n)l* z d,,(n)_x

1~a+io

X D{k—1)a— Pt [k 1)-%-Uo+ P gmionbny Bkprkzy -+ s,

1—a—im

1 See also Bellman (3).
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Putting # = (w+tk—1)/(k—1), the integral is
_1'(2,.,.)#%‘[[‘(,0)(;5,1)-wfge_mgkqui.;—k_n/(k-l)(Qk,,knz)_¢w+;r;71ymﬁ1)dw

T,
= —i(2ar)¥a{k— 1)~ be—tmRb D1y Bk oy} (3E-DME—13 ¢
X Xp{ — (k— LJeimE-THE-12MAE Dkt~ Dy ) ik}

Putting z == ize~%, we obtain

{ g,r)ict(zk—z)(k_ 1 )w%xk/(ﬂ(k—l)JMA{k—lmk—l) X

X Oy exp{— (k— 1)ebim 2Tk -1} )ikl —3Bith -1}

where |C,| = 1.
We have, by (7.13.5),

J 18 a0 e dt = [ |gy(ize) 2 de-+O(1)
¢ 1]

A o
= [ Iduline=®)it dzt [ 1yize=) [t dat-OQ1).
0 A

As in the above cases, the integral over (X, c0) is
g—2inainj

ng( ") Gsing 2n5in 3 Znsing T

n=1

oo w1
= {m—+n)sin & cos{A(m—n)cos 8} o-Mm4mising__
+2 2 z dylm)id{m) {m~+n)?sin®B+ (m—n)? cos®H -

m=2 A=}
m=1

(m—n)cosdsinfMm—n)eosd} .. .
_22 2 Bulm)dy () (mAn)Fain®S I (m—n)tcoss © gmmnd

=4I, +E, (T.18.1)

m=2n=]

Using the relation d,{n) = O(n*), we obtain
11

% = o5 )

and, since (m-+n)2sin®d-|- (m—n)? cos?d > Ad(m+-n)m—n),

5, = 0( > meg-tmeind z m_n) (ﬂ:gmre~/\meln )~ G(FA s;ﬁ )

=2

%= O(Zm‘“‘”‘“zm-n) {omr)

m=P
Hence, for A < 4,
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-8 I \[Pdz
Also J' Iy live~18) 2 day — f .,sk(m_ﬁ) z
1A

and by the above formula this should be approximately
(2er)klk -1

k—1

(1S dyn) . i

% f ‘ Z SR O — (k— 1)i(2m =1z b=~ i8s- Ia_kfk -

A P

Putting « = gk-1, this is
(2rrylte—D ¢

l Z n(—k~1mk—1) exp{— (k—1 )1;(21.,)kf(k—l)nll(k-l)fe-i&i(k-1)} 2 de,

A-sie—1)

and we can integrate as before. We obtain

S N _du(mid(n)
4 Z;: Z (mn)F*— 'fw.: 5 X
expf{k— 1)(2,-,-)14(': —I){(nlf(k—l)_mlf(kkl))i cos 8j(k—1)~—

— (D k)i §/(J— 1)}A-1e-1]

X (nll'(k-lj_m_lf(k l))t cos Sl(k—l)—(m”"‘ 1)+n1/(;: 1))8111 8/ k 1):

where X depends on & only.
The terms with m = % are

O{ 5 z d"(n)exp( Kanmkq“-m—u)} { ! ()Tl;)e}
n=1

The rest are

0 Z Z 1 exp(— Ksmul.’(kﬁlj‘\-lf‘(k—l))
. (mn ) ek-Like-1) e _p10k~D) ‘
moR

1
=1 nt=;—k~1mk—1J(m1nk—n__nmk_1))

Now

m—1

3
{ Im 1 m=1 1

=0 E Tk_Tyie— T §
= REE -1 1tk —1) £ m(ik—lmk—lnum-n—l(m_n)

— O(ml—(%k—lll(k—l)—l,-‘(kflwc) - 0(m(§k—1mk-l)+()
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Hence we obtain

@

0{ z s oxp( -~ KmItk—Dy -1k~ 1)) 0” a* exp(—— K8z -Uy-1(k-1) dx}

0
Altogether

= ofis) )

. . [ Lie
[ o= ofpiloffg) ™).
o
and taking A = 8i-1, we obtain

fr€(§+it):=’fe-25‘ dt = O(-¥-<) (k = 2).

This index is what we should obtain from the approximate functional
equation.

7.19. The attempt to obtain a non-trivial upper bound for
| b3t phes ay
2

for & > 2 fails. But we can obtain a lower boundf for it which may be
somewhere near the truth; for in this problem we can ignore ¢, (ize-%®)
for small x, since by (7.13.5)

[ tg+inmet e > [ gz de+0(1),  (1.19.)

and we can approximate to the right-hand side by the method already
used.
If k is any positive integer, and ¢ > 1,

1y = (k+m—1)! 1 & dy(n)
ck(a):U(l_F) =1:[m_“(ﬁc—”:)rm! pT'“‘=,Zl Ly

If we replace the coefficient of each term p-™ by its square, the
coefficient of each »~* is replaced by its square. Hence if

L)
Fis) = 2 d’;:?) :

A=l
then Fs) = n Z {(:T_";;';),I}E L Hf(P )s

+ Titchmarsh (4).
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1 o
say. Thus d=l=14+"9 ..
¥ f"(p") +P’+ ,
and

() 53 = (=)o ) = o)

I] Fy P

»
is absolutely convergent for ¢ -}, and so represents an analytic
function, g(s) say, regular for o > }, and bounded in any half-plane

o> brb;and Bls) = ¥,
241w
Now gldﬁ{n)e‘““'“a = leﬂ f I{s)F{s}(2sin 8)~* ds,
2kn

Meving the line of integration just to the left of o = 1, and evaluating
the residue at s = 1, we obtain in the usual way

o . o 1
a2 maing ., kK e
'g] w(n)e 5 log*t 5

Similarly
o i
B o 15 .
; W atmons 1 f Ple o+ 1)(2sind)+ ds ~ i logh'),
2—ix

since here there is a pole of order k2+1 at ¢ = 0.
We can now prove

TeEOREM 7.19. For any Sixed integer k, and 0 < § < 8y = By(k),
J’ [E it ey %lug"’%.
[

The integral on the right of (7.19.1) is equal to (7.18.1) with 2 = 1;

and
- o/ "l
Ty~ §'§ log® 3
while 2+ 3, = (% log*-1 51) .

The result therefore follows.
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NOTES FOR CHAPTER 7
7.20. When applied (with care) to a general Dirichlet polynemisal, the
proof of the first lemma of §7.2 leads to

I

Hewever Montgomery and Vaughan [1] have given a superior result,

namely r

0
Ramachandra [2] has given an alternative proof of thig result. Both
proofs are more complicated than the argument ieading to (7.2.D).
However (7.20.1) has the advantage of dealing with the mean value of
{(s) uriformiy for & > }. Suppose for example that ¢ — }. One takes
x =27 in Theorem 4.11, whence

N 2 N
¥ ann‘“| dt=3%le 2{T+O(nlog2n)}.
1 1

N 2 N
¥ anrr“l dt =3 |al2{T+0(n)). (7.20.1)
1 T

(G+in= 3 n b 10T H=Z+0(T"H,

ns2T
say, for T < ¢ < 2T. Then

o7
J 1212dt = 3 B-Y{T+Xm} = Tlog T+ T,
v LES:ra

Moreover Z < T} whence

2
j 1ZIT tdt< T.
T

Then, since
27

O(T-Hzdt = 0L,

~

we conclude that
T
K (4 +inizde = Tlog T+ OXT),
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and Theorem 7.3 follows (with error term O(T)) on summing over

47,1 T,... . In particular we see that Theorem 4.11 is sufficient for this

purpose, contrary to Titchmarsh’s remark at the beginning of §7.3.
We now write

I|£(§+zt)|2dt Tlog( T)Jr(Zy*l) T+ E(T).

Much further work has been done concerning the error term E(T). It
has been shown by Balasubramanian [1]that E(T) € T4+< A different
proof was given by Heath-Brown [4]. The estimate may be improved
slightly by using exponential sums, and Ivic [3; Corollary 15.4] has
sketched the argument leading to the exponent 3% +:, using a lemma
due to Kolesnik [4]. It is no coincidence that this is twice the exponent
occurring in Kolesnik's estimate for p(}), since one has the following
result.
Lemma 7.20. Let k be a fixed positive integer and let ¢ > 2. Then

Iog?s
(g +it* < (logd) (1 + j 10} + it + iu)|*e ~1oldu ) (1.20.%)
—log?¢
This is a trivial generalization of Lemma 3 of Heath-Brown [2], which
is the case k = 2. It follows that

LA +it)? <€ (logt) + (log fymax E{t + (log H)2}. (7.20.3)

Thus, if ¢ is the infimum of those  for which E(T) < T'% then p(}) < 1 p.
On the other hand, an examination of the initial stages of the process
for estimating {(}+if) by van der Corput’s methed shows that one
is, in effect, bounding the mean square of {(} + i) over a short range
{t — A, £+ A). Thus it appears that one can hope for nothing better for
#(3), by this method, than is given by (7.20.3).

The connection between estimates for {(} + i) and those for B(T)
should not be pushed too far however, for Good [1] has shown that
E(T)=Q(T?Y. Indeed Heath-Brown [1] later gave the asymptotic
formula

T

j E()tdt=2(2n)~ i":((%)) Ti+ O(T log2T) {7.20.9)

V]
from which the above Q-result is immediate. It is perhaps of interest to
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note that the error term of (7.20.4) must be Q{ T'¥log T')-1}, since any
estimate O{F(T}} readily yields E(T) < {F(T)log T}%, by an argu-
ment analegous to that used in the proof of Lemma « in 14.13. It would be
nice to reduce the error term in {7.20.4) to O(T 1+%) 80 as to include
Balasubramanian’s bound E(T) < T}+=

Higher mean-values of E(T') have been investigated by Ivic (1] who
showed, for example, that

T
J- E{t)®dt < T3+, (7.20.5)
a

This readily implies the estimate E(T} < T4+=

The mean-value theorems of Heath-Brown and Ivie depend on a
remarkable formula for E(T) due to Atkinson {1). Let 0 < A < A’ be
constants and suppose AT < N< A’ T Put

N = N’(T)—— 2 o

Then E(T) = Z,+Z,+ O(log? T), where

i -
Z, =2} Z {(—1)"d(n) (£+’; ) {smh 1 (2;)? ’ sinf (m)
with (7.20.6)

T N (NT NZ)
+

f(m) = }n+2Tsinh- 1(2T) +(r2n2 +2nn T, (7.20.7)

and

ash

T -1
Z,=2 Y dmn- i(log—) sin g(n)
where
(n) = Tlo, i, T
s = 8 San im
Atkinson loses a minus sign on {1; p 375}. This is corrected above. In
applications of the above formula cne can usually show that I, may be

ignored. On the Lindelsf hypothesis, for example, one has

Y dmyn-i-T< T

ASX
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for x < T, so that £, < T* by partial summation; and in general one finds
I, € T %P+ The sum I, is closely analogous to that occuring in the
explicit formula (12.4.4) for A(x}in Dirichlet’s divisor problem. Indeed, if
n = o(T Y then the summands of (7.20.6) are
2T\  d(n) T 1d(n)
- l)n(?) St oon( 2/ T) - Do TR,

7.21. Ingham’s result has been improved by Heath-Brown [4] to give

n=0

T
flC(§+i1)!4dt= fj ¢, Tlog T)n+O(Ti+%) (7.21.1)
0

where ¢, = (272)-1 and
¢y =2{4y—1-10og(@m) - 1202} n-2
The proof requires an asymptotic formula for

Z dinyd{n+r)

asN
with a good error term, uniform in r. Such estimates are obtained in
Heath-Brown (4] by applying Weil’s bound for the Kloosterman sum
(see §7.24).

7.22. Better estimates for 6, are now available. In particular we have
o; < gy and o, < §. The result on o, is due to Heath-Brown [8]. To
deduce the estimate for o, one merely uses Gabriel’s convexity theorem
(see § 9.19), takinga =3, f = hi=tbu=}ando= Lo

The key ingredient required to obtain 7, & § is the estimate

T
J‘IC(§+it)|12dt< T 2(log T)1? (7.22.1)
o

of Heath-Brown [2]. According to (7.20.2) this implies the bound
u{P) < } In fact, in establishing (7.22.1) it is shown that, if [{(}+ i, }|
2 V(=0forl<r< R, where 0 <t <Tandt, ,—i 21, then

R < T2V-12{log T)15,
and, if V > T #(log T)2, then
R« TV -5(log T)®.
Thus one sees not only that { (4 + i#) < t} (log #)*, but also that the number
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of points at which this bound is close to being attained is very small,
Moreover, for V = T %(log T)2, the behaviour corresponds to the, as
yet unproven, estimate

T
IIC(§+i0I5dt< T l+ee,
0

To prove (7.22.1) one uses Atkinson’s formula for E(T') (see §7.20) to
show that

T+0

J IEG+in1dt < Glog T+

-G

X
ey (TK)“-‘(IS(K)J +K-1 f IS(x)ldx) e 0K, (1.22.9)
X
]

where K runs over powers of 2 in the range T K < TG-21og3T, and

S5(x)=8= K T)= T (—Drd@jerm

KengKix

with f(») as in (7.20.7). The bound (7.22.2) holds uniformly for log2T< G
< T, In order to obtain the estimate (7.22.1) one proceeds to estimate
how often the sum S(x, K, T') can be large, for varying T This is done by
using a variant of Halasz’s method, as described in §9.28.

By following similar ideas, Grahem, in work in the process of
publication, has obtained

T
fl((ﬁ-i- it)|1%8dt < T 14 (Jog T )425, (7.22.3)
0

Of course there is no analogue of Atkinson’s formula availabie here, and
80 the proof is considerably more involved. The resuit {7.22.3) contains
the estimate u(§) < £ (which is the case I = 4 of Theorem 5.14) in the
same way that (7.22.1) implies B <E

7.23. As in §7.9, one may define o,, for all positive real k, as the
infimum of those ¢ for which (7.9.1) holds, and ¢, similarly, for (7.9.2).
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Then it is stiil true that g, = g}, and that
T
j (o +igl2kdt =T 3 dy(n)2n-2 + O(T 1-%)
1
1

for o > o, where é = (5, k) > 0 may be explicitly determined. This may
be proved by the method of Haselgrove [1]; see also Turganaliev [1]. In
particular one may take é(c, P = k(o — P for L <o <1 (Ivic [3; (8.111) ]
or Turganaliev [1]). For some quite general approaches to these
fractional moments the reader should consult Ingham (4) and Bohr and
Jessen (4).

Mean values for ¢ = § are far more difficult, and in no case other than
k =1 or 2 is an asymptotic formula for

T
j K +i|2rdt = I(T),
°
say, known, even assuming the Riemann hypothesis. However Heath-
Brown [7] has shown that

T(log T)* < I(T) < T (log T)** (k - %)

Ramachandra [3], [4] having previously dealt with the case & = }.
Jutila [4] observed that the implied constants may be taken to be
independent of k. We also have

I(T)>» Tog T)*

for any positive rational &. This is due to Ramachandra [4] when % is
half an integer, and to Heath-Brown [7] in the remaining cases.
(Titchmarsh [1; Theorem 29 ] states such a result for positive integral &,
but the reference given there seems to yield only Theorem 7.19, which is
weaker.) When £ is irrational the best result known is Ramachandra’s
estimate [5]

L{T)» T(log T)*(loglog T)~*"
If one assumes the Riemann hypothesis one can obtain the better results

L(T)<TWogT)" 0<k<2
and

L(T)> Tog T (k =0, (7.23.1)
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for which éee Ramachandra [4]or Heath-Brown [7]. Conrey and Ghosh
[1] have given a particularly simple proof of (7.23.1) in the form

L(T) 2 {C, +o(1)} T (log T)H¥,

w2 (553) ]

] m=0

with

They suggest that this relation may even hold with equality (as it does
when £ =1 or 2).

7.24. The work of Atkinson (2) alluded to at the end of §7.16 is of
special historical interest, since it contains the first occurence of
Kloosterman sums in the subject. These sums are defined by

a 2ri _
S8(g;a.b)= ) exp (? (an+ bn)), (7.24.1)
a=1
(=1

where nfi = 1(mod g). Such sums have been of great importance in
recent work, notably that of Heath-Brown [4] mentioned in §7.21, and of
Iwaniec [1] and Deshouillers and Iwaniec [2], (3] referred to later in
this section. The key fact about these sums is the estimate

IS(g; a, b)) < d{g)gt(g, &, B}, (7.24.2)

which indicates a very considerable amount of cancellation in (7.24.1).
This result is due to Weil [1] when g is prime (the most important case)
and to Egtermann [2] in general. Weil’s proof uses deep methods from
algebraic geometry. It is possible to obtain further cancellations by
averaging S(g; a, b) over ¢, @ and b. In order to do this one employs the
theory of non-holomorphic modular forms, as in the work of
Deshouillers and Iwaniec [1]. This is perhaps the most profound area of
current research in the subject.

One way to see how Kloosterman sums arise is to use (7.15.2). Suppose
for example one considers

2
e~iTdt. (7.24.3)

'[IC(&Jrit)lz
0

z u—ﬂ
us
Applying (7.16.2) with 26 = 1/ T + i log(v/u) one is led to examine

e 2ninu
§T
Y. d(n) exp( o ¢ )

n=1
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One may now replace ¢ /" by 1+ (i/ T) with negligible error, producing

Zegm
= 2rninu 2nnu 1 Tu \* u
Lo (58) oo T5) =55 | v ofet)w

2-ix

D(s,%) = i d(n)exp(z—n:"—u) n-s,

n=1

where

This Dirichlet series was investigated by Estermann [1], using the
function (s, @) of §2.17. It has an analytic continuation to the whole
complex plane, and satisfies the functional equation

u T(l1-s)® it i
D(s, ;) = 2pl-2 Gy {D(l — 3, ;) —cos (ns)D(l -5, — 5)}

providing that (i, v) = 1. To evaluate our original integral (7.24.3) it is
necessary to average over u and v, so that one is led to consider

i X 2rini
¥ D(l—s, 7): Y Y dmn-t ¥ exp( i )
wus v vsUn=1 wg U v

(urtp=1 Car oy =1
for example. In order to get a sharp bound for the innermost sum on the
right one introduces the Klcosterman sum:

o v Sming
> exp(21x:)nu)= by exp(g) ¥ 1
wxlf

(R34 m=1

ew =1 (mev) =1 = mimod vy
] 2ninm 1k 2nia(m —u)
= ¥ exp( - ) ¥ {; 3 exp(+)}
(mm:;:ll ugl a=1
1 2niqu
=- % Swan ¥ exp(— ),
vo=1 (L4 v

and one can now get a significant saving by using (7.24.2). Notice also
that S(v; e, n) is averaged over v, a and n, so that estimates for averages
of Kloosterman sums are potentially applicable.
By pursuing such ideas and exploiting the connection with non-
holomorphic modular forms, Twaniec [1] showed that
L+A

by J‘ I} +igl*dt < (RA+ TRIA-H T
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t, 2 A 2 Ti In particular, taking R = 1, one has

rel P

ford<e <T,¢

r
T+7h
K +in)tdt< T (7.24.9)
T

which again implies w(d) < 3, by (7.20.2). Moreover, by a suitable chojce

of the points ¢ one can deduce (7.22.1), with T'2+¢ on the right.
Mean-value theorems involving general Dirichlet polynomials and
partial sums of the zeta function are of interest, particularly in
connection with the problems considered in Chapters 9 and 10. Such
results may be proved by the methods of this chapter, but sharper
estimates can be obtained by using Kloosterman sums and their
connection with modular forms. Thus Deshouillers and Iwaniec [2], (3]

established the bounds

T
2
J‘Ff(i+it)|4 ¥ a,nit dt < T*(T+ TIN? | TiND) ¥ la,l?
nEN RGN
B
(7.24.5)
and
T
2 2
J-Ii,'(é\+it)f2 ¥ a, mi Y b,n#| at
meM RSN

o

< T*(T+ TIMWN + T 4Nt + MfNé)( ¥ |am|2)( 5 |bn|2)(7,24.6)
ms M neN

for N< M. In a similar vein Balasubramanian, Conrey, and Heath-
Brown [1] showed that

T
le@ﬂe)l? Y u(m) F(m)m -t a= CT+0,{T(log T)-4),
m<M
0
(7.24.7)
_ #(m) p(m) T T (m, n)?
€= I FmFe tmm (10g Ty, 1)

for M < T ¢ where A is any positive constant, and the function F
satisfies F{x) < 1, F'(x) € x-!. The proof requires Weil’s estimate for the
Kloosterman sum, if Tt< M < -2



VIII
Q-THEOREMS

8.1. Introduction. The previous chapters have been largely con-
cerned with what we may call O-theorems, i.e, results of the form
Ha) = Olf(t)},  1fL(s) = Ofg(t)}
for certain values of o,
In this chapter we prove a corresponding set of Q-theorems, i.e. results

oftheorm  yg) Q@) 1/8e) = QW

the 2 symbol being defined as the negation of o, so that F{t) = Q{)}
means that the inequality |F(2)| = Ad(2} is satisfied for some arbitrarily
large values of £,

I, for a given function F(f), we have both

Fiy=0{fn},  F() = Q{fe),
we may say that the order of F(t) is determined, and the only remaining
question is that of the actual constants involved.

For ¢ > 1, the problems of {(c} i) and 1/¢{(c-¢t) are both solved.
For } < @ <0 1 there remains a considerable gap between the O-results
of Chapters V-VI and the Q-results of the present chapter. Wa shall
see later that, on the Riemann hypothesis, it is the Q-results which
represent the real truth, and the O-results which fall short of it. We
are always more successful with {)-theorems. This is perhaps not
surprising, since an (-result is a statement about all large values of ¢,
an Q-result about some indefinitely large values only.

8.2. The first Q results were obtained by means of Diophanﬂine
approximation, i.e. the approximate solution in integers of given equa-
tions. The following two thecrems are nsed.

DieicaLET’s THEOREM. Given N real numbers @y, Bgye.., Gy, & POSILIvE
integer g, and a positive number ty, we can find a number 1 in the range

o St gV, (8.2.1)
and integers x,, @,,..., xy, such that
[ta,—%,! <1/ (n=1,2,.,N). (8.2.2)

The proof is based on an argument which was introduced and employed
extensively by Dirichlet. This argument, in its simplest form, is that,
if there are mn-1-I points in m regions, there must be at least one region
which contains at least two points.
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Consider the N-dimensional unit cube with a vertex at the origin and
edges along the coordinate axes. Divide each edge into ¢ equal parts,
and thus the cube into ¢V equal compartments. Consider the g¥41
points, in the cube, congruent {(mod 1) to the points (ue,, ua,,..., uty),
where » = 0, 4, 28,..., ¢¥t,. At least two of these points must lie in the
same compartment. If these two points corvespond to « = 1, v = u,
(#; << u,), then = u,—un, clearly satisfies the requirements of the
theorem.

The theorem may be extended as follows. Suppose that we give u
the values 0, &, 2,..., mg"t,. We obtain mg~+1 points, of which one
compartment must contain at least m4-1. Let, these points correspond
tO U = Up,eeny Upyye Them = Uy—ty,..., ty,—uy, all satisfy the require-
ments of the theorem.

We conclude that the interval (#,, mg™,} contains at least m solutions
of the inequalities (8.2.2), any two solutions differing by at least #,.

8.3. KroNECKER'S THEOREM. Letay, a,,..., ay be inearly independent

real numbers, i.e. numbers such that there is no linear relation
At FAyay =0
in which the coefficients Ay,... are inlegers not all zero. Let b,,..., by be any
real numbers, and q o given positive number. Then we can find @ number
t and inlegers %,,..., Ty, such that
lig, —b,—x,| < lfg (m=1,2,.., N). (8.3.1)

If all the numbers b, are 0, the result is included in Dirichlet’s
theorem. In the general case, we have to suppose the a, linearly
independent; for example, if the a, are all zero, and the b, are not all
integers, there is in general no ¢ satisfying (8.3.1). Alsc the theorem
assigns no upper bound for the number ¢ such as the g% of Dirichlet’s
theorem. This makes a considerable difference to the results which
can be deduced from the two theorems.

Many proofs of Kronecker’s theorem are known.t The following is
due to Bohr (15).

We require the following lemma

LeMMA. If ¢(x) is positive and condinuous for a < x<C b, then
4 1in
H AT = .
tim [ oy ] " = max, o
A similar result holds for an inlegral in any number of dimensions.

1 Bohr (15), {16), Bohr and Jossen (3}, Eatermann (3), Lettenmeyer (1).
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Let M = max¢(z). Then
|4 e
{ [ @)™ < (e-apripn = p—ayins.

Algo, given e, there is an interval, («, 8) say, throughout which
$lx) 2 Mg
Hence

4 in
([ o o)™ > (6—a)t ey = (g—apiniar ),

and the result is clear. A similar proof holds in the general case.
Proof of Kronecker’s theorem. Tt is sufficient to prove that we can find
& number ¢ such that each of the numbers
e loal=bd (= 1,2,.., N)
differs from 1 by less than a given ¢; or, if
N
F(t) =14 z ezfri’(a,.t—b,.),
=1

that the upper bound of | F{f)| for real values of £is ¥ 4-1. Let us denote
this upper bound by L. Clearly L < N41,

Lot G b i) = 1 3 e,

where the numbers ¢,, ¢,,..., ¢y are independent real variables, each
lying in the interval (0,1). Then the upper bound of |@| is ¥--1, this
being the value of |G] when d, = ¢, = ... = ¢, = 0.

We consider the polynomial expansions of {F(#)}* and {G(d,,..., $x)}*,
where % is an arbitrary positive integer; and we chserve that each of
these expansions contains the same number of terms. For, the numbers
@y, Gg,..., &y being linearly independent, no two terms in the expansion
of {F(t)}* fall together. Also the moduli of correspending terms are
equal. Thus if

[Glryen a1} = 14 3 G erriaadtethondu,
then (PO = 14 3§ erriasleatbsothoxast-b)
= 14 E C',, eEnﬁ(m,lfﬂg),

say. Now the mean values

T
£, = Jim o [ P a
-7
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and ’ G=1[] o [ 16 s ) ... Ay
o0 ]

are equal, each being equal to
1+ 3c
This is easily seen in each case on expressing the squared modulus as

a product of eanjugates and integrating term by term.
Since N4-1 is the upper bound of |G|, the lemms, gives

lim G2k — N 1.
kv

Hence also lim Py == N4+ 1.

ko
But plainly Fi% < L
for all values of k. Hence L 2= N 11, and so in fact L = N-+-1. This
proves the theorem.
8.4. THEOREM 8.4. If & > 1, then

188)] < o) (8.4.1)
for all values of t, while
168)] = {1—e)(o) (8.4.2)
Jor some indefinitely large valucs of t.

‘We have HGIES ' E ns
n=1

géln—a = (o),

so that the whole difficulty lies in the second part. To prove this we
use Dirichlet’s theorem. For all values of ¥
N
5(3) — 2 n-Ce-ilvEn + i n—o—#,
w=1 Aa=N+1
and hence (the medulus of the first sum being not less than its real part)

K@) > 3 n-ocos(tlogn)— j+ _— (8.4.3)

n=1
By Dirichlet’s theorem there is a nnmber £ (t, < ¢ < £,4%) and integers
Fy,..., Ty, such that, for given N and ¢ (g = 4),
tlogn

et
2

< % (r=1,2,.., N)
Hence cos{tlogn) = cos(2n/q) for these values of n, and so

N ~
> n-"cos(tlogn) = cos(2w/q) > m" > cos(2n/g)i(e) — i n-o,
n=1 A=1 a=N+1
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Hence by (8.4.3) -
Eta)] 2= cos(2n/g)l(e)—2 3 n—.
N+1

Now o) = in-’ > fu*a du = _l,
2=l o—1
1
@ ) N[
o0 -a
and ~v ~Cdu = .
Ngln < J' “ " o—1
Hence I£(s)] 2 {eos(2n/q)—2N*-*}{{a), (8.4.4)

and the result follows if g and N are large enough.

THEOREM 8.4 (A). The function {(s) is unbounded in the open region

o> 1Li>8>0

This follows at once from the previous theorem, since the upper bound
£(=) of {(s) itself tends to infinity as o > L.

TueorEM 8.4 (B). The function L(1+it) is unbounded ag ¢ — co.

This follows from the previous theorem and the theorem of Phragmén
and Lindeléf. Since I(2+if) is bounded, if L{14-4t) were also bounded
£{s) would be bounded throughout the half-strip 1 < ¢ < 2, ¢ > §; and
this is false, by the previous theorem.

8.5. Dirichlet’s theorem also gives the following more precise result.

TuEOREM 8.5. However large &, may be, there are values of & in the
region ¢ > 1, t > £, for which

1Z(s)! > Aloglogt. (8.5.1}

Also {1ty = Q(loglog £). (8:5.2)
Take f, = 1and g == 6 in the proof of Theorem 8.4. Then (8.4.4) gives
1E(8)] 2= (F—2N1-0)i{s—1) {8.5.3)

for & value of ¢ between 1 and 6¥. We choose ¥ to be the integer next
above 8Y@-L, Then

1 log{N —1)
.-\ Sl

el 2 gy 2 4log8
for a value of ¢ such that ¥ > Alogt. The required inequality (8.5.1)
then follows from (8.5.4). It remains only to observe that the value of ¢
in question must be greater than any assigned ¢, if 0—1 is sufficiently
small; otherwise it would follow from (8.5.3) that {(s} was unbounded

1 Bohr and Landau (1).

> AlogN (8.5.4)
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in the region o > 1, 1 << < {;; and we know that £(s) is bounded in
any such region.

The second part of the theorem now follows from the first by the
Phragmén-Lindel5f method. Consider the function

_ s
J&) = loglog s’

the branch of loglog s which is veal for s > 1, and is restricted to |s] = 1,
a > 0, £ > 0 being taken, Then f(s) is regular for 1 < ¢ << 2, £ = 5.
Also |loglog 3| ~ loglog i as ¢ — co, uniformly with respect to o in the
strip. Hence f(2+if) - 0 as {0, and so, if f{1+it) > 0, f(5) =0
uniformiy in the strip.f This contradiets (8.5,1), and so (8.5.2) follows.

It is plain that arguments similar to the above may be applied to all
Dirichlet series, with coefficients of fixed sign, which are not absolutely
convergent on their line of convergence. For example, the series for
log {(s) and its differential coefficients are of this type. The result for
log {(s} is, however, o corollary of that for {(s), which gives at once

[log £(s)| > logloglog t—A

for some indefinitely large values of ¢ in ¢ > 1, For the nth differential
coefficient of log {(#) the result is that

d ® 13
’(d—) tog (s > 4,{loglog )

for some indefinitely large values of ¢ in ¢ > 1.

8.6. We now turn to the corresponding problems} for 1/Z(s). We
cannot apply the argument depending on Diriehlet’s theorem to this
function, since the coefficients in the series

1 3 ouln)

P
are not all of the same sign; nor can we argue similarly with Kronecker’s
theorem, since the numbers (logn}/2= are not linearly independent.
Actually we consider log(s), which depends on the series >ps to
which Kronecker’s theorem can be applied,

THEOREM 8.6, The function 1{{(s) is unbounded in the open region
o> 1Lt>8 >0
We have for o > 1

| < < 1

t See e.g. my Theory of Functiona, § 5.63, with the angle transformed into a strip.
} Bohr and Landau {7).
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R(Z?i,x) _ Z cos(t;(:‘gp,, < E castlog;}“)_;_ i l,

P Bl n::\'+1p"

Also the numbers log p,, are linearly independent. For it follows from the
theorem that an integer can be expressed as a product of prime factors
in one way only, that there can be no relation of the form

ool = 1,
where the X’s are integers, and therefore no relation of the form
A logpy 4o +-Ay log py = 0.
Hence also the numbers {log p,}/2m are linearly independent. It follows

therefore from Kronecker’s theorem that we can find a number ¢ and
integers #,,..., 2y such that

t%_é_xﬂ < é (n=12.., N),
27

or ltlogp,—m—2mx,i < v (n =1, 2,., ).
Hence for these values of »
cos{tlogp,) = —Cos(tlog_’p"—n—27r.1:“) —cos i = —}%,
and hence R(Z 3) < -3 Z 7 z e
r n=N +1

Since ¥ pg! is divergent, we can, if H is any assigned positive number,
choose o 8o near to 1 that 3 pz° > H. Having fixed o, we can choose N'

so large that N -
e H, e H.
'nglpn - % n=§+1p < %
Then R(Sp) < —§H+iH = —}H.
T

Since H may be as large as we please, it follows that R(Z p~*), and so
logll(s)], takes arbitrarily large negative values. This proves the
theorem,

THECREM 8.8 (A). The function 1/{{1-it) 18 unbounded as t > co,

This follows from the previcus theorem in the same way as Theorem
8.4 (B) from Theorem 8.4 (A).

Ws cannot, however, proceed to deduce an analogue of Theorem 8.5
for 1/{(s). In proving Theorer 8.5, each of the numbers cos(flog n) has
to be made as near as possible to 1, and this can be done by Dirichlet’s
theorem. In Theorem 8.6, each of the numbers cos(¢logp,) has to be
made a3 near as possible to —1, and this requires Kronecker’s theorem.
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Now Thetrem 8.5 depends on the fact that we can assign an upper limit
to the number ¢ which satisfies the conditions of Dirichlet’s theorem.
Since there is no such upper limit in Kronecker’s theorem, the corre-
sponding argument for 1/{(s) fails. We shall see later that the analogue
of Theorem 8.5 is in fact true, bub it requires a much more elaborate
proof.

8.7. Before proceeding to these deeper theorems, we shall give another
method of proving some of the above results.t This method deals
directly with integrals of high powers of the functions in question, and
so might be described as a short cut which avoids explicit use of
Diophantine approximation.

T
. 1
20— lim AYE]
Wewrite  A(f)fY = lim o f \flo+it)2 dr,
~T
and prova the following lemma.
= by <€,
LEMma. Let g(s) = Z k) = Z 2
m=1 =1

Py
be absolutely convergent for & given value of o, and let every m with b, == 0
be prime to every n with ¢, # 0. Then for such o

M{lg(sI(s}iF} = M{lg(s)|*M{|h(s) 12}.
By Theorem 7.1

2 1h |2 Zole |2
Mg = > 2nE arpnis = > 1l
m=l =1

2 q
Now g(a)h(s) = ; =5

where each term d,r—* is the product of two terms &,m~* and ¢, n—.

Hence

M[g(s)his)|?} =

w0

= 33 Pmeel - aate) (.

We can now prove the analogue for 1/¢(s) of Theorem 8.4.
THEOREM 8.7. If ¢ > 1, then

ilo)
7ol < T {8.7.1)
for all values of 1, while
oy Llo)
§(s) = (l—e)r== fi2a) {8.7.2)

Sfor some indefinitely large values of t.
1 Bohr and Landau (7).
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We have, for v > I,
1
Tl

Since i Fny:)l = ]:I (1 —1%)

we have also

S i _ I (1+5) =TT (22) = S,

Ra)
and the first part follows.
To prove the second part, write

1 N
O H (1 _piﬁ)’f‘v(ﬂ),
N
o =11 (155 o

By repeated application of the lemma it follows that

.
}M{m(s)l“}-

lrgar) = L] (=32

=l
Now, for every p,

-1 g

sinee the integrand is periodic with penod 2nflog p; and
H{|nya)|*} = 1,
since the Dirichlet series for {ny(s)}* begins with 1-+.... Hence
2milagp,

g > 1752 |

) 2=flogp 1% 12k
Now lim J. 1—2| dt = max
pﬂ'
(]

-

2k

¥ g

1 - —

1 1
o

ko= 0<i< 2n/logp

Henee '"“[ {!c(sl)\“}]w? ﬁ (l+;ni:)'

Bince the left-hand side is independent of N, we can make N -» a0 on

the right, and obtain
we, o)

|
““[ {IZ(S)IE"}] Z f(20)
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Hence to 'a.ny € corresponds & k such that

1 v2k L)
[l = 0oy

and (8.7.2) now follows.

Sinee {{0)/{(2¢) - 20 a8 ¢ — 1, this also gives an alternative proof of
Theorem 8.8

It is easy to see that a similar method can be used to prove Theorem
8.4 (A), It is also possible to prove Theorems 8.4 (B) and 8.6 (A) directly
by this method without using the Phragmén-Lindelof theorem. This,
however, requires an extension of the general mean-value theorem for
Dirichlet series.

8.8. TuEOREM 8.8.1 However large t, may be, there are values of s in
the region a > 1, ¢ > &, for which

> dloglogt.

JL’( )
Also —‘-7—=Qlolo t).
g — oslost
As in the ease of Theorem 8.5, it is enough to prove the first part.
We first prove some lemmas. The object of these lemmas is to supply,
for the particular case in hand, what Kronecker’s theorem lacks in the
general case, viz. an upper bound for the number ¢ which satisfies the
conditions (8.3.1).

LEMma o If m and n are different positive integers,

g™~ 1
B >max(m,n)'
Forifm <n
7 7 11 1
P tog 112 2.
lOgm/IOgnAl +2n’ g

Lemwa 8. If py,..., py ave the first N primes, and p,,..., juy are integers,
not all O (not necessarily positive), then

N
fog TT pi
N n=1i
For [T p&~ = u/v, where
nml
v= Tl pir,  v=TJ pin
Y0 HaZ0

> (u = max|p,|)

1 Boehr and Landau (7).
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and % and v, being mutually prime, are different. Also
N
max(u,0) < 1] 7 < o,
and the result follows from Lemma «.

LemMa y. The ber of solutions in posits or zero snlegers of the
equation bt ety = E
does not exceed (k- 17,

For N = 1 the nvmber of solutions is k-1, 0 that the theorem holds,
Suppose that it holds for any given N. Then for given vy, the number
of solutions of Yoty etry = bepg sy
does not exceod (k—vy,,+1)¥ < (k+1)¥; and vy,, can take k41
values, Hence the total number of solutions is < (k+1)¥1, whence
the result,

Lemma 8. For N> A, there exits o ¢ salisfying 0 < £ < exp(N®) for
which

cos(tlogp,) < —1+1 (n < A).
Let N > 1,k > 1. Then

(niox")k = z c("or--- "N)ﬂ’%”... x;’&r,

k!
where E(#greees vy} = ~ i
Ot

o Sv,=k
A

The number of distinct terma in the expansion is at most (k4 1) < k2¥,
by Lemma y. Hence ’

(ZP<EerT1<mvye,
50 that 36 > N 3 o)t = kNN 1y,
N
YLet F(iy=1- 3 evoers,

80 that
N
{FEN* = 3 olvgere, wp)(— 1)riteton exp(z’f. ; u, log gn,,),
IF@P = 3 3 ec(— 1) Zhexplit 3 (5,—v,log Pu)
=+ Zy ‘

where I, is taken over values of (v, ¢’} for which v, = 4, vy = 14,..., and
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Z, over the remainder. Now

1 r
Tfe“"dt:l {ax = 0),
L]

T
L[ o éoT_1i 3 0
Tfe =57 Sqr @#o0

T
1 - : 20¢’
Hence ?J' |F ()% dt > 5, o S s e T
o
By Lemma 8, since the numbers v,—1j, are not all 0,
N .
I3 tva—illogp,| = J log TT pftn=s™| > pyimexiaril 2 pgh,
1

Hence

-

Tfif‘(t)]’*dz > 202_2_3’;,in Zw

o

= k(S o (5 oy
(=)
In this we take & = N4, T = ¢, and obtain, for ¥ > 4,
k-w_%?gf = N-GN_Q(%T)"N> e~NHN+L),
Hence

1
2N"

r 12k
{% J- | Ft)jzx dt] > (Nt 1)e-liavvam - N1y
0

Hence there is a ¢ in (0, ¢¥*) such that

1
IF@] > N4 1— 0

Suppose, however, that cos(tlogp,) > —141/N for some value of #.
Then

PO < N1+ 1—e#870| = N1+ v2(1—costlog p,)t

1y} , 1
< N—l+~’2(2—1—v) <N+l

a contradiction. Hence the result,
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We can now prove Theorem 8.8. Asin§ 8.6, foro > 1
1 cos{tlog p,)
og - = — » s (1),
S~ 2 g O
Let now N be large, t = #(¥) the number of Lemma §, 5 = 1/log N, and
¢ = 14-6. Then

A 02(91_052-2>(1_1)Nl_ S L
B> 2w 2R 2 D

N+1
1 1 < 1
— — — = 2
>(1 N)z:ﬂ" 21;,%}(1 N){log;(a —4- Z(Anlogfn)“
1 1 A <=1
> (= a){oei=4) —mgw 25

1 4 N-o

l"gmsn> —A—glo ga ogN 01> 4

1

1§81
The number ¢ = #{¥) evidently tends to infinity with N, since 1/[(s) is
bounded in |¢| <X 4, ¢ 3= 1, and the proof is completed.

> %1 = Alog N > Aloglogt.

8.9. In Theorems 8.5 and 8.8 we have proved that each of the
inequalities
1Z(14-48)| > Alogiogt, Y61 4-i8)] > Aloglogt
is satisfied for some arbitrarily large values of ¢, if A is & suitable
constant. We now consider the question how large the constant can be

in the two cases.

Since neither |{(1--4£)|/loglog £ nor |{(1+1#)|~Y/loglog ¢ is known to be
bounded, the question of the constants might not seem to be of much
interest. But we shall see later that on the Riemann hypothesis they
are both bounded; in fact if

== 1{(14-it)] i LIS t38)|
— , 8.9.1
A b logiogt © " l—vw “loglogt (8.8.1)
then, on the Riemann hypothesis,
A<, g Ba, (8.9.2)
aw

where y is Euler’s constant.
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There it therefore a cortain interest in proving the following results,

Tim | S(L+80)|

THEOREM 8.9 (A).
z-m Toglogt

= e

TuEoreM 8.9 (B). [y 10 #
m  loglogi -n-E

Thus on the Riemann hypothesis it is only a factor 2 which remains in

doubt in each case.

We first prove some identities and inequalities. As in § 7.19, if

F(s) = z ‘l"(”’ (0> 1) (8.9.3)
a-1
™m0 o
then Fifs) = IPIfk(;p"*)- (8.9.5)

Now for real x

fila) = = f ’ z (%:r:”;TT -

g

if a4
s [T—zdefd| ™ & f (1—2vxcosg f-a)t’ (8.9.6)
L
Using the familiar formula
17 i
P)==| — 2 _
W= | o teosgpn 07
0
for the Legendre polynomial of degree =, we see that
1+
Jil®) = - I),cPk 1(1 x) {8.9.8)

Naturally this identity holds also for complex =; it gives

_ 1 1jp 14p
Fels) = ]__[ m‘ﬂ‘_l(l——iﬂ) = L¥(s) 1_[ Pk—l(lt‘i:‘)'
r »
o (8.9.9)
A similar sef, of formulae holds for 1/Z(s). We have

aope= L1 =TT 0=+ H57 e )

1 Littl d (5}, (6), Titch h {4), (14).
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1 < byin}
Hence = z ==, (8.9.10)
=]

where the coefficients &,(n) are determined in an obvious way from the
above product. They are integers, but are not all positive,
The form of these coefficients shows that

Z ibk(n)! (1+ I kﬂ) _ U(”‘é)k
- n (1*‘) ( ;s)"‘z {f(g’:}}k_ (8.9.11)

@

. b} (n)
Agsin, let [&] = il g
gain, lo o) = > A (8.9.12)
As in the cage of F(s),

a=1
Gk(a)=]:[(1+ Pt ) = [ lno. )
(8.9.12

say. Now, for real =,
gul®) = J' | Z m,(k xémewr dé

1 . 17
- ;f | L-farbeid |2 dg — ;f (122 cos ¢+ 2} dg,
bl 0
Comparing this with the formula

PE =1 f {etyizr—)eos ) dp

0

we see thatf flx) = (l—z)"ﬂ(;—i;)‘ (8.9.14)
Hence
o) =TT 0-pR{E2) = L [T Rf1der
=T Ta-prafiis) - ot TT ()
We have also the identity
T (8} = [ (8)Gha). {8.2.15)
+ This formula is, inlly, Murphy's weil-} formul

F{ooa 8) = con® JAF{—k, —k; 1; —~tant §§)
with £ = —tan*48; cf. Hobson, Spherical and Eilipscidal Harmonicas, pp. 22, 31.
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Again for 0 <z < }

ik
1 db
Julz) = ;f A2V oosf T o)

' i T"{l_ 2i(1—cos ) }kdé

= (1l — )k 1--2+rcosd+x
(]

_ o F 1o(MWag o1 (3018
= n(l—«/x)%f { - (I?ﬁ)} ~ I—vmE
a

if % is large enough. Hence also
g4(®) = (L—x)2+1f,  (x)
for & large enough; and

aute) < 1 [ (L dg = (1 (8.9.15)
[}

Jar VEEECL (Lt Syt
sz © 3k 91D

for all values of x and £.

8.10. Proof of Theorem 8.9 {A). Let o > 1. Then

- S I (a3 3 H [-tfe)e

=1

n) di{m)dy(n) 48in? 3T ]og(ﬂ./m)}
:,, Z z k(mn)k" T log*(n/m}
S AL {0

-7
i — TF,(20). (8.10.1)

n=1

Since (from its original definition) f,‘(p-h-) 2= 1 for all values of p,

B20) = I ™) 2 l_[{;k(l i)qk} (8.10.2)

pﬂ
for any positive 2 and & large enough. Here the number of factors ia
m{x) <2 Axflogx. Hence if x > vk

1 1 \4=fogz Axlog 2Kk o
,];lﬁ = (ﬁ) = exp( Tog s ) e~42,  (8,10.3)
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Also

log P g >, O(l_*)
;glpl Sl o]
(log;u f ) 0{(u—1) > l‘ﬂ} — Ofo—1)loga}.
pex pex b
(8.10.4)
Hence F(20) > e-4z—Ako-Diogz 1‘[ (1 _ —]_)—2k,
and P &

-

1 F 12k
[T f( ‘tl)lg(u_l_lt)[zk dt] > gtk —Alolloge
-7 rsz

- {€7+O (I)}E—A.sz—d(a-l)lngxlogx
as & —+ o0, by (3.15.2).

Letx = 8k, where k% < 8 < 1,and o = 1+4nflog &, where 0 < 5 < 1.
Then the right-hand side is greater than

{7 1o (1)}5-/13-41’!(105; k—log %)

Also, if m, r =1$$§TJ{(0+H)I, the left-hand side does not exceed

[%J ( _%""I)(a%])w fli}m+[% j (1 |t|)m,k dt]m

FALE NS
2V 2y ouk
< (T) 071+2 Mg, 1
Hence

Zloghk

Moz > 2VH{erto (l)}e*““‘*"”(los kfk’g%)—w-
]

Let T' = 7%, so that
loglog T = log lc+log(4 log l)
Then K
my g > 271y o (1)}e““"'4‘i{loglog T—log(4 log %) — log%} —

— 21;{loglog Tﬁlog(cl logl)J.
7

Giving 3 and 7 arbitrarily small values, and then making k — co, i.e.
T — w, we obtain

Tim _ eT
. >
mlnglug 7=°
where, of course, o is a function of 7.
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The result now follows by the Phragmén—Lindel6f method. Let
- i)
IO = foglogte- 175

where A > 4, and let A=1im M(I_H"'”

loglog t’
We may suppose A finite, or there is nothing to prove, One = 1,1 = 0,
wo have Z(s)]

HOTES foglog t < Ate ([t > ).

Also, on o = 2, ) =0(1) <Ate (t>4).

We can choose % so that |f{s}| <C A+ alsc on the remainder of the
boundary of the strip bounded by ¢ = 1, ¢ — 2, and ¢ = 1. Then, by
the Phragmén-Lindelof theorem, |f(s)] < A---¢ in the interior, and so

T SO s
mjoglogi — T loglog(i+h)
Hence A > ¢¥, the required result.

8.11. Proof of Theorem 8.9 (B). The above method depends on the
fact that d,(n) is positive. Since b.(n) is not always positive, a different
method is required in this case.

Let ¢ > 1, and Jet & be any positive number. Then

T
b,‘(m) by(n)
Tf Z m‘”’“ n""‘ dt

]2
£’Tzz”%$“(gﬁ

AN
bin} _ 1 |bk(m)bk("’)1 2
/n;\r n2e Z mon®  [|lognfm|
Now logﬁl = Iog% = % = %\,,

s0 that the last sum does not exceed

4N by {m)b, N (S b2 AN (o) |2
7 3 3 e < (> P =

MER

Since f(¢) ~ L/(c—1) as o> 1, and {(2) > 1, we have, if o is sufficiently
near to I, L) 1

f(2e) " o—-1"
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Henes the above last sum is less than

4N
Tloe— 12"

< S LRl [be(r)|
\ﬂ;’ T2 Nln—-} n}a-f—;
1 E(‘}G-Jr‘}) k 1 (2
NF%{ T(at1) = Nm(a—l)
for ¢ sufficiently near to 1. Since for o > 2
1\ Lp=o\% _ [{(do))
Glo) < I;I (l +E,) = ]_:_[ (1——1"_11_’,) = —;F)-} ,
we have similarly
biin) bjn) 1 bi(n)
Gl2a)— > B 2 < D

Alse

1 by (n)
T2

< Glo+1) < 1 {{lo+d) % 1 i)“‘
Ne-1 Ne-1| {{o+1) No-i\g-1] ~
These two differences are therefore both bounded if
9 \Zkhe-1)
v =[5
o—1

With this value of N we have

1 4 1 2 1 J
.T_J' +0(1)!dt:?J‘ t
[ [

Ts)

5
w ™

n< A

> G;;(%)-%ﬁom

> 1lal+ 7)) reomrom

pez
by (8.9.17). Now

1 -1
logn liﬁ“’ = Of(o~~1)logx}
PET

as in (8.10.4). Hence, as in (8.10.3) and (3.15.3),

1—[ {-’:Uc( )”‘} > g-dz-dko—llog 2fp 1o (1)} log™x

Pz

where b = 8ev/r?,
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Choosing = and ¢ as in the last proof,

N 2Iogk 2k log k/n+2k
(e—1)* ( 7 ) '
and we obtain
T
%,f o )+0(1)‘ de > e-AM—7h(p 4 o (1)} log?hSk —
0
og ki +2%
_ ?(2 log k)zlcl & 7+ +O(l).
i
Finally, let 7= (_2 log ")2" o8 kimaak
» - .
Then
loglog T' = logk+l0g(210gk+ 2)+loglog‘1°gk < (14e€)logk
for & = &y = ky(e,n). Hence
T
1 1 ? _ oglog T 1)%
e i 1 A8k —Ank, 2 __ - )
Trf iy O ){ dt > oAb ATk{ o (1)} cﬁl+s 1og8) o)

1
Let M o= —,
Hor = e Lo L]

Sinee the first term on the right of the sbove inequality tends to infinity
with k (for fixed 8, «, and «) it is clear that MZ ; tends to infinity. Hence

{k(3)+0 1)‘ < Mk,

if k is large enough, and we deduce that

15k At loglog T' 1\2
Sk — A X -
AME > Le {b+o (1)}* ( o log )

for k large enough. Hence

1 loglog 7' 1
Moz > we—zfa—m:{zuro(l);( 0§08 —log—).

14+-€ ]

Giving 3, ¢, and » arbitrarily small values, and then varying 7,
we obtain
M, »

loglog T

iim >=b

The theorem now follows as in the previous case.
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8.12. The above theorems are meinly concerned with the neighbour-
hood of the line ¢ = 1. We now penetrate further into the critical strip,
and provet

THEOREM 8.12. Let o be a fived number in the range § < o << 1. Then
the inequality [L{a-+it)] > exp(logs)

i satisfied for some indefinitely large values of t, provided that
a << Il—o

Throughout the proof % is supposed large enough, and § small
enough, for any purpose that may be required. We take } < ¢ < I,
and the constants C}, C,,..., and those implied by the symbol O, are
independent of & and 5, but may depend on o, and on e when it oceurs,
The case o = } is deduced finally from the case o > }.

We first prove some lemmas,

LEMMA o. et
1y mtal®

k-1
s = N AT
D(s)¥(s) = Z,W +
in the neighbourkood of s = 1, Then
o] < %% (1< m < k)
The a$* are the same as thoso of §7.13. We have

()= S oo, 50) = (s—1)* § etbfo 1),
=0 =t}

where leni < O3, <0 (G161
Hence e! is less than the coefficient of (s—1)® in

( f C‘?;(a—l)"}k = {I—Oy(s—1)})* = i (ktn—1)! CBa—13m,
4o

&, Ue— 1Tl
Hence N
k-m~1 - A '
Nt — ) % m—n (K+n—1)!
il = 3 et < 2 G
e on (2k—2)! "
= ey <
LeMma 8.

7 | Tto-tingsetinesie-aep g

= ”nzldk(”)exp(“mxe—‘ﬂ) 2 g1 dz—exp(C, klog k).
1

t Titchmorsh (4).
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By (7.13.3) the left-hand side is greater than
2 J. |y (ixe-D) | 2g2e-1 g = I’121dk(n)exp(4inxe"s)l2.2':2”—1 dx—
1 1 ) "
-2 f | Byl iae=18) | 2gte-1 Jp,
i

Since |log(ize~®)| < logz+1m,

| Bylize9)) < _{laf] + lafP|log -+ m)+- ...+ af®) (log -+ -3}

< kecl"(logz—}-%w)"*’-’
®

and

al o o
f (log x4 dm)o-2a%0-3 dg < [ (2log x)2k-2x20-3 dy fﬂ-z"‘zxz"*“ dx
i i i
_ Digk—1) | mok-2
T (I—g)-1 2 9g"
The result now clearly follows.

Lzmya v,

@ 2

J ‘ > dk(n)exp(—ime*‘ﬁ)l x21 dy
i "

G <= diim) _ in § 1< ‘] —nein §
=5 Zl'n?e sy log Zldk(n)e .
n ws

The left-hand side is equal to

f i dy(m)dg(n) J‘ exp(imxe’® —jnae—8)x2o-L dy
m=1aS1
! =3+ 2 =545,
F=n wmER
o« Lol
Now J'e_em:sinaxzqa dr = (2nsin3)-% f ey gy,
i ensind
and for 2nsind < 1
w a
f eyl gy > f e Vo=l dy — () > (L e-tnsind
2nsind 1

while for 2nsind > 1
J‘ evya=1 gy J‘ e~¥ dy — g-tasind

2nsind 2nsind
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Hence

@

= Z )f e-nesindyzo-) g -, Q_ i ‘l:(”)e-s“m 5,

n=1 =1

Also, using (7.14, 4),
1! << G Z Z dy(mdd,( n)

m=En=]

2 > D)7

1m=rt1

g—m&ind

g~§rsind

-
Z dy(m)e-imsind g (M —r)e=Em-risin §

#+1
E—Jrsinb‘ i

<G p ( Z di{m)e-melnd Z dﬁ_(m-r)e-{m#)slné}%
Fa) Mer4l m=ri]

g-froind = ©
<G Z 2 di(m)e-mains Cslogé Z di(m)e-msta5,

=1 m=1 m=1
This proves the lomma,

LeMma 8. For o >1

Tl me

]

k \te
exp(C.(bg ;) } < Bio) < explcyyie)
It is clear from (8.9.8) that
MR < (1—vry % (9 g o 1).
Also it is easily verified that

{(k+m—l)!) (k2-Fm—1)1

(#—1)11m! R —1)Tml -
Hence, for 0 < g < 1,

T (k2m—1)t

Sulz) < @ Tyimr

A == (1—g )it

meg
log Fi() = 2B S+ 08 ful2)
S 2% 3 logl——p-toy1ppe 2 Jog(l—p—)1
= O(kwgk.p‘i") + O(keyaghp—o)
= O{k(k’/ﬂ)lvif’}-}- O{kﬂ(k!/u)l—o} = Ofk¥a),

Hence
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On the other hand, (8.10.2) gives
log Fi(o) > 2k 3 log(1—p-io)-1— z log 2k
p<x

>2!cz;p to_ C"l e log 2k

1~ i
> Ok fogs “log xlog 2k.
. Gy ke
Taking 2= (2—.01l fogF

the other result foliows.

Proof of Theorem 8.12 for } < ¢ < 1. 1t follows from Lemmas 8 and
y and Btirling’s theorem that

¢ : Ca < dﬁ(n) —nsin §
(Slo-Fit)Phe-tite 1 gy o a0 N BN, —
J b ZI n

Py

©
_Culogé z d}i(n)e‘" sinﬁ_cm eCuklogk
n=1

Now, if 0 < ¢ < 20—1,
z d’(n)e Snsind _ F(2o’) S da‘(n)(l e—z»alnS)

> Fi(20) —Cis i

n=1

= F{20)— Oy 8 F(20—0)

1o
> exp{Gfy 2 |- G oxpigy e

n=l

By

and @
3 din)emind < 0 Eldi(ﬂ)(%)““ = 3 8% F(20—¢)
n=1 nm=
<< Gy 8 exp{Cl,y k¥hze-a),
Let 8= exp{—-i‘—"k”‘““’].
Then
4 b\l
J [6{-4t) [2he—2Bg2o -1 iy - g,;[ lanP{C (@) }—CuUu—

- C‘ C" Q k21(20~€)] 015 ePaklogk

o, k \Uo
- a”""p[ (logk) ]
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Buppose now that
Klo+it)| < expllog™) (¢t %)
where 0 << o < 1. Then

f |§(g+ﬂ)lzk€-2&£2v—1 dt < Cfs +f eBklogrt—odiy201 dt.
[ 1
If s > ks, b~ &y, then

!c- < W l £ .
- 5 2 loget
ence
@ 33
f ePRIoE 21 gy o pabingruy J" oMot gy f e~Sig2o-1
i i 22
C.
ok ookt Can
< gtk logaikt! )8_26_
k e k
Hence ] = 2| = O Heayzo—g
foa% 0 i‘r:Iog“ﬂ5 O(E +2a)zo-g)),
1 20
Hence —g 14
o +2cke’

and since ¢ may be as small ag we please
1 (s
= E 1+;, 2= E
The ease o = §. Suppose that
L3+ = Olexplloght)} (0 < g < ).
Then the function f(8) = Us)exp(—loghs)

.is bo_unded on the lines ¢ = Lo=21¢> 4y, and it is O(f) uniformly
in $his strip. Hence by the Phragmén- Lindelsf theorem f(s) is bounded

in the strip, i.e.
{o-rit) = Ofoxp(loghy}
for } < o < 2 Since this is not true for § < ¢ < 18, it follows that
B=t
NOTES FOR CHAPTER &

8.13. Levinson {1] has sharpened Theorems 8.9(A) and 8.9(B) to show
that the inequalities

£ +in) > e loglog ¢ + O(1)
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and

1 Ge?
m = o (loglog ¢ —logloglog #) + O(1)

each hold for arbitrarily large . Theorem 8.12 has also been improved,
by Montgomery [3]. He showed that for any ¢ in the range 4 <¢ <1,
and for any rea! 9, there are arbitrarily large ¢ such that
R{ePlogllc +in} > #5 (0~ P~ (log £)1-+(loglog ¢)-,
Here log {(s) is, as usual, defined by continuous variation along lines
parallel to the real axis, using the Dirichlet series (119 foro > 1 It
follows in particular that
, & (log -
= — <1},
Lo +1it) ﬂ{exp (o' 3 (loglog 2 3 <o <)
and the same for {o+i)-1. For o=} the best result is due to
Balasubramanian and Ramachandra [2], who showed that
. (log H)} )
max +it)| = ex (lowlon FTE
Tsig T+HIC(% d p(%(loglogH)

iflogTP < H< Tand T = T(d), wheredis any positive constant. Their
method is akin to that of §8.12, in that it depends on a lower bound fora
mean value of |{(}+i?)/2*, uniform in k. By constrast the method of
Montgomery [3] uses the formula
(logy? . .

e Ploglioc+it+ iy)(m‘]yi) {1+cos(9+ylog x) }dy

~(logy?

!

- M-a-u(_ E) Ofx(log1)-2}.

\1og,§|<;108"n b |logx| +O0{x(logt)-2}. (8.13.1)
This is valid for any real x and §, providing that {(s) # Ofor R(s) > cand
1I{s) ~¢| 2(log ¢)2. After choosing x suitably one may use the extended
version of Dirichlet’s theorem giver in §8.2 to show that the real part of
the sum on the right of (8.13.1} is large at points 4 <...<ty< T, spaced
at least 4(log T)2 apart. One can arrange that NV exceeds Mo, T),
whence at least one such t, will satisfy the condition that {(s) + 0in the
corresponding rectangle.



IX
THE GENERAL DISTRIBUTION OF THE ZEROS

9.1. In § 2.12 we deduced from the general theory of integral functions
that {(s) kas an infinity of complex zeros. This may be proved directly
a8 follows.

We have
1,1 1,1, 1 11 1 11 3
atut <mtggtygt-= z+(§*§)+(5—i)+"- =z
Hence for o = 2
1,1 1 7
His)l < g tm e <t <g (9.1.1)
1 1 1
and H = 1—g— 2 Lo g > oo (9.1.2)
Also R{i(s)} = 1+“‘””(‘2—1q°gz)+... > 1._%—... > i. (9.1.3)

Hence for ¢ > 2 we may write

log {(s) = log|{(s}|+éarg {(s),
where argl{s) is that value of arctan{I{(s)/R{(3)} which lies between
—}r7 and }n." It is clear that
Hogl(s)i <A (o= 2) (9.1.4)

For ¢ << 2, t # 0, we define log #(s} as the analytic continuation of
the above funetion along the straight line (o-44t, 24-if), provided that
{{2) = 0 on this segment of line.

Now consider & system of four concentric circles G, Gy, €, C,, with
centre 3447 and radii 1, 4, 5, and 6 respectively. Suppose that [{s) 7 0
in or on €y Then log{(s), defined as above, is regulsr in ;. Let A,
M,, M, be its maximum modulus on ¢}, C,, and C, respeotively.

Since [(s) = O(t4), Rilog {(a)} << Alog T in €, and the Borel-

" Carathéodory theorem gives
2.5 645 .
M, < mAlog T+6jslog|§(3+1T)[ < AlogT.

Also M; < A, by (9.1.4). Hence Hadamard’s thres-circles theorem,
applied to the circles C,, Gy, C;, gives

My << MIME < AloghT,
where l—a=f=log¢/flogs < 1.
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Hence {(—14+4T) = Ofexp(logfT)} = O(T*).
But by (9.1.2), and the functional equation (2,1.1) with ¢ = 2,
[L—14iTy > ATE.
We have thus obtained a contradiction. Hence every such circle €
contains at least one zero of {(¢), and so there are an infinity of zeros.

The argument also shows that the gaps between the ordinates of
suocessive zeros are bounded.

9,2, The function N(T). Let T >0, and let N(T) denote the
number of zeros of the function {(s) in theregion ¢ Lo L 1,0 <<t L 7.
The distribution of the ordinates of the zeros can then be studied by
means of formulae involving N{T).

The most easily proved result is

THEOREM 9.2, 48 T'—» w0

N(T-+1)—N(T) = O(log T). (9.2.1)

For it is easily seen that

N{T+1)—N(T) < n(v5),
where n(r) is the number of zeros of {(s) in the circle with centre 2417
and radius r. Now, by Jensen's theorem,
3

2m
f@dr:EIJflog\§(2+£T+3e‘9)|dﬂ—logj§(2+iT)|.
(1] a

Since |{{s)! < 14 for —1 < o < 5, we have
log|L(2+iT+3e")| < Alog T.

3

Hence f @dr < AlogT+4 < AlogT.
o
a a 3 d
Since f ﬂgldr > ‘[E-E_f—)dr = n{v5) J.f = An(~5),
oG 45

the result (9.2.1) follows.
Naturally it also follows that

N(T+h)—N(T) = Olog T')

for any fixed value of k. In particular, the multiplicity of a multiple
zero of [(s) in the region considered is at most O(log T').
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9.3, The closer study of N(7') depends on the following theorem,j
If T is not: the ordinate of a zero, let §(7") denote the value of
= larg {3 +iT)
obtained by continuous variation along the straight lines joining 2,

2447, }+47T, starting with the value 0. If 7 is the ordinate of a zero,
let S{T) = S(T+0). Let

UT) = L Tlogp 1110820 T (9.3.1)
27 2 8

THEOREM 9.3, 45 T > o
N(T) = L(D)+8(T)+-0(1T). {9.3.2)
The number of zeros of the function E(z) (see § 2.1) in the rectangle
with vertices at 2 = 473 is 24(7T), so that

_ 1 rE@
2N(T) = o _LE(z) dz
taken round the rectangle. Since Z(z} is even and real for real z, this
i3 equal to

\ SN i =) 5 2+ 4T £
2z, 2 ) 3
?z(f + ”Ecz)"“ni“ + f_)f(s)d"
T T H a7

= gAa,rg £(8),
o
where A denotes the variation from 2 to 247, and thence to 14T,
along straight lines. Recalling that
£(s) = Rals— 1)~ HT(ke)l(3),

we obtain ]
=N(T) = Aargs{a—1)+Aargn ¥+ Aarg I(4s)+ Aarg L(s).

Now Aargs(s—1) = arg(—}—T?) = x,

Aargn ¥ = Aarge 1187 — _tTlopn,
and by (4.12,1)
Aarg[(}s) = Ilog [(}+4i7)
= I{{(— - BT og($ T} — LT+ O T)}
= {Tlog 4T — e — 4T+ {1/ T).
Adding these resuits, we obtain the theorem, provided that T is not the
ordinate of & zero. If T iy the ordinate of & zero, the result follows from

t Backlund (2), (3).
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the definitions and what has already been proved, the term O(1/T) being
continucus.

The problem of the behaviour of N(7') is thus reduced to that of S(T).

9.4. We shall now prove the following lemma.

LeMMa. Let 0 < a << B < 2. Let f(s) be an analytic function, real for
real 8, reqular for o 2> a except ats = 1; let

[Rf(2+it)] =z m > 0

and o' +i) < My (@ Zo 1K <)
Then if T' 18 not the ordinate of a zere of f(s)

1
jarg fo-HT)| < (fog 37wt 108 )+ (0.4

Joro =z f.
Since arg f{2) = 0, and

.
log{{2—a)/(2—B)}

argf(s) = Brcta,n{ LI (8)},

Rf(s)
where R f(s) does not vanish on o = 2, we have
larg f(2+iT)| < .
Now if Rf(s) vanishes q times between 2+i{T" and §+4i7', this interval
is divided into ¢+1 parts, throughout each of which R{f(s)} = 0 or
R{f(s)} << 0. Hence in each part the variation of argf(s) does not
exceod m. Hence  jargfis)l < (g+3m (o > B).
Now g is the number of zeros of the function
#(2) = H{fle+iT)+-fle—iT)}
for I(z) = 0, B < R{z} < 2; hence g << n(2—B), where n(r) denotes the
number of zeros of g(z) for |2—2| < r. Also
2-a 2—w
@dr = J- 7-2-(T—)dr = n(2—ﬂ)10g-—2wm,
r r 2—8
1 2-g
and by Jensen’s theorem:
2

2w
[ ®0ar = 2 [10glgtz-+(2—aje do—togia(2)
o o

< log M, y.o+log Iim.
This proves the lemma.
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We deduce
TrEOREM 9.4. AsT -+
S(T) = Olog T),

Chap. IX

(9.4.2) §

. 1
.. H(T) = o Tlog T 1"';%2” T4 Oflog T. (9.4.3)

We apply the lemma with f(s) = {{s), « =0, f =}, and (9.4.2) ]
follows, since {(s) = O(¢*). Then (9.4.3) follows from (9.3.2). ]
Theorem 9.4 has a number of interesting consequences, It gives §
another proof of Theorem 9.2, since (0 <2 § < 1)
LITH+1)—I(T) = E{T+8) = O(log T).
We can also prove the following result. .
If the zeros ftiy of {s) with y > 0 are arranged in a sequence 2
Pn = Putiy, so that ., = v, then as n >0 :

27n 3
el ~ v ~ @- (0.4.4)
We have N(T) ~ -‘}— Tlog T.
ey
Hence 2aN(y,u 1) ~ (v, £ Wogly, +1) ~ v, logy,.
Also Ny—1) < n < Nyt 1),
Hence 2an ~ y, log v,
Hence logn ~ logy,,
2an
d ~T
and so Ya Togn

Also |p,| ~ y,, since 8, = O(1). . ]
We can also dednce the result of § 9.1, that the gaps between the .
ordinates of successive zeros are bounded. For if |8(t)| < Clogt (12 2),
T+H ;

N(T+H)vN(T):$f log%dt+S(T+H)~S(T)+0(%)
T

H
2
which is ultimately positive if H is a constant greater than 4C. K

The behaviour of the function ${T') appears to be very complicated, 3
It must have a discontinuity k where 7' passes through the ordinate of '
& zero of [{s) of order & (since the term O(1/7) in the above theorem is
in fact continuous). Between the zeros, N(7') is constant, so that the

=5 log % — Cllog(T+Hj-+log T}+O(%),
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varistion of S(T') must just neutralize that of the other terms. In the
formula (9.3.1), the term § is presumably overwhelmed by the variations
of §(7). On the other hand, in the integrated formula

T r 7
[N ds = [ Ly de+ [ 8@ de+O(log T)
0 o L}

the term in S(7T') certainly plays a much smaller part, since, a8 we shall
presently prove, the integral of S(t) over (0, T} is stifl only Oflog T').
Presumably this is due to frequent variationsin the signof §(t). Actually
we shall show that S(¢) changes sign an infinity of times.

9.5, A problem of analytic continuation. The above theorems on
the zeros of £(s} lead to the solution of a curious subsidiary problem of
analytic continuation.t Consider the funetion

P(s)zzj_—;.

This is an analytic function of s, regular for « > . Now by (1.6.1)

(9.5.1)

= e

Pls} = ;T log {{ns). (9.5.2)
As n >0, log{(ns) ~ 2-". Hence the right-hand side represents an
analytic function of s, regular for o > 0, except: at the singularities of
individual terms. These are brench-points arising from the poles and
zeros of the functions [(ns); there are an infinity of such points, but they
have no limit-point in the region ¢ > 0. Hence P(s) is regular for
o > 0, except at certain branch-points.

Smmilarly, the function

. < {'(ns) x
Qs) == —P'(s) = — z mim) T (9.5.3)

is regular for ¢ > 0, except at certain simple poles,

We shall now prove that the line ¢ = 0 is ¢ natural boundary of the
Ffunctions P(3) and Q(s).

We shall in fact prove that every point of o = ¢ is a limit-point of
poles of @(s). By symmetry, it is sufficient to consider the upper half-
line. Thus it is sufficient to prove that for every u > 0, § > 0, the

square 0<o<d u<i<utd (9.5.4)

contains at least one pole of ¢{s).

1 Landau and Walfisz (1).
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As p > w throngh primes,
H 1
Ni{p(u+t8)} ~ gz Foplogp,  N(pu)~ 35 ¥plogp,

by Theorem 9.4. Hence forall p > D(8,u)
N{p(u+8)}—N(pu) > 0. (9.5.5)
Also, by Theorem 9,2, the multiplicity v{p} of each zero P = B4-iy with

ordinate ¥ 2> 2 ig jegs than 4log ¥, where A4 is an absolute constant,
Now choose p = (3, u) satisfying the conditions

1 2
P>5 P> » PEpbu), p> A log{p(u-L8)),

There is then, by (9.5.5), a zero p of {(¢) in the rectangle
ige <], Fu <t < p(ud-3). (9.5.6)
Since y > pu > 2, jts multiplicity u(p) satisfies
Up) < Alogy < Alogip(ut8)} < p,

and g0 is not divisible by p.

The point p/p belongs to the square (9.5.4). We shall show that this
point is & pole of @(s). Lot m run through the positive integers (finite
in number) for which Lmp/p) = 0. Then we have to prove that

z"—i’lﬂv(”—;") #0, (9.6.7)

The term of this sum corresponding to m = p ig —%(p)/p. No other m
ocewrring in the sum is divisible by p, since for m > 2p
R(’-"i’) "B 1.
P »7

H ey fme) _ & _vfp)

ence Z et 7 P
where a and 5 are integers, and p is not a factor of 6. Since P is also
not & factor of v(p), ap # bv(p), and (9.5.7) follows,

There are various other functions with similay Properties. For

example, T let w
Jials) = Z {d_k;‘LJ}' ,
=1

where & and 7 are Ppositive integers, & > o, By (1:2.2) and (1.2.10),
Jril8) is a meromorphic function of s if  — Lorifl=2and & — 2
For all other values of Land &, f,4(s) has o = 0 as & natural boundary,
and it has no singularities other than Poles in the half-plane o ~ ¢,

1 Estermann ().
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9.6. Anapproximate formula for {'(s)/{s). The following approxi-
mate formula for {'(s)/{(s) in terms of the zeros near to § is often useful.

THEOREM 9.6 (A). If p = B-4-dy runs through zeros of {(3),

[45)] 1
LEC ——+0(log ), (9.6.1)
L(sy uﬁzm s—p

uniformly for —1 < o < 2.
Take f(s) = {(s), 8, = 2+iT, r =12 in Lemma « of §3.9. Then

M = Alog T, and we obtain
{is) 1
L) _ L ogeg ) (9.6.2)
5a) Jpx%:sa =P
for |s—s,} < 3, and so0 in particularfor —1 < o< 2,0 = T. Replacing
T by tin the particular case, we obtain (9.6.2) with error O(logt), :m-d
—1 < o <2 Finally any term occurring in (9.6,2) but not in {9.6.1} is
bounded, and the number of such terms does not exceed
N(z+6)—N(t—6) — Olog)
by Theorem 9.2. This proves (9.6.1).
Another proof depends on (2.12.7}, which, by a known property of
the [-function, gives
e Z (L+ 1).4_0(1%;).
fo)  Lls—pTp
Replacing s by 2-+it and subtracting,
Fle) _ (L_;) Odlogt
m_z e T Otes ),
since {'(2+4at)/L(2+48) = O(1),

Now L o1y = Oflog1)
- = = Ullog
u~%1 24it—p |¢—§s1
by Theorem 9.2. Also

( 1 1 ) 2—o
{rn<y<itntl S—p  24-it—p t+n<y<t+n+1(sip)(2+zt_'n}
sl 3, ooy
y—iE n® »
t+a<ypgientl fraysii4n+1
again by Theorem 9.2, Since
< log(t+n) log 2¢ log2n _ I
> B < > + 2> Otlog 2},

n? 02
n=1 nxd n>b
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1 1
it follows that (Wﬁ_) = Oflog?).
v;n:-l s—p 24— (og )
1
imil; O(log?
Similarly ,,z‘_; (S—P 2+“ ) (log #}

and the result follows again.
The corresponding formula for log {{s) is given by

THEOREM 9.6 (B). We have
log {(s) = EI: log(s—p)+O(logt) (9.6.3)
g-yl<1

uniformly for —1 < o < 2, where log{(s) has its wsual meaning, and
-—m < Llog(s—p) & =
Integrating (9.6.1) from & to 2--it, and supposing that i is not equal

to the ordinate of any zero, we obtain
log &(s)—log L{2+42) =, ;( l{10,g(s—,:)—1og(:2+ia:—p)}-i-O(!og &)
=¥

Now log £(2-+4t) is bounded; also log{2-it—p) is bounded, and there
are O(log?) such terms, Their sum is therefore O(log#). The result
therefore follows for such values of t, and then by continuity for all
values of ¢ in the strip other than the zeros.

9.7. Asan application of Theorem 9.6 (B} we shall prove the following
theorem on the minimum value of {{s) in certain parts of the eritical
strip, We know from Theorem 8.32 that [{(s)| is sometimes large in
the critical strip, but we can provs little about the distribution of the
values of ¢ for which it is large. The following resultt states a much
weaker inequality, but states it for many more values of £.

TeroreM 9.7. There is a constant A such that each interval (T, T+ 1)
contains @ value of 1 for which

1Z(s)] = 4 (1K o2, (9.7.1)
Further, if H is any number greater than unaty, then
1£(s)| => T-42 9.7.2)

Jor - 12 Tt < T except possibly for a set of values of ¢
of measure 1{H,
Taking real parts in (9.6.3),

log|Z(s)] ="_§€llog|s—|°|+0(logt)
= 2 log|t—y [+ O(log t). - (8.1.3)
-Fs1

+ Valiron (1), Landau (8}, {18), Hoheisal {3).
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Now
P+l min(y+1L,7+1)
logjt—y| dt = loglt—y| dt
J u-gsl Ced T—lggsTJrgm:Jlm cd
loglt—y| dt
“ - 1<y<r+z J- glt—y|
= ( 2y > —AlegT.
T-1<y<T+8
Hence ; loglt—y| > —AlogT
lt—yl<1

for some ¢ in (T, T+1).
Hence log|{(s}| > —Alog T for some ¢t in {T,7+1) and all ¢ in
-1« o< 2 and
logj{{s)| > —AHlog T
except in a set of measure 1/H. This proves the theorem,
The exceptional values of t are, of course, those in the neighbourhood
of ordinates of zeros of {(s).

9.8. Application to a formula of Ramanujan.} Let @ and b be
positive numbers such that ab = =, and consider the integral
_E_. a2 F(s) ds — L g I‘&"‘")
2mi L(1—2s) 2mi ) vm [{28)
taken round the rectangle (14+¢7, —4--i7"). The two forms are equiva-
lent on account of the functional equation.
Let T - co through values such that | T—y| > exp(— 4, y/logy} for
every ordinate y of a zero of {(s). Then by (9.7.3)
loglilo+iT)| > = 3 Auyflogy+0llogT) > —4,T

where 4, << 1= if 4, is small enough, and 7' > T;. It now follows from
the asymptotic formula for the I-function that the integrals along the
horizontal sides of the contour tend to zero as T’ — oo through the above
values. Hence by the theorem of residues]

T I'ts) 1 e rg—e)
28 —8
277;'*%_ o = 271:1_1 i {2s) ds
= 1 b I'gg— }F).
2V £ [4ry

1 Hardy and Littlewood (2), 166-9.
1 In forming the series of. wo have supposed for simplicity that the zeros of {(s)
are all simple.
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The first term on the left is equal to
Sum 1 g e 2. i)
[ Sl N r - - HALY oy p—tammi
Z n 2mi f (a) (s) ds zn{ ¢ }
n=1 —}liw n=1
_ Z ﬁ(_n), e—tam?
n
a=1

Evaluating the other integral in the same way, and multiplying through
by va, we obtain Ramanujan’s result

= »
Vi Z ‘-L-(nl) goloim? b Z 'ffgi) gim? — _EfE Z b H?T?’;%ﬂ
n=1 n=1

(9.8.1)

We have, of course, not proved that the series on the right is con-

vergent in the ordinary sense. We have merely proved that it is conver-

gent if the terms are bracketed in such a way that two terms for which

ly—y'| < exp{—4, y/log y}-+exp(—d, 7 /logy")

are included in the same bracket. Of course the zeros are, on the average,

much farther apart than this, and it is quite possible that the series may

converge without any bracketing. But we are unable to prove thig,
even on the Riemann hypothesis.

9.9, We next prove a general formula concerning the zeros of an

analytic function in & rectangle.f Suppose that $(s) is mereomorphic in
and upon the boundary of a rectangle bounded by the lines ¢ = 0,
t=7T, o =ua0=f(B > ), and regular and not zero on ¢ = §. The -4
function logd(s) is regular in the neighbourhood of o = B, and here, 3
starting with any one value of the logarithm, we define F(s) = log ¢(s).
For other points s of the rectangle, we define F{s) to be the value
obtained from log$(8-+it) by continuous variation along ¢ = constant 1
from B+t to ¢-Lit, provided that the path does not cross a zerc or 3

pole of ¢(s); if it does, we put
F(5) = lim F(o-+it+ie).
el

Let v(o’, T) denote the excess of the number of zeros over the number

of poles in the part of the rectangle for which o > o', including zeros

or poles on t = T, but not those on # = 0.

8 4
Then j F(s)ds = —2ni [ vio, T} do, (9.9.1) |

e

the integral on the left being taken round the rect gle i the p

direction.
t Littlowood (4).
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We may suppose ¢ = 0 and ¢ = T to be free from zeros and poles of
${s); it is easily verified that our conventions then ensure the truth of
the theorem in the general case.

‘We have
8 B T
[ Fis)ds = | F(o)do— | Flo+iT)do+ [ {F(B+it)—Flait}idt.
* ' (9.9.2)
The last term is equal to
Conboerin, F. 1T vo
; di J’l‘d:fdfusd
6[ 2 J ¢("+13) T F 95(3) Sy
and by the theorem of residues
o+HiT B8 B+iT BT,
$5) 4 _ f T ) .
Ty 8 = +J — f %—)-ds-—%rw(c,f’)
a ] a+il
= Flo-+iT)— Flo)—2miv(o, T).
Substituting this in (9.9.2), we obtain (9.9.1).
We deduce
T
TreorkM 9.9. If Sy (T) = J' 8(t) dt,
0
2
then 8T _—_;1; f log) Lla-+iT)| da-+O(1). (9.9.3)

3
Take ¢(s} = £(s), = == %, in the above formula, and take the real part.
We obtain
8 T 8
[ togitto)i do— [ argLig+itt dt— [ logllic+iT) do+-
i ° ¥

T
+ [argld+indt =0, (9.9.4)

the term in »(e, T), being purely imaginary, disappearing. Now make
B - on. We have

log L{s) = log(l. + ;;.;_ ) — o)
ag o - oo, uniformly with respect to ¢. Hence arg {(s) = 0(2-°), so that

the second integral tends to 0 as §— . Also the first integral is a
constant, and

A
log L{a+iT)| do = [ O(2-%) do = OQ1).
2 2
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Hence the result.

THEOREM 9.9 (A).
By Theorem 9.6 (B)

S(T) = Olog T').

2 2
flog\{(sﬂ do = ; flogl s—p| do+O{logt).
i ey

The terms of the last sum are bounded, since

2 2
Hlogli+1) > [ loglto—B)+(y—0)% do > 2 [ loglo—f| do > 4.
3 3

Hence [toglf(s)1 do = O(og), (9.9.5)
P

and the result follows from the previous theorem.
It was proved by F. and R. Nevanlinna (1}, (2) that

J‘T S04~ A+o(["_§£). (9.9.6)
;

This follows from the previous result by integration by parts; for
T

7 «
8(t) 5, [80]* Sy 5, 8{T) 8,6
de.e_[—r]lJrff;{ dJ,_A+_.T_— —tﬂ'dt'

1 1 T
Sinee 8,(7") = O(log T), the middle term is O(T-1log 7, and the last
term is -

¢ log ¢ _ loge]™_ (dty _ flog T
offrze) o 4=
¥ s
Hence the result follows, A similar result clearly holds for

T

8(5)
J.?dt 0 <a<l)
1

It has recently been proved by A. Selberg (5) that

8(t) = Q. {(log ¥ (loglog 1)} (9.9.7)
with a similar regult for 8,(#); and that
8,(t) = Q, {(log )} (loglog £)4}. (9.9.8)

9.10. THEoREM 9.10.1 S(2} has an infinity of changes of sign.
Consider the interval {y,,y,,,) in which N(#) = n, Let I{t) be the
t Titchmarsh (17),
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linear funiction of ¢ such that I(y,) = S(y,}, Hyns1} = Slya41—0). Then
for y, <t <<y,
Hth=540) = 800 =0)= S0} 20— (10— St}
n+¥ 1™ ¥n

31— 1
= (L)~ L} 1 (L~ Ly, 0(—),
(L) =0 (L= L0 -

using (9.3.2) and the fact that N () is constant in the interval. The first
two terms on the right give
—LEU—y )+ L (Yt—ra) vy <0 <h v, <E<yen)
= L'€j(n—E)t—v,) (£ between £ and 7)
= {1y,
since ¥, —y, = O(1). Hence
Yuit Fna L

[ st dr = J i ofrea=)

J

¥n
= =500} Sty =0+ 0722 2s),
Suppose that 8(¢) = 0 for ¢ > #,. Then
Ny, 2 Niy,—0)+1
gives Syn) 2 Slya—0+1 = L.
Hence Frot
|| 0t > sy +ofza=2)
M
¥a
Z Hywna—ryn) (0 22 m).
Ty
Hence | 8@ dt =z Hyx—yah
Yo

contrary to Theorem 9.9 (A). Similarly the hypothesis S(t) < 0 for
i >, can be shown to lead to a contradietion.

It has been proved by A. Selberg (5) that S@) changes sign at least

T(lng T)§e__4\luglug T

times in the interval (0, T').

9.11. At the present time no improvement on the resuls

8(T) = Ollog T

is known. But it is possible to prove directly some of the results which
would follow from such an improvement. We shall first provet

TrEOREM 9.11. The gaps bet the ordinates of ive zeros of
L(s) tend to 0.

1 Littlewood (3).
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This would follow at once from {9.3.2) if it were possible to prove that
8{8) = o(logt).

The argnment given in § 9.1 shows that the gaps are bounded, Here
we have to apply a similar argument to the strip T—3 < ¢ < T+8,
where 5 is arbitrarily small, and it is clear that we cannot use four
coneentric circles. But the ideas of the theorems of Borel-Carathéodory
and Hadamard are in no way essentially bound up with sets of concentric
circles, and the difficulty can be surmounted by using suitable elongated
curves instead.

Let D, be the rectangle with centre 3--iT' and a corner at —83-i(T+3),
the sides being parallel to the axes. We represent I, conformally on the
unit cirele ) in the z-plane, so that its centre 3--¢T corresponds to
z = 0, By this representation a set of concentric circles 2| = v inside
¥, will correspond to a set of convex curves inside D), such that as
# -» 0 the curve shrinks upon the point 3--iT, while as r + 1 it tends
to coincidence with D, Let D}, D}, D), be circles (independent, of course,
of 7') for which the corresponding curves D,, D, Dj in the s-plane pass
through the points 2-+i7, — 1447, — 2447 respectively.

The proof now proceeds as before. We consider the function

fz) = log f{s(=)},

where 8 — s(z) is the analytic funetion corresponding to the conformal |
representation; and we apply the theorems of Borel-Carathéodory and

Hadamard in the same way as before.

9.12. We shall now obtain a more precise result of the same kind.{

THEOREM 9.12. For every large positive T, [(s) has a zero B+iy

sattsfying A
ly=T1 < logloglog T~

This was first proved by Littlewood by a detailed study of the con- -‘
formal representation used in the previous proof. This involves rather
complicated caleulations with elliptic functions. We shall give here two

proofs which avoid these calculaticns.

In the first, we replace the rectangles by a succession of circles. Let
T be a large positive number, and suppose that [(s) has no zero f+iy §

such that T—8 < y < T+35, where 3 < §. Then the function
Jis) = logifs),

where the logarithm has its principal value for ¢ >> 2, is regular in the

rectangle 2ol DP—d<ts T+E
h (13), Kramaschke ().

+ Littlewood (3}; proofs given here by Titck
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Let ¢,, C,, G,, T, be four concentric eircles, with centre 2—}»5+i7, and
radii 15, 48, 13, and & respectively. Consider these sets of circles for
v=20, L., n, where » = [12/5]+1, so that 2—}n8 < —1, i.e. the
centre of the last circle lies on, or to the left of, ¢ = —1. Let m,, M,
and M, denote the maxima of [f(s)| on c,, C,, and G, respectively.

Let 4,, 4,.... denote absolute constants (it is convenient to preserve
their identity throughout the proof). We have R{f(s)} < 4;log 7 on
all the circles, and |f(2+i7}| << 4,, Hence the Borel-Carathéodory
theorem for the circles C; and [, gives

535
My <535
and in particular
F—15-+T)] < 7(d,log T+ 4,).
Hence, applying the Borel-Carathéodory theorem to C, and [},
M, < W4, log PH{f(2— 13+4T) )} < (T4 72)d, Tog T+T724,.
So generally M, < (T4 ..+ 7"+1)4, log T+ 7v+14,,
or, say, M, < TAlog T'. (9.12.1)
Now by Hadamard’s three-circles theorem
M, < m3Mb,
where @ and b are positive constants such that a4-b = 1; in fact
e = log$/log 3, & = log 2/log 3. Also, since the circle C,_, includes the
circle ¢, m, < M,_,. Hence
M, < Me_ M (v=1,2,.. 0).
Thus M, << M3M3, My, < MIM) < MIMPME,
and s0 on, giving finally
anpgat TR gt b
Hence, by (0.12.1), 36 < MEMETSMES. M,
M, < MS"T“"‘b+2“"’°+-»+"b(Aa ]Og T)a‘“‘b+u"'b+...+b_

a4 2724 tnb < nl,
et +an-2+ .. +b = b(l—a")j(1—a) = 1—an.
Henoe M, < MPT(dylog TV << 4,77 (log TH-",
since M, is bounded as 7' co.
But [§(3)] > i1 for o <L —1, 2 > ty, 50 that M, > A log 7. Hence
A5 < A, 1%(log Ty,

loglog 7 < (1) fr?1og 7—10g
ogog <(ﬂ) (n log7 iogA_:_

(d,log T+4,) = T(4,log T+4,),

Now

logloglog 7' < nlog}l -+ Aglogn,
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12 A
so that i P
<n_1 logloglog T’

and the result follows.

9.13. Second Proof. Consider the angular region in the s-plane
with vertex at s = —3+iT, bounded by straight lines making angles
tia(0<a<n) with the real axis.

Let w = (s+4+3—iT)"=
Then the angular region is mapped on the half-plane R(w) = 0. The
point 8 = 2-+¢7" corresponds to
w = §ma,

w— 5
= oo
Then the angular region corresponds to the unit circle in the z-plane,
and & = 2447 corresponds to its centre z = 0. If 8 = o4-¢T' corre-
sponds to z = -1, then

(o4 3)7 = 1 = prial—

Let

=t

I G i

Suppose that {(s} has no zeros in the angular region, so that log {(s) is :

regular in it.
Let 8§ = §4+iT, —14+iT, —2+¢7T correspond to 2 = —ry, —1y, —13

respectively. Let M), M,, M; be the maxima of {log {(s)| on the s-curves
corresponding 10 |z| = 7y, ry, 73. Then Hadamard’s three-circles theorem

gives
log M, < "g"j;*l g 1+'°E'=jjllogM,.

It is easily verified that, on the eurve corresponding to [z{ =17, i

o 2 §. Forif w = £+iy, then
= —3+(§*+rf)““"cos(§arcta.n§),

which is a minimum at n = 0, for given £, if 0 <<« << §m; and the
minimum is — 3+ £%#, which, as a function of ¢, is & minimum when £
is a minimum, i.e. when z = —r;. It therefore follows that log M; <C 4.

Since Rflogi(s)} < Alog T in the angle, it followa from the Borel-
Carathéodory theorem that

M, <—(Alog T+ d) <4187,
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Henee logh, < A _‘_}:g :5;':, lo (A log T)
3’1

Now if ;, ry, and r, are sufficiently near to 1, i.e. if » is sufficiently smadl,

1—r,

1 z*rl
logra/ry _ °g( ) < (_rrn)s
logrgfr; log ( 1 + — "1) ry—11)

1—r; 11—,

and n—ry _ 1bn I4n Lbn _ (- @m
ot 1—r l—rgl4r, T (HE—()mie
T4y 14r
< 1—A{)=
log r,/fr,
Hence OB 7" 4yt
log ry/r, < 1A
Also 1/(1—ry) << A7,

Hence  log M, < A+{1—A(3)ﬂlu}{laglog T+ log 5+A}.
o
Let o = nf(clogloglog ). Then
log M, < 44-{1—A(loglog T)-<'=}{loglog T} clog 5logloglog T+ 4}
<< loglog ' —(loglog T}t
if clogt <} and T is large enough. Hence

M, <log TeMowoe™ = clop T (T > Ti(e)).

In particular logjl{ —1+4T)| < elog T',

[§(—1+iT)| < T=.
But =147 = |p(—1-+iT)LR2—iT) > KT
We thus obtain a contradiction, and the result follows.
%.14. Another result} in the same order of ideas is
TaroREM 9.14. For any fixed R, however small,
N(T+h)—N(T) > Klog T
Jor K=K@#), T > T,

This result is not & consequence of Theorem 9.4 if & is less than a
certain value.

Congider the same angular region as before, with & new « such that

1 Not previously published.
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tanx < }, and suppose now that [(s) has zeros p,, pg..., pa in the
a.ngula.r region. Let

_ . fa .
e P W Cry

Let C be the circle with centre 3+i7 and radius 3. Then [s—p,| > 1
on €. Henee |Fe)| < |2ls)) < T4
on C, and so algo inside C.
Let f{s) = log F(s). Then f(s} is regular in the angle, and
Rf(s) < Alog T.

Alsc n .
FEHT) = log {(2+eT)— leog(2+aT—pv)

- 0(1)+§10(1) = O(n).

Let M,, M,, and M; now denote the maxima of [f(s)| on the three

s-curves. Then

M, <7 (log T4-n).

Also M, << An, as for f( 2—|—aT). Heuce
log [f(—1+iT)| < log 3L,
log rs/ry logra/ny loy {A(nﬂggﬁi”)}
logf 71 (d-+lo gnH- g7, frl

logrz/rl[ 1 (log T)}
< A+10gn+logr/ logl -|- og

T
<A~‘rlugn+{l—A(%)nm}{ logd+lug(log )}
as before. But )
H—1+4T)] = [log S—1+iT)— 3 log(— 1 +iT—p,)

> logl(~1+iT)— 3 o)
> A, log T—Aym,
say. If n > }(4,/4,) log T the theorem follows at once. Otherwise

f(-——14+4iT)| > 34,log T,
and we obtain

I
o g(log T) -« A-{-{I—A(g)rr/a}{%log 5+log(%7)],

A= !og(l = T) < A+{1—- A=) log3,
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and hence loglog(lﬁoiﬂ‘) << Elogg-j-logl-{-x‘i < é,
o a

n > e logT.
This proves the theorem.

9.15. The function N{s, T'). We define N{a, ') to be the number
of zeros By of the zeta-function such that § > o, 0 < ¢t < 7. For
each 7', N(o, T') is & non-increasing function of o, and is 0 for o 3> 1.
On the Riemann hypothesis, ¥(o,T) = ¢ for ¢ > }. Without any
hypothesis, all that we can say so far is that

N, T) < N(T) < ATlog T
for} <o <l
The object of the next few sections is to improve upon this inequality
for values of o between % and 1.
We return to the formula (9.9.1). Let d(s) = (s), a =0, B = 2,
and this time take the imaginary part. We have

Ho, T) = N(o,T) (o<1), wo,T=0 (@>1)
We obtain, if 7 is not the ordinate of a zero,

9 fN(a, T} da = jlogf((ao+wt)l di— J‘logji_:("-f—u)l di+

+ f arg la+iT) do+ Klay),
L]
where K(s,) is independent of T. We deducef
THEOREM 0.15. If} < 0y < |, and T' — oo,
2 f Nio, T)do = flog| Uoy+it)| dt+O(log T).
To o
We have

Ay - ]
—ilogm

flogag(u-u |dt =R Z = o{1).

Also, by § 9.4, arg [(o+37") = O(log T) uniformly for o 3> 4, if T is
not the ordinate of & zero. Hence the integral involving arg C(cr+a.T)
is Oflog T'). The result follows if T is not the ordinate of a zero, and
this restriction can then be removed from considerations of continuity.

1 Littlewood (4).
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TarorEM 3.15{A).1 For any fired o greater than },
N(o,T) = O(T).
For any non-negative continuous f(£)
b

]
— f log f8) di < Iog[ﬁ f ) dt}.

o

Thus, for } <o < 1,

T T
[ 1og | L+ it)i dt = 3 [ log | Lo+t dt
0 1]

< ;T!og[ql, f 1§(a+¢tn=dz] — o(r
by Theorem 7.2. Hence, by Theorem o9.15,
f Nio, T) do = O(T)
for o, > }. Hence, if Ui,,,: 4 Hoo— ),
Ny T) < rﬁ_&—ljmo, Tyda << Tz—ij Nio, T) do = O(T),

the required result.

From this theorem, and the fact that N(T) ~ ATlog T, it follows
that all but an infinitesimal proportion of the zeros of [(s) lie in the strip
1—8 < o < 3-8, however small § may be.

9.16. We shall next prove a number of theorems in which the O(T)
of Theorem 9.15(A) is replaced by O(Z¥), where 8 << 1.] We do this by
applying the above methods, not to {(s) itself, but to the function

L) Mxls) = L) S HM,

(e)Mx(o) = K )an =

The zeros of {(s} are zeros of {(s)Mx(s). If 0 > I, My(s) —» 1/L{s) as
X — oo, 50 that {(8)Mx(s) > I. On the Riemann hypothesis this is also
true for 3 <o 1. Of course we cannot prove this without any
hypothesis; but we can choose X so that the additional factor neutralizes
to a certain extent the peculiarities of {(2), even for values of s lessthan 1.

Let Jz(s) = {(s)Mx(s)—1.

1 Bohr and Landau (4), Littlewood (4).
1 Bohr and Landau (6), Carlson (1), Landau (12), Titechmarsh (5), Ingham (5},
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We shall first prove
TororeM 9.16. If for some X = X(o, T), THHO < X < T4,

T
[ fxta)1? dt = O(T¥NognT)
ir

as T—vo, uniformly for o 2> a, where o) is a posilive non-increasing
Junction with & bounded derivative, and m is o constant = 0, then

- Nio, T) = O(T"@]ogm+1T}
uniformly for o = a+1jlog T.
Wehave  fals) = £f9) > ’%_1 Y

naX

2,(X)
ne

where 2,{X) = 0,
@Ky =P pld) =0 (n<X),

and fa, (X)| =

> #(d)‘ < dem
FiCY
for all » and X.
Let 1% = [Mx(2—LMy) = Lishols) = Afs)
say, where g(s) = gx(3) and A(s) = ky(s) are regular except at s = 1.
Now foro = 2, X > X,
e d(n)\* ge. L 1
st < 3 B~ oureen < <)

rzX =

so that i(s) 3 0. Applying (9.9.1) to k(s}, and writing

V(”: Tn Tz) — v(a’, Tz)_”("s T]_):
we obtain

H z
27 [ vlo, 37, T) do = | flog | Ray+-it)| —log | R(2-+Hit) [} d +
o ir

2
+ [{arg Mo -HiT) ~arg AT} de.

o

Now log|h(s)| < log{1+ifx(8)|%) < Ifx(a)l
so that, if oy = o,
T T
{ tog oo+t dt < [ ifxloetit)? dt = O(T"logmT).
T iT

Next
—log |A(2+it)| < —log{l —|fx (24402} < 2|fx (24} < X1
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T
80 that - f log |h(2-+it)| dt < o = O(Ted),

Also we can apply the lemma of § 9.4 to k(s), withe =0, 3= &,
m = §, and M, = O(X474). We obtain

arg h(s} = Ollog X +log?
for o > §. Hence ghe) llog X +logt

1
j {arg hla+iP)—arg Mo+ }iT)} do = Olog X +log T) = Oflog T).

O

3
Hence f v(o, 3T, Ty do = O(T¥e0logm 7,

Also “
2

[ o 47, Ty do = j N(o, 4T, 1) do = {o,—0)N(ey, 4T, T)

if 09 <C 0y < 2. Taking o, = ag+1/log T, we have
THe0 — Plos+Om—o) O(T'“")).

Hence N{oy, 3T, T) = O(T¥d]ogm+1T),
Replacing 7' by 37, 7T.,... and adding, the result follows,

9.17. The simplest application is

TuEOREM 9.17. For any fixed o in } < o < 1,

N(a, T) = O(Twwi-+e),
We use Theorem 4.11 with  — 7, and obtain

I = 3 5 3 H 1Oz
m<T <X

_ Z n(X)+0(f['-aX1 -, (8.17.1)

where, if X < T b,(X)=0forn < X and for n = XT; and, as for
L n(X)I < d{n) = O(n¢). Hence

HZ Pl yp 3 L Zz(mr” ) “
= O(T,; ) (,.Z,.gr (mn)a_c log m/ﬂ)

= O(TXI "'*‘)+O{(XT)“‘*"+‘}
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by (7.2.1), These terms are of the same order (apart from &'s) if
X = T%-1 and then
T
-
The O-term in (9.17.1) gives
O(T1-w X220 = Q-2 X} = (1)
The result therefore follows from Theorem 9.16.

9.18. The main instrument used in obtaining still better results for
N{a, T is the convexity theorem for mean values of analytic functions
proved in § 7.8. We require, however, some slight extensions of the
theorem. If the right-hand sides of (7.8.1) and (7.8.2} are replaced by
finite sums 3 O(Te+1), 3 U4,
then the right-hand side of (7.8.3) is clearly to be replaced by

KYY (O PayB—oWB—ey (¥ Pljo -,

In one of the applications a term T¢log*T ocours in the data instead
of the above 7= This produces the same change in the result. The only
change in the proof is that, instead of the term

w
wherioa—1 " X
J (s) e~ du = W,
0
we obtain a term

ff fuyasens Mg
f(g) log 5¢ du
u

HE R 1 1 K 1
- I (ES‘) {log‘s—l-fllog“slogu—l—...]e"" du < e logty.
1]

z b"(X)ra!t = O(Tteli-o)+e),
e

TuroreM 9.18. If {{}4-it) = O{*log®t), where ¢’ < §, then
Nio, T) = O(TH+201-3ogsT)
uniformily for } <o < 1.
Ifo<<d <],

T
[raavima 3, 5 s fnya
0

ok

(n) 2] (m)a (n} sin(T log m/n)
=Tzna+ga+222 X v

mi+Bnt+d log m/n

nxX X<m<n

<ry M TSI

LEF 4 Xem<n
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di
Nowt ngwdﬁ(n) < Azlogz, 2 Z fm _dmyd(n) < Azlogsz.

L }‘Hagn,’m
Hence e
d? 1
Z nf:?_ dﬂ(n)f "‘fdx f“‘f &(n) dx
Xgngz
(H—E)A loghz , _ A(1+1/£) [ log¥(Xy'%) d
21+E X¢ J. 32 ¥
(putting x = Xy¥) f:"“(lc;g){ + E)
d¥m) _ AlopdX
Hence Z e Xli‘i 5
since X — ¢ifloe X - -&(2810gX)
Also, since 1 < log A+2A-1 < log A%
for A > 1,

_dim)d(n) dim)d(n) d{m)d{n)
;z,,; (may-+Elog njm Z z {may+ + gm; méntE(mn)tlog njm

dfn) d(m)d{n) 1+§
(Z ) ZZ mn)llogn/m ﬁf

; d(myd(n)

< D(+8)+ f Z Z )T log i 42
<o+ f OOt < 2,
] 3

T
Hence f x84t ds < A(§+ 1)5-4. (9.18.1)
o

For ¢ = } we use the inequalities
Ifx* < 20103 Mx2+1),

T
vt < S O 0 S S amuml
Dj it r 3 RS S

mn)i log »fm
=T Z +2gn<zx (mn)} log nim
< A(T+X)10gX

by (7.2.1).

1 The first result follows easily from {7.16.3}; for the second, see Ingham (1); the
argument, of §7.21, and the first result, give an extra log=.
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T
Hence I |fx(d+i2)2 dt << ATX(T - X)log®(T+2)log X.  (9.18.2)
[
The convexzity theorem therefore gives
- -
[ \fxlotin)2 de
T
Lk +8)
_ 0{(5‘; + 1)8 ]w PR o 1 X oga (- 2)log }sd-ort
X Tedt-a)
= O[Q:T < (X Toeftzo-DBit 4958 logd( T+ 2)log X)tlﬁ—vﬂ&iﬁi}.
Taking 3 = 1/log(T+4X), we obtain
O{(T+ X)Tiet-0 X 1-2 logd( T X))
If X = T, the result follows from Theorem 9.16.
For example, by Theorem 5.5 we may take ¢ = §, ¢’ = §. Hence
Nio, T) = O(T¥ -2 logsT. (9.18.3)
This is an improvement on Theorem 9.17 if ¢ > %.
On the unproved Lindeldf hypothesis that {(1-+it) = O(#*), Theorem
9.18 gives Nio, T) = O(TH1-ort),
9.19. An improvement on Theorem 9.17 for all values of o in
1 < o < 1is effected by combining (9.18.3) with
TaroREM 9.18(A). N(g, T) = O(TH*log’T).
We have

T T
[ i=+inpa < A [ 1A+ Mx(+in P dit AT
o 1)

™ T i
<A{ [ e+ de [ | d@-rings dt} +AT.
0

Now Mi(s) = prs ot lea) < din).
n<X?
Hence
T
d*(n) _d{m)d(n)
f [ Myld+intae< T z +2 Zﬁ(le (mn)} log njm
0
< ATlogtX +AX2log®X.

I
Henco [ |fy(d+if)j2dt < ATHT+ X3 log™T+2)log®K.  (9.10.1)
0
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From (9.18.1}, (9.19.1), and the convexity theorem, we obtain
T
[ Uxtatine dt
- 0{(%'_'_ 1)8-‘}(0_1”(3*-8){1"%(T+X9)§log2(T+ 2)log?X JA+i-ouF+),

If X = T% 8 = 1/log(T+2), the result follows as before.

This is an improvement on Theorem 9.17if } < o < §.

Various results of this type have been obtained,t the most successful
being

THEOREM 9.19(B). N(a, T') = Q{13 -¥2-0]ogsT).

This depends on & two-variable convexity theorem;§ if
T
Toh = ([ ftetinme a)
H

then J{o, pAtau) = O, VB, p)) (a<o < B),

where 5= ‘8_5 T
» ﬂ—m’ 7 f—u
We have

A
s

T a
[ x40t dt < A [ 15401 M -Hin) & det AT
o 0

e T .
< A{! 13+ dl}a{J |8 (d-+in)|2 d2 B+AT
]

< A{TloghT+ 2T+ X)log X+ AT
< A{T+ X)log?( T+ X). T (0.19.9)

In the two-variable convexity theorem, take o = 1, 8 = 148,A = §,
=1}, and uss (9.18.1) and (9.19.2). We obtain

™
| xlorinx de
[
< A{(T—l—X)log’(T—!—X)}*lﬂwﬂ*rﬁml—5"4-55'{(% + 1)5—«}"'*’4""1*%“%5),
where K = pA{-qu lies between } and §. Taking X = T, 8 = L/log 7,
we obtain T

f |fxloHi)|VE di < AT W21 T,
o

t Titchmarsh (5, Ingham (5), (6). t Inghem (8). § Gabriel (1),
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The result now follows from a modified form of Thecrem 9.18, since
log |1—f%| < log(1-8|fx|%) < 4lfx V¥,
A. SBelbergt has recently proved
TasoreM 9,19(C). N{o, T} = H(T+-1-Dlog T}
uniformly for e L.
This is an improvement on the previous theorem if ¢ is a function of 7'
such that o—} is sufficiently small.

9.20. The corresponding problems with o equal or nearly equal to §
are naturally more difficult, Here the most interesting question is that
of the behaviour of 1
[ ¥o, Pyda {9.20.1)
H

as T —co. If the zeros of {(s) are f--iy, this is equal to

f g
“! %)n,ogysf 1) do zﬂ;.}_é?sr {.I—do :.B>-L,o§<:ysr('s—i)'

Hence an equivalent problem is that of the sum
—3. 0.20.2
LS (9.20.2)
There are some immediate results,} If we apply the above argument,
but use Theorem 7.2 {A) instead of Theorem 7.2, we obtain at once

Og—

j Nio, T) do < ATlog{miu(log 7, log — *)} (9.20.8)

for } < o < 1; snd in particular

1
f Ni{o, T) do = O(Tloglog T). (9.20.4)
1
"These, however, are superseded by the following analysis, due to
A. Selberg (2), the principal result of which is that

1
j Nio, T) do = O(T). (9.20.5)
i .
We consider the integral
T+
J [SG+ing(d+ine dz,
1 Selberg (5). 1 Littlewood (4).
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where 0 < U < T and ¢ is a function to be specified later. We use the
formulae of §4.17. Since

e = {x(h+it)§ — (ﬁ)*“e-%"‘{l +ofj)}-

we have Z{t) = 2()+-2(t)-- 0D, (9.20.6)
AL L i
where #{t) = (m) € 3"““2;:: L
and & = (#2mi, Lot T < ¢ K T4U, v = (T/2a)}, +" = {(TH V)23,
Let
W 1
2(0) = (ﬁ) ot ;n e
Proceeding as in § 7.3, we have
T+
j |2(t) 2y (8) 12 dt = O(U > l)+0(ﬂ10g 7)
Ed r(nﬁf‘ﬂ'

= o(U’ _")+O(Tﬂog )

= O(U*T)+O{THlog T), (9.20.7)

921, Lemma 9.21. Let m and n be positive infegers, (m,n) =1,
M = max(m,n). Then

T+
f z,(t)fl(t)(;’;.)"dm(’%ﬁ > L oiriamiogrmy,
I r<T/M
1 Tr+U o 4
The integral is g Z o Tf (m_F) .

The terms with mp = nv contribute

UZEZ(,.:,)=U Z (_"“_E _%Zfi
mp=nv .

STIMET r<rfM

The remaining terms are

N2 3 s = 2.2 miogmomm)

myeFEny mu#ny
=0IM = O{M?*log( M-
{ e TRl = CBLIos L),

and the result follows.
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9.22. Leyma 9.22. Defining m, n, M as before, and supposing

T UST,
r+U @ U i
SO &
-[ ZE(‘)(E) = Wr/m <Zr< :,’n; +O(MT}) +OWHD O(T )
T D (9.22.1)

ifn < m. If m <<n, the first term on the right-hand side is to be omitled.
The left-hand side is

+T7
et 2 ('u%){ J. ( e ”m)udt.

KET vET

The integral is of the form considered in § 4.6, with
i 2mprm
Fit) = tlog - = Zmpm

(¢) = tlog o ° —~

Hence by (4.6.5), with Ay = {T+ U}, A, = (T U}, it is equal to

2

- in[ L _ i
npet-cs orh O min((p L i)

. 1
+ O{mm(m,ﬂ"i)}, (9.22.2)

with the leading term present only when T' < ¢ € T+ U. We therefore
obtain a main term

E * —2ipuvmys

2:1(”) Z z e-tmipvmin {9.22.3)
BET yT

where . and v also satisfy

Tnlm < pr < 'n/m.

The double sum is clearly zero unless n < m, as we now suppose. The
v-summation runs over the range v, < v < v,, where v, = t2n/mp and
v, =min(z'2n/mp, 7), and px runs over tn/m £ x < 7. The inner sum is
therefore v, — v, + O(n) if nlp, and O(n) otherwise. The error term O(n)
contributes O{{mn}¥t} = O(MTY) in (9.22.1). On writing y = nr we are

left with
m
2n (7)‘} b {vy— v
R ym<r<n

Let v, = z'2/mr. Then v, = v; unless r < 1'2/mz. Hence the error on
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replacing v, by v, is
ORI (O
ol ol

= O(U2T-1)+ O(MIUT ).

Finally there remains

m\& m\% ' g2
2n| — (vg—v )=21:(7) (———
( n ) n szr: <m0 "/ oum szr:s on \RT mE

U 1
(m"); ymErs r,’nr'

Now consider the O-terma arising from (9.22.2), The term O(T%) gives

O{Téz S _;} = O(Thr) — O(T™),

BT vé-r
Next

1
> S e { g

a2
= o{r > Smin oty 7))

T

Suppose, for example, that n << m. Then the terms with r- < n7%m or
r > 2nrdm are

O(T‘ > rlé) = O(Tr) = O(Th),

r<rd

In the other terms, lot r = [nr¥/m]—+". We obtain
3 1
Ol Te ) (18] <1
{ 2. Gt T (0 <D
{T‘( )klog T} = O(TH),

omitting the terms r' = —1, 0, 1; and these are O(TH+e).
A similar argument applies in the other cases.
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9.23. LEMMA 9.23. Let (m,n)=1with mn< X< Tt IFTH <U<T,
then
T+U " U
20 _
f z (t)(m) di— (mn)é{log +2y}+ OWIT-H1og T).

T

Let Z() = z, (1) + 2, (2) +e(1). Then

T+U .
J‘ {zl(t)+m}2(;’;-) di
T
T+U i T+U T+U
= J Z(t)z(%) dt+o(f |Z(t)e(t)|d£)+0(j Je(z)lﬂdz).
T T T
We have

T+U
J‘ le{t)zdt = O(U2/TY+O(Ttlog T) = (U T)
T
by (9.20.7), and
T+U
J- [ Z()2dt = O(Ulog TV + O(T ¢y = KW Ulog T),
T
by Theorem 7.4. Hence
LU
f 1Z(e()ldt = O{UL/ TH(Ulog TH}
T

by Cauchy’s inequality. It follows that
T+

J 22 (i)ndt
m
T

T+U
_ —_— i
= I {202+ 2, (02 + 22, (02, (D)) (%) ‘dt + O T-YogtT).
T
By Lemmas 9.21 and 9.22 the main integral on the right is
U
ﬁ( ¥ E+ b )+O{Tixflog(XT)} +OXTH +

mn) rﬁn‘n re r,’m
+ U TY+ O(T™S)
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whether n < m or not. The result then follows, since
1 72 X
-+ ~_log—+2y+0(—),
r szr/n r <Zz/m mn T
and since the error terms O{T1X? log(XT')}, O(XTH, 02/ T), O(Tl—gn)
and O(UXT-1) are alt (U ET-4log T).

9.24. THEOREM 9.24.

1
j Nie, T) do = O(T). (9.24.1}
%
Consider the integral
T+U T
I= | |LQ+igid+inede = J 2+ d,
r
where ¥{s) = %8, yi-s
wd b S MY or) o) N
. 2 Hp)ble) ) 2 #He)dle)
< p<
1
Clearly 18,] < ¢(1_)
for all values of ¥. Now
r+U P
I— 5,800t | Zx(Z) 4t
2 Za [ 2o

where m = ¢/(¢,#), » = r/(g,#). Using Lemma 9.23, the main term
contributes to this .

Z Z LN r}(mn)# g Tetv =0 Z z 8,8,(g, rlog ——=— Te (q,r)

gXr<X <X r<X

Tetr
= Ulog— - ;{ TZ; 8,30.,1)~20 (zx K%_s! 8,(q, log g+
+ 2Ua<§( rg;fs., 3,(g,)log(g, r}.

For » fixed ¢ < X,
5 = wip)| (g, rhlprlnlp)
DAL { S 22 den

<X pr<X

Now o= %ﬂtﬁ(ﬂ = ququB(V)-
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Hence the. second factor on the right is
wloriplp) W) = . ,u(p'r);z(p)
22w 2 0= 3 Z( Teen
Put pr = 1. Then pvipr, pv|l, i.e. p|{}/v}). Hence we get

PXED) B> e

1S pidi
The p-sum is 0 unless I = v, when it is 1. Hence we get

#0) _ (1 @=1
qu g0) #(v) ; ad {0 g>1).

vig

Hence . , \ )
= wilp7g #Hp))”
i 2T {Kx S o {,a )
d =[S e —o.
any o 2 ada Hlogg {KX W)} Slogl =0

Let ¢,(n) be defined by
Z $a(n) _ Ye—a—1)

W)
50 that Boln) = nlta F(’ﬂ n‘+‘=1_-[ (1___]1;1)_
min Plis P
Let Ji(n) be defined by
z'l'(n) — ¥
= T
Then —{'(a—1) = &(s) '/’(7:),
n=1 #
and hence nlogn = Lg #(d).
Hence {g,"log(g,r) = d\qu‘r )
and zx ZXS 3,4g, r)log(g,r) = z 'r’(d) E 8,5,
r<X
2
:d;‘\_sﬁ(d)(dméxsq) ’
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Now  di{n) = [é%qbﬂ(n)] N ¢(n)(logn+ zlogp)

pln

W(n) < QS(n)(logn + z log _fp) 2 (n)log n.

Also
et {p)plp)
&&8 ={ 1(:)} Zzycﬁ(;)ﬁ
plm #He) "~ puld)
{2 ¢(p} ,,qusc:) {Pd;(ﬁ)] e
dn
Honee 3 3 3540.7loglan) < EIng{FZK %’1%)}"
Sinece
> pEHn) *(p) L
S o= T1 (4o = T )
1
- ”“)H( )( (p—l)p“)’
we have Wy 4 log X.

e #)

The contribution of all the above terms to I is therefore

log -
o(ulogQ+0(U) —ow)

on teking, say, X = Tris,
The O-term in Lemma 9.23 gives

1
§T-bog T e
OWirioe D) ¥ 3 Sorew

= QU T~ Hog T)OX)
= O(UIT —#rlog T).

Taking say U = Tﬁ, this is O(U). Hence I = O(U).
By an argument similar to that of § 9.18, it follows that

13
[ ¥e, T+U)=N(e, T)} do = O(D).
+
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Replacing T' by T+U T--2U,.. and adding, O(T(U) terms, we
obtain 1
f {¥(e, 2T)— N{o, T)} de = (7).
]

Replacing T by 37, 17.... and adding, the theorem follows.
It also follows that, if + <o = 1,

N, T) = J% f N(o', T) do’

totd

1

2 J Nio, T) da — o(i), (9.24.2)
o—4% e—4,

4

Lastly, if ¢(t) s positive and increases to infinity with t, all but an
infinitesimal propertion of the zeros of L(s) in the upper half-plane lie in
the region

[a—}] < 28 b(2)

<

logé
The curved boundary of the region

= %-I-W) TR <t<T

logt’
. . Vi
lies to the right of e=0 = J‘""ﬂ.g ,},
T\ _ o fTlogTy
and N(ul,T):O(cﬁ)_O( #(Th )_O(TlogT).

Hence the number of zeros ontside the region specified is o(T'log T),
and the result follows,

NOTES FOR CHAPTER 9

9.25. The mean value of S(¢) has been investigated by Selberg (5). One
has

(2R

K@ ——T(loglog T)* (9.25.1)

T
JIS(t Y2 dt ~
]

for every positive integer k. Selberg’s earlier conditional treatment (4) is
discussed in §§14.20-24, the key feature used in (5) to deal with zeros off
the critical line being the estimate given in Theorem 5.19(C}. Selberg (5)
also gave an unconditional proof of Theorem 14.19, which had pre-
viously been established op the Riemann hypothesis by Litilewood.
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These results have been investigated further by Fujii [1], [2] and Ghosh |

[1], [2], who give results which are uniform in k.
Tt follows in particular from Fujii [1] that

T
JIS(Hh)—S(t)l?dt — 7 2Tlog (3 + hlog T) + O T{log(3+ hlog T}}]
b

(9.25.2) ]

and

T
I\S(t +Ry—S@t)2kdt < T{Ak*log(3 + klog T }* (9.25.3)
0

uniformly for 0 € k € } 7. One may readily deduce that
N(T) < N(Tye=*V),

where N,(T) denotes the number of zeros § + iy of multiplicity exactly j,
in the range 0 < y < 7. Moreover one finds that

#i0:0 <3, € Ty, 1=, = Alog T < M(T)exp { — Adk (log y~1},
uniformly for 1 > 2, whence, in particular,
N(T)

o<y, s T

for any fixed k > 0. Fujii [2] also states that there exist constants 4 > 1 i}

and g < 1 such that

Ynsl a5 5 (9.25.5)

2z/logy, =

and

I i (9.25.6) "

2n/logy" sH

each hold for a positive proportion of 2 (i.e. the number of n for which 3
0<y,<Tis at least AN(T)if T > T,). Note that 2x/log y, is the /
average spacing between zeros. The possibility of results such as (8.25.5) §

and (9.25.6) was first observed by Selberg [1]

9.26. Since the deduction of the results {(9.25.5) and (9;25.6) is not 4
obvious, we give a sketch. If M is a sufficiently large integer constant, 3

Y G- Goe T (2.25.4)
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then (9.25.2) and (9.25.3) yisld
2T
J IS(+ k) — S 2dis> T

T

and
2T

j IS+ h)—-S(D)|*dt< T
T

uniformly for

2naM <hg 41:M_
logT logT

By Hélder's inequality we have

27 er i
J‘{S(! +h)y—S@)|2dt £ (J 1St +h)—S(t)|a!t)
T T
27 '
X (J IS(t+h)—S(t)|‘dt) ;
T i
so that

2r
J S+ k) —8(t)di> T.

T

We now observe that

S@+ R — 8> = Nt+ by — Nt) —hlngJr o(loé T),

for T< t < 2T, whence
2T
.[ \N(t+h)—N(t)—

T

hlogT
2n

‘dt»T.

We proceed to write A = ZnMl/log T and

2rA
8@, ) = N(l+m)—N{t)fl,

247
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80 that

Thus

and hence
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T MU gnma
N(:+h)—Nu)_"l;’—f= 5 5(: .
m=10

L 2T +2emijlog T
-
T< ¥ 16¢z, 1t

m=o0
T+ 2nml/log T

2r
= M‘[ 16{t, Didt + O(1),
T

ar

Ilé(t,l)ldts» T
T

uniformly for 1 € 4 £ 2, since M is constant.

Now, if T is the subset of [T, 2T} on which N(t +E~g—

+log T

2mk

5(4,4) +24 (teD,

T

16¢t, A1 < {5(;.1)+2z—2 (te[T,2T]1- D),
so that (9.26.1) yields

2r
T j (L, Hde+ @i — 2 T+2miD,

T

where m(I) is the measure of I. However

whence m(I)» T, if A > 1 is chosen sufficiently close to 1. Thus, if

then

2r

T
[ a(t, ) dt = O(m),
T

2al

s:{:::T% ?n€2T,yn+1—vn2m

Tam(l) < ZS(?,H 1~ + O,

b

2)

h

(9.26.1) :

) = N(1), then
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so that

2
72| £ Guir -1} <GS 0000
ne nes

T
5T
by (3.26.4) with k = 2. It follows that
#S» N(T), (9.26.2)

proving that (9.25.5) holds for a positive propertion of n.
Now suppose that j is a constant in the range 0 < g < 1, and put

U={n:T<y, <27},

2rp
V= : Y €
{neU Pre1 " Va Tog T}’

and

whence pU= %log T+ O(T). Then
T=3 (1o~ 1)+ O
nelr

= ¥ () H00
nelU-V
2 2nA
log T(#U- #V- #S)+log T

_fmp (T 2n(l—p) T
“logT(anogT #V)+ log T #5+0 logT /)
If the implied constant in (9.26.2) is #, it follows that # V3 MT), on

taking g = 1 —», with 0 < v < (4 — 1)/(1 — n}. Thus (9.25.6) also holds for
a positive proportion of n.

P

S+0(

9.27. Ghosh [1] was able to sharpen the result of Selberg mentioned
at the end of §9.10, to show that S(2) hes at least

Aloglog T
(logloglog T)t—4

sign changes in the range 0 < ¢ < 7, for any positive 8, and A = A(é),
T = 7(5). He also proved (Ghosh [2]) that the asymptotic formula
(9.25.1) holds for any positive real k, with the constant on the right hand

TlogT) exp(
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side replaced by ['(2& + 1)/T'(k + 1)(2n}2*. Moreover he showed (Ghosh
[2]) that 1Sl o
/Qogiog) !
say, has a limiting distribution
P(o) = 2rt J e*dz,

¢

in the sense that, for any ¢ > 0, the measure of the set of te [0, T ] for §
which f() < s, is asymptotically T'P(c). (A minor error in Ghosh’s

statement of the result has been corrected here)

9.28. A great deal of work has been done on the ‘zero-density

estimates’ of §§9.15-19, using an idea which originates with Halasz [1].

However it is not possible to combine this with the method of §9.16, ]
based on Littlewood's formula (9.9.1). Instead one argues as follows |

(Montgomery {1; Chapter 12]). Let

M e)(s) = Sa,n-e
1

so that a, = 0for 2 < n < X. If {(p) = 0, where p = § + iy and § > §, then

we have

w
e V'+ ¥ g n-re =% g n-ceY

R>X =l
24w !
1 &
“om I M (s+p) {(s+ T (s) Yeds,

2 iw e

by the lemma of §7.9. On moving the line of integration to R(s) = 1 — ':

this yields
M- pY1-# 4

+ﬁ I M +it) (3 +i0T G — f+i(t—p) YH-B+se-0dy,

—

since the pole of I'(s) at & = 0 iz cancelled by the zero of {{s + o). If we
now assume that log2T <y < T, and that log T €log X, log ¥ <log T,
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then ¢ '4¥% 1 and

M, (HT1-pY -* = oll),
whence either

¥ a,r-reY»1

n>X

or

I M+ G +iDT G- B+it—Mldis YL,

_w

In the latter case one has
M, () + it G+ it (F—g) YPF

for some t, in the range [, — 7| < log? T The problem therefore reduces
to that of counting discrete points at which one of the Dirichlet series
Za,n-%e~"Y, M (s}, and {(s)is large. In practice it is more convenient to
take finite Dirichlet polynomials approximating to these.

The methods givenin §§9.17-19 correspond to the use of a mean-value
bound. Thus Montgomery [1; Chapter 7] showed that

R

%

r=1

N
Y a,n%
=1

N
24(’['+N)(logN)2 ¥ la,2n-2 (9.28.1)
n=1

for any points s_ satisfying
Ris,) 20, s )N<T, Ks, ,—s)=l, (9.28.2

and any complex a,. Theorems 8.17, 9.18, 9.19(A), and $.19(B) may all
be recovered from this {except possibly for worse powers of log T).
However one may also use Halasz's lemma. One simple form of this
(Montgomery[1; Theorem 8.2} gives

N
: <(N+RTH(logT) ¥ la, %2 (9.28.3)

a=1

N
¥y a,nx
n=1

)

r=1

for any points s, satisfying (9.28.2). Under suitable circumstances
this implies a sharper bound for K than does (9.28.1). Under the Lindelsf
hypothesis one may replace the term R7%in (9.28.3) by RT*N } whichis
superior, since one invariably takes N < T in applying the Halasz
lemma. (If N 27 it would be better to use (5.28.1).) Moreover
Montgomery [1; Chapter 9] makes the conjecture (the Large Values
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Conjecture):

2 N
<(N+RTH ¥ la,lPn-2%

r=1 3

N
Y anp*

n=1

R
z
r=1
for points s, satisfying (9.28.9). Using the Halasz lemma with thel
Lindelsf hypothesis one obtains i

N, )< Te,
(Halasz and Turan {1], Montgomery [1; Theorem 12.3]). If the Large !

Values Conjecture is true then the Lindeldf hypothesis gives the wider §
range }+e< o< 1 for (9.28.4)

jte<o<l, (9.28.4)

9.29. The picture for unconditional estimates is more complex. At }
present it seems that the Haldaz method is only useful for ¢ > & Thus 3§
Ingham's result, Theorem 9.19(B), is still the best known for } <o < 4
Using {9.28.3), Montgomery [L; Thecrem 12.1] showed that 3

N(o, T) € T X1-4 (log T)** <o),

which is superior to Theorem 9.19(B). This was improved by Huxley (1] 1
to give 3

N(o, T) €« T¥i-0/t3a-D(log T)** (§<o<51). (9.29.1) j

Huxley used the Halisz lemma in the form
N N 3
R< {NV* 2y la,l2n-2+TNV- 3( Y. la,|2n-2e ) }(log )2,
n=1 n=1

for points s, satisfying (9.28.2) and the condition

N

¥ a.n-cr
n=1
In conjunction with Theorem 9.1%(B), Huxley’s result yields

N(g, T) € T3¥50-9(log T)* (h<o<1),

(c.f.{9.18.3)). A considerable number of other estimates have been given, |
for which the interested reader is referred to Ivic[8; Chapter 11). We
mention only a few of the most significant. Ivic [2] showed that

P3- 30 icTe—d+e @ £0< }g)
N, T) < { TO-9i@e-D+e (Y <o)

which supersede Huxley’s result (9.29.1) throughout the range ]
$ < ¢ < 1.Jutila [1]gave amore powerful, but more complicated, result, 3

z V.

3
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which has a similar effect, His bounds alsc imply the ‘Density
hypothesis’ Nz, Ty < T2-2+¢, for 1} < ¢ € 1. Heath-Brown {§] im-
proved this by giving

N(o, Ty < TO-97e-D+e (L gag 1)

When ¢ is very close to 1 one can use the Vinogradov—Korobov
exponential sum estimates, as described in Chapter 6. These lead to

Nio, T) € T2} (log TH,

for suitable numerical constants A and A’, (see Montgomery [1;
Corollary 12.5], who gives A = 1334, after correction of a numerical
error).

Selberg’s estimate given in Theorem 9.1%C) has been improved by
Jutila [2] to give

N, T) < T -1-%-Dlog T
uniformly for } € o < 1, for any fixed é > 0.

9.30. Of course Theorem 19.24 is an immediate consequence of
Theorem 19.9(C), but the proof is a little easier. The coefficients 3, used
in §9.24 are essentially

JogX/r
logX "’

wryr=
and indeed a more careful analysis yields

log X/r al? logT
(n——r-4-% gt ~
,Z“xﬂ )logX r d 1-'-log)( ’

T
J‘I(I(iwtit)l2
[

Here one can take X < 74 using fairly standard techniques, or
X< TH* by employing estimates for Kloosterman sums {see
Balasubramanian, Conrey and Heath-Brown [1]). The latter result
yields (9.24.1) with the implied constant 0-0845.
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THE ZEROS ON THE CRITICAL LINE

10.1. General discussion. The memoir in which Riemann first con-
gidered the zeta-function has become famous for the number of ideas §
it contains which have since proved fruitful, and it is by no means |
certain that these are even now exhausted. The analysis which precedes
his observations on the zeros is particularly interesting. He obfains, as
in § 2.6, the formula

1

Pegarriee) = A [t pamid d,

where Plx) = i gz,
n=1

Multiplying by 3s{s—1), and putting s = }-4-it, we obtain

Et) = }—(@+]) | p@)e cos(dtloga) dx. (10.1.1) |

Integrating by parts, and using the relation
4+ = —4,

which follows at once from (2.6.3), we obtain

B =4 J d%{:c‘},’b’(x)}a:-% cos(dtlog ) dz.

1

(10.2.2) §

Riemann then observes: :
+Diese Funetion ist fiir alle endlichen Werthe von ¢ endlich, und liisst sich nach
Potenzen von # in eine sehr schnell convergirende Reihe entwickeln. Da. far einen
Werth von 8, dessen reelier Bestandtheil grisser als 1ist, log {(s) = — X log{1—p™*}{
endlich bleibt, und von den Logarithmen der iibrigen Factoren von E(#) dasseIbd
gilt, =0 kann die Funetion E(t) nur verschwinden, wenn der imaginare Theil von]
¢ zwischen i und — i liegt. Die Anzahl der Wurzeln von E(¢) = 0, deren reeller]
Theil zwischen 0 und T liegt, ist etwa 3
Tl T,
=2 o
denn dass Integral | dlog Z(f) positive um den Inbegriff der Werthe von #1
erstreckt, deren imaginire Theil zwischen 3 und —347, und deren resller Theil
zwischen 0 und T lisgt, ist (bis auf einen Bruchtheil von der Ordnung der Grosse 4
1/T) gleich {T'log{T/2)— T}i; disses Integral aber ist gleich der Anzahl der in j
diesem Gebiet liegenden Wurzeln von E(f) = 0, multiplicirt mit 2mi. Man findet
nun in der That etwa so viel reslle Wurzeln innerhalb dieser Grenzen, und es ist
sehr wahrscheinlich, dass alle Wurzeln reelle sind.’ E
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'?L‘hia statement, that all the zeroa of E(f) are real, is the famous
‘Riemann hypothesis’, which remains unproved to this day. The memoir

goes on:
‘Hiervon wire allerdings ¢in strenger Beweis zu wiinschen; ich habe indess die
Aufsuchung d, Iben nach einigen fliicht] v blichen Versucl vorli

bet Seite gelassen, da er fir den nichsten Zweck meiner Untersuchung [i.e. the
explicit formula for m(x}] entbehrlich schien.”

In the approximate formula for ¥(7), Riemann’s 1/7" may be a
mistake for log T'; for, since N(7T'} has an infinity of discontinuities at
least equal to 1, the remainder cannot tend to zero. With this correction,
Riemann’s first statement is Theorem 8.4, which was proved by von
Mangoldt many years lator.

Riemann’s second statement, on the real zeros of E{¢), is more chseurs,
snd his exact meaning cannot now be known. It is, however, possible
that anyone encountering the subject for the first time might argus as
follows. We can write (10.1.2) in the form

E(t) =2 f@(u)coaut du, {10.1.3)
[}

o
whers Du) = 2 ¥ (2nined— Inipele)e-tret, (10.1.4)
"1

This series converges very rapidly, and one might suppose that an
approximation to the truth could be obtained by replacing it by its first
term; or perhaps better by

q)*(u) = 2ntcosh gu g =2 cosh Eu,
ainc'e this, like ®(u), is an even function of u, which is asymptotically
equivalent to ®(u). We should thus replace Z(¢) by

©
Er() = 4713f cosh Su e~27vosh 26 0og gt iy,
]

The asymptotic behaviour of E*{¢) can be found by the method of
steepest descents. To avoid the caleulation we shall quote known
Bessel-function formulae. We havet

K.(a) = j ¢~ 9% 4 oogh zu du,
?

EH) = w?{Kgpal2m)+ Ky gul2m)).
For fixed z, as v -+ 0o

and hence

Lz} ~ (}2)"/T(v+1).

t Wataon, Theory of Bessel Functions, 6.22 (5).
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Hence ;ﬂ 1 £V ¢ Lit
Lyadam ~ 7y T4~ mfﬂem(zn) (E?é) e
B2 v i (el

[NEERE]
Kz,14(2m) = }mcosec @+ 40 g yul2m) — T 0(2)}

AT AL LS
~ =1 s gim
429 ( )(2m:) e

SH(l) ~ a2 hle i cos(%tlog o +§n-)
The right-hand side has zeros at

t
¥ 1082—_”4‘ fr = (ntg)m,

and the number of these in the interval (0, T') is

T. T T
Elogﬂ_?ﬂi-’_o(l)’

Hence

The similarity to the formula for N(7) is indeed striking, ;
However, if we try to work on this suggestion, difficulties at one
appear. We can write

BE(N—E*(E) = j{-b(u) — O (u))e du.

To show that this is small compared with E(t) we should want to movey
the line of integration into the upper half-plane, at least as far 8
I{z) = }=; and this is just where the series for ®(u) ceases to convergey
Actually |5t} > Abie i {3+,
and |{(}-+if)] is unbounded, so that the suggestion that Z¥(t) is &
approximation to E(t) is false, at any rate if it is taken in the m
obvious sense.

10.2. Although every attempt to prove the Riemann hypothesis, thal
all the complex zeros of {(s) lie on o = }, has failed, it is known thaf}
L(8) has an infinity of zeros on o = }. This was first proved by Hardy
in 1914. We shall give here a number of different proofs of this theorem. 3

First method.t We have

Bit) = — e+ P BTG KL+
where E(£) is an even integral function of ¢, and is real for real £. A zero§
+ Hardy (1).
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of £(s) an o == % therefore corresponds to s real zere of E(f), and it is
s question of proving that E(¢) has an infinity of real zeros.
Putting z = —ia in (2.16.2), we have

J. t:_(l_!)i coshal dt = e‘}iﬂ_ge}im¢(azim)
(10.2.1)
= 2cos fu— 2ehie{} | ylein)).
Since {(3+it) = O(4), Et) = O(e4e~4m), and the sbove integral may
be differentiated with respect to o any number of times provided that
« < . Thus
2 © E()
- f mt”' cosh of dt =

T
o

(—1)"cos $a

T 2(%)%8*'_%_*_ Pewie}.

We next prove that the last term tends to 0 as « - }u, for every fixed n.
The equation (2.6.3) gives at once the functional equation

e-b—2okp(z) — 2t 2o h (%)
or $(z) = x—iga(g_lc)ﬂx-é_g.
HE45) = ieﬁnwm - ?(*l)uefu'ﬂ'ﬁ
= 2(48)— (&)
NVE

It is easily seen from this that 3+(x) and all its derivatives tend to
zero as £ — 1 along any route in an angle |arg(x—i)| < 4n.
We have thus proved that

lim f :E; #27 coshod di = M

a—vdmw

(10.2.2)

Suppose now that E(f) were ultimately of one sign, say, for example,
positive for ¢ > T. Then

‘»’"f =

il
say. Hence f % *eoshutdi < L
EY

i

=L,
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for all @ << }rr and T > 7. Hence, making o« — u,
(=)
Bl < L.
fﬁﬂznmhmm\r,

0

. E(t} o0
Henoe the integral f mt cosh {nt dt
o

is convergent. The integral on the left of (10.2.2) is therefore uniformly 3

convergent with respect to o for 0 < o < }, and it follows that

@

J' si(:’* 3% Gosh it dt =

(—1)™rcos tnr
—am

']
for every n.

This, however, is impossible; for, faking » odd, the right-hand side _

is negative, and hence
@ 7
f % 0 cosh {ort di < — J‘ ﬁ%t’" cosh }ut dt

r ]

< KT,

where X is independent of ». But by hypothesis there is a positive

m = m(1") guch that E(t)/{#2+}) = m for 27" < ¢t < 27+ 1. Henee

w© 3T +1
I t;'%t’"cosh trtdt > f mitn 4l 3 m{2 T,
i F o7
Hence m2 < K,

which is false for sufficiently large n. This proves the theorem.

10.3. A variant of the above proof depends on the following theorem§

of Fejér:t )

Let n be any positive integer. Then the number of changes in sign m
the interval (0, a) of @ continuous function f(x) is not less than the number;
of changes in sign of the sequence

o, [fod, .., fford (10.3.1)]

Wo deduce this from the following theorem of Fekete:

t Fejér (1). } Fekete (1).
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The number of changes in sign in the interval (0,a) of a continuous
function f{(x) 18 not less than the number of changes in sign of the sequence
Ha), fle), .. fola), . (10.3.2)

where

Loy = [fafdldt  =12.2), fofn) =10

To prove Fekete’s theorem, suppose first that n — 2. Consider the
curve ¥ = fi(z). Now f{0) = 0, and, if f{a) and f,(2) have opposite
signs, y is positive decreasing or negative increasing at # = . Hence
f(z) has at least one zero.

Now assume the theorem for n—1. Suppose that there are k changes
of sign in the sequence f,(2),..., f,(x). Then f,{z) has at least % changes
of sign. We have then to prove that

(i) if f(e) and fy{a) have the same sign, f(x) has at least & changes of

sign,

(if) if f(@) and fi{a) have opposite signs, f(x) has at least k+1 changes

of sign.
Each of these cases is easily verified by considering the curve y = f,().
This proves Fekete’s theorem.
To deduce Fejér’s theorem, we have
Lz
— e gYP-L
) = 2y [ -

0

and hence a .
1 1
fla) = =i J‘ {a—&"-1f () dt = =Ty ff(a—-t)t"—l .
M S
We may therefore replace the sequence (10.3.2) by the sequence
f@. [fa—nd .., [fa—te-ra. (10.3.3)
° 8

Since the number of changes of sign of f{¢) is the same as the number
of ?ha.nges of sign of f(a—), we can replace f{t) by fla—¢). This proves
Fejér’s theorem.

To prove that there are an infinity of zeros of (8) on the critical line, we
prove as before that

; E() pn (=1 cosgn
al_'.lf, f o £z= coshad dt = > B2,
o

m

2]

t“rét- cosh ot di

a
Hence I
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has the same sign as (—1) foran =10, 1,.., N, if a = a(N) is large
enough and « = «(N) is near enough to }r. Hence E(f) has at least N ]
changes of sign in (0,a), and the result follows.t 1

10.4. Another methodt is based on Riemann’s formula (10.1.2).
Putting x = e in (10.1.2), we have

i) = wi Au g (o2 oy
B{f) =4 f du{z’ o (e24)jedv cos uf du
3

=2 _[(D(u)cosut du,
[

say. Then, by Fourier’s integral theorem,

B(w) :% J' E(t)cosut d,

D)
and hence also

D) = (=0 J B0 cos i dL.
ki
I

Sinoe {z) is regular for R{z) > 0, D(u) is regular for —}r < I(u) << . ‘
Let (i) = ooy u byt (10l < ).

@n)le, = {—1p0E0) = 117 f E(yen dt,

0

Then

Suppose now that E(t) is of one sign, say E{t) > 0, for i > T.
¢, > 0 for n > m,, since

w© T+ T
fs.(mzndc> [ Ewemat— [ 1Eeyen ae
L] T+1 0
T+2 T
> (T+1pn f Bt} de—T J’ IE(8)] dt.
r+1 0

Tt follows that ©™(iu) increages steadily with w if n > 2Zmy. But in
O(w) and all its derivatives tend to 0 as u— Lim along the imagins
axis, by the properties of f(#} obtained in § 10.2. The theorem therefored
follows again. ;
10.5. The sbove proofs of Hardy’s theorem are all similar in thatg
they depend on the consideration of ‘moments’ j' Fityr de. The following}

1 Fekete (2). 1 Pélya (3).
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method| depends on a contrast between the asymptotic behaviour of

the integrals a7 2T
[ zwa, | 1z,
-4 14

where Z(#) is the function defined in § 4.17. If Z(¢) were ultimately of
one sign, these integrals would be ultimately equal, apart possibly from
sign. But we shall see that in fact they behave quite differently,
Consider the integral
| txtor)Higs) ds,

where the integrand is the function which reduces to Z(t) on ¢ = §,
taken round the rectangle with sides c =4, o =% ¢t =T, t = 27
This integral is zero, by Cauchy’s theorem. Now

Y+2iT PYu
[ eyiede=i [ Zwa
T 4

Also by (4.12.3)
(e bo-fiue b 1
b= aeifaof)
Hence, by (5.1.2) and (5.1.4),
fxtal His) = Ob-tdbriog = 0@t (g,
= Othe=b+e) — O(f+} (1< o <)

The integrals along the sides { = T, £ = 27 are therefore O{T3+¢),
The integral along the right-hand side is

27
I+l X
f (%) e‘i"fﬁi"{l + 0(%)}{(%%:)5 df.
5

The contribution of the O-term is
£

[ ouhdr=o(ri).
T

The other term is a constant multiple of

@ 27T P
Z n-i J‘ (L)Xﬁ} e dit-ilugn 4.
= P 2

a2 ?
W(Qtlogg— Qt—tlogn) =

H'ence, by Lemma 4.5, the integral in the above sum is O(7'F), uniformly
With respect to #, so that the whole sum is also O(T%).

t Bee Landau, Vorlesungen, ii. 78-85.

Now

B[
©®
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Combining all these results, we obtain

B 1
| zw &t = orTh), (10.5.1) |
On the other hand, ’
2P 2 P
| 1z a = [ ga+intat > | [ ug-in .
T T r
But
sl 14 2i7 24T 24T LT
i[tarindt= | lods= [ + [ +
4 3vir i rr 24T
. 2
x 1 ]2+21T J' N
= |e— —— + | 0(TY do = iTLO(TY).
[ ,,2,_:2"‘ lognl, o i
27 B 3
Hence |Z(t)| dt > AT, (10.5.2)
r

Hardy’s theorem now follows from (10.5.1) and (10.5.2).
Another variant of this method is obtained by starting again from
(10.2.1). Putting a = }=—38, we obtain ]

f ti(:’i cosh (kr—)} dt = O(1)+0{ F oxp(—ntmie-s)

= (40 § o) = o) +o(j°w,ﬁh ”dz) _ O(H):

o

as 8 — 0. If, for example, E{f) > 0 for { > £, it follows that for T' > ¢,

2T
f Z(t) di
T

27 o
J'|Z(mau= <Af-t%t’«e5"‘dt
T e

2T b4
2 [ B0 g 1 [ Bt 1
can [ Eamimacan | 2ol
r 4

= O(T%.T}) = O(TH.

This is inconsistent with (10.3.2), so that the theorem again follows.

-‘:;-’& e

10.6. Still another methedt depends on the formula (4.17.4), viz.
By =23 OO B oy,

nEL

t Titclhmarsh (11).

106 ZEROS ON THE CRITICAL LINE 263
where @ = /(#/27). Here & = 8(f) in defined by
X(h-+it) = e-tee,

so that
i X @+ 1f 1Dt PG
PO =2 G+ 2{1°g eT(i—4) 2 T1i8)
1 7 % die
= —3log 7t ik ) _p{__ wd®
tlog 7+ tlog(dr+14%) 1¥aE R! R 1y

and we have 8t = blogi—3}log 2m-+O(11),

()~ dlogt,  O(t) ~ glt i

The function #(¢) is steadily increasing for ¢ == #,. If » is any positive
integer {Z= v;), the equation #{f) = v therefore has just one solution,
say t,, and ¢, ~ 2m/flogv. Now

26) = -1y CABN | gy

nGE

- cos{t,logn) cos(?, log 2)
9(t,) = z e A

nEx

The sum

congists of the constant term unity and osecillatory terms; and the
formula suggests that g(t,) will usually be positive, and hence that Z(t}
will usually change sign in the interval (2,,2,,,).

We shall prove

TrEOREM 10.6. A8 N » w0
N N
vzv Z(tzv) ~ 2N, Z Z(!z,ﬂ) ~ 3N,
=5, =

It follows at once that Z(t,,) is positive for an infinity of values of »,
and that Z(t,,,,) is negative for an infinity of values of »; and the
existence of an infinity of real zeros of Z(2), and so of E(t), again follows.

We have

x N
cos(f,, logn
> ot = S onllogn)
v=i+1 v A1 R W2 v
1
=N_M4 — coB(ty, log n),
LS V() TS by
Where v = max(tyy .z, 271%). The inner sum is of the form

3 cos{Znd ()},
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!

where 4!,(,,) — M‘
b

We may define ¢, for all v 3= v, (not necessarily integral) by 3{t,) = ». §
Then logn di di, 1
PO =EETE, Pl = 2

[}

logn
Flty,)’
Hence ¢'(v) is pasitive and steadily decreasing, and, if v is large enough,

50 that )= =2

(ty,) , _ Balogn -_ logn
PP ty, log™,, bpylog®tay”

&"(v) = —2nlogn

Hence, by Theorem 5.9,

login ) (tf logit )
cos(ly, | = Ot OfHN N
> 05(ly, log n) ( N téNIOgitm Toghn

TS fwShy

= O}, logityy).
Hence

1 cos(ty, logn) = 0(5;\:10535&\')
PYETE e ANER ALY e 0
= O(N¥logiN).
N
Hence ; Z(t,,) = N0 loghN),
»=T+1

and o similar argument applies to the other sum.

10.7. We denote by Ay (7)) the number of zeros of {(s) of the form §

4-+it (0 < ¢ < T). The theorem already proved shows that Ny(T) tends §

to infinity with T. We can, however, prove much more than this.

TuroreM 10.7.+ Ny(T) > AT.

Any of the above proofs can be put in a more precise form so as to ‘

give results in this direction. The most successful method is similar in |

principle to that of § 10.5, but is more elaborate. We contrast the

behaviour of the integrals ]
teH e H

p— = —-u{T E
I_j (u) +ie du, J = J. | ('u)

where 7 < ¢t < 27 and T —> 0.

e}nu
e-WT dit,

1 Hardy and Littlewood (3).
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We use the theory of Fourier transforms. Let F(u), f(y) be functions
related by the Fourier formulae

1 P —iyu
F) = 75 f fwdy, o= T f (e d.
Integrating over (f,t-+H), we obtain

+H

= v g,
Jr(u)du V,(z)ff() e dy,
234 71

0 that [RCETI (e

i
are Fourier transforms. Hence the Parseval formula gives

. J.If( pptt iy,

©

J

If F(u) is real, If(y)l is even, and we have

i N H
[ Py du| i — 2 j L) A ““* Hy gy
1UH

2H”J. If@)® dy+8 f‘ﬂy” dy.  (10.7.0)

1/H

+H

f F(u) du

w0

[

—m

o
Now (2.16.2) may be written

S ot gy — pebb— Yo

%f oy dt = gl o).
Putting £ = —i(}m—$8)—y, it is seen that we may take
1 E@®

ELER Y
T e

Fon = %e—ku}n—gﬁ)-%uf

— btk ey (pithr-Br2v),
Let H 3 1. The contribution of the first term in f(y) to (10.7.1) is clearly
O(H). Puttmg y= logav @ = eVH, we therefore obtain

F(ty =

>

w

I

~a

i+ H

f Fiu) du dt {Hﬂ J' | i(eim-By 2 dx} +

+0[ f ler(e‘@"*%ﬂn2 1+0(H) (10.7.2)
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Now
(e D)2 = ‘ i e-n'wa:’(smﬁﬁooe&)lz
n=1
= i e‘h’"x'sma_{. z E —tmEentme? sin §+imd —n*mztoos 5,
A=l mER

As in § 10.5, the first sum is G(z-18-1), and its contribution to {10.7.2) is
therefore

143 o
O(H= f +15} d.z)+0( 2;:;2)
1 G
= O{HNG—1)61+ 0@ Hlog &) = O(HSY).

The sum with m # » contributes to the second term in (10.7.2) terms
of the form

o—Umt Tt BnS H(m? —nhmztcosd de o e-mi+niwdtatd
log®x [mE—n?| Glog®G

0 H!e4m'+n')nuln5
~ oS

[~)

by Lemma 4.3. Hence the sum is

R

WE Rt m m—mn,
w2 Bl nw=1
o
= O(H‘I Z lofnme*"""”“a) — O{H’( Z lofnm‘i‘ Z e—m‘arsini)}
m—2 m<1 m>UE

- o(fmogz %) = O(Hs

for 8 < 3,(H). The first integral in (10.7.2) may be dealt with in the

same way. Hence
®

]

—a

-+

i

]
Taking 6 = 1/T and T > T, (H), it follows that

2
Flu) dui dt = O(Hs Y.

T
JizEd = o). (10.7.3)
T
10.8. We next prove that
J > (AH4 YT, (10.8.1)
2T
where [Prd=0T 0<H<T). (10.8.2)

T
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We have, if s = 3+, T <t 5 2T,

3t .
> Al .

T3 |a(:)|t,+i

Hence
t+H

TH > A J' |3 i)l du > A
)

i+ H

|t du
t

i+ H

f {Z nTis.,‘i"O(T"")}d“

i L AT

=4

i+ H

g
f Z abtin o
2= Tr

2 nd

xAH-}-O[

]+O(HT-§)

= AH+0[ } +OHT-.

1 1
2 (niﬁ‘”m logn  ndt¥log n)

24T
It is now sufficient to prove that

2T
1
Z nt¥logn

IJ'. 2EnCAT

and the caleulations are similar to those of § 7.3, but with an extra
factor logm log » in the denominator.
Tg prove Theorem 10.7, let .S be the sub-set of the interval (T,21)

where I = J. Then J.\ﬂdt—f.fdt
& 5

2
dt = o),

27 T
Now j|1|dtg f 1| dt < (TJ' midt)* < AHYTE
S T T

by (10.7.3); and by {10.8.1) and (10.8.2)
[dae>73 J’ (AHLY) dt
8 &

o7
> AT-%Hm(S)_T—&f I d
[
27 3
> AT—%Hm(S)—T-i(TJ' ki dt)
b
= AT-Hm(S)— ATE,
where m(S) is the measure of S. Hence, for H > 1 and T > T (H),
m(S} < ATH-}.
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Now divide the interval (T, 27T} into [ 7'/2H] pairs of abutting intervals
F1» J=» each, except the last j,, of length H, and each j, lying to the
right of the corresponding j;. Then either j, or j, contains a zero of
E(2) unless j; consists entirely of points of 8, Suppose that the latter
oceurs for » §,°s. Then

H < m{8) < ATH¥,
Hence there are, in (7', 27", at least
T 4 T
[T/2H]— > E(ﬁ‘ﬁ) >

zeros if H is large enough. This proves the theorem.

10.9. For many years the above theorem of Hardy and Littlewood,

that Ny(T) > AT, was the best that was known in this direction. §

Recently it has been proved by A. Selberg (2) that Ny(T) > AT log T.
This is & remarkable improvement, since it shows that a finite propor-

tion of the zeros of [(s) lie on the critical line. On the Riemann hypo- 3

thesis, of course,
N(T) = N(T) ~ 2iiﬂlug T
T

The numerical value of the constant 4 in Selberg’s theorem is very }

smsll.}

The essential idea of Selberg’a proof is to modify the series for {(s)
by multiplying it by the square of a partial sum of the series for {{{s}} 1.
To this extent, it is similar to the proofs given in Chapter IX of theorems 1

about the general distribution of the zeros.
We define «, by

\ﬁ=2§s =1, w=1l

It is seen from the Euier product that o, 0, = o, if (4,v) = 1. Since

the series for (1—2)} is majorized by tha.t for (1—z)%, we see that, if

Vits) = Z g, g =1

=1
then fo,} < o, < L.

logv

= 1—

Let 8, a,( logx) 1<v < X),
Then Bl<1

1 It was caleulated in an Oxford dissertation by 8. H. Min.
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All sums involving f§, run over [1, X] (or we may suppose 8, = 0 for

» > X). Let
por =3 &

etim
0 = o J' T apr (s} (s)g(1 — o)z d

¢ =i

10.10. Lett

where ¢ > 1. Moving the line of integration to o = }, and evalnating
the residue at 3 = 1, we cbtain
i
0@ = 40O+ 1 [ Tlhol lladplorptl—ae ds

1l

= M(l)ﬁb(o)—u f t,‘:_:f’}|¢(§+is)|ﬂz“dt.

Cn the other hand,

=S ST f Pt =2 ds

n=l poov e—dm

BBy it
-3 3 ()
w1 w Ty
Putting z = e-%i™#—v, it follows that the functions
1 E®
Jiem #+}

) = dedg(1)g(0)—24 Z z z_,‘_,exp( m;g*;)

n=1

Py = |(d-it)|2edni5,

are Fourier transforms. Hence, as in § 10.7,
i+h

{ ] Fe do @t < 200 f ()1 dy+8 j Fo)lytdy  (10.10.1)

Whera k << 1 i8 to be chosen later.
Putbing y = logx, G = e, the first integral on the right is equal to

fe 0= 35S B exp st

i A=l K

dz,

t Titchmarsh (26).
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Calling the triple sum g(z), this is not greater than
a (<] G
2
2 [BOEOE ieta [l de < s 12 [ ot de
1 1 1

Similarly the second integral in (10.10,1) does not exceed

1B{L)b(0) [
26 log?G

I.ti(:t)l2

+2 log“x

10.11. We have to obtain upper hounds for these integrals as 8 » 0,

but it is more convenient to consider directly the integral

J(@,8) = flg(u)|2u—f’du <0< 221

This is equal to
z z ﬂ"ﬁ"ﬁ“ﬁ fexp{ (m’ i )u’sm8+

m=1n=1 xAgw
2,,2
i (m'( ﬂ'M)wcoslﬁ}
uf

Let £, denote the sum of those terms in which mx/A = nufv, and X,
the remainder. Let (xv,Au) = g, so that

Ky == ag, A = by, (a,d) =1,

Then, in Z,, ma = nb, so that n — ra, m = rb {r=1, 2,...). Hence

@ @
2,22
I = E 'E" Elf eXp(—2vrr;2'u u“sinS)%l-;
r=lz

Now
o

™ @
gy G er = 1 _ady
[t s [
4 =1 oy

r=1
o y‘ 1
=
= ottt f ( ,-T——ﬁ) dy.
i s <y}

The last #-sum is of the form

o)
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where K(#), and later X,(8), are bounded functions of 8. Hence we
obtain

F gl c
in_ﬂi [ j e dy+- 0(1\/17)] - “ e ¥yt dy+0{(r~’n)1-”}] +
Q 0

+n¥2K () [ j'ge"i’y—” dy-+ O{(z‘\/q)“"}] + Oz -#log (2 + - 1)}

Kl(e)n*” -4 {VL“’ 4 }
_m-k +0 7 log(2+n-1) ;.
Putting 5 = 2mi?ulg—2sin §, it follows that
5 = (2TS:OS))M ) KDY (o sin 5)10-18(0)+
1 0log@+17) . BeBububl -
+o{ ¢ x b } (10.11.2)
1-8
where 80 = (ﬁ) Bebiliuly,

KARY
Defining ¢,(n} as in § 9.24, we have

gt = Zf#e(ﬂ) E $-olp

WA
Henoe S0 =3 4. a(P)(z E.A )
pXT
Let d and d; denote positive integers whose prime factors divide p.
Let k = d«’, v = d,v', where («’, p} = 1, {/, p} = 1. Then

L
e %

X
Now, for (x",p}) = 1, Bae = f:;"{r log e

Hence the above sum is equal to

1 O M)

— Zdtd, e log — Iy log
log®X &, d-fd, S p= d dlv

viZid ¥
10.12. LemMa 10.12. We have

z ﬂ1ogd ,0{( )1og% 11[(1_;.%)*] (10.12.1)

wXi
uniformly with respect to 8.
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We may suppose that X > 2d, since otherwise the lamma is trivial.
1+io

Now 2—11; f ‘i:d.s—o O<zr<), logz (> 1).
1—io
1 \k 1\ 1
e [T (- 3l
(r‘;}-l ' tp=1 P % o) A(1—+e)

Hence the left- hancl side of (10.12,1) is equal to

2m , ra (X) n( I’z yw) ﬁ%. (10.12.2)

There are smgu]a.rltles ats = Oand s = 8. If 4 = {log(X/d)}~, we can
take the line of integration through s = 0, the integral round a small
indentation tending to zero, Now

< Al

2lp

| 1
L{14-ir)
for all ¢ (large or small). Also
1 1
gtel) ol 13

1 ( Pt 1:I P

Hence (10.12.2) is
»lp Flp

and the result stated follows.

[T(- ) =
offf TT0+2) JHe)- ol T (1)

If 8 < {log(X/d)}~!, we take the same contour as before modified by

& detour round the right-hand side of the circle |s| = 2{log(X/d)}-1.
On this sircle (Xjdy] < &

the p-product goes as before, and
|1 —8+-s} > Alog(X/d).
Henece the integral round the circle is

X 1\4 [ |ds X 1\3
oflog X (1 _)"‘7]:0{1 1 (1 7)}
frog L1 el - opew 2 [T (1

The integral along the part of the line ¢ — & above the eircle is

oG IO+ | - ol e IT(+ )

vip Atlog X/ay-1

The lemma is thus proved in all cages.
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10.13, Lemma 10.13.

2 oI

rp

Defining of as in § 10.9, we have

2 |“¢¢'.z, Oldad._z ,
D
F"”l

plddy

where I is a number of the same class as d or d,,

SRR ()

»lp

10.14. LemMma 10.14

0o

uniformly with respect to 6. In particular

8(0) = o(ﬁé_j).

By the formulae of § 10.11, and the above lemmas,
325~ ol 3 g G e e 1 7))
- "{mlﬂ, (+3) 2, i)
- ofmex [] (43}

Henca
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Hence 20
S(G)=O{1;Xﬂx ZX Z (» )IM E}
S5 I S T

—of X* 1 1 }
log?X Flmmg pi+?
X# 1 1
zo{m 1 _}
logtx _1ni ng;[. s
_Xzb‘
=gz}

10.15. Estimation of Z;. From (10.11.1), Lemma 10.I14, and
the inequality |B,| < 1, we obtain

1 (slaX2) 21-8log( X [8) )

=0 (4] ?log2X |,
% (aiax" Tog X) + {aiezﬂlogx +O{ g X lgX

We shall ultimately take X = §-¢ and % = (alog X)-%, where 2 and ¢

are suitable positive constants. Then G = X° = §-vc. If x < G, the last

two terms can be omitted in comparison with the first if GX2 = O(5- 1),

1e. if (e + 2)c < . We then have

1
5, = O(ﬁfv‘_w”bg—X)' {10.15.1)
10.16. Estimation of T,. If P and @ are positive, and z 3> 1,

N d’u
-Pu1+mu' Q0 Jyy
J- e f B—*e ° dy = ( x";)
e.g. by applying the second mean-value theorem to the real and

imaginary parts. Hence
‘exp[__ﬂ(”j\"‘“ e ) smﬁ}]

mEKH nﬂ 2

2230[ ZMZ

The terms with m:q‘A > npfv contribute to the m,n sum

SN m2® pp\ -1
O Semmmeaimans 5 (mE TR

m=1 R Ap
mi® nil me fmx mp)  me(mer—ndp)
Now »‘72)\(;\ ) A T

and mevim\p\ -|-)‘,u 2A +. w-leO(]OngX).
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Hence the m,n sum is
Xy < (1 log(mXy _m=.c=)\—=s|na}
o 2 i )e

m=l
B Ay log X Xz v EXZ
—O{T(lJr i )log?+—log 7}

~0(&log )+0(—log )

since, as in §10.15, we have X = -, with 0 < ¢ < }. The remaining
terms may be treated similarly. Hence

A 4
%, = 0{%% (;log%+$log"%)} - O(;—{—log 5) (10.16.1)

10.17. Lemma 10.17. Under the assumptions of § 10.15

i4-h

f fF(u)d.u it — O(W) (10.17.1)
By (10.15.1) and (10.16.1),
1
Tz, 6) — O(WE?X) (10.17.2)

uniformly with respect to #. Hence

G o [
flg(x)l’dx= — J.x"gdx: [—x”J]f+foﬂ-1de
1 1 1

%
1 dx _ tog & )
= O(s&elog X)+O(‘9 _[ %z logX) = O(sﬂogx ’
1

taking, for example, § = 4. Also

f 8J(G.0) df = J’ |g(x) |2 dw f 0z~ dg

O e s I
g log*x 2ztloge ™ z¥loghs,

@
gy 3 [ loly,
g2 2

[=]

A%

mﬁs “L—-a
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since G = ¢l'" > ¢, Hence

®

¥
le(xn dr < f 8.J(G,6) d8+3J(6, §)
0

log%x

0 J' 1 =0 1
= S{Gﬁlogx SiGilogX - (SilogG]ogX)'

Also $(0) = O(X), ${1) = O(log X). The result therefore follows from
the formulse of § 10.10.

10.18. So far the integrals considered have involved F{f). We now
turn to the integrals involving |F(2)|. The results about such integrals
are expressed in the following lemmas.

H _ flogl/s
LEma 10.18. I |F@)* dt = O(ai‘logX)'

By the Fourier transform formulae, the left-hand side is equal to
2 [ i dy — f
[] 1

4 f |9(@) [? dz -+ O(X*1og"X).
1

A s0(0)—gt0)

Taking z = 1, § = {log(1/8)} in (10.17.2), we have

i log 1/8
2, -1og u/(log 1/5) — g
i[ |g{u)|2e du = 0(8_*_logX)'

&
log 1/8
2 g =
Hence jig(u)g du = 0(8 logX)'

We can estimate the integral over (8-%,c0) in a comparatively trivial
manner. Ag in § 10,11, this is less than

L3

Z Z Iﬁkﬂaﬁ,,.ﬁul f exp{ (m”x’ +ﬂ’#’)u=m 5}

meln=l K
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Using, for example, k2i-2sind > AX-2§ > Ad? (since X = §-¢ with
¢ <4),and {,| < 1, this is

ol X2log2X - —Aim® - nhitut
{ og 2_:1 2, J- 3 du}
= O(X*log‘X I grd8tut du) = O{X?log?X e-48"),
&
which is of the required form.

10.19. Lemma 10.19.

@ 1+h
f [ f | Flu)| a’.u]zdg - O(E’Iogl,ra)_

3tlog X

—m 1

For the left-hand side does not exeeed
® i+k oo (73 £l
dn [ 1P du} dt=h (| Fu)tdu [ dt = [ | Fu)?du,
Ik Jirede fo=n ]
and the result follows from the previous lemma.
10.20. Lemma 10,20, If3 = 17T,

T
J'|F(:)| at > ATE.
L]

‘We have
(:H LRSS X7

F4i
[+ [+ [+ [ Juosers—o
F+i aki e+if AT
Since ${s) = O(X3) for o 2> §, the first term is O(X), and the third is
G(XTE). Also a.
Lsl¥e) = 14+ 2 =,

where |a,| < dy(n). Hence
24iT 2 thds
[ wowioras = ir—1y+ Z [Z

2+¢ - Z+i

- i(T—1)+0(§: dym) )
'n=12

ntlogn,
= iT+O(1).
r
It follows that f L+t dt ~ T
a
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Hence

T I
{ 1F@)dt > A [ edLgring i) de
] 0
T
> AT [ [{G+ingHd+in| de
i

> ATt

T
| thagrd-rin a
T
> AT
10.21. LemMma 10.21,

T i+h

| de j [F(u)| du > ARTE.
] H

The left-hand side is equal to

T+h min{P,u} T a Fd
[1Fwide [ @ 2 [ |Feo|du [ de="k [ |F@)| dw,
[ max(0,u-h} 13 u—h [

and the result follows from the previous lemma.

10.22, TarorEM 10,22
Ny(T) > ATlog T.
Let E be the sub-get of (0, ') where
5k
17 du >
H
For such values of t, F{u) must change sign in (,{4A4), and hence so
must S(u), and hence {(4+iu) must have a zero in this interval.
Since the two sides are equal except in E,

j dttJf)\\F(u)idu > f [Th[F(u)J du—
t pai 2

F A

t+h
J’ Fu) du

t+h
_[ Flu) du]} di
¢

T t+h t+h
~_—uj{ ! | Flae}] due— JF(u) dn‘}dt
T (it+h
> AbTE— j f Plu) du) de.

0
The left-hand side is not greater than

{ J da K[ (!I,]F(u)\ du)adt}% < [m(E)-:f (:‘th[F(u)] du)zdt}*

< A{m(E)}%hT}(llzs §)5

1
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by Lemma 10.19 with 3 = 1/T. The second term on the right is not

greater than e woten
2
{afdzaf I|' Flu) du\ de}% < %’;%?
by Lemma 10.17. Hence
ot > 4, TN 4, .J"—*r,
log T hilogiT
where A4, and 4; denote the particular constants which occur. Since
X = T* and b = (glog X} = (aclog 7)1,
m{EY > 4, AT — A,ac)tTh.
Taking o small enough, it follows that
m(E) > A, T
Hence, of the intervals (0,%), (h,2R),... contained in (0,7), ab least
[4, T/#) must contain points of E. If (nh, {(n+ 1)) contains & point ¢ of
E, there must: be a zero of {{}+iu) in (§,¢--3), and so in (nhk, (n+2)A).
Allowing for the fact that each zero might be counted twice in this way,
there must be at least

A; T/k] > ATlog T
zeros in {0, T).

10.23. Tn this section we return to the function E*(¢) mentioned in
§10.1. In spite of its deficiencies as an approximation to E(¢), it is of
some interest to note that all the zeros of E*(t) are real.t

A still better approximation to ®(u) is

@**(u) = w(2n cosh ju—3 cosh fu)e 2 eosh v,

This gives EeH(f) = 2 [ Q**(u)cos ut du,

o
and we shall also prove that ali the zeros of E**(1) are real.

The function K,{a) is, for any value of a, an even integral function
of z.  We begin by proving that if a is real all ils zeros are purely
URaginary.

Tt is known that w = K,{a) satisfies the differential equation

d{ dw 2®
E(aﬁ) = (a+ E)w'
This is equivalent to the two equations
dw W dW ( z*)
B — = e+ —]w.

a

da o’ da
1 Pélya (1), (2), (4)-
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These give %(Wﬁ) = %{]W|2+(ﬂ-z+zi)lw|z}-

Tt is also easily verified that w and W tend to 0 as & — co. It follows
that, if w vanishes for a certain z and & = a, > 0, then

[ 1wt ey = o.
P4
Taking imaginary parts,
ixy f wdﬂ =0,
[

Here the integral is not 0, and K {a) plainly does not vanish for z real,
i.e. y = 0. Hence x = 0, the required result.
We also require the following lemma.

Let ¢ be a positive constant, F(z) an integral function of genus 0 or 1,

which takes real values for real z, and has no complex zeros and of least }

one real zero, Then all the zeros of

F(z+ic)+ F(z—ic) (10.23.1)
are also reql.
= w T T(1 %)
We have Flz) = Czte H(l %)e o,

where €, o, ay,... are real constants, «, £ 0 for n = 1, 2,..., 3 ag
is convergent, g a non-negative integer. Lot z be a zero of (10,23,1). Then
[Flz+ic)| = |Plz—ic)],
so that
_ | Flz—ic)|?
| F(z-416)

_ [PHy—oP I 1T e ko
et e | e=arturor

Ify > 0, every factor on the right is < 1; if y < 0, every factoris > 1.

Hence in fact y = 0.

The theorem that the zeros of Z*(#) are all real now followa on taking

Flz) = Kypl2m), c=1%
10.24. For the discussion of E**{t) we require the following lemma.
Let |f(t)] < Ke "™ for some positive 5, so that

Fiz) = VT;;)_ f Fityeiet de
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is an integral function of z. Let all the zeros of F(z) be real. Let (t) be
an integral function of t of genus 0 or 1, real for real t. Then the zeros of

Glez) = V’(2 f fle)pter)e™ dt
are also all real.

We have H(l) = Ceest ﬂ {: ——~)e‘f°%-

where the constants are all real, and ¥, or,? is convergent. Let

$alt) = Ottest ﬁ (1 _ai)e”a”'
P AR

Then ¢,(Z} -~ ¢(t) uniformly in any finite interval, and (as in my Theory
of Functions, § 8.25) B8] < Ko

uniformly with respect to n. Hence

6l) = lim f F{Eibalit)e dt = lim 6,(2)

v’(ﬁ )

say. It is therefore sufficient to prove that, for every =, the zeros of
G, () are real.

Now it is easily verified that F(2} is an integral function of order less
than 2. Hence, if its zeros are real, so are those of

(D—)F() = e % fp-F ()

for any real «.. Applying this principle repeatedly, we see that all the
zeros of
H(z)
= DA(D—ay)..(D—a ) F(z) = \,(21) j FONGRG— ). it — i) di
are real. Since

— 1
0,(z) = (—I)LOH(z+a+l+...+;)
L. oy
the result follows.
Taking f8) = 4y(2n)e-smoosmx
we obain F(z) = Ky (2m),
all of whose zeros are real. If

#(t) = nicosl,
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then G(z) = E*(z), and it follows again that all the zeros of E*(z) are
real. If .9 3 5
5= —{— " cos
H(f) = §= (cos2 21100523),
then @{z) = E**(z). Henocs all the zeros of E**(z) are real.

10.25. By way of contrast to the Riemann zeta-function we shall
now construct a function which has a similar functional equation, and
for which the analogues of most of the theorems of this chapter are true:
but which has no Euler product, and for which the analogue of the
Riemann hypothesis is false.

We shall use the simplest properties of Dirichlot’s L-funetions (mod 5),
These are defined for o > 1 by

2 1 ,1,1,1 1
Lo(a) = XO,::") = F+2_'+§+4_'+§+"
n=1

Li=Sam_1,¢ ¢ 1.1,

S _ 1 i 5 11
Lin=p S =t wta—ptet-

n=l
SN xefm 1 1 1.1 1
L9(3) - ,;2:1 I R T 3l+4l+@+""
Each y(n) has the period 5, It is easily verified that in each case
x(mlx(n) = x(mn)
if m is prime to n; and hence that

L) = H{l—%]_l (z; >1).

P
It is also easily seen that

Ly = (1- 3w

so that Ly(s) is regular except for a simple pole at s = 1. The other
three series are convergent for any real positive s, and hence for o > 0.
Heneo L)(s), Ly(s), and L,(s) are regulsr for ¢ > 0.
Now consider the fanction
£(8) = }secBfe-PL,(s)1-¢PLy(s)}
1 tané tanf 1 +ﬁl'-|-...

Tty T Tw e
= e, 1)-+-tan 0 1(s,D—tan 020, H— 6, )
where {{s, a) is defined as in §2.17.
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By (2.17) f(s) is an integral function of s, and for ¢ <C 0 it is equal to

2l (1—s){ ., ‘
e

~ 8 Sma\ 1
X z (cusmT”than@cost}%'fbanﬂms iiid coa—")

5 5 jmi-c
mel

< [ . 2mw . dmmm . bmw |, 8mmy 1
+cos dns z (sm-—5—+ba,n83m-—-;7t,a,nﬂsm-—5——smT prors
m=1

4T(1—s)eos dms <= | . 2mar . dmm 1
= 75’(2”)1_, Z smT+tan93m el
P

T
,

i
If sin 1 tan fsin 7 = ta.nﬁ(sin?E+ t.a.nﬂsmT) (10.25.1)
b 5 fi} k]

this is equal to
4I(1—s)cos drs i (sinzT:-{- tan #sin é;—')f(l——s).

5(2m)
The equation (10.25.1) reduces to
. 2r  45—1
sin 20 = 2c03u5- =g
and we take ¢ to be the root of this between 0 and }n. We obtein
_ 4(10—2+5)—2
tanf =1
R L dr 4B
slnz5’l'+ta.nﬂsmg =5

and f{s) satisfies the functional equation
2P (1—sjeospem ...
Fey = ST F(1—a).
There is now no difficulty in extending the theorems of this chapter
to f{s). We can write the above equation as

([ rarone = () ra—sasa—n

T,

and putting 8 — -t we obtain an even integral function of ¢ analogous
to E(¢).
We conclude that f{(s) bas an infinity of zeros on the line ¢ = §, and
that the number of such zeros between ¢ and T' is greater than AT
On the other hand, we shall now prove that f(s) has an infinity of
zeros in the half-plane o > 1.
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If p is & prime, we define «(p) by
a(p) = H1+ix ()1l —ixlp)
so that afp) = +1 or o
For composite n, we define «(») by the equation
a(ny ) = alny)alng).

Thus |«(n)| is always 0 or 1. Let

)

Mis, x) = z ’%’fm = ” (1 _“(P;J:S(P))*ll

a1 »
where x denotes either y, or y,. Let

Nig) = HM (s, x,)+ M3, x)}-
a(Ph(p) = M1+ Hl—dx xo
aPIx=(p) = H{149)x xa+ HI—2)xd,

and these are conjugate since ¥} = x§ and x? and x, x, are real. Hence
M(s, x,) and M(s, y,) are conjugate for real s, and N{s) is real.
Let s be real, greater than 1, and — 1. Then

Now

log M(s, x,) = Zf‘L;‘;("i)JrO(l)

Fd

2
— 1) STHP) 3y S 0Pl | g
B9 3, a0 3 Mo
Now x; = xs and x; xa = x, Hence

2
> ) - Z%"—’ — log Ly(s}-+0(1) = O(1),

x(@x) 5 xlp) _ _ 1
; WP — 2 # = log Ly(s)+0(1) = log— + O(1).

Hence 1
log Mz, x,) = Ml_i)hg.s—_l-*_ 1),

1 1
= - AL
N(s) = RM(s, x5} T l)cos(} logs 1)9. s
It is clear from this formula that N{s) has a zero at each of the poinis

& = l-fe @7 (4 — 1, 2,...).
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Now for ¢ 22 143, and y = y; or x,,
log L{s+ir, x)—log M(s, x)

-3 {log(l_m(P;)JS(P))_log(l—P;fX(P))} +O('}_}8)

nLsP

- 0[ S B%M]w(g).

PP
P#5

Let a(p) = 2@ By Kronecker’s theorem, given g, there is & number
7 and integers z, such that

L 1
o Az, < (P < P)

Then la{p)—p—7| = |e‘zn¢(ﬁw)ﬂr lopan) ]| « % 1.

Honoe  log Lis-in x)—log M(s, 1) — 08%) 1 of )

and we can make this as small as we please by choosing first P and
then ¢q. Using thia with y, and y,, it follows that, given ¢ > ¢ and
& > 0, there is a = such that

|f(3+inr)—N(s}] < e (o= 1+38)

Let 8, > 1 be a zero of N{s). For any n >> 0 there exists an n, with
0 <<y <<%, 7y << 8,—1, such that N(s) = 0 for [s—s;| = 7;. Let
€= min |N(s)|
[#—8,fmap
and 8 < &—x—1. Then, by Rouché's theorem, ¥(s) and
N(g)—{N{a)-fle-+ir)}

have the same number of zeros inside |s—a,| = 7;, and so at least one.
Hence f{s) haa at least one zero inside the circle [s—s,—ér| = 7,.

A slight extension of the argument shows that the number of zeros of
fie)ine > 1,0 <t < T, exceeds AT a3 T —c0. For by the extension
of Dirichlet’s theorem (§ 8.2) the interval (f;, mg¥,) contains at least m
values of ¢, differing by at leaat #;, such that

182 _gl<l (<P

P
The above argument then shows the existence of & zero in the neigh-
bourhood of each point s, +(r+1).
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The method is due to Davenport and Heilbronn (1), (2); they proved

that a class of functions, of which an example is

> o

ma = 5,0 (m2+5ni)s
has an infinity of zeros for ¢ > 1. Tt has been shown by caleulationt
that this particular function has a zero in the critical strip, not on the
critical lire. The method throws no light on the general question of
the occurrence of zeros of such functions in the critical strip, but not
on the critical line.

NOTES FOR CHAPTER 10

10.26. In §10.1 Titchmarsh’s comment on Riemann’s statement about
the approximate formula for N(T'}is erronecus. It is clear that Riemann
meant that the relative error {N(T)—L(T)}/N(T) is (T -1).

10.27. Further work has been done on the problem mentioned at the
end of §10.25. Davenport and Heilbronn (1), (2) showed in general that if
Qis any positivedefinite integral quadratic form of discriminant d, such
that the class number h{d) is greater than 1, then the Epstein Zeta-
function -

L= ¥ QEy—* (o>1)
(23 HO0)

has zeros to the right of ¢ = 1. In fact they showed that the number of
such zeros up to height 7'is at least of order T (and hence of exact order
7). This result has been extended to the critical strip by Voronin [3],
who proved that, for such functions {4(s), the number of zeros up to
height T, for § <o, < I{8) € ¢, < 1,1s also of order at least T (and hence
of exact order 7). This answers the question raised by Titchmarsh at the
end of §10.25.

10.28. Much the most significant result on N(T) is due to Levinzon
[2], who showed that
N(T) = aN(T) (10.28.1)

for large enough T, with « = 0-342. The underlying ides is to relate the
distribution of zeros of {(s) to that of the zeros of {(s). To put matters in

+ Potter and Titchmarsh (1).
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their proper perspective we first note that Berndt [1] has shown that

#ls=0+i0<t< T, {'(s) =0} =%(]og£—1)+0(log ),

and that Speiser (1) has proved that the Riemann Hypothesis is
equivalent to the non-vanishing of {'(s) for 0 < ¢ < §. This latter result
is related to the unconditional estimate

gls=ot+ib—1<o<§ T, <t< T, (=0}
=gl{s=c+it:0<o <} T <t< T, ) =0}
+0O(log T,), (10.28.2)

zeras being counted according to multiplicity. This is due to Levinson
and Montgomery [1], who also gave a number of other interesting
results on the distribution of the zeros of {'(s).

We sketch the proof of (10.28.2). We shall make frequent reference to
the logarithmic derivative of the functional equation (2.6.4), which we
write in the form

Y@ Ca-s_ (T r'(%—%s))
W) T i~ BT 5(“53)"%—%)
= —F(s), {10.28.3)

say. We note that F(} + i) is always real, and that
F(s) = log(t/2n) + O(1/1) (10.28.4)

uniformly for £ > 1 and |s| < 2. To prove (10.28.2) it suffices to consider
the case in which the numbers T, are chosen so that {(s) and {'(s) do not
vanish for t = T;, —1 € 0 < }. We examine the change in argument in
U(s)/{(s) around the rectangle with vertices 3} —0+iT,, §—5+iT,,
—1+iT,, and —1+iT,, where 4 is a small positive number. Along
the horizontal sides we apply the ideas of §9.4 to {(s) and {'(s)
separately. We note that {(s) and {'(s) are each O(t%) for —3< o< 1.
Moreover we also have |[{(—1+iT)|» T}, by the functional equation,
and hence also

{(—1+:T)
{(—1+:iT))

E(=1+iT)I> T}

» TllogT,,

by (10.28.3) and (10.28.4). The method of §9.4 therefore shows that arg {(s)
and arg {'(s) both vary by O(log T,} on the horizontal sides of the
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rectangle. On the vertical side ¢ = —1 we have
0] t
2 log[ - 1
® log (2n)+ o,
by (10.28.9) and (10.28.4}, so that the contribution to the total change in
argument is O(1). For the vertical side ¢ = } —& we first observe from
(10.28.3) and (10.28.4) that
ra+ it))
R{ — - =1 (10.28.5)
( Oy +it)
if ¢t > T, with T, sufficiently large. It follows that
U'G—0+it)
Rl F——1 |2 10.28.6
( [G—d+iD H ( )

for T, < t < T,, if 8 = &(T,) is small enough. To see this, it suffices to
examine a neighbourhood of a zero p = 3 + iy of {(s). Then

{'(s) mn
— = —+m +0(lzs—pl),
6] g—p Otls =)
where m 21 is the multiplicity of p. The choice s = § +it with ¢~y
therefore yields R(m’} = 1, by (10.28.5). Hence, on taking s = § —J +it,
we find that ® 5
8, m
R| — = +R{m )+ Ols—pl) =
( C(s)) gt PRI+ Olls=pD) 2 4
for |s—p| small enough. The inequality (10.28.6) now follows. We
therefore see that arg ('(s)/{(s) varies by O(1) on the vertical side
R(s) = 4 — & of our rectangle, which completes the proof of (10.28.2).
If we write IV for the quantity on the left of (10.28.2) it follows that

Ny(T) —No(Ty) = {N(Ty)— N(T)} —2N+O0(log T)), (10.28.7)
so that we now require an upper bound for N. This is achieved by
applying the ‘mollifier method’ of §§9.20-24 to (1 —s). Let vig, T\, T'p)
denote the number of zeros of {'(1 —5) in the rectangle ¢ < R(s) < 2,
T, < I(s) < T,. The method produces an upper bound for

2
j ve, T,, Ty )do, (10.28.8)

which in turn yields an estimate N < ¢{N(T,)— N(T)} for large T',. The
constant ¢ in this latter bound has to be calculated explicitly, and must
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be less than } for (10.28.7) to be of use. This is in contrast to (9.20.5), in
which the implied constant was not calculated explicitly, and would
have been relatively large. It is difficult to have much feel in advance for
how large the constant ¢ produced by the method will be. The following
very loose argument gives one some hope that ¢ will turn out to be
reasonably small, and so it transpires in practice.
In using (10.28.8) to obtain a bound for N we shall take
u=31—aflogT,,

where ¢ is a positive constant to be chosen later. The zeros p’ = ' +iy’ of
£(1 —5) have an asymmetrical distribution about the critical line.
Indeed Levinson and Montgomery [1] showed that

S (4-F)~ 5 loglog T,

o<y=sT
whence f' is 3 —(loglog ¥)/log ¥ on average. Thus one might reasonably
hope that a fair proportion of such zeros have §' < u, thereby making the
integral (10.28.8) rather small.
We now look in more detail at the method. In the first place, it is
convenient to replace {'(1—s) by
{(s)
2 e G,
{(sy+ F® (s)
say. If we write A(s) = n— 1% I'(3s) then (10.28.3), together with the
functional equation (2.6.4), yields

o Feh@6E
fl—s)= Rl
so that G(s) and {'(1 - s) have the same zeros for ¢ large enough. Now let
Yo=Y bne (10.28.9)
LY

be a suitable ‘mollifier’ for G{s), and apply Littlewood’s formula (9.9.1) to
the function G(s)y(s) and the rectangle with vertices u +iT}, 2 +iT,,
2+iT,, u+iT, Then, as in §9.16, we find that

2

jv(a, T,T,)ds

u

N< log T,

TI
log T, 3 )
< ona log |G(x + ity yr(u + i) | dt + Klog T,) .

T,
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Moreover, as in §9.16 we have

T,

I log |G(u + ity v (u + it) |dt

Tl
i

j (Gt + ity e + it} |2 a!t).

e

1
<3 (Ty,—T)) log (T2 T,

Hence, if we can show that

Tl

j 1G(u +ityp(u+in|2dt ~ cl@) (T, —T)) (10.28.10)
T,

for suitable T, T, we will have

N< (1‘352# + o(l)) {(M(T,)— N(T))}, (10.28.11)
whence
NI~ N(T)) > (1 -l ) +o(1)) IN(T,) =~ N(T,))
by (10.28.7).

The computation of the mean value (10.28.10) is the most awkward
part of Levinson’s argument. In [2] he takes y = Tt *and

_,Jog y/n
= u—
b, =pumn ogy
This leads eventually to (10.28.10) with

c@oera( L LY L_ L 25 7 o
- 223 24a/ 2a® a? 24¢ 12 12°

The optimal choice of a is roughly ¢ = 1-3, which produces (10.28.1) with
= 0-342.

The method has been improved slightly by Levinson (4], [5], Lou [1]
and Conrey [1] and the best constant thus far is « = 0-3668 (Conrey [1]).
The principal restriction on the method is that on the size of y in
(10.28.9). The above authors all take y = T,4~% but there is some scope
for improvement via the ideas used in the mean-value theorems (7.24.5),
(7.24.6), and (7.24.7).
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10.29. "An examination of the argument just given reveals that the
right hand side of (10.28.11) gives an upper bound for N+ N*, where

Nt =g{s=3+it: T, <t < T, {(s)=0},

(zeros being counted according to multiplicities). However it is clear
from (10.28.3) and (10.28.4) that {'(} + i§) can only vanish if {{(} + i) does.
Consequently, if we write N for the number of zeros of {(s) of
multiplicity r, on the line segment s = } +if, T, <t < T, we will have

N =¥ (r—DN©,

r=2

Thus (10.28.7) may be replaced by
NU— ¥ (r—2) N = {N(T,)— N(T,)} - AN+ N*) + Ollog T,).
r=8

If we now define Nv}(T'} in analogy to N, but counting zeros } + it with
0 <t < T, we may deduce that

NO(T)— i r—2)NT) 2 aN(T), (10.29.1)
r=3

for large enoughT, and & = (-342. In particular at least a third of the non-
trivial zeros of {{s) not only lie on the critical line, but are simple. This
observation is due independently to Heath-Brown [5] and Selberg
(unpublished). The improved constants ¢ mentioned above do not all
allow this refinement. However it has been shown by Anderson [1]that
(10.29.1) holds with o = (-3532.

10.30. Levinson’s method can be applied equally to the derivatives
#mi(s) of the function £(s) given by (2.1.12). One can show that the zeros
of these functions lie in the critical strip, and that the number of them,
N, (T) say, for 0 <t < T, is N(T)+ O, (log T). If the Riemann hypo-
thesis holds then all these zeros must lie on the critical line. Thus it is of
some interest to give unconditional estimates for

minf N (T g0 <i< T, M0} +i) =0} =a,,
T—+eo
say. Levinson [3), [3] showed that ¢, > 071, and Conrey [1] improved

and extended the method to give «, > 08137, 2, > {-9584 and in general
o, =1+ {m-%).



XI

THE GENERAL DISTRIBUTION OF
THE VALUES OF {(s)

11.1. Iy the previous chapters we have been concerned almost entirely
with the modulus of (s}, and the various values, particularly zero,
which it takes. We now consider the problem of I(s) itself, and the
values of s for which it takes any given value a.}

One method of dealing with this problem is to connect it with the
famous theorem of Picard on funetions which do not take certain values.
‘We use the following theorem:f

If fis) is regular and never 0 or 1 in |s—sg| < v, and |f(8)] < =,
then (f(s)] < A, 8) for js—sy| < Or, where 0 << 8 < 1.

From this we deduce

TrrOREM 11.1. (s) fakes every value, with one possible exception, an
infinity of times in any strip 1—3 < ¢ < 148

Suppose, on the contrary, that {(s) takes the distinct values @ and b
only a finite number of times in the strip, and so never above t = {,, say.
Let T > t,+1, and consider the function f{s) = {{(s)—a}/(b—a) in the
cireles ¢, €', of radii 43 and }8 (0 <3 < 1), and common centre
g5 = 14}8+i7. Then

fls)] € a = {{01+18)+|all/[b—al,
and f(s) is never O or 1 in . Henece
1f(8)] < Alx)

in ¢', and so {(c+iT)| < Ala,b,a) for 1 <o < 1448, T > {1

Hence £(s) is bounded for o >> 1, which is false, by Theorem 8.4(A). §

This proves the theorem.

We should, of course, expect the exceptional value to be 0.

If we assume the Riemann hypothesis, we can use a similar method
inside the eritical strip; but more detailed results independent of the
Riemann hypothesis can be obtained by the method of Dicphantine
approximation. We devote the rest of the chapter to developments of
this method.

t See Bohr {1)~{14), Bohr and Courant (1), Bohr and Jessen (1}, (2), {5), Bohr and
Landau {3), Borchsenins and Jessen (1), Jessen (1), van Kampen (1), van Kampen and
‘Wintaet (1), Kershner (1), Kershner and Wintner (1), (2), Wintner (1)-{4).

1 See Landau's Ergebnisse der Fusnkii heorie, § 24, or Valiron's Integral Funetions,
Ch. VI, § 3.
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11.2. We restrict ourselves in the first place to the half-plane o > 1;
and we consider, not {(s) itself, but log {(s), viz. the function defined
for o = 1 by the series

logi(s) = — g(?“’+%}9_3’+~--)~
We consider af the same time the function

{(s)

=2 lo —bpt L)

Ty — & oBp(pThp )

We observe that both functions are represented by Dirichlet series,
absolutely convergent for o > 1, and capable of being written in the

forin Fis) = S Hful o o
where f,(z) is & power-series in z whose coefficients do not depend on s.
Infact  j&) = —log(l-2), flo) = 2logp,f1~2)

in the above two cases. In what follows F(s) dentotes either of the two
functions.

11.3. We consider first the values which F(s) takes on theline ¢ = g,
where o, is an arbitrary number greater than 1. On this line

Fig) = 3 fulpaveetiur),

and, as t varies, the arguments —ilogp, are, of course, sll related.
But we shall see that there is an intimate connexion between the set U
of values assumed by F(s) on ¢ = o, and the set ¥ of values assumed
by the function

D(cy, 0,,8;,...) = ngl Sl proreimi0)

of an infinite number of independent real variables 6,, 8,,....

We shall in fact show that the set U, which i3 obviously contained in V,
is everywhere demse in V, ie. that corresponding to every value v in V
(i.e. to every given set of values 8,, 8,,...) and every positive ¢, there exists
a § such that |F(oytit)—v| < .

Since the Dirichlet series from which we start is absolutely convergent
for o = @y, it is obvious that we can find ¥ = N{g,, ¢} such that

| 3 1fn(p.:""ef""'**-) < %e (1L.3.1)

n= N+
for any values of the p,, and in particular for u, = 8,, or for
B = —(tlog p,){2m.
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Now since the numbers logp, arve linearly independent, we can, by
Kronecker’s theorem, find a number ¢ and integers g,, 9y,..., gy such that
|—t10837n—2"9n—2"9n] <7 (=12,.,N)

7 being an assigned positive number. Since f,(p; %) is, for each =,
a continuous function of @, we can suppose 3 so small that

| 3, tuprmemtg—fy(prmesisg)| <. (13:2)
n=1
The result now follows from (11.8.1) and (11.3.2).

11.4. We next consider the set W of values which F(s) takes ‘in the
immediate neighbourhood’ of the line o = oy, i.e. the set of all values
of w such that the equation F{s) = w has, for every positive 8, a root
in the strip |o—o,| < 8.

In the first place, it is evident that U is contained in W. Further,
it is easy to see that U is everywhere dense in W. For, for sufficiently
small 3 (e.g. for § < §{o,—1)),

IF(8)| << Koo}
for all values of ¢ in the atrip |o—ay| < 3, so that
[ Flogtit)— Floy+it)] < Kigy)los—ag| (loy—o,] < 8). (11.4.1)
Now each value w in W is assumed by F(s) either on the line ¢ = g,
in which case it is a u, or at points ¢;4-¢¢ arbitrarily near the line, in
which case, in virtue of (11.4.1), we can find a u such that
fw—u| < Kiop)loy—ao| < e.

We now proceed to prove that W is identical with V, Since U is con-
tained in and is everywhere dense in both ¥ and W, it follows that
each of ¥ and W is everywhere dense in the other. It is therefore
obvious that W is contained in ¥, if ¥ is closed.

‘We shall see presently that much more than this is true, viz. that V
consists of all points of an area, including the boundary. The following
direct proof that ¥V is closed is, however, very instructive.

Let o* be a limit-point of V, and lat v, (v = 1, 2,...) be a sequence of
v's tending to v*. To each v, corresponds & point £,(fy,, &,,...) in the
space of an infinite number of dimensions defined by 0<C6,, <1
(n == 1, 2,...}, such that ®{aq, by,....) = v,.

Now since (£} is a bounded set of pointa (i.e. all the coordinates are
bounded), it has a limit-point P* (6%, 81,...), i.e. a point such that from
{P,) we can choose & sequence (P, ) such that each coordinate 8, , of F,,
tends to the limit & as r — co.
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It is now easy to prove that P* corresponds to ¥, i.e. that
oy, 67,...) = v*,
so that ¥* is a point of ¥. For the series for v, , viz.

21 Sl P st ),
o

is uniformly convergent with respect to r, since (by Weierstrass’s
M-test} it is uniformly convergent with respect to all the &'s; further,
the nth term tends to f,(p; ™e2mi%) ag » > oo, Hence
v* = limv, = lim i] Sol P % etmi0s) = Bay, §%,...),
o TR
which proves our result.

To establish the identity of ¥ and W it remains to prove that V is
contained in W. It is obviously sufficient (and also necessary) for this
that W should be closed. But that W is closed does not follow, as might
perhaps be supposed, from the mere fact that W is the set of values
taken by a bounded analytic function in the immediate neighbourhood
of a line. Thus e~ is bounded and arbitrarily near to 0 in every strip
including the real axis, but never actually assumes the value 0. The
fact that W is closed (which we shall not prove directly) depends on
the special nature of the function #(s).

Let v = @(oy, 6), 8,,...) be an arbitrary value contained in V. We
have to show that v is a member of W, i.e. that, in every strip

lo—ay| << §,
F(s) assumes the value 2.

Let G = 3 fulpireimity,

so that G(g,) = v. We choose a small circle C with centre o, and radius
less than & such that G(s) # v on the circumference. Let m be the
minimum of | G{s)— v| on C.

Kronecker's theorem enables us to choose i, such that, for every s

in C, [ F(a+ity)—Q(s)] < m.

The proof is almost exactly the same as that used to show that I is
everywhers dense in V. The series for #(s) and (s) are uniformly

N
convergent in the strip, and, for each fixed N, 2 fupycet™in) is a
T

continuous function of o, p,..., sy It is therefore sufficient to show
that we can choose f, so that the differsnce between the arguments
of pr® at 8 = oy+ify and proebs at g = o, and consequently that
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between the respective arguments at every pair of corresponding peints

of the two circles is (mod 2=} arbitrarily small for n = 1, 2,..., N. The

possibility of this choice follows at once from Kronecker’s theorem.
We now have

Fls+tity)—v = {Q(s)— v} +{Fla+ity)— G{s)},
and on the circumference of €
| Fl8+ity)—G(s)] < m < |G8)—[,
Hence, by Rouché’s theorem, F(s + it)) — v has in C the same number of
geros as G{(s) — v, and so at least one. This proves the theorem.

11.5. We now proceed to the study of the set ¥. Let ¥, he the set
of values taken by f,(ps®) for ¢ = g,, i.e. the set taken by f.(z) for
|z] = pi%. Then V is the ‘sum’ of the sets of points ¥, V..., ie. it is
the set of all values v, 4, 1-..., where #, is any point of ¥, v; any point
of ¥, and so on. For the function log {(s), ¥, consists of the points of
the curve described by —log(1——=z) as = describes the circle |z] = 2,%;
for £'(s)/{(s) it consists of the points of the curve described by

—(zlog p,.}/(1—=z).
We begin by considering the function {'(s)/{(s). In this case we can
find the set V explicitly. Let

_ _zulogp,

= .
1—2,

As z,, deseribes the circle |z, | = p; %, w, describes the circle with contre

_ _patelegp,

T 1epy
; Palogp
and rading Pn= ;'_p;m”-
Let W0y, = c"+w; = Cn+Pnei¢"
{'(2ay)
d let = = =150
and le ¢=73 ca Loy

Then V is the set of all the values of
ot 3 poeite
n=1

for independent ¢;, ¢;,.... The set ¥’ of the values of 3 p, ¢ is the
‘sum’ of an infinite number of circles with centre at the origin, whose
radii py, pg.... form, as it is easy to see, a decreasing sequence. Let
V.. denote the nth cirele.
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Then V;+V, is the ares swopt out by the cirele of radius p, as its
centre describes the circle with centre the crigin and radius p,. Henoe,
since p, < p,, V| + V7, is the annulus with radii p, — g, and p, +p,.

The argument clearly extends to any finite number of terms. Thus
¥1+...4 V¥ consists of sll points of the annulus

N N
P Z P jw| Z Prus
n=2% n=1
or, if the left-hand side is negative, of the circle
N
W < 2 pn
Tt is now easy to sce that

(i) f py = pa-tpat-.., the set V' consists of all points w of the annulus

@

o
P 2o S el < 3 pus

r=2
(i) if py < pot+pgt.... V' consists of ail points w for which
el € ¥ po.
n=1

For example, in case (i), let w0, be an interior point of the cirels. Then
we can choose N so large that

@© N
P L

®
Hence Wy = Wy > p,eitn
N+1

lies within the cirele ¥i+...+VYy for any values of the ¢,, e.g. for
byig == ... = 0. Hence N
= 2 pn et
n=1

for some values of ¢,,..., $,,, and 30
x N
wy =3 p, e
A=1

as required. That F’ also includes the boundary in each case is clear
on taking all the ¢, equal.

The complete result is that there is an absolute constant D = 2-57...,
determined as the root of the equation

2Plog2 < prPlogp,
1—2-20 Zﬂ i—p;°
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such that for o, > D) we are in case (i), and for 1 < a, < D we are in
case (ii). The radius of the outer boundary of ¥’ is
— ;‘(2‘70)_' g’("o)
{2ay) o)
i each case; the radius of the inner boundary in case (i) is
r = 2p,— R = 21-%log 2{{1—2-%}—R.

Summing up, we have the following results for {'(s)/{(s).

TaEoreM 11.5(A). The values which Ll'(s)/l(s) takes on the lLine
o= a, > | form a set everywhere dense in a region Rloy). If oy > D,
Ro,) iz the annulus (boundory included) with centre ¢ and radii v and R;
if g << D, Ria,) is the eircular area (boundary included) with centre ¢ and
radius K; ¢, v, and R are continuvous functions of o, defined by

e = U'(200)/8(20y), R = c—{'(o,)fi(oy), 7= 21-%log2{(1—2-%")—R.
Further, a8 ay —> 0,

lime = limr = lim R = 0, lime¢/R = lim(R—r)/R = 0;
as oy > D, limr = 0; and as oy -» 1, lim B = oo, lime == {’(2)/{(2).

TrHEOREM 11.5 (B). The set of values which ['(s)/i(s) takes in the
immediate neighbourhood of o = o is identical with R(oy). In particular,

since ¢ tends to a finite limit and R to infinity as oy > 1, '(s)/L(s) takes
all values infinitely oflen in the strip 1 << o < 148, for an arbitrary 3

positive 3.

The above results evidently enable us to study the set of points at
which {'(s){{(s} takes the assigned value . We confine ourselves to
giving the result for @ = 0; this is the most interesting case, since the
zeros of {'(8)/Z(s) are identical with those of ['(s).

TureorREM 11.5 (C). There i3 an absolute constant E, between 2 and 3,
such that {'(s) = 0 for o > K, while {'(s) has an infinity of zercs in every 3

strip between o = land o = E.

In fact it is easily verified that the annulus R(s,) includes the origin
if oy = 2, but not if ¢, = 3.

11.6. We proceed now to the study of log {(s). In this case the set ¥V

consists of the ‘sum’ of the curves ¥, described by the points
w, = —log{l—z,)
as 2, describes the circle {z,| = poe.
In the first place, ¥, is a convex curve. For if
utiv = w = f(z) = fz+iy),
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and z desctibes the circle [z] = r, then
du  .dv ., dyy ., atiy
Tty ‘z)(1+‘a) AT
Hence aretang;” = arg{zf'{2)}— .

A sufficient condition that w should describe a convex curve as z
describes |z| = r is that the tangent to the path of w should rotate
steadily through 2 aa 2 describes the cirole, i.e. that arg{zf’(z)} should
increase steadily through 27. This condition is satisfied in the case
flz) = —log{l—2); for zf'(2) = 2/(1—=z) describes a circle enclosing the
origin as z describes |z] = r < 1.

If z = re®, and w = —log(1—=z), then
rainé

4 = —}log(l—2rcos6+12), v = arctanm.

The second equation leads to
rcos 0 = sin%+cosv(r?—sin%y)t.
Hence, for real  and 4, jv| < arcsinr. If cosé, and cosd, are the two
values of cos 8 corresponding to a given v,
{1—2rcos 8, +7%)(1—2r coub,+2%) = (1—r3)2,
Hence if #, and », are the corresponding values of u,
Uy tuy = —log(l—r?).
The curve V_ is therefore convex and symmetrical about the lines
u=—4log(1-r%) and ¢=0.
Its diameters in the u and v directions are 4 log {(1+r)/(1-r)} and
arcsinr,
Let ¢y = —}log{l—pge)

and W, = c-u,

6= "ﬁzcn = tlog{(2ey).

Then the points w, describe symmetrical convex figures with centre the
origin. Let V" be the ‘sum’ of these figures.

"It is now easy, by analogy with the previous case, to imagine the
result. The set V", which is plainly symmetrical about both azes, ig either
(i) the region bounded by two convex curves, one of whick is entirely interior
to the other, or (ii} the region bounded by a single convex curve. I'n each
case the boundary is included as part of the region.

This follows from a general theorem of Bohr on the ‘summation’ of
& geries of convex curves.
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For our present purpose the following weaker but more obvious
results will be sufficient. The set V' is included in the circle with centre
the origin and radius

R— leogl+p" — 3oy l("’o)

n 5(2 o
If o, is sufficiently large, ¥/ lies entirely outside the circle of radius
o 1 + 2
arosin 2~ — Z glog 1+p,. = aresin 2% +§log —R.
> 142-%
i 3 arcsing; % > log +2_ﬂ
n—2

and 50 if o, is sufficiently near to 1, ¥ includes all points inside the circle
of radius w .
HZI arcsin py .

In particular 7’ includes any given area, however large, if g, is suffi-
ciently near to 1.

We cannot, as in the case of circles, determine in all circumstances
whether we are in case {i) or cage (ii). It is not obvious, for example,
whether there exists an absolute constant D' such that we are in case
{i) or (i) according as o, > D' or 1 << oy ¢ I, The discussion of this
point demands a closer investigation of the geometry of the special
curves with which we are dealing, and the question would appear to be
one of considerable intricacy.

The relations between U, V, and W now give us the following
analogues for log {(s) of the results for {'{s)/Z(s).

TuEOREM 11.6 (A). On each line ¢ = o, >> 1 the values of log [(s} are |
everywhere dense in a region Ricy) which is either (i) the ring- -shaped areq :
bounded by two convex curves, or (ii) the area bounded by one convex curve. |
For sufficiently large values of a, we are in case (i), and jor values of oy ‘

sufficiently near 1o 1 we are in case (i).

TeeoREM 11.6(B). The set of values which log L(s) takes »azn the 3
immediate neighbourhood of ¢ = oy is identical with B(oy). I 'n particular, 1
since Roy) includes any given finile arca when ap i3 sufficiently near 1, ]

log L(e) takes every value an infinity of times in 1 < o < 14-8.
As a consequence of the last result, we have

TrroreM 11.6 (C). the function {(8) lakes every value ewceplt ¢ an
infindty of times in the strip 1 < o < 1.+3.
This is & more precise form of Theorem 11.1.
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11.7. We have seen above that log {(s) takes any assigned value &
an infinity of times in ¢ > 1, Tt is natural to raise the question how
often the value g is taken, i.e. the question of the behaviour for large 7'
of the number M (7'} of roots of log{(s) =@ ino > 1,0 < ¢ << T. This
question is evidently closely related to the question as to how often, as
t—>0c0, the point (a;%,a,%,...,ay¢) of Kronecker's theorem, which, in
virtue of the theorem, comes {mod 1) arbitrarily near every point in the
N -dimengional unit cube, comes within a given distance of an assigned
point (by, by,...,by). The answer to this last question is given by the
following theorem, which asserts that, roughly speaking, the point
{#¢,..., @y t} comes near every point of the wnit cube equally often, i.e.
it does not give a preference to any particular region of the unit cube.

Let ..., ay be linearly independent, and let y be a region of the N-
dimensional unit cube with volume I' (in the Jordan sense). Let I, AT be
the sum of the intervals between t = © dnd 1 = T for which the point P
(1 t,..., ey t) 8 (mod 1) inside y. Then

lim L(T){T =T.
I >o

The region y is said to have the volume I'in the Jordan sense, if, given
¢, we can find two sets of cubes with sides parallel to the axes, of volumes
I and T}, included in and ineluding y respectively, such that

LN-e < T € N4e

If we call a point with coordinates of the form (g,¢,...,ayt), mod 1,
an ‘accessible’ point, Kronecker’s theorem states that the accessible
points are everywhere dense in the unit cube €. If now y,, y, are two
equal cubes with sides parallel to the axes, and with centres at aceessible
points By and 5, corresponding to ¢ and £, it is easily seen that

lim I, (7)/1,(T) — 1.
For (ay¢,..., a2} will lie inside y, when and only when {a,(t+t,—1),...}
lies inside y,.

Consider now a set of p non-overlapping cubss ¢, inside ¢, of side ¢,
each of which has its centre at an accessible point, and g of which lie
inside 3; and a set of P overlapping cubes ¢, also centred on accessible
points, whose union ineludes  and such that y is included in a union of
@ of them. Since the accessible points are everywhere dense, it is
possible to chocse the cubes such that g/P and @/p are arbitrarily near
to T'. Now, denoting by YI(T) the sum of tintervals in (0, 7)

¥
corresponding to the cubes ¢ which lie in y, and so on,

U3 < B0 < s mfz un.
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Making 7' > o0 we obtain
1 < iim W)

T

<9

!

and the result follows.

11.8. We can now prove

THEOREM 11.8 (A). If o = oy > 1 is a line on whick log L(s} comes
arbitrarily near o a given number a, then in every strip oy —3 << 6 < 0,48
the value a is taken more than K(a, oy, 8)T times, for large T, in 0 <t < T.

To prove this we have to reconsider the argument of the previous
sections, used to establish the existence of a root of log {(s) = @ in the
strip, and use Kronecker’s theorem in its generalized form. We saw that
a sufficient condition that log {{s) = a may have a root inside a circle
with centre o,+it, and radius 28 is that, for a certain N and
corresponding numbers & ,..., 8y, and a certain § = y(5,, 8, 0,,..., 8y)

|—tylog p,—2n8,—2mg,) <7m (n=1,2..,N)

From the generalized Kronecker’s theorem it follows that the sum of
the intervals between 0 and 7' in which ¢, satisfies this condition is
agymptotically equal to (%/2n)¥T, and it is therefore greater than
p/2m)NT for large T. Hence we can select more than §(4/27)VT}3
numbers ¢ in them, no two of which differ by less than 43. If now we
describe circles with the points o,+1# as centres and radius 23, these
circles will not overlap, and each of them will contain a zero of log £(s) —a.
This gives the desired result.

We can also prove

THEGREM 11.8 (B). There are positive constants K,(e) and K,(a) such
that the number M(T) of zeros of logl(s)—~a in ¢ > 1 satisfies the
snegualitics K (@)T < M(T) < Ky@)T.

The lower bound follows at once from the above theorem. The upper
bound follows from the more general result that if b is any given constani,
the number of zeros of {{s)—bin o> 34+5 (@ > 0), 0 <t < T, is O(T)
as T — oo,

The proof of this is substantially the same as thatof Theorem 9.15 (A},
the function {(s)—b playing the same part as {(s} did there. Finally the
number of zeros of log {{s)—a is not greater than the number of zeros
of £(s}—e2, and so is 7).

11,9. We now turn to the more diffienit question of the behaviour
of {(s) in the critical strip. The difficulty, of course, iz that {(s) is ne

1.9 THE VALUES OF {(s) 303

longer represented by an absolutely convergent Dirichlet series. But by
a device like that used in the proof of Theorem 9.17, we are able to
cobtain in the critical strip results anslogous to those already obtained
in the region of absolute convergence.

As before we consider log {(s). For o < 1, log {(s) is defined, on each
line ¢+ = constant which does not pass through a singularity, by con-
tinuation along this line from ¢ > 1.

‘We require the following lemma.

Lemma. If f(z) is regular for |2—z,| < R, end
| [ 1rey dady — B,

—sl<R
then o < i
Forif |2'—z,| < ',
o
{f(z‘.)}2 = ‘2%! f %dﬂ! = % f {f(xz'«]»rg"")}2 dé.

le—&|=r o
Hence R-R' R-R

e | orarsg |

(lze—z| << R’ < R).

i

& ety drad < 2
27

o

and the result follows.

TeroREM 11.9. Lel oy be a fixed number in the range } < o <L 1. Then
the values which log [(8) takes on o = o, t >> 0, are everywhere dense in
the whole plane. v

Let Lyle) = C(-’)“I;I1 (L—pg).

This function is similar te the function {(s)My(s} of Chapter IX, but
it happens to be more convenient here.

Let & be & positive number less than }(s,—3). Then it is easily seen
as in § 9.19 that for N = Ny(op. €}, T = T, = T(N),

T
[ stot+ity—12dt < €T
1

uniformly for 0y—8 < o < 0y-+8 (o, > 1). Hence
T nitd

[ | Ustotity—1pp dodt < (o1—o0+28)eT.
1 o8
v+ ;m+8

Henoce J‘ | ntotin—1]2 dodt < (o;—0,+281Ve

»—} 00—
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for more than (1 - \/ €)T integer values of v. Since this rectangle
contains the circle with centre s=c¢+it, where s,€0< 0,
v—1+d<t<v+4 -4, and radius 4, it is easily seen from the lemma
that we can choose 6 and ¢ 5o that given 0 <n <1, 0 <y’ <1, we have

Exfoti)—1] <7 {m< o< a) (11.9.1)
for a set of values of t of measure greater than (1—»')T, and for
N = N(o,n, '), T = T(N).

Let By(s) = — 3 Log(l—py) (v > 1)

where Log denotes the prineipal value of the Iogarithm. Then
{n(s) = exp{Ry(s)}-
We want to show that By{s) = Log{y{s), i.e. that |[Ry(s)| < §=, for
a 2 g, and the values of ¢ for which (11.9.1) holds. This is true for
o = o, if o is sufficiently large, since |Ry(s}| — 0 as o, - c0. Also, by
(11.9.1), Riy(s) > 0 for o, < 0 < 0y, so that IRy(s) must remain
between —}x and 4= for all values of o in this interval. This gives the
desired result.
‘We have therefore

iBy(a}| = |Log[1+{{x{)—1]! < 2 {yl@)—1| < 29
for oy < ¢ < oy, N 2 Nylog, 0, 7'), T' 22 Ty(N), in a set of values of ¢

of measure greater than (1—y")7. :
Now consider the function

N o
Fy(ogtit) = — nzllog(I*?; =),
snd in conjunction with it the function of N independent variables
N
‘:’N(ﬂlr"s EN) == 21108(1—.’!1{"‘3’"”‘)'
=

Since ¥ 5, is divergent, it is easily seen from our previous discussion
of the values taken by log {(s) that the set of values of @y includes any
given finite region of the complex plane if IV is large enough. In
particular, if a is any given number, we can find & number ¥ and values
of the §'s such that _

Dplby,..., 0y) = a.

We can then, by Kronecker’s theorem, find & number { such that
| Fylogt+it)—a| is arbitrarily small. But this in iteelf is not sufficient to
prove the theorem, since this value of ¢t does not necessarily make
|Ry(8)] small. An additional argument is therefore required.
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x - instla
Syx— = . Tog1—pinainiy Dl
a=M+1 m
n=M+1m=1
Then, oxpressing the squared modulus of this as the product of con-

jugates, and integrating term by term, we obtain

11 1 I @ 2m

— o
[[-] ot ane = $ S ez
(LI @

n=M+1m=1

N @ ®
< Z pta Z 1%< A z P,
n=M+1 Ml n=M+1
which can be made arbitrarily small, by choice of M, for all N, It
therefore follows from the theory of Riemann integration of a con-
tinuous function that, given ¢, we can divide up the (¥ —- M)-dimensional
unit cube into sub-cubes g,, each of volume A, in such a way that

A3 max [y P < §el.
4 L

Hence for M = My(e) and any N > M, we can find cubes of total volume
grealer than § in which [Py 5] < e.

We now choose our value of ¢ as follows.

(i) Choose M so large, and give 8,,..., ;; such values, that

Oy (5,..., &) = &,
It then follows from congiderations of continuity that, given ¢, we can
find an M-dimensional cube with centre 8),...,#), and side d > ¢
throughout which
ughont whic |@ag(Bseny Byr)—a] < e

(ii) We may also suppose that M has been chosen so large that, for
any value of N, |®y | << 4 in certain (¥ — M)-dimensional cubss of
total volume greater than .

(ili) Having fixed M and d, we can choose N so large that, for
T > Ty(N), the inequality |Ry(s)] < 4e holds in a set of values of £ of
meagure greater than (1—}4)T,

(iv) Let I(7) be the sum of the intervals between 0 and 7' for whioh

the point
@ poin {—(tlog p,)/2n,..., —(tlogpy)/2n}

i8 {mod 1) inside one of the N-dimensional cubes, of total volume greater
than }d*, determined by the above construction. Then by the extended
Kronecker’s theorem, I(7) > 3dM7 if 7 is large encugh. There are
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therefore values of ¢ for which the point lies in one of these cubes, and
for which at the same time [Ry{s)| <C }¢, For such a value of £
[log £(s}—a| < |Fy(s)—al|+[Ry(s)]
& |OprlBy,eeny Op)—2l+- |¢'M,N|+ | Rxis)]|
<detdetle =,
and the result follows.
11.10. TaEOBREM 11.10. Let } << a << B < 1, and lei a be any complex
number. Let M, o(T) be the number of zeros of log Lig)—a (defined as

before) in the reclangle oo <o < 8, 0 <t << T. Then there are positive
constants K,(a,, B), Ky(a, o, B) such that

K@, 0, f)T < M, (T} < Kola, o0, )T (T > T).
Woe first observe that, for suitable values of the #'s, the series

= 3 log(1—pirerity
n=1

is uniformly convergent in any finite region to the right of ¢ = §. This
is true, for example, if 6, = 4= for sufficiently large values of %; for then
2 paterh= 3 (—Irpg,
R Ne n>ne

which is convergent for real 8 > 0, and hence uniformly convergent in

any finite region to the right of the imaginary axis; and for any #'a

T Iprtet™2 = ¥ p% i uniformly convergent in any finite region to
the right of ¢ = }.

If ¢ is any given number, and the &s have this property, we can |

choose #, so large that
|- 3 logt—pyee| <e (o= ja+P),
a=m+1l
and at the same time so that the set of values of

— 3 log(1—py e thesmite)
r=1

includes the circle with centrs the origin and radiua jg|+|e}. Hence by .
choosing fivat 8, .,...., and then 8,,..., 8, , we can find values of the &s, :

eay 6y, 64,..., such that the series
Gts) = — 3 log(1—pree)

iz uniformly convergent in any finite region to the right of ¢ = }, and
Gilat+ip) = a.
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‘We can then choose a circle ' of centre $a+ 38 and radius p < }{f—a)
on which G(s) + a.

Let m = min |G(s)—al.
son O
N
Now let Dy l8) = — % log(1—p,; etmite).
n=M+1

Then, as in the previous proof,

1 1

f j j | (I iy, ... dby dodt < A 3 pI*.
IR P S . 5 1 M

Hence for M > Mye) and any N > M we can find cubes of total

volume greater than } in which

” (@35 (3)]? dodt < €
la—do—§fl< §(f o

and so in which {by the lemma of § 11.9)
[Dar o)l < 2Ae/mbB—oa)t (lo—Le—38] < HB—e)

We also want a little more information about BEy(s), viz. that Ey(s)
is regular, and |Ry{(s)| << 5, throughout the rectangle

le—do—3p| < HB—-a), fp—E <t i+,

for a set of values of ¢, of measure greater than (1—5")T'. As before it
is sufficient to prove this for {y(s}—1, and by the lemma it is sufficient

to prove that .

| st —1pde <
1

for such {,, by choice of ¥. Now

B
$ity) = [ do

T htl

T 8
oty dt = [ do [dty [ |Lyar—112dt
i @ i H-1

T+1 i1 B T+1

gjduj [Lals)— 12 d:‘_jldt.,zzjdalf Lyls}—1]2dt < T

1 I3

by choice of ¥ as before. Hence the measure of the set where (i) > e
is less than veT', and the desired result follows.
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It now follows as before that there is a set of values of & in (0, T'), of
mengure greater than K7, such that for |s—3a—148(| < 3{B—o)

[ gllog(l—i);’e""’“)— :E_lllog(l—p;"““')[ <pm,

{®a ()] < Im,
and also | Ry(8-+1ity)| << dm.
At tho same time we can suppose that M has been taken so large that

iG(s)—{- ilog(l;p;’e”"‘“) <im (¢=a)

Then flog L{s)—G{a)] < m
on the circle with centre }a-+48+if, and radius p. Hence, as before,
log £(s)—a has at least one zerc in such a circle. The number of such
circles for 0 < ¢, <. T which do not overlap is plainly greater than K7.
The lower bound for M, , o(T') therefore follows; the upper bound holds
by the same argument as in the case ¢ > 1.

It has been proved by Bohr and Jensen, by a more detailed study of
the situation, that there is a K{z, «, B} such that

M, o p(T) ~ Kla, 0. BT

An immediate corollary of Theorem 1110 is that, if N, , (7)) is the
number of points in the reclangle 3 <o <o <B < 1,0 <& < T where
L(8) = a (@& 7 0), then

N o plT) > Kig, 0, )T 7 >1T).

For {(s) = a if log {(s) = loga, any one value of the right-hand side

being taken. This result, in conjunction with Theorem 9.17, shows that
the value ¢ of {(s), if it occurs at all in o > §, is at any rate guite |
exceptional, zeros being infinitely rarer than a-values for any value of &

other than zero.

NOTES FOR CHAPTER 11

11.11, Theorem 11.9 has been generalized by Voronin [1], [2], who
obtained the following ‘universal’ property for {(s). Let D, be the closed
dise of radius r < 4, centred at s =4, and let f(s) be any function
continuous and non-vanishing on D,, and holomorphic on the interior
of D,. Then for any ¢ > 0 there is a real number ¢ such that

max [{(s+ i) — f(8)| <= (11.11.1)
8D
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It follows that the curve
Aty = (L + i), (lo+it),..., (- D(o +it))

18 dense in C*, for any fixed & in the range } <o < L (Infact Voronin (1]
establishes this for ¢ =1 also) To see this we choose a point z =
(205 21,-.., 2,,_,) with z; # 0, and take f(s) to be a polynomial for which
fifo) =2z, for 0 €£m <p. We then fix an R such that 0 <R
<}—lo—}l and such that f(s) is nonvanishing on the closed disc
ls—ol < R. Thus, if »=R+)6—§|, the disc D, contains the circle
|s—ol| = R, and hence (11.11.1) in conjunction with Cauchy’s inequality

m!
g™ (z)l < — max |g(z)],
» < pn X 8(2)|
yields

1
(e +it) — 2, | s%a (0<m<n).

Hence y(t) comes arbitrarily close to z. The required result then follows,
since the available z are dense in €.

Voronin’s work has been extended by Bagchi [1] (see alsc Gonek [17])
sothat D may be replaced by any compact subset I} of the strip 3+ < R{s)
< 1, whose complement in C is connected. The condition on fis then that
it should be continucus and non-vanishing on P, and holomorphic on
the intericr (if any) of D). From this it follows that if ® is any continuous
function, and b, <h, < ... < h, are real constants, then {(s) cannot
satisfy the differential-difference equation

VUGE+hAD, (e +hy),. . (M s+ h), {5+hg), Uis+hy),...,
{85 1Ry} =0

unless @ vanishes identically. This improves earlier results of
Ostrewski f1] and Reich [1}

11.12. Levinson [6] has investigated further the distribution of the
solutions p_ = f§_+ iy, of {(s} = a. The principal results are that
T
#{p0<y, €T} =§£log T+O(T)

and
#{p 05y, ST (6, ~3 28} =04T) (5> 0.

Thus (¢ f. §9.15) all but an infiritesimal proportion of the zeros of [(8) —a
lie in the strip +—d <o < §+35, however small 5 may be.
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In reviewing this work Montgomery (Math. Reviews $3  10737)
quotes an unpublished result of Selberg, namely

1
¥ T(,{’i'x -~ e T(leglog T)*. (11.12.1)

0<y, €
Baz}

This leads to a stronger version of the above principle, in which the
infinite strip is replaced by the region
lo—yl <2® (loglog 1)
logt
where ¢(t) is any positive function which tends to infinity with ¢ It
should be noted for comparison with {11.12.1) that the estimate
Y B, ~H=00cgT)
o<y, T
is implicit in Levinson’s work. It need hardly be emphasized that despite 1
this result the numbers p, are far from being symmetrically distributed
about the critical line.

H

11.13. The problem of the distributior: of values of {(} + it) ig rather }
different from that of { (o + it) with § <o <1. In the first place it is not }
known whether the values of {(} + it) are everywhere dense, though one
would conjecture so. Secondly there is a difference in the rates of §
growth with respect to t. Thus, for a fixed ¢ > 4, Bohr and Jessen (1), (2 4
have shown that there is a continuous function F{z; ¢) such that

1
ﬁ,m{te [-T, Tl logllog+ieR} ij(x+ iy; O dxdy (T w)
R

for any rectangle B < C whose sides are parallel to the real and |
imaginary axes. Here, as usual, m denotes Lebesgue measure, and
log {(s) is defined by continuous variation along lines parallel to the ;
real axis, using (1.1.9) for ¢ > 1. By contrast, the corresponding result §
for o = ) states that ]

1 log {{}+it) 1 —(xy? i

o -T,7T): Riv— ¥2ddy |

ZTM{“E[ T T loglegG i< § 2n )¢ dxdy |
R

(T — ). 1

(The right hand side gives a 2-dimengional distribution with mean 0 and §

variance 1) This is an unpublished theorem of Selberg, which may be 1
obtained via the method of Ghosh [2]. [

11.13 THE VALUES OF {(3) 3l
By using a different technique, based on the mean-value bounds of
§7.23, Jutila [4] has obtained information on ‘large deviations’ of

log 1{(} + i2)|. Specifically, be showed that there is a constant A > Osuch
that

mite [0 T): LG +i)i > V} < Texp(—A———logz v )
loglog T

uniformly for 1< VglogT.



XII
DIVISOR PROBLEMS

12.1. Tar divisor problem of Dirichlet is that of determining the
agymptotic behaviour as £ > o0 of the sum

Diz} =3 d(n),

nLxr
where d{r) denotes, as usual, the number of divisors of n. Dirichlet
proved in an elementary way that

D(#) = zlog z+(2y— 1)z+ O(zh), (12.1.1)
In fact
Dy=3351= 3 3 1+2 3

ma vz mEVr MmENT VTRETiM

=[Ptz > ( [ﬂ _[vx])

medz

-2y [%]—{Jz]”

m<Vz
%
= = 138 2
2> [2+0m}tromy
= 2x{log Vx4 O(x—1)}+ O(vr)— {z+ O(vx)},
and (12.1.1) follows. Writing )
Diz) = zloga-+(2y—Va+-Alx)
Afz) = Ozt). (12.1.2)
Later researches have improved this result, but the exact order of
Afx) is still undetermined.
The problem is closely related to that of the Riemann zeta-function.
By (3.12.1) with a, = d(n), 8 = 0, T > o0, we have
Diz) = o Tm P s dw (> 1)
2mi w ’
¢=fx
provided that » is not an integer. On moving the line of integration to
the left, we encounter a double pole at w = 1, the residus being
xlogx+(2y— 1)z, by (2.1.16). Thus

we thus have

& +iw
A@) =g f P@Zde (< <),
o' —ix
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The more general problem of
Dfz) = 3 dyfm),
ngx
where dy(n) is the number of ways of expressing » as a produet of %
factors, wag also considered by Dirichlet. We have
o+
1 Frd
_— (3
Difz) = 70 f < (w)?ﬂ-dw (¢ > 1)
c—io
Here there is a pole of crder % at w = 1, and the residue is of the form
xF{log ), where P, is & polynomial of degree k—1, We write
Dyfx) = xP{loga)+Alx), {12.1.3)
30 that A,fz) = A(z).
The classical elementary theoremt of the subject is
Aylz) = Ofal-Velogt-2x) (k = 2, 3,...,). (12.1.4)
We have already proved this in the case & = 2. Now suppose that it
is true in the case k1. We have

Dimy= 3 1 :W‘Z@dk-l(ﬂ)

[ e P

= 3 Zde(n)+ > medk_xﬁn)

mEaVE nl) PEmgs ndm)

=2 3 dk~1(")+"€§_mdk—1(n) 2 1

mExE n £ xfm rme zn
x x
- A {__xw+01))d s
mngk 1(m) ngle—lik n ( * 1( )

z () .
”‘Szx'ﬂ Dk_l(;’i) +xu4;xftT - :’:1'”‘1)»'6-"1(:”l llk) +
+0{D,_,(z*-1)}.

Let us denote by pi(z) a polynomial in z, of degree k—1 at most, not
always the same one, Then

> OB o f)+o(“‘8;"f).

m<E
H. z il 1-1/k] gk —2
ence m;nmpk_l(m) zpillog x}-+ Ofl-Vkogh-2y),
Also
A, (ﬁ) - O{x‘“ﬂk—l)]o -1y ;l
mgzzm e-1l g* mg:m PerRy o]

= O3 D ogh-3z, GWEE-1} = G(xl-lk ogh-3z),
1 See s.g. Landau (5).
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The next term is

Dya(n)— Iy 4(n—1) —u z ,f();:_(?))-i_x%i(fﬂ

z s

Lt Al
where N = [21-1¥]. Now

Piaflogn) |, NP, {log V)

1k ok -2
P | +% N+l = zp,(log z)+ O{z*logh-2x)

x
ngz - HE
snd
Ay 1(”)+ why o {N)
Nil

Ay q(n) | 2By ((N)
2t g T Leanlnt D)

Frr ety

= Ce-—x O[ 10_&}4.0@1\7 -E-Dlogh-3N)
‘]

A1/ ~1)
Nl 1

= Cu4-O(x'-Vlogh-3z).
Finally
LUk D, _ (al-3k) = k1P,  (log 21-1F) 4 Ofaft-YR-16-1) logk-3x))
= apy_y(log )+ Olxl-Vk Jogh—3z).

This proves (12.1.4).
We may define the order o, of A(z) as the least number such that,
Agla) = Ofasr+)
for every positive e. Thus it follows from (12.1.4) that
o <’€ik—l (k=2 3,.). (12.1.5)

The exact value of «, has not been determined for any value of .

12.2. The simplest theorem which goes beyond this elementary ;

regult is
THEOREM 12.2.1
k 1

<3 (k=23,4,..)

Take a, = dy(n), $(n) = n*, « = k, 8 = 0, and let = be half an odd |

integer, in Lemma 3.12. Replacing w by s, this gives
c+iT

Dyz) = f L) = ds+0(T(c“’: 1)*)4'0(?;) (e >1).

—iT

1 Voronoi (1), Landau (5)-
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Now talie the integral round the rectangle —a—iT, ¢—iT, ¢+iT,
—a+tT, wherea > 0. We have, by (5.1.1) and the Phragmén-Lindelsf
principle, {(3) = O(fa+ixe-ovaio)

in the rectangle. Hence

¢+Hir

¢
J‘ Ck(s)%‘dg = 0( f Phia+de—oa+O—150 da’)
—atir e

= O(TM'”i"—lx—“)-{- 0(T-129),
since the integrand is a maximum at one end or the otherof the range
of integration. A similar result holds for the integral over

(—a—iT, c—¢T).
The residue at ¢ = 1 is xF{logx), and the residue at s = 0 is
o) = o().
Finally
—a T o —a+iT
$Hs) T ds = f L)% ds
L3
—a—ir —a—iT
—a+iT
Zd(n) J' X(S)xds
~ 8
= —aZir
S dym) [ H—atin)
ay(n) a-i nal?
“Z o j S
— -

For 1 <t T,
xl—atif) = Ceq‘noguulogzn+ata+§+0(tu—§)

1 1 1
d - == i
o T it+0(s=)
The corresponding part of the integral is therefore
T
i I 108 1108 41 oy ile+ DTy L (O PlasPioty,
i

provided that (a+3)k >> 1. This integral is of the form cnsidered in
Lemma 4.5, with

Ft) = kt(—logt+log 2r+1)+tlognx.

Since P — _k_ K
O=—<—p
the integral is O Tta+bi-i),
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uniformly with respect to z and z. A similar result holds for the integral
over (— T, —1), while the integral over (—1, I} is bounded. Hence

=~ 1 +e Ple+die-1
o) = o) o) o)+

L 2 i:cl_(:;! O Trask-1)

n=1

~ Oz ol o)

Taking ¢ = 14-¢, & = ¢, the terms are of the same order, apart from
e's, if T 2%,
Hence Aglz) = Ofa®-DktDte),

The restriction that « should be half an odd integer is clearly unnecessary
to the result.

12.3. By using some of the deeper results on {(s) we can obtain a
still better result for & = 4.
k—1
k42

Woe start as in the previous theorem, but now take the rectangle as
far as o = } only. Let us suppose that

L3+t = 0.

Then {s) = Oie—ore-)
uniformly in the rectangle. The horizontal sides therefore give

TEEOREM 12.3.7  of < k=4, 5,..).

¢
O(J' TieMe—a¥e—P-1z0 ,j,,) = O(T¥-1gb) 4 O(T-12%).
H

+ir T
Also f )Y ds = O(x&)+o(zé f I{(§+it)|"£lt—g).
&
-ir 1
Now s P g
[ 1etrineg < max 12t et j iG-S

T
= O[wa f |;(§+im*"+:}-
1

1 Hardy and Littlewood (4).
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. r
Also HT) = J' [L(34it)[e de = O(T1+e),
1
by (7.6.1), so that

T

T T
¥ [ ®_ [$0]7, (40
JM(H“H‘ & _!m?_ T]1+IT(1¢

T
” 1
— o(r )+O(fiﬁdt) — O(T).
1
a7
Hence f C"(a)ijds = O(x}) 4 O P-ahse),
§—tr
Altogether we obtain
Aylz) = O(T-12%) - O T¥A-1) - Oz T iv),

The middle term is of smaller order than the last if X < }. Taking
¢ = 1+, the other two terms are of the same order, apart from ¢'s, if
T = gl k—he2}

This gives Ay() = O(zhHb- 1 -aA 42l 4e)
Taking A = }+¢ (Theorems 6.5, 5.12) the result follows. Further glight
improvements for & > 5 are obtained by using the results stated in
§ 5.18.

12.4. The above method does not give any new result for & — 2 or

k = 3. For these values slight improvements on Theorem 12.2 have
been made by special methods.

THEOREM 12.4.1 g g_;

The argument of § 12.2 shows that

@ g +iT
A — 5 > dm) | Xﬁ‘_"j%‘asJ,o(T_"‘)Jro(g) (2.4.1)

m
n-1 » @

—a—i

where @ = 0,¢ > 1. Let T%/(4a%) = N+4, where N isan integer, and
consider the terms with n > N. As before, the integral over 1 I T
is of the form

zoplte

T
f eiFiifgay O(gha~-1)) gy, {12,4.2)
1

T wvan der Corput (4).
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where Fif) — 2t{—log i+ log 2+ 1)+ tlog nz,

) = log T =

Hence F'(t) = I and (12.4.2) is

n
OgN«]-;’
1 e
- T/
s g +am) O
For n = 2N this contributes to {12.4.1)
oF > ) = oo,

n=2N

and for N < n < 2N it contributes
T W d(n) —_ O(Ns S _1_) = 0 Ne)
0{?,,:%1nl+ﬂlog{n/(1v+%)} = o 2, ) =
Similarly for the integral over — T < # ¢ —1; and the integral over

—1 < ¢ < 1is clearly G{z~9).
If n < N, we write

B E A

The first term is

1 f gente-2sint o T¥1—s) "2 ds

n
i Lt
- _niz f cost oo T(aw) (s — 1){2my(n)j>->* duw
ki
1—ie

-4 J(S)[K1{4ﬂJ(nx)}+hﬁ{4"«/(nx)}]

in the usual notation of Bessel functions.f
The first integral in the bracket is

o ‘ A ) 1
Jom(astvoun)a= ol -
T

ca o dm) .
which gives z nlog{(N+=}),’n} == O(N°)

§ 8ee, e.g., Titel h, Fourier i (7.9.8), (1.0.11).
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a8 befote; and similarly for the second integral. The last two give
N M N
din) ne\? . | d(n){T? "} o e "}
Q{,Z“n— J (e} =0 > 222} = o|())
= —&
Altogether we have now proved that

e z din) LT \,(m)}+;_,,,1;{4rr\/(nx)}]+0( )+0( )
(12.4.3}

By the usual asympiotic formulae} for Bessel functions, this may be
replaced by

i din —
@ = 25 B ortan i) -} + Ot :H-o( )+o( )
- (12.4.4)

Now

N
E d(n)e4-rri1f(m) =2 z g gémivtmez) Z Z elmivimna)
a=1 ms YN n<N/m me¥N ngdN

(12.4.5)

Consider the sum ¥ gmivimnz),
iminaNim

We apply Theorem 5.13, with £ = 5, and
fin) = 2fimnz),  fO(n) = A(maiat
Hence the sum is
N{ (ma)k | NG (N )\
ol i
(el () (o))
= O{(NfmEma)¥)- O{N fm)t(may).

Replacing N by 1N, 1¥,..., and adding, the same result holds for the
sum over 1 < n < N/m. Hence the first term on the right of (12,4.5) is

O[3t 3 m-%)+o(1vﬂr.*c > i) = O(WVita)+ O(N Ha ).
mE YN ma¥N
Similarly the second inner sum is
O{(VN ¥ (ma)ds}+ O{(VN it (ma)¥v),
and the whole sum is
o(m%xfamg N”“‘“)JFO(N&“!",%N"”“)
=O(NHads) - O(NHba—).

{1 Watson, Theory of Bessel Functions, §§ 7.21, 7.23.
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Hence, multiplying by ¢ %~ and taking the real part,

Fo L] I

S din)cos{tm(nz)—tw} = O(Nitzds){ O(Nibas).

n=1

Using this and partial summation, (12.4.4) gives
Al) = O(FH-T )+ O(NVE-1t-3) L O(V=) 4 OVt )
= O(N3bzs%)+ O(NEa®) |- O(Ne)+ (Nt 1),
Taking @ = ¢, ¢ = 1-+e, the first and last terma are of the same order,
apart from &’s, if N == [a:‘H]
Hence Afz) = Ofttre),
the result stated.
A similar argument may be applied to Ay(z). We obtain

Ayle) = > d:fﬂ)cos{ﬁﬁ(nx) }+0( ) (12.4.6)
n < TIBax)
and deduce that oy < H.
The detailed srgument is given by Atkinscn (3).

If the series in (12.4.4) were absolutely convergens, or if the terms
more or less cancelled each other, we should deduce that o, < }; and
it may reasonably be conjectured that this is the real truth. We shall
gee later that oy 3> 1, so that it would follow that ay — }. Similarly
from (12.4.6) we should obtain o, = }; and so generally it may be
conjectured that E—1

oy — W'

12.5. The average order of Ay(z). We may define 8;, the average order
of Ay (x), to be the least number such that

rr‘v'-i

E-3
| s ay = oea
1]
for every positive e. Since
f 8w dy = f Oty dy = Ofaen),
o

we have f, < oy for each k. In particular we obtain a set of upper
bounds for the B; from the above theorems.

As ususl, the problem of average order is easier than that of order,
and we can prove more about the 8, than about the «,. We shall first
prove the following theorem.t

 Titchmarsh (22).
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THEOREM 12.5. Let y; be the lower bound of positive numbers o for
which

C{er-::?i’ < . {12.5.1)
Then fu = yyiand
1 a1y |2k 4
< Iil(aI::I)L! di — j AYe)e dx (12.5.2}
@ [

provided that o > B,.

Wehave Do) — ;o "0
ave () = m;gr:u f —atds (¢ 1}
e—iT
Applying Cauchy’s theorem to the rectangle y—i?, ¢—iT, ¢+i7,

y+4¢T', where y is less than, but sufficiently near to, , and allowing for
the residue at s = 1, we obtain

Aylz) = - lim J' "o (“’)x-' ds. (12.5.3)
T%my—tT
Actually (12.5.3) holds for y; <y < 1. Fort {¥{s)js - 0 uniformly as
¢~ £oo in the strip. Hence if wo integrate the integrand of (12.5.3)
round the rectangle v —i7, y--iT, p+iT, y' 4T, where
n<y <y<l,

and make T’ - o, we obtein the same result with 3 instead of y.

If we replace = by 1/, (12.6.3) expresses the relation bstween the
Mellin transforms

fley = A(1jz),  &(s) = [Ma)/s,

the relevant integralz holding also in the mean-square sense. Hence
Parseval’y formula for Mellin transformsi gives

Elyp-+it) 2
L [t e« oo
provided that y, <<y < 1. (1254
It follows that, if y, <y < 1,
X

| 8iwyrortde < K = Kk, y),
ix
X
[ 83wy dz < KXo,
ix

t By an application of the lemma of § 11.9.
1 Bee Titchmarsh, Theory of Fourier Integrals, Theorem T1,
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and, replacing X by 34X, }X,..., and adding,

X
f Ablx) da < KX,
1

Hence f§, < p, and %0 B < 3.
The inverse Mellin formula is

@= I Ak(;‘_)za~tdm= f Aa)a—- da. (12.5.5)

The right-hand side exista primarily in the mean-square sense, for
v < o << 1. But actually the right-hand side is uniformly convergent
in any region interior to the strip 8, < ¢ < 1; for

X - XI!!z d‘r X wea g ]%
&Lmk(z)w dr < {*L 2(x) ijl;x v

= {O(Xsﬂﬂlh‘)()(xﬁza—l)}i = O(XBo+e),
and on putting X = 2, 4, 8,..., and adding we obtain

jP [Ag(e)[z—ot d < K.
i

It follows that the right-hand side of (12.5.5) represents an analylic
function, regular for 8, <t ¢ < 1. The formula therefore holds by
analytic continuation throughout this strip. Also (by the argnment
just given) the right-hand side of {12.5.4) is finite for B, <<y < L.
Henee so is the left-hand side, and the formula holds. Hence ¥, < g,
and so, in fact, p, = Bi. This proves the theorem.
12.6. TurorEM 12.6 (A).f
k—1

B = 25 (k=23,..).

If } < ¢ < 1, by Theorem 7.2

T < iJ: oty dt < { f |Zto+-8) dt}w(j d:)l_”".

Henco J' [L{a-it)|2* dt == 2510k 7.
¥

t Titchmarsh (22).

4
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Hence, if 0 < o < 4, T>1,
Blain®,  [Ifetinm, ¢
f =S f “oup dt > ,A,—,ZJ 18la ity [ de
b
> CTkI-t0-2 j H(l—o—if)|% dt (by the functional equation)
T

= QUak-10k_ pH1-2e)-1,
This can be made as large as we please by choice of T if ¢ < He—1)/k.

Hence Vi = 162;1‘:1
and the theorem follows.
TreoreM 12.6(B).1
k—1
ay 2= S5 (k =2,3,..).

For o > B
Much more precise theorems of the same type are known. Hardy
proved first that both
Afz) > K=t,  Alz) < —Kat
hold for some arbitrarily large values of z, and then that =t may in each

cage be replaced by (log z)t loglog z.

12.7. We recall that {§ 7.9) the numbers o, are defined as the lower
bounds of ¢ such that
1 T
Tfm"“’”“ dt = 0q1).
1

We shall next prove

Tarorem 12.7. For each integer k > 2, a necessary and sufficient
condition that

k—1
Be=—- (12.7.1)
is that _— ’%1 (12.7.2)

Suppose first that (12.7.2) holds. Then by the functional squation
T T
f |{(a4-dt)i2* dt = O{THF’"JJ' [{(1—a—iz)|2* dt} = Q(IH1-2)+1)
i i

+ Hardy (2).
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for o << 3(k—1)/k. It follows from the convexity of mean values that
T
J‘ [E(o-8t) [ dt = O(T1 b +1akeizk-ak)
1

k—1—¢ <fc+1—|—e.

for % <0 %
The index of T is less than 2 if
k—1--¢
o> -
| L(o-ri
[slo+) ™ 4 . o(T-8) (3 > 0).
Then (s it? dt = (T-9) | }

Hence (12.5.1) holds. Hence y; << $(k—1)/k. Hence B, <i{k—1)/k,
and so, by Theorem 12.6(A), (12.7.1) holds.
On the other hand, if (12.7.1) holds, it follows from (12.5.2) that

r
[ 1etatiny = de = 072
1
for o > 3{k—1)/k. Hence by the functional equation
T
[ 1e+in e de = O(Ta-2a13)
1

for o <2 }(k+1)/k. Hence, by the convexity theorem, the left-hand
side is O(TM+¢) for o = 4{k-+1)/k; hence, in the notation of §7.9,
oy < {k+1)/k, and so (12.7.2) holds.

12.8. TeEOREM 12.8.}

B=1 ﬁ3='}i Bt

By Theorem 7.7, oy, < 1—1/k. Since
1 __k+1
i<

it follows that 8, =}, B; = }-

1— )

The available material is not quite sufficient to determine 8;. Theorem
12.6(A) gives 8, = 3. To obtain an upper bound for it, we observe that,

by Theorem 5.5. and (7.6.1),
T T
[ 16-+in @ = oz [ g -+ing i) = ot
1 1

+ The value of B, is due to Hardy (3), and that of f§, to Cramér (4}; for f, eee
Titchmarah (22).
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and, since 0, < {; by Theorem 7.10,
fT L +il® de = O(T* f 1h—it)® dz) = O[T+,
Hence by1 the convexity theorem '
f 1o+t dt = O(TeHo+e)
forf <o<§ It e;si]y follows that y, < 8, ie. 8, < &

NOTES FOR CHAPTER 12

12.9. For large k the best available estimates for o, are of the shape
%, € 1- Ck ¥, where Cis a positive constant. The first such result isdue
to Richert [2]. (See also Karatsuba [1], Ivic [8; Theorem 13.3] and Fuyjii
[3]1) These results depend on bounds of the form (6.19.2).

Fortherange4 < & < 8one has o, < $—1/k (Heath-Brown [8]) while
for intermediate values of k a number of estimates are possible {see Ivic
[3; Theorem 13.2]). In particular one has oy < 8,0, < #,4,, < 7> and
a4, < 4§

12.10. The following bounds for «, have been obtained.
&y = 0-330000 ... van der Corput (2),
£2=0329268 ... van der Corput (4),
4% = 0326086 ... Chih [1], Richert [1],
4% =0324324 ... Kolesnik f1],
£ = 0:324273 ... Kolesnik [2],
- = 0824074 ... Kolesnik [4],
138 = 0324009 ... Kolesnik [5].

in general the methods used to estimate 2, and u($) are very closely
related. Suppose one has a bound

¥  exp [2ni{x(mn)%+ cx- 1(mn)%} 1= (MN)%xm_i,
M<msM N<nsM
(12.10.1)

for any constant ¢, uniformly for M < M <2M, N <N, <2N, and
MN < x2-49. It then follows that u(3) < 43, a, < 9,and E(T) < T%** (for
E(T) as in §7.20). In practice those versions of the van der Corput
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method used to tackle i(}) and o, also apply to (12.10.1), which explains
the similarity between the table of estimates given above and that
presented in §5.21 for u(}). This is just one manifestation of the close
similarity exhibited by the functions E(T) and A(x), which has its origin
in the formulae (7.20.6) and (12.4.4). The classical lattice-point problem
for the circle falls within the same area of ideas. Thus, if the bound
(12.10.1) holds, along with its analogue in which the summation
condition m = 1 (mod 4) is imposed, then one has

#{(m, n)eZ? m2+n? < x} = nx + Oxd+e).

Jutila [3] has taken these ideas further by demonstrating a direct
connection between the size of A{x} and that of {(}+if) and E(T). In
particular he has shown that if «, = } then u(}) < & and E(T) < Theve,

Further work has also been done on the problem of estimating «;. The
best result at present is a; < 4%, due to Kolesnik [8). For «,, however, no
sharpening of the bound «, < } given by Theorem 12.3 has yet been
found. This result, dating from 1922, seems very resistant to any attempt
at improvement.

12.11. The Qresults attributed to Hardy in §12.6 may be found in
Hardy [1]. However Hardy’s argument appears to yield only
Afx) =Q_ {{xlog x)%loglogx), {12.11.1)

and not the corresponding _ result. The reason for this is that
Dirichlet’s Theorem is applicable for Q@ , while Kronecker’s Theorem is
needed for the _ result. By using a quantitative form of Kronecker’s
Theorem, Corradi and Katai [1] showed that

1
Alx) =0 {x% exp (c ﬂgl"g—x)'a)},
(logloglog x)+
for a certain positive constant c. This improved earlier work of Ingh'am
[1] and Gangadharan [1]. Hardy's result (12,11.1) has also been
sharpened by Hafner [1] who obtained
A@)=Q, [(xlog x)%(log]og .'c)% @+2loeBoyp f — c(logloglog x)%} 1

for a certain positive constant ¢. For & 3> 3 he alsc showed [2] that, for a
suitable positive constant c, one has

A, (x) = Q, [(x log x¥*- 12k (loglog x)° exp { —c(logloglog 1)),
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where

k-1
0=W(klogk+k+l)

and ), is Q, fork=3and Q, fork =4.

12.12. As mentioned in §7.2§ we now have o, < §, whence §, = §,

(Heath-Brown [8]). For k = 2 and 3 one can give asymptotic formulae for

j‘Ah(y)Edy.
0
Thus Tong [1] showed that
# 2d ﬂik—l)ﬂk oo d N s 130k
= — -k
-[A,,(J') y Wz L L (n)en +R,(x)
0
with R,(x} < x(log x)° and
$—4o
Cy+é =9 — L]
R (x)€x%*, ¢,=2 T —a,) -1’ k=3

Taking 0, < ¢ (see §7.22) yields ¢, < 4. However the available
information concerning ¢, is as yet insufficient to give
¢, < (2k —1)/k for any k& > 4. It is perhaps of interest to note that Hardy’s
result (12.11.1) implies R,(x) = 0{xt(logx)~1}, since any estimate
R, (%) € F(x) easily leads to a bound A,(x) < {F(x) logx}}, by an argu-
ment analogous to that given for the proof of Lemma o in §14.13.
Ivic [8; Theorems 13.9 and 13.10] has estimated the higher moments of

Ay(x) and Ay(x). In particular his results imply that

x

IAz(y)sdy € x3t,

0

For A,(x) his argument may be modified slightly to yield
J1aomay e
o

These results are readily seen to contain the estimates ¢, < 4, f, < yand
2y = §, By € 4 respectively.
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THE LINDELOF HYPOTHESIS
13.1. THE Lindelof hypothesis is that
L@ +ih) = 0@F)
for every positive €; or, what comes o the same thing, that
flo+it) = Of)
for every positive ¢ and every o > }; for either statement is, by the

theory of the function pu(s), equivalent to the statement that u{o) = 0
fore > 4. The hypothesis is sugpested by various theorems in Chapters

V and VIL. It is also the simplest possible hypothesis on u(o}, for on it 4

the graph of ¥ — (o) consists simply of the two straight lines
y=1t—c <) y=0 (e=}.
We shall see later that the Lindelof hypothesis is true if the Riemann
hypothesis is true. The converse deduction, however, cannot be made

—in fact {Theorem 13.5) the Lindeléf hypothesis is equivalent to a
much less drastie, but still unproved, hypothesis about the distribution 3

of the zeros.

In this chapter we investigate the consequences of the Lindeldf }
hypothesis, Most of our arguments are reversible, so that we obtain §

necessary and sufficient conditions for the truth of the hypothesis.

13.2. Terorem 13.2.1 Alternative necessary and sufficient conditions 3

Jor the truth of the Lindeldf hypothesis are

717 LG+t di = 0T (k=1,2.0;  (13.2.1)

oty

o[ Werinma=o0@g >4 k=123 (1822

H——y

T 4
%f | Lot} | dt ~ Z% (e>% k=1,2.) (13.2.3) }

fa=1

The equivalence of the first two conditions follows from the eonvexity °

theorem (§ 7.8), while that of the last two follows from the analysis of
§7.9. Tt ia therefore sufficient to consider (13.2.1).

+ Hardy and Littlewood (5).
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The necessity of the condition is obvious. To prove that it is sufficient,
suppose that [(344t) is not O(€). Then there is & positive number A,
and a sequence of numbers 3—+4t,, such that £, » co with », and

i) > 08 (€ > 0).
On the other hand, on diﬂ'erentiaﬁ'lg (2.1.4) we obtain, for ¢ > 1,
1Tk +-in) < Be,
E being a positive absolute constant. Hence

1L+t L3 it = <2Eli—t,|t, < 308

t
[ra+iwau
&y

if [t—t,] < ;1 and v is sufficiently large. Hence

] > 108 (-4 < 7).

Take T' = §t,, so that the interval (f, — 71, ,4+ ;") is included in (7, 27)
if v is sufficiently large. Then

= ty+ 8y’

[1a+inpde > [ GO de = 2(4CyHaa,

7 ty—15}
which is contrary to hypothesis if & is large enough. This proves the
theorem,

We could plainly replace the right-hand side of (13.2.1) hy O(74)

without altering the theorem or the proof.

13.3. THEOREM 13.3. A necessary and sufficient condition for the truth
of the Lindelof hypothesis is that, for every positive inleger k and o > 4,

Po=3 %) oy @0, (13.5.1)
agte

where 8 i3 any given positive number less than 1, and XA = Ak, 8,0) > 0.
We may express this roughly by saying that, on the Lindelsf hypo-
thesis, the behaviour of {{s), or of any of its positive integral powers,
is dominated, throughou$ the right-hand half of the critical strip, by a
section of the associated Dirichlet series whose length is less than any
positive power of {, however small. The result may be contrasted with
what we can deduce, without unproved hypothesis, from the approxi-

mate functional equation.
Taking 2, = d,(n)in Lemma 3.12, we have (if 2 is half an odd integer)

[

+iT
di(ny 1 oo B °
Z ' 2mi f o w)ﬁdw+o(T(o+c—-l)")
n<z i
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where ¢ > 1—a+¢. Now let 0 <t < T—1, and integrate round the ‘

rectangle }—o—iT, ¢ —iT, ci7T, %-cr«l—iT. We have

51—' f ¥a+ w) i dw = {¥(8) + - P( log:r)
ml
rectangle
= {H(s) + Ofat-osegm1ve,
P being a polynomial in its srguments, Also
e—iT  }-oHiT, v

( + ) (’_,"‘(s—l—w)%dw = O@eT1+)

f—o—iT o+iT
by the Lindelsf hypothesis; and

}-o+iT
C(s+u)™ dw = Ozt J' R Litti)] g,
yor w 13-+19|

= Qxi-oT%)
by the Lindelof hypothesis. Hence

. diin) Cal 1-c+ege—1
Ek(s)—"zt ':'2'7 +O{m}+0(:ﬂ -1+

+ 0@ T-14¢) 4 O(h=oTe),

and (13.3.1) follows on taking z = [ff] -}, e =2, T'= &
Conversely, the condition is clearly sufficient, since it gives

o) = Of F o) +0¢™) = O,

where § is arbitrarily small.

The result may be used to prove the equivalence of the conditions “

of the previous section, without using the general theorems quoted.

13.4. Another set of conditions may be stated in terms of the numbam '

ay, and f; of the previcus chapter.

THEOREM 13.4. Alternative necessary and sufficient conditions for the §

truth of the Lindeldf hypothesis are

ap S d (k=23 (13.4.1) §
A<t (k=123,.), (13.4.2)
B — —2771 k=2, 8,.). 1343

As regards sufficiency, we need only consider (13.4,2), since the other |
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conditions dre formnlly more stringent. Now (13.4.2) gives y, < §, and
80

Lo -
Wdt =0(1) (e>1}),
y ]

r v
[ 1te+in*dt = 0(TY (o> 4.
ir

The teuth of the Lindelof hypothesis follows from this, as in § 13.2.
Now suppose that the Lindeléf hypothesis is true. We have, ag in
§ 12.2, 2+l

Dyfe) = J' c*<s)—ds+0( )

Now integrate round the rect,a.ng]e with vertices at 3—iT, 2—i7),
2447, }+iT. We have
2EiT

f_;k(s)%’da — OlarTe),

4T
$+iT T
j ()% ds = o[ﬁ J' [34-itl dt} = O3 T
1T : -
The rvesidue at s = 1 accounts for the difference between D,(r) and
Ay(z). Hence Ayle) = O(zAT)+ O Te).

Taking T = 2, it follows that o, < 3. Hence also B, < 1. But in fact
o, < } on the Lindelof hypothesis, so that, by Theorem 12,7, (13.4. 3)
also follows.

13.5. The Lindelof hypothesis and the zeros.

TrEOREM 13.5.F A necessary and sufficient condition for the truth of
the Lindeldf hypothesis is that, for every o > 4,

N{o, T+1)—N(e, ) = o(log T).

The necessity of the condition is easily proved. We apply Jensen’s

formula

2
™ _1 it _
‘°gfr..rn—ajl°giﬂn )i db—log [f(0)),
(1]

where ,,... are the moduli of the zeros of f(s) in [¢] < r, to the circle
with centre 24t and radius §—15, f(s) being {{s). On the Lindelsf

t Backlund (4).
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hypothesis the right-hand side is less than o(logt); and, if there are }
N zeros in the concentric circle of radius §—13, the left-hand side is 3

greater than Nlog{—15)/3—18).

Hence the number of zeros in the circle of radius §—18 is o (log t); ond

the result stated, with ¢ = 3-8, clearly follows by superposing a

number (depending on § only) of such circles.

To prove the converse,f let € be the circle with centre 2--i7' and ;
radivs §—3 (8 = 0}, and Jet I, denote & summation over zeros of (s %
in G,. Let C, be the concentric circlo of radins §—25, Then for s in C, |

TE_ 1 _ flee
== Sz, =%

This follows from Theorem 9.6{A), since for each term which is in one }

of the sums

Zl s_—];’ Z ﬁ’

R—yl<1

but not in the other, [s—p| 3> &; and the number of such terms is 3

Olog T).

Let C, be the concentrie circle of radius 3—33, ' the coneentric circle
of radius §. Then y{¢) = o(log 7') for s in C, since each term is (1), ]
and by hypothesis the number of terms is o (log 7'). Hence Hadamard’s | :

three-cireles theorem gives, for & in O,
Wite}| < fo (log T)}HO@E log )

where «+8 = 1, 0 < < 1, « and 8 depending on 3 only. Thus in €} ‘_

¥s) = o(log T),
for any given 8.

Now
2
_|' $(8) do = log {{2+it)—log L4+ 35 1) —
35
¥ — 3, {log(2-+it—p)—log(} + 35+-t—p})
= O(1)—log {(}+38+it)+o log T)+ )
+ 3, log(h-+35+it—p),

since 3 has o (log T} terms. Also, if ¢ = T, the left-hand side is o (log 7). ]

Heonce, putting ¢t — 7' and taking real parts,
log{L{3+38-44¢T)| = o(log T)+ 21 log |3 +35+4T—p|.
Sines |3+384+iT—p| < 4 in G, it follows that
log1{(3+35-4-iT)| < o(log ),
ie. the Lindel3f hypothesis is true.
t+ Littlewood (4).
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13.6. THEOREM 13.6{A).T On the Lindeldf hypothesis
8@) = o‘logt
The proof is the same as Backlund's proof (§ 9.4} that, without any
hypothesis, () = G(log?), except that we now use I(s) = O(if) where
we previously used {{s) = O(t4).
THEOREM 13.6 (B).{ On the Lindeldf hypothesis
8y{t) = o(logt).
Integrating the reel part of (9.6.3) from § to 4433,

3488 1+38 I
= 1 —p| d log t),
i logl{o)ldo = 3 { og|s—p| do-+O(8log
where p = f4-iy runs through zeros of £(s}. Now
3438 4}+as

35
J- log|s—p| do = 5 f log{{o—pB)2+(y— )% do < ?log2
3

and 1438 1483
= [ loglo—pldo > | Toglo—3—43 do = 35(logd5~1).
3 i
Hence }ias

f Ioglé(s)ida=,7_§ (slog )-I-O(B]ogt)
3

= O{8log 1/3.log?).
Also, as in the proof of Theorem 13.5,
logi(s) = 3, log(s—p)+ologt) (3+3 <o 2).

Hence 2 2
| 1ogltis)do =3, [ logls—p| do-+ollogs)
338 3438

=3, O{1)+o(logt)

= o(logt).
Hence, by Theorem 9.9,

2

5 = 2 [ Toglg(e)l da-+0(1)
t
= O(8log 1/3.logt)+o (log H+ O(1),
and the result follows on choosing first 8 and then ¢,
t Cramér (1), Litilewood (4). t Littlewood (4).
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NOTES FOR CHAPTER 13

13.7. Since the proof of Theorem 13.6(A) is not quite straightforward
we give the details. Let

8@ = HiG@+2+iT)+{(z+2—iT)}

and define n(r) to be the number of zercs of g(z)inthe disc |z| < r. Asin

§9.4 one finds that S(T') < n(3) + L. Moreover, by Jensen's Thorem, one
has

ox
jl@dr = —J log|g(Re:*)|d9 —log | g(0)I. (13.7.1)
0

With our choice of g(z) we have log | g(0)| = log |R¢ 2 +iT) = 0O(1). We
shall take R = § + 4. Then, on the Lindelsf Hypothesis, one finds that

I{(Rei*+2+iT)| < T

forcos9 > —3/(BR)and T sufficiently large. The remaining range for 3 |

is an interval of length O(5%). Here we write R(Ref*+2) = g, so that
3—38 < ¢ < {. Then, using the convexity of the y function, together
with the facts that u(0) = } and, on the Lindeléf Hypothesis, that
u(¥) = 0, we have u(s) < 4. It follows that

IL(Re® +2+iT)| g To+:

OG:log T)+ O8¢5 + ) log T,

n(%)<J'n(f)

1]
we conclude that

n(3) = O{G +6 -l(5+e))log T},

and on taking § = b we obtainn(§) = O(ea log T, from which the result j

follows.

18.8. It has been observed by Ghosh and Goldston (in unpublished

for cos 8 £ —3/2R, and large enough 7. We now see that the right-hand
i f
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work) that the converse of Theorem 13.6(B) follows from Lemma 21 of
Selberg (5).

THEOREM 13.8. If 8,(1) = o’zlogl), then the LindelSf hypothesis holds.
We reproduce the arguments used by Selberg and by Ghosh and
Goldston here. Let 1 < ¢ € 2, and consider the integral

5+im .
1 J logl(s+iT) ds
2ni 4—{8—0)?
5-iw

Since log{{s +iT) <€2-P the integral is easily seen to vanish, by
moving the line of integration to the right. We now move the line_ of
integration to the left, to R(s) = o, passing a pole at s = 2+ 4, with
residue —4}log{(2+o+iT)= O(l). We must make detours aroun.d

=1—iT, if 6 <1, and around s = p—i7, if ¢ <pf. The former, if
present, will produce an integral contributing (T -2), and the latter,
if present, will be

f_a
du

1—{uti-TH}’
o
It follows that
@* o
1 (loglo+it+iTy , du = o),
2n I 4412 & E, 14— {u+iy-T)}?
- 1]

. N - - [, 1) Mg Hp
for T z 1. We now take real parts and integraie for § < o < 2. Then by

Thecrem 9.9 we have

5,(+T) o
%J' S - z I(ﬁ - u)R(4 {u+:(r T)}z)du+0(1)
-= (138.1)

By our hypothesis the integral on the left is o{log T). Moreover

1 A0 ify-TI<1,
Rl—— L > .
( 4-{utily— T)}z) o, otherwise.

If 6>} is given, then each zero counted by M(s, T+1)~Nig, T)
contributes at least }{c — })2A to the sum on the right of (13.8.1), whence
N(o, T+1)— N{o, T) = o{log T"). Theorem 13.8 therefore follows from
Theorem 13.5.
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CONSEQUENCES OF THE RIEMANN
HYPOTHESIS

14.1. In this chapter we assume the truth of the unproved Riemann
hypothesis, that all the complex zeros of {{s) lie on the line o = }. Tt
will be seen that a perfectly coherent theory can be constructed on this
basis, which perhaps gives some support to the view that the hypothesis
is trus. A proof of the hypothesis would make the ‘theorems’ of this
chapter essential parts of the theory, and would make unnecessary
much of the tentative analysis of tho previous chapters.

The Riemann hypothesis, of course, leaves nothing mors to be said

‘ , .
about the ‘horizontal’ distribution of the zeros. From it wo can also |

deduce interesting consequences both about the ‘vertical’ distribution |
of the zeros and about the order problems. In most cases we obtain |
much more precise results with the hypothesis than without it. But ;
even a proof of the Riemann hypothesis would not by any means com-
plete the theory. The finer shades in the behaviour of {(s) would still
not be completely determined.

On the Riemann hypothesis, the function log {(s), as well as Z(s), iy
regular for ¢ > } (except at § = 1). This is the basis of most of the
analysis of this chapter,

We shall not repeat the words ‘on the Riemann hypothesis’, which -
apply throughout the chapter.

14.2, Treorem 14.2.f We kave

uniformly for } <oy Lo 1. )
Apply the Borel-Carathéodory theorsm to the function log {{z) and 1
the circles with centre 244 and radii §—43 and }—5 (0 <5 < }). On j
the larger circle
R{log {{z)} = log|{(=}| < Alogt.
Hoence, on the smaller cimle,

log 2(2)| < 222 Atoge4 2E

Ilog 1§24

] 1]

< A5-logt. (14.2.2)

t Littlewood {1).

log £(s) = Offlog t)i—to+¢} (14.2.1) §
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Now apMy Hadamard’s three-circles theorem to the circles €, €y, C,

with centre ¢,+if (1 < @, < {), passing through the points 4-74-i,
o-+it, $3+8-+it. The radii are thus

nh=o—1—7x Ty = 01 —0, 1= o—§—3.
If the maxima of |log {(2}| on the circles are M, M,, M,, we obtain
< Mi—Mg,
where s
a = log /log log(l+ 1+'q 0)/10g(1+ %+ﬂ n)
1
B "+0( ) —a. 20+O(8)+0(ﬂ)+0( )
T =3
By (14.2.2), M; < A3-1log¢; and, since
lﬂ_w..\‘_TAl(n) IA det o 1Y RYEEN
LOZ L8] = por UyiRj % 1), {ik.o.a}
»=2
S| S 1 4
M, < max YZ; L Q;ﬁ<n
Hence
log L+ it)] < {A\l “{A log t\ — 2 (log 122 +OB+OM4 0o,

W o Us )~ n“"ﬁ“ T
The result stated follows on taking 8 and % small enough and o, large
enough. More precisely, we can take
1 1
n=g=,= loglogt;

sinece (log t)O(B) — O loglogt) — (O — 0(1),

ste., we obtain
1 i
log {(s) = Ofloglog {log )22} (§+10T0gt Lox 1).
(14.2.4)

Since the index of log¢in (14.2.1) is less than unity if ¢ is small enough,

it follows that (with & new )
—elogt << log|L(s)| < elogt (t == #(e)),

i.e. we have both E(S) = O, (14.2.5)
= Ot 14.2.6)
C(a} () {
for every ¢ > }. In particular, the truth of the Lindeldf hypothesis follows
from that of the Riemann hypothesis.
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It also follows that for every fized 0 > }, as T+ 0

)
f o+ ™ Z(da)

For o = 1 this follows from (7.1.2) and (1.2.7). For } < ¢ < lit follows
from (14.2,6) and the analysis of § 7.9, applied to 1/%(s) instead of to £¥(s).

14.3. The functiont v(c). For each o > } we define v{o) as the
lower bound of numbers ¢ such that

log Z(s) = Oflog®1).
It is clear from (14.2.3) that v(o) < 0 for o > 1; and from (14.2.2) that
vo) < 1for § < o < 1; and in fact from (14.2. 1) that v(g) < 2—20 for
<o 1.
On the other hand, since A;(2) = 1, (14.2.8) gives

1 <=An)
1 —— o
log 2(s)| 2 5 g; e,
and hence v(a} 2> 0 if ¢ is so large that the right-hand side is positive,
Since -
T Ag(n) . [dzx 2
n? \Ln" SlarT 1
E

n-zs
this ig certainly true for ¢ 2> 3. Hence v(s) = 0 for o > 3.
Now let § <X 0y <2 0 <C 0y < 4, and suppose that
log {loy+it) = Oflog),  logay-+it) = Oflogh).
Let §(6) — log L{s)log( - -ia}) =,

where k(s) is the linear function of & such that &(x,) = @, k(o) = b, viz.
k{s) = (3—-o-1)b+(a,-v.9)a‘

Ty—ay
Here {log(—is)}H9 — g-Meloxlogt—t9_
where log(—is) = log{t—io), loglog(—1s) (¢ > e)

denote the branches which are real for o = 0. Thus
log(--48) = logt+Iog(l —E) = logt+ O(tl),

loglog(—is) = loglog 1+10g{1 +0 (t log t)}

= loglog ¢+ O(1/¢).
+ Bohr and Landau (3), Littlewood {5).
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Hence

{log(—ia)}~H9] = e-Skelostost—eh — How
— (log#) 14 0(1/1)}.
Hence g(s) is bounded on the lines 0 = o, and o = o;; and it is O{log¥s)

for some X uniformaly in the strip. Henee, by the theorem of Phragmén
and Lindelsf, it is bounded in the strip. Hence

log {(s) = Of(log ty=3},

ie. Wo) < ko) = F=okbt(oa—ula (14.3.1)
Og—0y
Taking ¢ =3, gy =4, ¥(3) =0, 6 =9, we obtain ¢ > 0. Hence
wg) 22 0 for o > }. Henoce (o) = 0 for o > 1,
Since »{¢) is finite for every o > }, we can take a = v{oy}-te,
b = v{gg}+-e in (14,3,1). Making € > 0, we obtain

o) < oo+ os—ohloy)
ay—ay
i.e. ¥(o) i3 a convex function of o. Henee it is continuous, and it is non-
increasing since it is ultimately zero.
We can also show that {'(s)/{(s) has the same v-function as log {{s).
Let v,(s) be the v-function of '(s}/{(s). Since

o) _ log E(Z) By

wo have nio) < vie—3)
for every positive §; and since v(o) is continuous it follows that
nio) < ¥o).

We can show, as in the case of v(a), that »,(0) is non-increasing, and
is zero for o > 3. Hence foro < 3

log&{s) = —f £ ((::;:;? dz—log {(3-1t)

= of | aogapeon azf+on)

= 0{ (]gg ;)vllo)-e-z}

ie, v{o) < vila).
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The exact value of v(a) is not known for any value of o less than 1.
All we know is

THEOREM 14.3. For -} <a< 1,
—¢ & o) 5 2(1—0o)
The upper bound follows from Theorem 14.2 and the lower bound
from Theorem 8.12. The same lower hound can, however, be obtained
in another and in some respects simpler way, though this proof, unlike

the former, depends essentially on the Riemann hypothesis. For the
proof we require some new formulae,

14.4. TEEOREM 14.4.7 Ast o0,

e TA(”) -Sny 35T &)+ 0(5tlogs), (14.4.1)
o) 4w

uniformly for } < oL e LKL
Taking a, = A(n), f(s) = —{'(s)/{(s) in the lemma of § 7.9, we have

2+lm

5 A(n)& B = —i T (z—s)@&?'" dz. {id.4.2)
n* 2 J
n=1 pRPY
Now, by Theorem 9.6 (A},
4 (3) o1l
ogi
T = Z P L 1)

and there are O(log{) terms in the sum. Hence

{8 _p
o) — 008!
on any line ¢ 3= 4. Also

O o(__.l"gz

[{O] minf—y|
uniformly for —1 < o< 2. Since each interval (n,n--1) contsing
values of ¢ whose distance from the ordinate of any zero exceeds
Aflogn, there is & ¢, in any such interval for which

) +Ologi}

L) _ 2 -
) =0log?) (—1<o<2 t=1).

1 Littlewood (5), to the end of § 14.8.
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By the theorem of residues,
24k, 1+u,. 3ty 2—dly,

_ ((Z)“
A e o

e - —
= [(p—s)d—+—D(1—g)35-L
T9) _KZK“ (p—s) (1—s)
The integrals along the horizont.a.] sides tend to zero as n — 00, so that
S A _ f D(z— sg()sﬂ*’d
“Z w 21n ; )g( ) e
{s
_{e T B8 -4-I'(1—a)3*-1
S 3 Tl e Y1)
Since I'(z—a) = Ofe~4¥-4), the integral is

of [ e-au-ttogyl+2)6e dy)

0{ J' e-4w-log(|2¢|--2)87-% dy}+-

9 ®y

;9 < A
-i-Ou ]+ Je‘%““”log(lyH-Z’)S"* dyj
= O@oilogt)+ 0(1) = 0(50 tog1).

Also
T{l—3)81 = Ofe~480-1) = O(e—A‘S'f)
— Ofe—2+3¥) — Ofe—40) — O{8o-tlogs),

This proves the theorent.

14.5. We can now prove more precise results about {'(s)/{(s} and
log {(s) than those expressed by the inequality v(s) < 2—20.

THROREM 14.5. We have

4L 120 14.5.1
T — Ollost ™} (451
og {{s) = o{%}, (14.5.2)
uniformiy for } <oy Lo Koy < 1.
We have
;“(:)) 2 Sty z IT(p— &) O3°~tlog2).
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Now s
@ +ic ,
>, _ L f Pe—o) s Fso—s g — 0o,
o 2 1)
2—iam
gince we may move the line of integration to R(z) = §, and the leading
term is the residue at z — 1. Also
[Dip--8)]| < de-r—
uniformly for ¢ in the above range. Hence
_ AT odtv — 4% — Al
2 P(p—s)| < ;B "Z_l “vlngykf
The number of terms in the inner sum is
Oflog(t+n)} = Ollogt)+O{log{n+1)}.
Hence we cbtain

O[ngle“‘*"{log t+log{n -+ 1)}] = flog t).

Hence iT‘:)) — 0"+ 057} log 1) | Ot log),
and taking § = (log#)~* we obtain the first result.

Again for oy L 0 < oy

{letit) o

log {(s) = log {(o, +it)— e

— Of(log fjt-1+}+ 0{ :f (log &)t dx}

log £)2-%
- ot 31505

Ho < 65 < 0y 8nd € << 2(g,-~0y), this is of the required form; and since
o, and 50 ¢; may be as near to 1 as we please, the second result (with
oy for o) follows.

14.6. To obtain the alternative proof of the inequality »(e) == 1—a
we require an approximate formula for log {(s).

Turonem 14.6. For fized « and o such that } < e <o <1, and |

e 81,

log {(s} = i A—::?—)e-a"-i— Ofpe-(log )1 4-0O(1).
A=l
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Moving the line of integration in (14.4.2) to R(w) = «, we have
= atim

AR) g 8O poy_ gy L b, .
>A e T~ TA—a o f Pie—) 2o+ d.

Since '(s)/{(s) has the v»-function v(g), the integral is of the form

r=1 a—fo

Ofse— [ e-aw-tjlog(ly|-+2)pe dy) — Ofs°—(log §®+);
} I

—~®

and I'(1—8)3°-1 is also of this form, as in § 14.4. Hence
_EE) _ S AR sn gge-aqlog ot
T = ’Zl e 9 Of8To(log ().

This result holds uniformly in the range [#, §], and so we may integrate
over this interval. We obtain

— ~ A (1&) —5n 7o o)+e
log {(a) .Zi_:'re + O[T (log te+e} )
= og {(g+it— > M e-n — o),
a=1

a8 required.

14.7. Proof that v{o) > 1 —¢. Theorem 14.6 enables us to extend
the method of Diophantine approximation, already used for ¢ > 1, to
values of o betwesn } and 1. It gives

log |{(s)| = i J—%}cos(! log n)e=334 O3 ~*{log f)*@+<} -+ 0(1),

il
S Ayn) $
= z =L oos(tlog m)e-te -+ 0f 3 e3%) +-Of57-*{log (@ <}+ O(1)
= W n=N+1
for all values of N. Now by Dirichlet’s theorem {§ 8.2) there is a number
tin the range 2z < ¢ < 2ng¥, and integers z,,..., iy, such that

< % =12, N

Let us assume for the moment that this number ¢ satisfies the condition
of Theorem 14.6 that e~ < 8. It gives

N N
Z Mcﬁs(tlogn)eﬂ"‘ = 2 1\;(:1._)0082_112_5“
= v F q
N N
_ z Al(”)eﬁn_i_o 1 2 l
=1 w g n-lnc
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A
Z (‘;"') s lag_N z o

n=1
A <«
"IogN z o 75n+0(,‘_;+1e_h)

Klo)so-1 e
> Tog N +O(T)

Now

asin § 14.5. Hence

A +o[ “)+0( =)+ ofp-stogter+-00).

Take g = N = [5-*], where @ > 1. The second and third terms on the
right are then bounded. Also

logi < Niogg-+log2n < S%iog—;-f-iog Zm,

logi{{s)] >

80 that 5 < K(logt)-va+e,
Hence logl{(s)| = K(log#)1-°-74O{(log s)a-o++7},

where 5 and n” are funetions of & which tend to zero as ¢ — 1.

Tf tha Runat toawm an tha pioht i af lavwsan oodan than tha
41 o0& OUST vOFin O D00 TIgAv 15 &1 MAPEer ool Uail und

follows at once that v(a) 2> 1—a¢. Otherwise
a—o+vle) = 1—a,
and making « -» o the result again follows.
We have still to show that the ¢ of the above argument satisfies

-_Jf P tha oombrons thet £ = 2! fom coznn oubitao il
Ey U, GUPPOSC O GO0 CONWALY (hab o <€ A0L B0ING BIJITATLY

small values of 3. Now, by (8.4.4),
i) 3 s0s 27 —2e)tt0) > 2 (420
for o > 1, ¢ > 6. Taking o = 14log8/log N,

L) > % — AlogN > Alog% > Adh.

Sinece |{{s)] - o0 and ¢ = 2m, t — o, and the above result contradicts !

Theorem 3.5. Thig completes the proof.

14.8. The function {(1-}-i). We are now in a position to obtain !

fairly precise information about this function. We shall first prove
THEOREM 14.8, We have

[log L(14-it)| < logloglogt+-A4. (14.8.1)
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In particular
L(1+i1) = O(loglog), (14.8.2)

1
T+ = O(loglog #). (14.8.3)

Taking ¢ = 1, « = } in Theorem 14,6, we have

log1(1-+it) < > 4 esmt ogstog )+ 0Q)

n=1

giA‘("'H- 3 etnp OBt logh)+O(1)
= n n=N+1

< loglog N+ O(e~8¥/8)+ O (3t log )+ O(1)

by (3.14.4). Taking § = log—%, N = 1+[log®], the result follows.
(‘nmnnﬂnu this result with Theorems 8.5 and 8.8, we see that, as far

as the order of the functions {(1+4#) and 1/f(144¢) is ;;;c;;n-e& -t;l-l'e
result is final. It remains to consider the values of the eonstants involved

in the inequalities.
14.9. We define a funetion B(s) as
o) = 3%
By the convexity of v(z) we have, for } <o <o’ < I,
o) (1—o)w(e) + (o' —a){l) Il—o'

- — (o)

ie. Ble') < Bio)-

Thus B(e) is non-increasing in (},1}. We write
A= lim B{o),  B(1) = lLim Bio).
o—~f+0 0—=1-0
Then by Theorem 14.3, for § < o <7 1,
<A< B =B <1

We shall now provet

TEEOREM 14.9. As? >

|E(1-Fi2)} <X 28(1)e*{1 40 (1)}loglog ¢, {14,9.1)
1 Be¥
T < 0 Te{i+o(Ujlogloge. (14.9.2)

1 Littlewood (8).
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We observe that the 0{1) in Theorem 14.6 is actually o (1) if § > 0.
Also, taking o = 1,

149 CONSEQUENCES OF RIEMANN HYPOTHESIS 247
and taking o m-bitmrily near to 1, we obtain (14.9.1). Similarly, by

(3.15.3),
z(1+at)| Z l°g(1+ )J”’(l)

=loglog m-—HogT: +o{l),
and (14.9.2) followa from this.

Comparing Theorem 14.9 with Theorems 8.9 (A) and (B), we see that,
since we know only that 8(1) < 1, in each problem a factor 2 remainsg
in doubt. If is possible that 8(1) = %, and if this were so each constant
would be determined exactly.

14.10. The function 8(t). We shall next discuss the behaviour of
this function on the Riemann hypothesis.
Il <a<o<B T <t<T,wehave

31-a(10g fpied+e = g (1)
if 8 = (log)-2ha-n  (y > 0).

Hence, for such 8§,

tog8(1-+ity = M e buy 1)

n=1

= Z pm(l+ﬂ)+o m

g~-Smp e~8p™_g-dmp
:zmpmmm ZZ Tmprira +o(l).

Now the modulus of the second double sum does not exceed poir  wrr we
P log2(s) = L. ( n J' )Iozg ng) de.
P m>1 = B+iT ,B+ﬂ' at+ifr +1T
This is evidently uniformly convergent for 8 2> 0, the summand being Let 8 > 2 By (14.2.2),
less than p—. Since each term tends to zero with & the sum is o(1). E+ET102'§(Z) (1 F ) floa T
Hence a2l dz = O{—— | [logl{z+iT)| dx} = O
. J o Y
log £(2+it) :ZW-I‘O(I) * Beir prir
" ‘ Also f l—()zgf—f:)dz (n) j *dz
= = Z log( )‘H’( ) , 544 24T
Now
Brir e s BT B+iT
= Zlog(l— H4,).|.o(z '5“)+o(1). » dz:[ —n ] _ 1 f d
Fra '] ot z—8 (z—a)logn i 0BT et (z—a)? s)
The second term is O{e=37/8) = o (1) if = = [-1-¢]. Also 1 L F e )
1 _|y_e® - O{n_*(t—i")}wlﬁ / (w—u)ﬂ+(t—'f)=} = o=y}
g gl < -1- e
P BT
Hence, by (3.15.2), log £(z) 1
R 1 Hence f B gy = 0(—),
log L0+t < — > log(l——)+o(l) s =T
s 2 s;err
o
= loglog w+y+o(1), and hence J‘ logl(z) ,, 0(108
or |§(1+if)| ey +D]og . e F -7
" i 28(a)+ miloglog, uniformly with respect to f. Stmilarly for the integral over
= oglo
Now log w < (1+<)log; 5 = (1+<}2B(x)+w]loglog BT, i),
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logz(z) T —
Also f &= o(?__}).
BT
Making 8 -> oo, it follows that
log L(s) — f 1"35(2) &z -1-0(10g ;’)Jro(log T) (14.10.1)
l‘l+1T

A similar argument: shows thas, if R{s") < },
f 1°g ;(z) det o(l‘3g T) 4.0(1"g r ) (14.10.2)
21:-1, 13

Taking ¢ = 2a—c+it, so that

§'—2z = 2a—o+it—(atiy) = a—iy—(o—1t),
and replacing (14.10.2) by its conjugate, we have
logl§(z)|—z log|{(z)| —iarg {(z} log log T
f as+0[ 1) 1o 2T,
{14.10.3)

N&{T

From (14.10.1) and {14.10.3) it follows that

log £(s) = ;l; ET log|&(z)| ’C(’” dz+0(l°g T) +o(1°g r ) (14.10.4)

i
a+iT

[CEV
and !ogi;(s):% f ’“gg(z)d +0(1°gT)+0 Gth). (14.10.5)
a+if

14.11. We can now show that each of the functions
maxflog |(s)],0},  max{—log|Z(s)], 0},
max{arg{(s), 0},  max{—arg{(s),0}
has the same r-function as log {(s). Consider, for example,
max{arg {(s), 0},
and let its y-function be v,(0). Since
larg {(8)! < [log {(s)|

=
we have at once yla) < o).
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Also (14.10.5) gives

;
(14.11.1)

log T) +oflee T‘)

arg [(s) = fmﬂrgC(m+zJ) dJ+6(l°" )+0(l°gT)

T
< A(log T'yae :

o—o
| e T o
< A(log t)rio+e L Q1 log ),
taking, for example, T' = ¢, 7" — 2¢,
It is clear from this that v,(0) is non-increasing, Also the Borel-
Carathéodory inequality, applied to circles with centre 2-4-it and radii
2—a—3, 2—a— 28, gives

Y

Too A
Itog L{at83+it)] = 5{ flogg)rimee =) + Tllog (2 +in)
If a+38 < 1, so that v{a+38) > 0, it follows that
v(a+8) < vyfo)+e.
Sinee ¢ and & may be as small as we please, and v(o) is continuons, it
[ | SN R
AULIUWD UL U v(&) -g.. vl(a).
Hence el =wle) (3 <o <1)
Similarly all the v-functions are equal.
14.12. Q-resultst for 8(i) and 8,{t).

Tarorem 1412 (A). Each of the insgualitize
() > (logtyk-<, (14.12.1)
8t < —(logt)i-* (14.12.2)
has soluttons for arbitrarily large values of t.

Making « > 4 in (14.11.1), by bounded convergence

2
o=t scadurof B
w2l = [ oS0 o) o> 4,
i (24.12.3)
If 8(2) < log® for all large t this gives

8rgz(s)<AI°gatf e o)

<A ]og"t+0(¢" logs).
t Landau (1), Bohr and Landau {3}, Littlewood (5).
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The a.bove a.nalyms shows that this is false if @ << »(c}, which is satisfied

'y

. if @ < } and o is near enough to 4. This proves the first result, and the

. other may be proved similarly.

THEOREM 14.12 (B).
8i(t) = Q{({logt)i—<}
From (14.19.5} with o — 1 we have

gt
log{(s) =3 f - S}

dy+0(1
%yy+()

£

o

BACH du+0(1
+J P y+O0(1)
dy-+0(1)

,’;‘ S fadh
J g/ (14.12.4)

P

since 8, (%) = O(logy). The result now follows as before.
In view of the result of Selberg atated in § .9, this theorem is true
independently of the Riemann hypot.hesls In the case of § (t), Selberg 8

dex t obtained on the

me[rﬂoﬂ glVEE UIl.ly -0 83 muez& ‘§ umwuu Ul llllﬁ
Riemann hypothesis.

14.13. We now turn to results of the opposite kind.t We know that
without any hypothesis

8(t) = Oflog®),  &{t) = Ologt),

and that on the Lindeldf hypothesis, and a fortiori on the Riemann
hypothesis, each O can be replaced by 0. On the Riemann hypothesis we
should expect something more precise. The result actually obtained is

THECREM 14.13.

_ log ¢ '

8t = O(@th)’ (14.13.1)
log¢

Sy = (——(loglog t),) (14.13.2)

We first prove three lemmas.
$() = max | 8 (u)l

30 that $(t) is non-decrensing, cmd q&(t) = Oflogt). Then
Sty = O[{g(2)log 1],
+ Landau (11), Cramér (1), Littlowood {4}, Titchmarsh (3).

LEMMA o Fet

\
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This is independent of the Riemann hypothesis. We have
N@E) = L+ B,
where L{t) is defined by (9.3.1), and R(f) — 8H+0(1/t). Now

N(T+x)—-NT) =0 (0<zx<<T).
Hence
R{T+x)—R(T) >
Hence Tyx

| Btydt = < R(T)+ JARE@+w)— R(TS) du
T [i]

—{L(T+2)—L{T)} > —Axlog T.

> 2R(T)—A f wlog T du
(]

> 2 R(T)—Aatlog T.
Hence Ttz
7)<} f R(t) de-+Azlog T
¥
:ﬂ“iﬁ”ﬂxm +o(%,)+Ax log 7

= "{'ﬁ(zT)} (l)-v-da:log.i

Taking 2 — {$(27)/log T}, the upper bound for S(T) follows. Similarly
by considering integrals over (T—x, T) we obtain the lower bound.
LemMa 8. Let o << 1, and let

F(T) = max|log I{s}|+logtT ooy L st
-] \ I/IoglogT’ EFeag b 4 }
Then
loglis) = O{F(T41)eAlo-plogtop T}
1 1
el TR gy
( +loglogTs‘a\ 2, 4Kt T).
We apply Hadamard’s three-circles theorem as in § 14.2, but now take
N U BN
172 " loglog T’ n=% " loglog T’ e<t
We obtain My < AME = AM (M) -2,
where My < F(T41),
and
1—g= log log_ = log(l-i-a i— s)/log( L‘a)
7
> A(oe—}—38).
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Hence
M, < AF(T+1)'~%-1-8 < AF(T+1) (log* T}~ e~-9,

This gives the required result if ¢ < §, and for § < ¢ < 2 it is trivial,
if the A is small enough.

Lzuma y. Foro >}, 0 <& < ¥,

¢
log{(s) = i f s_ﬂ’_)Tydero{@]Jrom. (14.13.3)
e

1
‘We have
P sw) Sy 1 S
JE= =i = =iy f L
"{m}*"{*“”" ﬁ ]=°[¥]’

and similarly for the integral over (3¢, t—.f). The result therefore follows

RYRL WA
from (R BN N

Proof of Theorem 14.13. By Lemmas « and ¥,
213

Tog £{s) = Ofg(atilog {f f m+o{*‘?"}+0m
e

=0 [{g6(4l)10g 0 %] +- O{ﬂi‘—’}+0(l)

for 6—% = 1floglog T, 4 << t < 7. Taking

= {4’(43)} 1
logt| {loglog T)t'
we obtain log £(s) = O[(log T)¥(loglog T4 T)}].
Hence by Lemma 8, for c—14 == 1/loglog T,
log L(s) = Of(leg T)k(loglog T)Hg(4 T+ 4)je-se-Ploslog '],
Hence
log | L(s}| do = O[(log Tt (loglog T)-Hp(a T+ 4)1].
4 +1floglog T
(14.13.4)
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Again, the rea.l part of (14.13.3) may be written

log14(s)| ﬁf(

s S B S dx+o{ﬂ;ﬂ] +oq).

(14.13.5)
Hence

tp £
| Tog 4(s)| dor = | arctan 5 {Stt—z)— S(t+2)} de+
s [

+ Olud(2)/E}+0(p)
= O[£{d(42)log th1+ Ofpe$(20)/4}-+ Olp)-
Taking ¢ = 1floglog T, and £ as before,
1+1fleglog T
log |Uis)| do = O[(log TYi{loglog T-Ha(a TH].
(14.13.6)
Now (14.13.4), (14.13.6), and Theorem 9.9 give
8.(t) = Of(log T)(loglog T)-Hp(ETH] (4 <1 < T). (14.18.7)
Varying £ and taking the maximum,
$(T) = Of(log T)¥loglog T)H(5T)H].
Let $(T) = max (Toglog ()
wcter  logi
so that {7} is non-decreasing and

LT < log '
$7) < forlog TR T),'.N 7).
Then (14.13.7) gives

log 7'

A = O e ST

IO — OUETI = OYGTIR (7 < ).

Varying 7 and taking the maximum,
$(T) = OLf(sT.
But $(3T7) < 54({T;) for some arbitrarily large Tj; for otherwise
$(5%g) 2= B™i(ty),
ie. ¢{T) > AT for some arbitrarily large 7', which is not so, since in
fact $(T) — O(log T), ${T) = Of{loglog T)?}. Hence
$(T) < AMBNE,  $T) < 4,

or
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for some arbitrarily large 7}, and so for all 7}, since i is non-decreasing.
log T
Henee $T) = O{F(loglog T)”}'
This proves (14.13.2), and (14.13.1) then follows from Lemma «,
The argument can be extended to show that, if S,(t) is the nth integral
of 8(t), then lo
- gt 13,8
8,00 = 0{ (loglogt)"”}' (14.13.8)
14.14. Theorem 14.13 also enables us to prove inequalities for (s}
in the immediate neighbourhood of o = }, a region not touched by
previous arguments. We obtain first
THEOREM 14.14 (A).
logt
(i) = o[exp(A £ } (14.14.1)

1og i}

‘We have
8(t-+a)—8() = {N(t+2)— N} —{Lit+2)— Lo} - {fe+=—fth
where f(2} is the O(1/t) of (.3.2), and arises from the asymptotic formula
for log (s}, Thus f'{f) = O(1/t)), and since N{t4z) 2= N(1)
S+ — 8 > —Azlogt+ Olz{it) > —Axlogt.

Hence, by (14.13.5),

_ a*logt logt
log|i(s)| < 4 f (o— Pt ¢ +O[§(log10gt)2!+
H
< Aglogt log ¢ +6(1)

% \etloglog 17
uniformly for o > %, and so by continuity for ¢ = }. Taking

£ = ljloglogi
the result follows.

THECREM 14.14 (B). We have
Alogt 2 Alogt
- ! ik -14
loglog ¢ Og[(of Dloglog t} <logiZie)l <10glogt
(} <o <<} +Afloglogt), (14.14.2)
logi
= Lo A . (14.14.3
rglle) = Ot ) (4 <o < btAlloglogd. (14.143)
By (14.13.1) and (14.13.3),

1
_ logt dx logt
log {te) = o[loglugt J. J{(o—;)'+x=}] +o[§(loglog t)2)+0(1)-
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title—hr

'

f WTW f J(1+:='=)

which is less than 1 if £ < e—}, and otherwise is less than
£ita— pd:c‘ p
- = 14log —

Now

1+
1
Taking £ — 1/loglogt, the lower bound in {14.14.2) follows. The upper
bound follows from the argument of the previous section. Lastly,
taking imaginary parts in (14.13.3),
£
argl(s) = J' = ( 1 (St a)—S(—z) det

log?

+ 0| ragingan) +O)

_ ol let —13 logt
Olloglogtf AL —F ]+ (eoggi O

P -
P o T S
- |t <[l

Hence, teking £ = 1, {14.14.3) follows uniformly for o > }, and so by
continuity for o = .
In particular
logl(e) = Of1%8E) [p- 1, 4 )
og £(e) (loglogt ‘ 2+loglogt ’
From (14.14.4), (14.6.2), and & Phragmén-Lindeltf argument it
follows that

(14.14.4)

_ (logt)ﬂ-ﬁa
logi(s) = 0{—10g10g ; } (14.14.5)
niformly fi
uniformly for +l logi < 1-38.

14.15. Another result in the same order of ideas is an approximate
formula for log {(s), which should be compared with Theorem 9.6 (B}.

THEOREM 14.15. For } < o < 2,
log tlogloglog ¢
Y _ logls— g tlogloglog
og £(s) eyl Boglogt og(a—p)+ 0 Toglogt /'
] (14.15.1)
where p = }+iy runa through zeros of 1(s).
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In Lemma o of § 3.9, let Since IT—y| < 8 if |8,—p| < 25/v3, the result follows, with T for ¢
JE@) =l sp= g Lspim,  r— L5 and} < o< 3. Tbisalso true for §+8 < o < 2, since in this region
/3 +3 log T
log {{s) — "(1—1*)
where 8 = 1/loglog 7. By (14.14.4) oglog T'
and, ag in the case of the other sum,
1 Alog T :
el S "Pliogiog 7/ log(s—p) = of128 Tlogloglog
. 2 gi los—pf % 28iv8 loglog 7
The upper bound in (14.14.2) gives This proves the theorem.
[Ls)| < exp(fi%) , For {'(s)/t(s) we obtain similarly from Lemma « of § 3.9
oes g _ 2 0(legy (14.15.2)
for |s—s,| < 7, 0 = }; and for |s—a,| < r, o < §, the functional equa- i(s) l,_W;Z,mﬂmaﬁn o) o
tion gives
. Aol E1—g)] < ArPex { Alog T < ex {Alog T\ 14.16. THeoREM 14.16. Each interval [T, T+ 1) contains a value of ¢
4(a)] < Atb-e|L{i—s)] Pliogiog 7] = “Plioglog T/ such that logt
Tt therefore follows from (3.9.1) that 1{(s)| > exP(_Aluglogt) G<se<2). (14.16.1)
log t(s)—log Z(ao)—-;ﬁ_ éwﬂlog(a——p)+ ) Let é§ = 1/loglog T. Then the lower bound (14.16.1) holds automati-
i log T ‘ cally for o > }+34, by (14.14.4). We therefore assume that } < 6 < }+96.
3 loglsn—p) = Of;

If s =no+itand s, = 1 + 5+t then, on integrating (14.15.2). we find
=% , grating (14.15.2), we find

{(s) s—p log T
1 = 1
8 o s °“(sa —p) * O(loglog T)'

180 —pl e 28i48 \logiog T)

for |s—sy| < §r, and so in particular for } <o << 445, t =T

log 7
= . 1 T
Now log {{s0) O(Ileog T) Moreaver log{(s,) = o( %) by (14.14.4) so that, on taking real
' parts oBoR : | P
Also 8g—p = =8+ T—y). lo _ s—p ‘ ( iog T )
gl (s = lo +0( =
Ve o2 85,70t lioglog T
1
Hence 20 < [4—pl < 4, le—sl tog T
~3 = !
) . o ”_%g& %8 725 +0 loglog T}/
and so, if the logarithm has its principal value, since |s—p| = |t—y| and 18, — p| < 25. We now observe that
Toglag—g) = O logl = O(logloglog T). T+l win(y +8, T+1)
B lt—7l 12—yl d
log =T dt = ¥ log—-—dt
Also the number of values of p in the above sums does not exceed le=l<s 2 T-S<ySTH143 x5 T)
3
N(T+_2§)_N(T__2_s) = O(S]Dg T)+0(_]_OE_T = O( log r ), = ]T logw dt
3 ~3 loglog T' loglog T 7 s YETHLAS 26

= ¥ (—26-28log2)
T-5<y<T+1+3
= —Adlog T,

by Theorem 14.13. Hence
—p) = O(log Tlogloglog

log(s Toglog T

lse—pl< 28/
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as there are O(log T') terms in the sum. Hence there is a ¢t for which

ft—yl >
|‘_ﬂ“log % Adlog T
and the result follows.
In particular, if € is any positive number, each (T, T-+1) contains a
t such that
g( 5~ — 0 A<o<2). (14.18.2)

14.17. Mean-value theoremst for S(¢) and 8,(#). We consider first
8,(t}. We begin by proving

TreorEx 14.17. For 3T <t < T, 8 = T4,
aSy(t) = O— Z 1(”7):"1222’8 ™) g-bnf. O(lo_gl:)g 1") (14.17.1)
where C= ;{ log | &{a)| de.
Making 8 — o0 in (9.9.4), we have
w8 = C— j?logificr—i—it)i do. {1£17.2)

Now, integrating {14.4.1) from s to §-+4,

log L(s)—log {g+it) = D 2B p-bn Z%@‘fﬁ.’ g

ned n_t

g+l (p—s) doy+ 00" tlogt) (F <o <P

Q L—\ulu

+2
Also, if o 2§,
og Llo-+it)— Z’% o = z%ﬁl’ (L—e-3%)
n=2 nml

=0(§ n--’u—e-*»))=o( Y mis 3 n-")

n=2 2<nx 1 n>1/s
= O{(3s-14+2-°8)logt}. (14.17.3
Henee, for } < o < §,

log {{s) = ZAI(") edny 2 f 32T (p—sy) doy + O+ OE"tlog ),

n=2

t Littlewood {6}, Titchmarsh (2).
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and integrating over § < o < §,

L3 2 L3
j log {(s) do = f ( Z‘%””’“) do- Zf(al—‘b)ﬁ’ﬂﬂpfal) day+
=2 P
4 t ¥ +0(68) 08t log &)
Also, by (14,17.3),

f log{(s) do = f ( i%a) da-+O@Y),

n=2
O

n id
and f z M) g g ji+5($)gne‘5“,

the inversion being justified by absolute convergence. Hence

w8 = C— 2‘%&37”&-&;4_
nmy
1 * N 1 R
+0{>p: J {e1— 11873 D{p—s,)] doy [ +0(34)+ Ot log 1).
i
Now T(p—s5) — Oe=4¥=4) (jy—1 > 1),
I‘fn-,.\:()l{ 1 \:O{. 1 — — 1)
=) = A=) = o= u!! (ly—tl <)
Hence

3w Ty T3
] ly—#<1loglogé Hloglogily —#<1 ly=il>1

¥
=0 71—
(ry—fl<lzﬂoxlutj 5 dq1)+
3

3
1
+of 7—74 i pintan) 4

ogloge<ly ~i<1

i
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Now @
391 doy < J’ e-F10R 18 do; = log-1(1/5),
¢

e e

(o —1)85 1 doy < J'mg—z log 15 gz — log—%(1/8).
0

e T

As in § 14.5, % e~dly-H = O(logt).
lr=ilz1
Also, by (14.13.1), for t—1 <tk
' togt
N4 ———|—NE) = ]
( +10glogt) ) O(loglogt)'
Hence z[ = (ﬂ_)
by Al mrlrmt \loglog ¢}’
and
. I

L- S a8
E+1loglog{ <p<t+1 L4 m<loglogt &+m/loglogt<y <i+(m+1)loglog! k4 t

1 logt
= Z’ 0 — —
ot ( Tloglog tloglogt) Oflog tlogloglog ).

Hence

logt og tlogloglog ¢ logt 1
o g tlogloglog ) ogt } _
% (log 1/8loglog t) +0 log?1/8 +0 log#1/8 — o loglog ¢
8

for the given 8 and £. This proves the theorem,

14.18. Lrvma 14,18 If g

= < 'f_a:n_f” —28n 1 !
d’l_z pr +Oﬁlog‘—s)
uniformly for o= % Similarly, if @, = O(logn), the formula holds with
a remainder term
O(TS log? 5) .

The left-hand side is

@ w T
2 fa,
= n g—(ntm)3 dt = B
Zl ,Z T .1[ (mn)? ( ) mgn—'_mzn
Clearly |“n|= P
nzn
A1
Also = o(,) e
man T, (mn)tlog njm

mLn
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Now
S g =0 2. st )
ey & mom——— —
o, (mn)ilog njm -mlog{1+(n mlog{1+(n—m)fm}
=0(e-"‘5 ) = O Togm),
n—m,
a=m+1
T IR BL e
- 0= e8] — O—|.
“=;H (mn)tlogn/m m";;“ md
H s o2} S (o m+_1)a—m3—o(ilogl).
e T Tmzlg w3 = U\Ts %85

This proves the first part. In the second part we have a peir of
logarithms running throughout the remainder terms, and this is easily
seen to produce the extra log? 1/8 in the result.

14.19. TrEoREM 14.19. As T — o0,
T
1 ag. 01 1 3 Aln)
?I{SI(E)} d ?+2_1r“ - nlog“n'
(]

_— fon v B v{\_‘_(n)cosalogﬂ) o5n.
1.6 Ju) = ve Zfa n%]ogn

Then, as in the lemma,

T
2 = 1 AXR) _ase og 1/8
: j{f(t)}’ dt = Oty Zﬁ:’g—%e B4 0 _TS_)
i "=

and we can replace 5 by 0 in the first two terms on the right with error

0(8)+0(M )—0<3’+"(n§31 g’n) G(,Dzwm)
= Of1/log{1/8)}.
Hence, taking § = T-1,
: j oy d= o 22;&1?,(:3% o7

Hence
r T
7 [ wera=g | {rorolgma)) «
r *T

T
=§,‘1 o a0l i r f |f(z)|dz}+0{ao—w‘?ﬁ],
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4 J:_t' T T 3

and, since 1 fe} dt < -3 o de|* = o),
. [ ] # ] vopa]t = o

it follows that

8
f S0P de = ] + ] Z :\]:)(gn”)n (loglttg T) )

Replacing T by 4T, {T,... and adding, we obtain the result.

14.20. The corresponding problem involving S(t) is naturally more
difficult, but it has recently been solved by A. Selberg (4). The solution
depends on the following formula for {'(s)/{(s)

THEOREM 14.20. Withou! any hypothesis

;_’@ I~ A ln) | a¥1-9_gl-s
Is) — ”é! n? +(l—a)=]ogm+

1 R | o oD
_Z—tmw gD T

b < %) A(n)log(+?/n)
log z
Let « = max(2,1+4¢). Then

o+Ew
1 2o-r — -9 [(z)
I e T

__EA(R) f f“’_:)’:::) A

. a&—gtim
_ 1 ZA(n) 0 —z
T 5e win®
a—g—iw

NN

1

‘m B
=_é ) log——lo ) z %f?—)(*log?;)
= log:tnz;'A;(:”).

dw

T<nLat
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Now consider the residues obtained by moving the line of integration
to the left. The residue at z = g is —logz{'(s)/L{s); that at 2 = 1 is
Zl-s__ g HL—8
—

(1—a)*
those at z = —2¢ and z = p are
o L o) xp—8 g p—3}
{(—2g—ap ~ (p—ef *

respectively. The result now easily follows.

14.21. TrEOREM 14.2). Fort > 2,4 a2 < 7,

1= §+@’
we have
L2 Ay(n)sin(tiogn) x(m ofiogt)
S0 = ’JT"Z;, not  logm +0 logx Z n"”" logx ’
By the previous theorem,
e _ - 3o
('l +ir) (n) xA1-o 4 g1 'l 2wx 1
7 Z 1t ! B log = Z,- T T Y )
Lo +ii) nayt [ i°ogx ] WEX Tlo —gf Tu—%)

{14.21.1)
for o 2> 0y, where |w| << 1. Now

¥H1-0 gl o gl Zeyg s
Zlogx = logx

<25t

Hence

Sty _ Z (ﬂ)+2m5_qz( a—1 5+ Olzt-e).
n<lut a1 '}’)

Lo+t artd -
(14.21.2)
Now by (2.12.7}
Y6 _ 5L Yy ogogs.
el Z(s4p+p)+ (g
Hence = flotin) _ z{ o—} 4 ]+0(logt)
Tlo+it) (e—3F+(t—y1 " 1

Z(o—ww R
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Taking real parts in (14.21.2), substituting this on the left, and taking

o= oy,
01»i
2(017%)2“"’

_ A(n) | 2w yo
R z nu|+|l+ Z(crl )e+(t 7}1 (Jo’| < 1)

+ Oflog?)

A
Hence
( = )Z (u,gg)u(; e ﬁRn n:‘fg+0(log 0.
Here 1—3‘1>1__>1
Hence

(14.21.3)

+ Ologt).

P = ’Zn:ffﬁ

Inserting this in (14.21.2), we get

Jlati) <o Az(n)_,_,,j 1ol AL prtotin
Lotat) n{; IR fnéz N L
(14.21.4)
Now
arg 3-+i0) = — | Ii(t'i:))d
b
_ [+, U'(o,+it)
= p o o~ oD+
T fUlontity  Platit)
1 do
+f (fotn e
= h+dtd
By (14.21.4}
Agln) A f o P
Si= IJ.,.Z. ”‘”"’d +0[ n;= nﬂl:! f d"}+0{]0gtfx% da}
_-t(‘"') A1) log ¢
=1 2 iiloga O {log:t nmw}*'o(rag‘z)'

t
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Also, by (14.21.4) with ¢ = oy,

Wl < o= b
—ofei—1)| 3 5} 4 ofier— gy
<t
Ag(n) Togt
iz 2, oo O o)
It remains to estimate J;. For § < o < 0y,
[lotif) Llatin) _ 1
o~ tor) = 2 I(UrHt—p )+ 0o

t—p){(o—}P—
= $ fi- 1(\, \yt);{(a \2%().‘_ (61 \e %)u}_ \”+0(10gt).
vl AUt Vol Ul St 1005 San - # il U o 6 4

Hence i
{c’(ol—@_g'(a+il)}|
Loy tit)  Lo+it)
<5 [i—y[lm—§) +0logd).
= L Qe PP —yilio— 1P+ =%
Hence
lt—ylda -
< Z o _% *-Ht— +Of(s,—plogt)

(cf P H{t—y)

< (o, —4) Z (?LH:—)* Ofio;—Hlog

Ayln) log? )
2ol

by (14.21.3). The theorem follows from these results.
Theorem 14.21 leads to an alternative proof of Theorem 14.13; for
taking x = ,/({log#) we obtain

sw=of 3 1)+ 2 o) olioes)
= 0+ 0+ 01 EL)

logx
_ log¢
- O(loglog t)'

1
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14.22. TuEOREM 14.22. For

Togzx Tt (D<a<))
J‘ {S(i)-l- sm(tlogp)} = O(T).
pix
We have
1 sinftlogp) 1 Afp)—A(p)pt-=
S(t)+- v == I
A (D) Ap?)
O I
+ {logr Pvlfl-! ]+ { ol Pz(n-u!)logp }+
1 (2% oflest
iz Z ) o 2, 2 5] ol

The last term is bounded if 3T <t <{ T, 2 >
positive constant. The last term but one is

o2 20171) =92 ()= ow.

Now consider the first term on the right. If p < &
Alp)—Adpipt™ = (1—pto)logp

= (1—p-1es)log p — (1—g-loBPlomYlog 1 O(iogﬂp ,
0g T
and, if 2 << p < 22, it is &

looradin Ilnn
U{A,(_p)}—()ilogp o ”' = (

Hence the first term is the imaginary pa.rt of

z jpa-v-a '

p<ze
where oy = %f.’wl = O(log pflog z).
Now

[

¥

X,
2.5

a T
w=3 2 )
<:c“ a<Z’ }T
- O(T >

ﬁ)+o( logag| 1
R Zmz pigt log ply|

sin{tlog p)+

= e, where a is a fixed

)

4
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. : log?p log p
2 — O = O] 24
Since p (logﬂa: logz)’

tho first term is o(TEﬁ > ligz) — o,
p<a?
by (3.14.3). The second term is
| [ocp g
(Z Z Ep%)'FO( 2 Z P-(P,f;’)/??)

peat a<in p<at fp<g<p
logp log®p
- o( togp ) +o( L ogp
-, prloga ﬂ;. logz

- O(l,;. 5%) +O(p§’ logp)
= O{z*)+0@% = O(T)
if v < VT

A gimilar argument clearly applies to the second term. In the third
term, the sum is of the form

s‘ %p
2. 1—,142-:!’
BT

where o), = O(1); and
z r 2 ’ T q i
9% Iy — %%J(_) de
1
( 2_’)+ (Zzpquogp/q\)

n¥q

__O(T)+O(Z Z ) (Z Z P (p—q)lp)

<z gS Q:r <z gp<q<P
= O(T)+ O(log®z)+ O(log®x) = O(T).

Similarly for the fourth term, and the result follows.

]

14.23. TaeoREM 14.28. If T < oz < T4,

[

”“‘“3;5?”}2@ = }Tloglog T4 O(T).

p<at
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This is

4
f sintlog p)sin(¢log g) dt
P(I’ 9(2‘ iT

N ,Z,p‘* +O(logp)} (z 2 siflogzy q""’g"”M)

pEg
Now, by (3.14.5),

1
Z i loglog x2-1-O(1) = loglog T'4-O(1)

paat

and (since p, > Anlogn)
i
ZpTog?n = O(1).
3T loglog T+ (1.
Also logpfg| = Ajfp > Afa®.

Hence the remainder is

o{xz( > 1%)2} = O(z2.2%) = (%),

pzt
and the result follows if x < 1.

Hence the first term is

14.24. TuroREM 14.24.
T

f (S} dt ~ L Tioglog 7.
For o ™

T T
2 1 in(tlogp) 1 in{tlog p)\2
{!‘. {8 de _{!: [S(tH_; z sin| «/;ng 1 Z 8in ogp}fu

- pxt V'P

bzt
T
_ 1 ginf{tlog p)|2
_J {S“H;,;- 1_4352} gt
_z2 f {s 043 LS sm(tlogp)} S sin(g;gp) P

F<z‘ jz<:z’
Z sin(zlog p) } i

(3

= O(T)+0{T(loglog TR} + m Tloglog T+ O(T)
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(using Schwarz's inequality on the middle term). The result then
follows by addition.
It can be proved in a similar way that
T
2kt Lk)' T 14.24.1

f (St de o ) Tlloglog Ty (14.24.)
[

for every positive integer k.

14.25. The Dirichlet series for 1/{(s). It was proved in § 3.13 that
the formula i 2 uin)

O

which is elementary for ¢ > 1, holds also for o = 1. On the Riemann
hypothesis we can go much farther than this.t

THEOREM 14.26 (A). The series

#lm) (14.25.1)
n=1 »
is convergent, and its sum is 1jL{s), for every swith e > }

Tn the lemma of § 3.12, take a, = u(a}, f(s) = 1/L(s), ¢ = 2, and =
half an odd integer We obtain

wir) _ a® i’)
ns 2m _[ €3+w) wdw+o(T

1 - a+5 ir  f-o+d+ir 2+iT
- 0
sz( o] ):(a+w) Zn g O{z)
2-iT L-e8-iT f-otd4ur
where 0 << 8 < o—1.
By (14.2.5), the first and third integrals are
2
O(T‘“" J z" du) = (T,
J-a+8
and the second integral is

T
Ofar-e [ (1 p)-vre ) = Oek=+479

+ Littlewood (1).
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Hence e i_;_o(gv—uexz) 1 O(Texh-o48),
= e

Taking, for example, 7 = 22, the O-terms tend to zero as x — co, and
the result follows.

Conversely, if (14.25.1) is convergent for ¢ > 4, it is uniformly con-
vergent for ¢ > ¢, > §, and so in this region represents an analytic
funetion, which is 1/{(s) for o > 1 and so throughout the region, Hence
the Riemann hypothesis is true. We have in fact

TuEOREM 14.25 (B). The convergence of (14.26.1} for ¢ >4 iz a
necessary and sufficient condition for the truth of the Riemann hypothesis,

Wo shall writo M) = 3wt

Then we alsc have

TrEoREM 14.25(C). A necessary and sufficient condition for the
Riemann hypothesis is M(z) = Ofab+e), (14.25.2)

The lemma of § 3.12 with 8 = 0, = half an odd integer, gives
2+

M) = %‘} Jﬂ T:v) %ﬁdw.q.o("";)
o 1

F+8—iT  R45+H4T 24T
1
T 2w

" dw+0f%,
o) oT J )mz wi0{z)
21T ded—ir 48

: s (14.25.3)
r
- o( f (14 o )k dv)+0(T:—lz*)+o(x7f)
e

= O(T =¥+ 0z2TY),

by (14.2.6). Taking T = 2, (14.25.2) follows if  is half an odd integer,
and so generally,

Conversely, if (14.25.2) holds, then by partial summation (14.25.1)
converges for & > 4, and the Riemann hypothesis follows.

14.26. The finer theory of M(x) is extremely obscure, and the results .

are not nearly a0 precise as the corresponding ones in the prime-number
problem. The best O-result known is
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TaroREM 14.26 (A).F

= Ofat log 14.2
Miz) _O[m exP(Alogloga:)}' (14.26.1)

To prove this, take

— 1 =zt
8_*+1oglogT' T=a,

in the formula (14.25.3). By (14.14.9),

log T )
loglog T

ool

on the horizontal sides of the contour. The contribution of these is

therefore
‘1o geg7) =L+ otogsl)
O{x o*p Aloglog T O)exp loglog =

On the vertical side, (14.14.2) gives

logv 2loglog
< exp (A loglog» log loglog v

1
‘C(i+8+iv)

for v, < v < T. Now it is easily seen that the right-hand side is a
steadily increasing funetion of v in this interval. Hence

log T
—= <o T
1oglog,f) o<r<T)

1
] = =of
Hence the integral along the vertical side is of the form

T

O(J:F-s)_*_olﬁwsexp(A log T )J'dv]

loglog 7} ) v

e

log T logz )]
= ] = -
= O{xi‘*‘ exp(A Toglog T)log T} = Olzi exp(A Toglogz

This proves the theorem.

TrrROREM 14.26 (B). Mz) = Q(z}). {14.26.2)

This is true without any hypothesis. For if the Riemann hypothesis
is false, Theorem 14.25 (C} shows that

M(x) = Qx*)

1 Landau (13), Titchmarsh {3).
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with some a greater than 3. On the other hand, if the Riemann hypo-
thesis is true, then for o > }

1 ) < 11\ M)
i~ & “Z; M(n){n, _(ﬂ+l)‘} = s! 1 ——dr.
SBuppose that (14.26.3)

Mz} < My (1 €x<xo), < 8t (x 2 &)

< bt [ 1 f 25

d; dz
< lsl4, J' LA f =
1 1

islé
o—}
But if p = $+iy is & simple zero of £(3), and 8 = o}y, o = §, then

Then

C(ﬂ)

= 2|s| My (14.26.4)

1 1 1
= To—Lm ™ a—BT(p)

A v [T

‘We therefore obtain a contradiction if

1
<.
le el
This proves the theorem.
14.27. Formulse connecting the functions of prime-number theory

with series of the form o
s 57,

P

ete., are well known, and are discussed in the books of Landau and .

Ingham. Here we prove a similar formula for the function M (z).
TaeorREM 14.27, There is a sequence T, v < T, < v-+ 1, such that
< (—1)r2nfz)tn

. —2 Tom\ m F10m L 13 14.27.1
“- * Wi<T, pC (p) * &y 2n)nl(2n1) { )
if x i3 nof an integer. If = iz an integer, M(x) is o be replaced by
M(x)—dplz).

In writing the series we have supposed for simplicity that all the
zeros of {(s) are simple; obvious modifications are required if thisisnot so.
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For a fixed non-integral z, (3.12.1), with &, = p(n), 8 = 0,¢ = 2,and

w replaced by s, gives

24iT L .

=
Mie) = o [ % pdeofg),

2—iT
If x is an integer, 4u(x) is to be subtracted from the left-hand side.
By the caleulus of residues, the first term on the right is equal to

e s (— 1) 2mjzy2n
Z o 2t & @malZe 1)

<t
L [ T 2447
F o
1 ] = s
2m( [+ " f )az(-s)
PR N J1-ir —aNTiT
where 7' is not the ordinate of a zero. Now
-2V —14iT V42T
Ll T J‘ x1-9
sl 1—8)4(1—8)
2N 4R T
BN 24T
“ xla Qg 1_”.3 1
—_ ——— da.

J 13 cos HamT(2) E
N 42 i

—&N -1-iT

1 g~a~flog 8|} — o—~{o—{log lel+§miti
Ty = Oe = 0l )

= Ofesto—Dlogorfmal)
Hence the integral is

T
ol [ L{2*™" an e ansprosenngy
T\z ’

=

which tends to zero as N — oo, for a fixed 7. Hence we obtain

- =i 24T
S () emfaytn 1 at
_2 1 A
ZT T Z @) nL(2n-F1) 2m'(g_fw +_WI w)sl(s) ¥
Also
—14iT " @ +iT i w+iT11_a patpe 1
A fmd" = L (1—3){(1—3)ds = _L 175 cos gsnl'(3) I(s)

241
- o{ f %(ﬂ?ﬂ)ve"‘("‘%"“g“da] - o(%).
a
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Also by (14.16.2) we can choose T = T, (v << T, <C v-+1) such that

;( T Oty e t=T)
Hencefor»—l<u<} t="1T,
1t
= lri= s)l] 0
244iT,
Henceo f g(a)da O(Ts ).
~1+iTy

Similarly for the integral over (2—:i7', —co—:7'), and the result stated
follows.
It follows from the above theorem that
~ 1
Z (ol e

is divergent; if it were convergent,

o

pllp)

would be uniformly convergent over any finite interval, and M{(x)
would be continuous.

14.28. The Mertens hypothesis.t It was conjectured by Mertens,
from numerieal evidence, that

Tl o afan e 1Y l 4 92 1%
HEAR ] W ¥R B > A 5= ,

This has not been proved or disproved. It implies the Riemann hypo-
thesis, but is not apparently a consequence of it. A slightly less precise

hypothesis would be Miz) = O, {14.28.2) ’

The problem has a certain similarity to that of the function f(z)—=z
in prime-number theory, where

Plz) :ngzl\(n)-
On the Riemann hypothesis, y{z)—z = O(zi+¢), but it is not of the
form O(z1), and in fact
Pl@)—a = Q(zdlogloglog z). (14.28.3)

The influence of the factor logloglog is quite inappreciable as far as .

t+ See references in Landau’s Handbuch, and von Sterneck (1).
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the calculations go, and it might be conjectured that (14.28.2) could be
disproved similarly. We shall show, however, that there is an essential
differenco between the two problems, and that the proof of (14.28.3)
cannot be extended to the other case, at any rate in any obvious way.
The proof of (14.28.3) depends on the fact that the real part of
eire

)
¥>o
is unbounded in the neighbourhood of 2 = 0. To deal with M{x) in the
sare way, we should have to prove that the real part of

fo=3 50 ®RE >0
>0

is unbounded in the neighbourhood of z = 0. This, however, is not the
case. For consider the integml

2mi f s{(s)
taken round the rectangle (—1, 2, 24-iT;,, —1+447,), where the 7, are
those of the previouns section, and an indentation is made above ¢ = 0.
The integral along the upper side of the contour tends to 0 as 7 — o,

RN R PR, TR, TY
Glll WO CAICUIALE L&t

1 gl
f(=)=ﬁ! PEOE “‘ﬁ;i ,gg(a) 2mJ.J§(8)

The last term tends to a finite limit as z » 0. Also

—ter . 3 S = ey 5 e 11 A - A
le¥| = e L ¥ {s= —1+0, 2=wt+i}, v > 0)

and 1/{(—1-4if) = O(t-}). The second term is therefore bounded for
R{z) > 0.
The first term is equal to 2rim

5 ‘_Zp( n) f .

Now, if n > 1,

I atislog ™ e tlis-logny 2Hiw 1 Hme‘“’-h’ﬂ")d’

f § = [a(iz—logn)]z +€z—lo§1—t p &
and |elE+iblis-log ) — e-W-slogn—tz o p-2p-ly,

B+l iz 10 1) 1
2
Hence J. € ds = O( " )
8 nilogn
i
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uniformiy in the neighbourheoed of z = 0, Hence

- Bpim
clﬂ;
> pim) f &2 ds = 0(1).
= ; o
If z = re'?, we have
iw eiliv—8) weitle=6)
elgﬁ
feaT s
2 3 eidn—8)
ﬁ
= O(1)+ f e
—
= o)+ j i

1 1 «
1 -z
—om+ [ B4 [Ehay [T
r r 1

- log;+ o(1).
Hence foy = %logl:-[- o),

and consequently Rf(z) is bounded.

14.29. In this section we shall investigate the consequences of the
hypothesis that X e
J {*“:’;’dx = O(log X). (14.29.1)

This is less drastic than the Mertens bypothesis, since it clearly followa

from (14.28.2). The corresponding formula with M(z) replaced by .

Y(x)—2x is a consequence of the Riemann hypothesis. ¥
THeEOREM 14.20 (A). If (14.29.1) is frue, all the zeros of {(s) on the
critical line are stmple.

By (14 26,3),
1 M ()] M 1
< s ‘J‘ Zo+1 dz = If x}\ﬂ-— z.}aw»‘

Mz) dz % is Mz(x)
<"U e [ 2 ‘G—‘Tﬁl =k
1

Z(S)

1 Cramér (5).
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. X M N
Let fX) = f {T‘”)} dx
1
Then

T

[ . é) f(x)

logx C de 1
e i }-ouﬁ)w(a)-
1
Hence =0 ls| )
5(8) (G—%
Let p be a zero and s = p+h, where & > 0. Then ¢ = }-+%, and
hence
1 IP+M)
=0 . 14,29.2
Lpth) ( A ¢ )

This would be false for & — 0 if p were a zero of order higher than the
first, so that the result follows.
Multiplying each side of (14.29.2) by A, and making % — 0, we obtain

1
— . (14,20.3)
P o(lpl)

We can, however, prove more than thig,
TrHEOREM 14.29 (B). If (14.29.1) is true,
> ﬁ (14.29.4)
8 convergent. Ll

This follows from an argument of the ‘Bessel’s inequality’ type. We
have

X
J‘ M(:t) ar-1 }
Wizt pl:’(p)

e

ut__‘N

—————— 2P =2 gl —
IF<T Ir'}z<1‘ PP,C(P)C,(P') J “

-2 3 )J‘M(z)m’-’dx

Ir1<T
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In the first sum, the terms with p’ =— I—p are

1 dx
—— { Z=logX ,
> T ] = ,ZTIPC’(;:)I’

lyl<T i lyl

since 1—p is the conjugate of p. In the remaining terms, p = }+iy.
p' = §-+1iy’, where y° % —y. Hence

x

Xpwo-1_] 1
SRR

! ptp'—1 ly++1

Hence the sum of these terms is less than K, = K,(T).
In the last sum we write

X X 1 X
f Mizer- dx — J' M(z):cﬂ-ﬂ(l—%)dx-f-i f M)z dr.
1 1 1

The last term is

O[%fJM(x)Ix*é ] 0[ 1{
-4

X

M’(”’d f zdx}’}]

NI

Mﬂ:zﬂé: Ollogh X

Q)

F— by

by (14.20.1). Also
2+iw w11
M@zl — 2 )do = — = - _dw. (14.28.5)
f wws1-3) 2m IRt
—ie
To prove this, insert the Ulncniet series for 1j{{w) on the right-band
side and integrate term by term, This is justified by absolute con-

vergence. We obtain
w

y.(n) T e o
Al 2m2 ) 2% wiw-r p)w+p—1)

Evaluating the integral in the usual way by the caloulus of residues,
we obtain

S ufE oS j (a2 )i
X

:I > F(n)ﬂ—‘l(l_)_a;)dz = fﬂ[(;)y-l(]_%) dz,
1

i nsX

and (14.29.5) follows.
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Let U be not the ordinate of a zero. Then the right-band side of
(14.29.5) is equal to

(:-w -~ tHU tnr f+io

:—'L +=—‘!.U +}7m' +}+'!‘v +s+'v!;' )+

~+sum of residues in —U < I{w) < U.

1

2n

Let p* run through zeros of {(s) with imaginary parts between — I/
and U. Let U > 7. Then there is a pole at w = 1—p, with residue

log X
(1—p}'(1—p)
At the other p” the residues are
rted—1 —af 1 Vool 1)
Cple+e—10"+p) N0+l — B

by (14.29.3), and

3 TS D <

" ] ] r] 20
SV YR T e 1Yy

¥E—y

where K. denendz on 7, if ') = P hut not on I7

e ; Qopends o y Wyl <UL butnoton U

Again

2+iw

f -1} —olx f dv

C(w)w(erp)(w-{—p—l) g v(v+y)?

01’ Xt
=Now+»l = ow—m)

and similarly for the integral over (2—i, 2—iU). Also by (14.2.6) and

the functional equation

1
i = i u)r} OCIH).

Hence, since |wt-p| = {, lw+p—1{ = },

_.
b
Lo
~

iU

U
X1 _ Jp|e-t _
}_!U St by 1) = O[_U G d"} = -

Finally, by Theorem 14.18, we can choose a sequence of values of U7
such that 1

fp = 00w =0, d<o<2)
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By the functional equation the same result then holds for } < o < }
also. Hence

D s xi xt
e dw = O( ) = 0{ }
’ L{whwlw+pHw+p—1) Ul-¢(U 418 U-<(U—T)

and similarly for the integral over (2—iU, }—iU). Making U — oo, it
follows that

X
_ 7 log X
1fM(:c)x» 2(1_7) do TR R

where | B| <X Ky = Ky(T)if |y| << T.
Hence we obtain

1
0< AlogXlogX > oo Hee X z rpg(p)lﬁ

T e
+AlogiX+K(T),
E&T)
HZ i < +logzx+ log X
Making X ~ o0, =
aRing £ = ,VZT\pC(p)P

Since the right-hand side is now independent of T, the result follows.

In particular =o{lp.

1
o)
14.30. If (14.29.1) is true,t

1 o { Alog*\}
v+~ 1" loglogi))”

Suppose that the interval (f—¢-3,¢+2-%) containg y, the ordinate of

a zero. By differentiating (2.1.4) twice,

TG+it) = O(t).

Using this and ({14.29.3), we obtain
it
[&F+it)| = lC’(&-I*i?)Jr L’"(-i‘) ds’

+or
>4 -y
i

LA 4 4
e £

1 Cramér and Landau (1).
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Suppose on the contrary that (f—f-3, £-+272) is free from ordinates of
zeros. Theorem 14,15 gives

log | {(3-+it)| = log [t— 1'.l_’_o(lngtlogloglogt).

1yt Sgloglugt loglogt
There are O(logt/loglog?) terms in the sum, each being now O(log).

Hence

e log2t i A log
Tog |{(}+it)] = O(W)' G+ O{"" (loglogt)}

Now = #I'(}s){(s) is real on ¢ = 4. Hence

~lograty 42 F

is purely imaginary on ¢ = }. Hence, on o — 4,

@l ., glle) _ _ T"(3s)
G| = R = o HIR gy

Hence (without any hypothesis)
I&d+in] = L+ (6> 1)

This proves the theorem.

= }iogi4+O{1) = 0.

14.31. Let }+iy, }4-iy' be consecutive complex zeros of L(s). If
(14.20.1) s frue

, 4 logy )
_ = —4 .
We have T Y exp( toglogy,
4 A
= | D+t di = (' —yH' (3 i)+ J =i +it) de.
¥ ¥

Hence by (14.29.3)

u<A
Y

»
f (v — O (d+it) dz[
Y

”
<4 max 1 (i) Yf (' 1) di = Aty —y)* max | (340,

Now
i 2n
r(+io) = “‘L{% ret® d = 0 [l, [ !c(§+st+ref9nd0}
0 0
1 logt
ol
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by (14.14.1) and the functional equation. Taking r = 1/flog,
P1 i logt }
rb i = ofore{4 )

and the result follows.

14.32. Necessary and sufficient conditions for the Ri hypothests.
Two such conditions have been given in § 14.25. Other similar con-
ditions oceur in the prime-number problem.f

A different kind of condition was stated by M. Riesz.f Let

R Vol
Flz) = Z E=TIEE (14.32.1)
Then a simple application of the ealeulus of remdues gives
a+ i
=z J  T{g)l{2s)sinme {(29)
a—iw a-iw

where 4 <_ @ <¢ 1. Taking a just greater than }, it clearly follows that
P(z) = Oz,
On the Riemann hypothesis we could move the line of integration to
a = }+4¢ (using (14.2.5)) and obtain similarly
F(x) = O(ai+e), (14.32.2)
Conversely, by Mellin’s inversion formula,
r(1—s)
{(29)

- f Flaye1-¢ ds.

If (14.32.2) holds, the integral converges uniformly for ¢ 22 @, > }; the
analytic function represented is thersfore regular for o > }, and the
truth of the Riemann hypothesis follows. Hence {14.32.2) is a Decessary
and sufficlent condition for the Riemann hypothesis.

A similar condition stated by Hardy and Littlewood§ is

(—xf
C RTTED) T Oz 4. (14.32.3)

These conditions have a superficial attractiveness since they depend
explicitly only on values taken by I(s) at points in ¢ >> 1; but actually
no use has ever been made of them.

1 Landau, Vorlesungen, if. 108-56. 1 M. Riesz (1).
§ Hardy and Littlewood (2).
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Conditions for the Riemann hypothesis also occur in the theory of
Farey series. Let the fractions hfk with 0 <A < k, (B, k) = L, k< N,
arranged in order of magnitude, be denoted by r, (v = 1, 2...., ®(N),
where D(N) = ${1)+...+p(N)). Let

8, = r,—v/O(N)
be the distance between 7, and the corresponding fraction obtained by
dividing up the interval (0, 1} into ®(N) equal parts. Then a necessary
and sufficient condition for the Riemann hypothesis is}

)
83
él ( Nl_() (14.32.4)
An alternative necessary and sufficient condition is§
L) .
Z,W = O(Ni+), (14.32.5)

Details are given in Landau’s Vorlesungen, ii. 167-77.

8till another condition| can be expressed in terms of the formulae of
§10.1. If 2(¢) and O(u) are related by (10.1.3), & necessary and sufficient
condition that all the zeros of E(¢) should be real is that

w

J' [ Dl)(preiasbrga-Puiu—prdads >0 (12.32.6)

—w —m

for all real values of x and y. But no method has been suggested of
showing whether such criteria are satisfied or not.
A pufficient conditiont for the Riemann hypothesis is that the partial

n
sums Y »~* of the series for {(s) should have no zeros in o > 1.
¥v=1

NOTES FOR CHAPTER 14

14.33. The argument of §14.5 may be extended to thestrip} < o, < &
< §, giving

‘(8 §o-1-1
o
The choice § = (log#)-2 then yields
ﬂsi < (log)?2-27 -1
{(s) l-o
1 Frazel (1). § Landau (16). Il See Polya (3), §7. 1 Turén (3).

) + 0(6”* zlog {).
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uniformly for 6, € ¢ < § and ¢ > 2, and hence

if l+——<0o<§,
c—1 ! +loglog£ c<d

(logt)?-2—1 ) 1
———— +tlogloglogt if o€+ ——.
(1—a)loglogt +logloglogt b g, %0 Joglogt

log

log {(s) €

These results, together with those of § 14.14 are the sharpest conditional
order-estimates available at present.

14.34. The Q-result given by Theorem 14.12(A) has been sharpened by
Montgomery [3], to give

(log 1) )

SH=0, ( -
(loglog ?)2

on the Riemann hypothesis. A minor modification of his method also

yields \
(log)® )

8, =0 t( "
{loglog t)2

It may be conjectured that these are best possible.

Mueller [2] has shown, on the Riemann hypothesis, that if ¢
is a suitable constant, then S(f) changes sign in any interval
[T, T+cloglog T

Further results and conjectures on the vertical distribution of the

zarng are oiven hvy Maontoomary 191 who in
zeros are grven by Monfgomery (L5, who o

lation function

stigatad the nair corrs-

silgated the palr corrs.

1 .
Fio, T) = Tietr-" sy —y),
® 1= ny,. S ¢-7)

where w(u) =4/(4+u?). This is a real-valued, even, non-negative
function of o, and satisfies
1
= —%a a1 T -4
Flo, T)=a+T logT+0(logT)+O(aT Y+ 0O( )
{14.34.1)
for « > 0, whence F(a, T) — ¢ 85 T— co, uniformly for 0 < < <1-4.
Montgomery conjectured that in general
F(xz, T) — min (x, 1) - (14.34.2)
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uniformly for 0 < < o < A. This is related to a number of conjectures
on the distribution of prime numbers. (See Gallagher and Mueller [1],
Heath-Brown [10], and jeint work of Goldston and Montgomery in the
course of publication.} From (14.34.2) one may deduce that

2o 2np
Ve, T —F—<y—y'<
#{? Vel ]lugT L ]ogT}

]
~N(D {a(a, B+ J 1 —(%)zdu}

for fixed «, B, as T'— a0, Here é(a, f) =1 or 0 according as ¢ < 0 < g or
not.
Using (14.34.1), Montgomery showed that

T m(p)® < {4+o()}N(T),
d<ysT
where m(p) is the multiplicity of p, and I’ counts zeros without regard to
multiplicity. One may deduce, in the notation of §10.29, that

NO(TY = (2 LDV NETY {14 94 N
LR S A T S LA T Y AT

on the Riemann hypothesis. The conjecture (14.34.2) would indeed yield
NO(T) ~ N(T),i.e. ‘almost all’ the zeros would be simple. Montgomery
also used (14.84.1) to show that

Tigs inf Ined " n - poao. 41404 4
m ipf SR (65 {14.34.4]

a=w (2r/logy)

here 2r/logy, is the average spacing between zeros.

By using a different method, Conrey, Ghosh, and Gonek (in work in
the course of publication) have improved (14.34.5). Their starting point
18 the observation that
2

SNX(T) ¥ MG +iplg+ine,
d<ygr
(14.34.5)

by Cauchy’s inequality. The function M(s) is taken to be a mollifier

Y MGG+
O0<ygT

logy/n
Mis) = p(_) -5, =Tt
) nzﬂu(n) Togy )" ¥

where the polynomial P(x) is chosen optimally as #x —4x2. One may
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write the sums occurring in (14.34.5) as integrals

% EO) e yds
and i Jp {(s)
1 .
L 59 mioy M —aigera —sds,
2mi Jp {(8)
taken around an appropriate rectangular path P. The estimation of
these is long and complicated, but leads ultimately to the lower bound

NO(T) 2 {$# + o)} N(T).

The estimate (14.34.4) has also been improved, firstly by Montgomery
and Odlyzko {1}, and then by Conrey, Ghosh and Gonek [1]. The latter
work produces the constant 0-5172. The corresponding lower bound

: Yay1 " ¥a -

llalf:p 277:/10ng zix>1 (14.34.6)
has been considered by Mueller [1], as well as in the two papers just
cited. Here the best result known is that of Conrey, Ghosh, and Gonek
[1], which has A = 2:337. Indeed, further work by Conrey, Ghosh, and
Gonek, which is in the course of publication at the time of writing,
yields 1 = 268 subject to the generalized Riemann hypothesis (ie. a
Riemann hypothesis for {(s) and all Dirichlet Lfunctions L(s, x).)
Moreover it seems likely that this condition may be relaxed to the
ordinary Riemann hypothesis with further work.

If one asks for bounds of the form (14.34.4) and (14.34.6) which are
satisfied by a positive proportion of zeros (asin §9.25) then one may take
constants 0-77 and 1-33 (Conrey, Ghosh, Goldston, Gonek, and Heath-
Brown [1]).

14.35. It should be remarked in connection with §14.24 that Selberg
{4) proved Theorem 14.24 with error term O{T), while the method here
yields only O{T(loglog T)i}. Moreover he obtained the error term
0O{T (loglog T)*-1} for (14.24.1).

14.36. The argument of the final paragraph of §14.27 may be
quantified, and then yields

Y WEein-t» T,
lrls T

uniformly for T 3> T,, assuming the Riemann hypothesis and that all the
zeros are simple. However a slightly better result comes from combining
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the asymptotic formula

Y10+ in2 ~ 5 N(T)log T)

Q<yET
of Gonek [2] with the bound (14.34.3). Using Holder'’s inequality one
may then derive the estimate

1
*
1771 + +.w1 >
¢T<y<T|": (£+ i)l

where I* counts simple zero only, and e > 0 is a suitable numerical
constant.

T,

14.37. The Mertens hypothesis has been disproved by Odlyzko and
te Riele [1], who showed that
. M(x) -
I1m sup > 16
e x
and
oM
lim inf x) < —1009.
@ : ;x

Their treatment is indirect, and produces no sperific z for which
[ M(x)} > x}. The method used is computational, and depends on solving
numerically the inequalities occurring in Kronecker’s theorem, s0 as to
make the first few terms of (14.27.1) pull in the same direction. To this
extent Odlyzko and te Riele follow the earlier work of Jurkat and
Peyerimhoff [1], but they use a much more efficient algorithm for

solving the Diophantine approximation probiem.

14.38. Turan (3) conjectured that

¥ Hm) =0 (14.38.1)

nEx n
for all x > 0, where A(n) is the Liouville function, given by {1.2.11).
He showed that his condition, given in §14,32, implies the above
conjecture, which in turn implies the Riemann hypothesis. However
Haselgrove [2]proved that (14.38.1) iz false in general, thereby showing
that Turan’s condition does not hold. Later Spira {1] found by
calculation that

has a zero in the region o > 1.



XV
CALCULATIONS RELATING TO THE ZEROS

15.1. It is possible to verify by means of caloulation that all the
complex zeros of {(s) up to a certain point lie exactly (not merely
approximately) on the critical line. As a simple example we shall find
roughly the position of the first complex zero in the upper half-plane,
and show that it lies on the critical line.

We consider the function Z(t) = e™{(4+i?} defined in § 4.17. This is
real for real values of ¢, so that, if Z(2,) and Z(t,) have opposite sipns,
Z{t) vanishes between ¢, and {,, and so {(s) has a zero on the critical
line between §+-if; and }4-it,.

It follows from (2.2.1) that £(}) < 0, then from (2.1.12) that £(3) > 0,
i.e. that E(0) > 0; and then from (4.17.3) that Z(0) < 0.

‘We shall next consider the value ¢ = 6. Now the argument of § 4.14
shows that, if = is half an odd integer,

1 -7 227
w0 3 < i e ueLn
Hencs, taking ¢ > 0,
_ 3
e

n<x
For x = }, t = 6w, the right-hand side is about 0-6.
‘We next require an approximation to #, We have

i it) = 74 M
o = xlii = wt
so that # = —}tlogm+Tlog T {3+ it)

= ;zlog%,—it“§"+o(%)'

It may be verified that the term O({1f) is negligible in the calculations.
Writing ¢ = 2= K, and using the values

log 2 = 0-6931, log 3 = 1-0986,

it is found that . |

K =0-1188, 3log3—K — 3179
3log2—K = 1963, 3log4—K = 4042,
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approximately. Hence the cosines in ( 15.1.2} are all positive, and
cos 2K = 0-74.... Hence Z{6x) = 0,

There is therefore one zero at least on the critisal line between ¢t = 0
and ¢ = 6x,

Again, the formulse of § 9.3 give

N = 1+2K+£Aarg ),

where A denotes variation along (2, 2-+iT, 3+i7). Now R{(s) > D on
o = 2, and an argument similar to that already used, but depending on
(15.1.1), shows that R{(s) > 0 on (2447, 3 HiT), if T — 67, Hence
|Aarg {(s}| < 4, and

N{bn) < §+2K < 2.
Hence there is at most one complex zero with imaginary part less than

6, and so in fact just one, namely the une on the critical line.

15.2. It is plain that the above Pprocess can be continued as long as
the appropriate changes of sign of the function Z{f) ocour. Defining
K = K{t), as befors, let ¢, be such that

Eit)=po—1 (v=1,2,.).
Then (15.1.2) gives boloe ) as21
2) ~ (-1 3, “llogn)
n<E ni
It the‘x sum is dominated by its first term, it is positive, and so Z(2,) has
the sign of (— 1), If this is true for » and v+-1, Z(¢) has & zero in the
interval (£,,¢,,,).

The value ¢ = 6 in the above argument is & rough approximation
to t,.

The ordinates of the first six zeros are

14-13, 21102, 25-01, 30-42, 32-93, 37-58

to two decimal places.t Some of these have been calculated with great
accuracy.

15..3. 'Ijhe caleulations which the above process requires are very
laborious if ¢ is at all large. A much better mothod is to use the formula

(4.17.5) arising from the approximate functional equation. Let us write

= 2mu,
ik @, = a,(u) = n~ cos 2n{K—ulogn),

and ME) = %’_

cos 2

T 8ee the references Gram (4), Lindelsf (3), in Londau's Handbush.
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Then (4.17.5) gives
Z(2mu) = 2 zmn(u)ﬂ—1)'”“u‘*h("'u—7ﬂ)+3(u),

where m = [vu], and R{x) = O(u~1). The x,(z) can be found, for given
values of %, from a table of the function cos2mz. In the interval
0 £}, h{E) decreases steadily from 0-92388 to 0-38268, and
R(1—&) = k().

For the purpose of calculation we require a numsrical upper bound
for R(u). A rather complicated formula of this kind is obtained in
Titchmarsh (17); Theorem 2. For values of % which are not too small
it can be much simplified, and in fact it is easy to deduce that

| R(u)| < 2—; {u > 125),
This inequality is sufficient for most purposes.

Occasionally, when Z(2ru) is too small, a second term of the Riemann—
Siegel asymptotic formula has to be used.

The values of % for which the caleulations are performed are the
solutions of (15.2.1), since they make «; alternately 1 and —1. In the
calculations described in Titehmarsh {17), I began with

u=16, K= —0-04865
and went as far as

u = 62-785, K = 98-5010.
The values of u were obtained in succession, and are rather rough
approximations to the u,, so that the K’s are not quite integers or
integers and a half.

It was shown in this way that the first 198 zeros of Z{s) above the real
axis all lie on the line o = §.

The calculations were carried & great deal farther by Dr. Comrie.}
Proceeding on the same lines, it was shown that the first 1,041 zeros
of I{s) above the real axis all lie on the critical line, in the interval
0 <t < 1,468,

One interesting point which emerges from these calculations is that
Z(t,) does not always have the same sign as {(—1). A considerable
number of exceptional cases were found; but in each of these cases there
is a neighbouring point # such that Z{#) has the sign of (—1)*, and the
suocession of changes of sign of Z(¢) is therefore not interrupted.

15.4. As far as they go, these caleulations are all in favour of the
truth of the Riemann hypothesis. Nevertheless, it may be that they do

 See Titchmarsh (18).
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not go far enough to reveal the real state of affairs. At the end of the
table constructed by Dr. Comrie there are only fifteen terms in the series
for Z(t), and this is a very small number when we are dealing with
oscillating series of this kind. Indeed there is one feature of the table
which may suggest a change in its character farther on. In the main,
the result is dominated by the first term oy, and later terms mors or
less cancel out. Oceasionally (e.g. at K = 435) all, or nearly all, the
numbers , have the same sign, and Z(t) has a large maximum or
minimum. As we pass from this to neighbouring values of ¢, the first
few o, undergo violent changes, while the later ones vary comparatively
slowly. The term o, appears when % = n?, and here

cos 2n(K—ulogn) = cosmfuloglufn?)—u—}j-+..}
= cosw{n®-+-{+4..) = (—1)Pcos gm+...,

1
192-%2"

At its first appearance in the tabie o, will therefore bo approximately
{—1)y*n¥cos km, and it will vary slowly for some time after its appear-
ance.

It is conceivable that if ¢, and so the number of terms, wers large
enough, there might be places where the smaller slowly varying terms
would combine to overpower the few quickly varying ones, and so
prevent the graph of Z(#) from crossing the zero line between successive
maxima. There are too few terms in the table already constructed to
test this possibility,

There are, of course, relations between the numbers @, which destroy
any too simple argument of this kind. If the Riemann hypothesis is
true, there must be some relation, at present hidden, which prevents
the suggested possibility from ever occurring at all,

Ne doubt the whole maiter will soon be put to the test of modern
methods of calculstion. Naturally the Riemann hypothesis cannot be
proved by calculation, but, if it is false, it could be disproved by the
discovery of exceptions in this way.

d 1
iy . = —logn— ~
ﬂ!u( ulogn) = logu—logn I921rzu2+"'

NOTES FOR CHAPTER 15

15.5. A number of workers have checked the Riemann hypothesis
overincreasingly large ranges. At the time of writing the most extensive
calculation is that of van de Lune and te Riele (as reported in Odlyzko
and te Riele [1]), who have found that the first 15 x 10° non-trivial zeros
are simple and lie on the critical line.
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