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Preface 

In the introduction to the first volume of The Arithmetic of Elliptic Curves 
(Springer-Verlag, 1986), I observed that "the theory of elliptic curves is 
rich, varied, and amazingly vast," and as a consequence, "many important 
topics had to be omitted." I included a brief introduction to ten additional 
topics as an appendix to the first volume, with the tacit understanding that 
eventually there might be a second volume containing the details. You are 
now holding that second volume. 

Unfortunately, it turned out that even those ten topics would not fit 
into a single book, so I was forced to make some choices. The following 
material is covered in this book: 

I. Elliptic and modular functions for the full modular group. 
II. Elliptic curves with complex multiplication. 

III. Elliptic surfaces and specialization theorems. 
IV. Neron models, Kodaira-Neron classification of special fibers, 

Tate's algorithm, and Ogg's conductor-discriminant formula. 
V. Tate's theory of q-curves over p-adic fields. 

VI. Neron's theory of canonical local height functions. 

So what's still missing? First and foremost is the theory of modular 
curves of higher level and the associated modular parametrizations of ellip­
tic curves. There is little question that this is currently the hottest topic 
in the theory of elliptic curves, but any adequate treatment would seem to 
require (at least) an entire book of its own. (For a nice introduction, see 
Knapp [lJ.) Other topics that I have left out in order to keep this book 
at a manageable size include the description of the image of the £-adic 
representation attached to an elliptic curve and local and global duality 
theory. Thus, at best, this book covers approximately half of the material 
described in the appendix to the first volume. I apologize to those who may 
feel disappointed, either at the incompleteness or at the choice of particular 
topics. 

In addition to the complete areas which have been omitted, there are 
several topics which might have been naturally included if space had been 
available. These include a description of Iwasawa theory in Chapter II, 
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the analytic theory of p-adic functions (rigid analysis) in Chapter V, and 
Arakelov intersection theory in Chapter VI. 

It has now been almost a decade since the first volume was written. 
During that decade the already vast mathematical literature on elliptic 
curves has continued to explode, with exciting new results appearing with 
astonishing rapidity. Despite the many omissions detailed above, I am 
hopeful that this book will prove useful, both for those who want to learn 
about elliptic curves and for those who hope to advance the frontiers of our 
knowledge. I offer all of you the best of luck in your explorations! 

Computer Packages 

There are several computer packages now available for performing compu­
tations on elliptic curves. PARI and SIMATH have many built-in elliptic 
curve functions, there are packages available for commercial programs such 
as Mathematica and Maple, and the author has written a small stand-alone 
program which runs on Macintosh computers. Listed below are addresses, 
current as of March 1994, where these packages may be acquired via anony­
mous ftp. 

PARI (includes many elliptic curve functions) 
math.ucla.edu 128.97.4.254 
megrez.ceremab.u-bordeaux.fr 147.210.16.17 

(directory pub/pari) 
(unix, mac, msdos, amiga versions available) 

SIMATH (includes many elliptic curve functions) 
ftp.math.orst.edu 
ftp.math.uni-sb.de 

apecs (arithmetic of plane elliptic curves, Maple package) 
math.mcgill.ca 132.206.1.20 

(directory pub / apecs) 
Elliptic Curve Calculator (Mathematica package) 
Elliptic Curve Calculator (stand-alone Macintosh program) 

gauss.math.brown.edu 128.148.194.40 
(directory dist/EllipticCurve) 

A description of many of the algorithms used for doing computations on 
elliptic curves can be found in H. Cohen [1, Ch. 7J and Cremona [1]. 
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Introduction 

In the first volume of The Arithmetic of Elliptic Curves, we pre­
sented the basic theory culminating in two fundamental global results, 
the Mordell-Weil theorem on the finite generation of the group of rational 
points and Siegel's theorem on the finiteness of the set of integral points. 
This second volume continues our study of elliptic curves by presenting six 
important, but somewhat more specialized, topics. 

We begin in Chapter I with the theory of elliptic functions and modular 
functions for the full modular group r(l) = SL2 (Z)/{±1}. We develop this 
material in some detail, including the theory of Hecke operators and the L­
series associated to cusp forms for r(l). Chapter II is devoted to the study 
of elliptic curves with complex multiplication. The main theorem here 
states that if K IQ is a quadratic imaginary field and if E IC is an elliptic 
curve whose endomorphism ring is isomorphic to the ring of integers of K, 
then K(j(E)) is the Hilbert class field of K; and further, the maximal 
abelian extension of K is generated by j (E) and the x-coordinates t of the 
torsion points in E(C). This is analogous to the cyclotomic theory, where 
the maximal abelian extension of Q is generated by the points of finite 
order in the multiplicative group C*. At the end of Chapter II we show 
that the L-series of an elliptic curve with complex multiplication is the 
product of two Hecke L-series with Grossencharacter, thereby obtaining at 
one stroke the analytic continuation and functional equation. 

The common theme of Chapters III and IV is one-parameter families 
of elliptic curves. Chapter III deals with the classical geometric case, where 
the family is parametrized by a projective curve over a field of characteristic 
zero. Such families are called elliptic surfaces. Thus an elliptic surface 
consists of a curve C, a surface £, and a morphism 7r : £ ---- C such that 
almost every fiber 7r- 1 (t) is an elliptic curve. The set of sections 

{maps (J : C ---- £ such that 7r 0 a(t) = t} 

If j(E) = 1728 or j(E) = 0, one has to use x 2 or x 3 instead of x. 
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to an elliptic surface forms a group, and we prove an analogue of the 
Mordell-Weil theorem which asserts that this group is (usually) finitely 
generated. In the latter part of Chapter III we study canonical heights 
and intersection theory on e and prove specialization theorems for both 
the canonical height and the group of sections. 

Chapter IV continues our study of one-parameter families of ellip­
tic curves in a more general setting. We replace the base curve C by a 
scheme S = Spec R, where R is a discrete valuation ring. The generic fiber 
of the arithmetic surface e ----+ S is an elliptic curve E defined over the 
fraction field K of R, and its special fiber is a curve £ (possibly singular, 
reducible, or even non-reduced) defined over the residue field k of R. We 
prove that if e ----+ S is a minimal proper regular arithmetic surface whose 
generic fiber is E, and if we write e for the part of e that is smooth over S, 
then e is a group scheme over S and satisfies Neron's universal mapping 
property. In particular, E(K) ~ £(R); that is, every K-rational point on 
the generic fiber E extends to an R-valued point of e. We also describe the 
Kodaira-Neron classification of the possible configurations for the special 
fiber e and give Tate's algorithm for computing the special fiber. At the 
end of Chapter IV we discuss the conductor of an elliptic curve and prove 
(some cases of) Ogg's formula relati_ng the conductor, minimal discrimi­
nant, and number of components of e. 

In Chapter V we return to the analytic theory of elliptic curves. We 
begin with a brief review of the theory over C, which we then use to analyze 
elliptic curves defined over TIt. But the main emphasis of Chapter V is on 
elliptic curves defined over p-adic fields. Every elliptic curve E defined 
over C is analytically isomorphic to C* j qZ for some q E C*. Similarly, 
Tate has shown that if E is defined over a p-adic field K and if the j­
invariant of E is non-integral, then E is analytically isomorphic to K* j qZ 
for some q E K*. (It may be necessary to replace K by a quadratic 
extension.) Further, the isomorphism E(K) ~ K* jqZ respects the action 
of the Galois group G K / K, a fact which is extremely important for the 
study of arithmetic questions. In Chapter V we describe Tate's theory 
of q-curves and give some applications. 

The final chapter of this volume contains a brief exposition of the 
theory of canonical local height functions. These local heights can be used 
to decompose the global canonical height described in the first volume 
[AEC, VIII §9]. We prove the existence of canonical local heights and give 
explicit formulas for them. Local heights are useful in studying some of the 
more refined properties of the global height. 

As with the first volume, this book is meant to be an introductory text, 
albeit at an upper graduate level. For this reason we have occasionally made 
simplifying assumptions. We mention in particular that in Chapter II we 
restrict attention to elliptic curves whose ring of complex multiplications 
is integrally closed; in Chapter III we only consider elliptic surfaces over 
fields of characteristic 0; and in Chapter IV we assume that all Dedekind 
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domains and discrete valuation rings have perfect residue fields. Possibly 
it would be preferable not to make these assumptions, but we feel that the 
loss of generality is more than made up for by the concomitant clarity of 
the exposition. 

Prerequisites 

The main prerequisite for reading this book is some familiarity with the ba­
sic theory of elliptic curves as described, for example, in the first volume. 
Beyond this, the prerequisites vary enormously from chapter to chapter. 
Chapter I requires little more than a first course in complex analysis. Chap­
ter II uses class field theory in an essential way, so a brief summary of class 
field theory has been included in (II §3). Chapter III requires various clas­
sical results from algebraic geometry, such as the theory of surfaces and 
the theory of divisors on varieties. As always, summaries, references, and 
examples are supplied as needed. 

Chapter IV is technically the most demanding chapter of the book. 
The reader will need some acquaintance with the theory of schemes, such 
as given in Hartshorne [1, Ch. II] or Eisenbud-Harris [1]. But beyond that, 
there are portions of Chapter IV, especially IV §6, which use advanced 
techniques and concepts from modern algebraic geometry. We have at­
tempted to explain all of the main points, with varying degrees of precision 
and reliance on intuition, but the reader who wants to fill in every detail 
will face a non-trivial task. Finally, Chapters V and VI are basically self­
contained, although they do refer to earlier chapters. More precisely, the 
interdependence of the chapters of this book is illustrated by the following 
guide: 

/ 

I Ch. I I ---------> ICh. VII ICh. III I n_+ ICh. Ivi 

/ 

The dashed line connecting Chapter III to Chapter IV is meant to indicate 
that although there are few explicit cross-references, mastery of the subject 
matter of Chapter III will certainly help to illuminate the more difficult 
material covered in Chapter IV. 

References and Exercises 

The first volume of The Arithmetic of Elliptic Curves (Springer-Verlag, 
1986) is denoted by [AEC], so for example [AEC, VIII.6.7] is Theorem 6.7 
in Chapter VIII of [AEC]. All other bibliographic references are given by 
the author's name followed by a reference number in square brackets, for 
example Tate [7, theorem 5.1]. Cross-references within the same chapter 
are given by number in parentheses, such as (3.7) or (4.5a). References 
from within one chapter to another chapter or appendix are preceded by 
the appropriate Roman numeral or letter, as in (IV.6.1) or (A §3). Exercises 
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appear at the end of each chapter and are numbered consecutively, so, for 
example, exercise 4.23 is the 23rd exercise at the end of Chapter IV. 

Just as in the first volume, numerous exercises have been included at 
the end of each chapter. The reader desiring to gain a real understanding of 
the subject is urged to attempt as many as possible. Some of these exercises 
are (special cases of) results which have appeared in the literature. A list 
of comments and citations for the exercises will be found at the end of the 
book. Exercises marked with a single asterisk are somewhat more difficult, 
and two asterisks signal an unsolved problem. 

Standard Notation 

Throughout this book, we use the symbols 

to represent the integers, rational numbers, real numbers, complex num­
bers, field with q elements, and p-adic integers respectively. Further, if R 
is any ring, then R* denotes the group of invertible elements of R; and if A 
is an abelian group, then A[m] denotes the subgroup of A consisting of all 
elements with order dividing m. A more complete list of notation will be 
found at the end of the book. 



CHAPTER I 

Elliptic and Modular Functions 

In most of our previous work in [AEC], the major theorems have been of 
the form "Let E / K be an elliptic curve. Then E / K has such-and-such 
a property." In this chapter we will change our perspective and consider 
the set of elliptic curves as a whole. We will take the collection of all 
(isomorphism classes of) elliptic curves and make it into an algebraic curve, 
a so-called modular curve. Then by studying functions and differential 
forms on this modular curve, we will be able to make deductions about 
elliptic curves. Further, the Fourier coefficients of these modular functions 
and modular forms turn out to be extremely interesting in their own right, 
especially from a number-theoretic viewpoint. We will be able to prove 
some of their properties in the last part of the chapter. 

This chapter thus has two main themes, each of which provides a 
paradigm for major areas of current research in number theory and alge­
braic geometry. First, when studying a collection of algebraic varieties or 
algebraic structures, one can often match the objects being studied (up 
to isomorphism) with the points of some other algebraic variety, called a 
moduli space. Then one can use techniques from algebraic geometry to 
study the moduli space as a variety and thereby deduce facts about the 
original collection of objects. A subtheme of this first main theme is that 
the moduli space itself need not be a projective variety, so a first task is to 
find a "natural" way to complete the moduli space. 

Our second theme centers around the properties of functions and dif­
ferential forms on a moduli space. Using techniques from algebraic geom­
etry and complex analysis, one studies the dimensions of these spaces of 
modular functions and forms and also gives explicit Laurent, Fourier, and 
product expansions. Next one uses the geometry of the objects to define 
linear operators (called Hecke operators) on the space of modular forms, 
and one shows that the Hecke operators satisfy certain relations. One then 
takes a modular form which is a eigenfunction for the Hecke operators 
and deduces that the Fourier coefficients of the modular form satisfy the 
same relations. Finally, one reinterprets all of these results by associating 
an L-series to a modular form and showing that the L-series has an Euler 
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product expansion and analytic continuation and that it satisfies a func­
tional equation. 

§1. The Modular Group 

Recall [AEC VI.3.6] that a lattice A <;;; C defines an elliptic curve E /C via 
the complex analytic map 

Here 

C/ A ---. EA(C) : y2 = 4x3 - g2X - g3 

Z f----> (p(z; A), p'(z; A)). 

p(z;A) = 12 + L (( 1 )2 -~) 
Z wEA Z -W W 

w¥O 

is the Weierstrass p-function relative to the lattice A. (See [AEC VI,§3].) 
Further, if Al and A2 are two lattices, then we have 

if and only if Al and A2 are homothetic. 

(See [AEC VI.4.1.1]. Recall Al and A2 are homothetic if there is a num­
ber c E C* such that Al = cA2.) 

Thus the set of elliptic curves over C is intimately related to the set 
of lattices in C, which we denote by £.: 

£. = {lattices in C}. 

We let C* act on £. by multiplication, 

cA = {cw : W E A}. 

Then the above discussion may be summarized by saying that there is an 
injection 

£./C* L4 {elliptic curves defined over C}. 
C-isomorphism 

According to the Uniformization Theorem for Elliptic Curves (stated 
but not proven in [AEC VI.5.1]), this map is a bijection. One of our goals 
in this chapter is to prove this fact (4.3). But first we will need to describe 
the set £./C* more precisely. We will put a complex structure on £./C*, 
and ultimately we will show that £. /C* is isomorphic to C. 

Let A E £.. We can describe A by choosing a basis, say 

Switching WI and W2 if necessary, we always assume that the pair (W2, WI) 

gives a positive orientation. (That is, the angle from W2 to WI is positive 
and between 00 and 1800 • See Figure 1.1.) 



§l. The Modular Group 

An Oriented Basis for the Lattice A 

Figure 1.1 

7 

Since we only care about A up to homothety, we can normalize our 
basis by looking instead at 

Our choice of orientation implies that the imaginary part of WdW2 satisfies 

which suggests looking at the upper half-plane 

H = {T E <C : Im( T) > O}. 

We have just shown that the natural map 

H --> f., j<C* , 

T f----> AT = ZT + Z 

is surjective. It is not, however, injective. When do two T'S give the same 
lattice? We start with an easy calculation. 
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Lemma 1.1. Let a, b, c, dE lR, T E lC, T tJ- lR. Then 

1m (aT + b) = (ad - bc) Im(T). 
CT + d ICT + dl 2 

PROOF. Let T = s+it. MUltiplying numerator and denominator by cf+d, 
we find 

aT+ b 

CT + d 

{aclTl2 + (ad + bc)s + bd} + {(ad - bc)t}i 

ICT + dl 2 

o 
The ambiguity in associating aTE H to a lattice A lies in choosing an 

oriented basis for A. Suppose that we take two oriented bases, 

Then there are integers a, b, c, d, a', b', c', d' so that 

w~ = aWl + bW2, 

w; = CWl + dW2, 

Wl = a'w~ + b'w;, 

W2 = c'w~ + d'w;. 

Substituting the left-hand expressions into the right-hand ones and using 
the fact that Wl and W2 are lR-linearly independent, we see that 

(a b) (a' b') = (1 0 ) 
cdc' d' 0 1 . 

Further, using Lemma 1.1 (with T = wl/w2) and the fact that our 
bases are oriented, we find that 

and so 
ad - bc > O. 

In other words, the matrix (~ ~) is in the special linear group over Z, 

This proves the first half of the following lemma. 
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Lemma 1.2. (a) Let A c C be a lattice, and let Wl,W2 and w~,w& be two 
oriented bases for A. Then 

W~ = aWl + bw2 

w& = CWl + dW2 
for some matrix 

(b) Let Tl, T2 E H. Then ATl is homothetic to AT2 if and only if there is a 
matrix 

such that 
aTl + b 

T2=---· 
CTI + d 

(c) Let A c C be a lattice. Then there is aTE H such that A is homothetic 
to AT = ZT + Z. 

PROOF. (a) This was done above. 
(b) Using (a), we find that 

ATl is homothetic to AT2 

~ ZT2 + Z = ZO'TI + ZO' for some 0' E C*, 

~ {T2 = aO'Tl + bO' for some (ac db) E SL2(Z), 
1 = CO'TI + dO' 

aT! + b 
=* T2 = CTI + d· 

Conversely, if T2 = (aTl +b)/(CTI +d), let 0' = CTI +d. Then again using (a), 
we find 

O'AT2 = Z(aTl + b) + Z(CTI + d) = ZTl + Z = ATl . 

Hence ATl and AT2 are homothetic. 
(c) Write A = wlZ + W2Z with an oriented basis and take T = Wl/W2. 

o 

In view of Lemma 1.2(b), it is natural to define an action of SL2(Z) 
on H as follows: 

,T = ~;:! for, = (::) E SL2(Z) and T E H. 

The fact that ,T is in H follows from Lemma 1.1, and the fact that this de­
fines a group action is an easy calculation. This action gives an equivalence 
relation on the points of H, and Lemma 1.2(b) tells us what the cosets are. 
There is a bijection 

SL2 (Z)\H one~one L/C, 
T f----> AT. 

We can actually do a little bit better, since the matrix 

-1 = ( -1 
o 

acts trivially on H. 
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Definition. The modular group, denoted r(l), is the quotient group 

r(l) = SL2(Z)/{±1}. 

Although r(l) is the quotient SL2 (Z)/{±1}, we will generally just 

write down matrices and leave it to the reader to remember that (r/ ~1) 
is equal to (6 ~). For an explanation of the notation r(1), see exercise 1.6 

where we define groups r(N) for all integers N ~ 1. 

Remark 1.3. Note that ±1 are the only elements of SL2 (Z) which fix H. 

For suppose that, = (~ ~) satisfies ,T = T for all T E H. This means 

that 
CT2 - (d - a)T - b = 0 for all T E H, 

from which we conclude that c = b = 0 and a = d. Hence, = ±1. 

Remark 1.4. The group r(l) contains two particularly important ele­
ments, which we will denote 

(0 -1) 
S = 1 0 ' 

Their action on H is given by 

1 
S(T) = --, 

T 
T(T)=T+1. 

Notice also that the elements Sand ST = (~ ]1) have finite order, 

and (ST)3 = (~ ~1 r = 1, 

so r(l) contains finite subgroups of order 2 and 3. 

The next proposition provides us with a good description of the quo­
tient space f(l)\H. 

Proposition 1.5. Let:r c H be the set 

(See Figure 1.2 for a picture of:r and some of its translates by elements 
ofr(l)') 
(a) Let T E H. Then there is a, E f(l) such that ,T E:r. 
(b) Suppose that both T and ,T are in :r for some, E f(l), , =I- 1. Then 
one of the following is true: 
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(i) 

(ii) 

(iii) 

-1 o 1 

~ and Some of Its r(l)-nanslates 

Figure 1.2 

Re(T) = -4 and iT = T + 1; 

Re(T) = 4 and iT = T - 1; 

ITI = 1 and iT = -l/T. 

(c) Let T E ~, and let 

/(T) = bE r(l) : iT = T} 

be the stabilizer of T. Then 

{
{I, S} 

/( ) = {I, ST, (ST)2} 
T {I, TS, (TS)2} 

{I} 

ifT = i; 
if T = P = e27ri/ 3 ; 

if T = -15 = e27ri/ 6 ; 

otherwise. 

11 
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PROOF. (a) We prove something stronger. Let r' be the subgroup of [(1) 

generated by S = (? (/) and T = (6 i), and let T E H. We will prove 

that there is a "( E r' such that "(T E 3". 

For any "( = (~ ~) E r(l), Lemma 1.1 says that 

Im(T) 
ImbT) = ICT + d12' 

Write T = S + it. Since t > 0, it is clear that 

ICT + dl 2 = (cs + d)2 + (ct)2 ----> 00 as Ici + Idl ----> 00. 

Hence, for our fixed T, there is a matrix "(0 E r' which maximizes the 
quantity ImboT). Next, since TnT = T + n, we can choose an integer n so 
that 

IRe(Tn"(OT)I-:; ~. 

We set "( = Tn,,(o and claim that "(T E T 
Suppose to the contrary that "(T ~ T By construction, I RebT) I -:; ~, 

so we must have hTI < 1. But then 

ImbT) 
Im(S"(T) = ~ > ImbT) = ImboT), 

contradicting the choice of "(OT to maximize ImboT). This contradiction 
shows that "(T E 3", which completes the proof of (a). 
(b,c) We may assume that ImbT) ::::: Im(T), since otherwise we replace 

the pair T,,,(T by the pair "(T,,,(-lbT). Writing,,( = (~~) as usual, we 

have 
Im(T) 

Im(T)-:;ImbT)= ICT+dI 2' so ICT+dl-:;1. 

Since 1m ( T) ::::: ~ v'3, we must have I cl -:; 2/ v'3, so I ci -:; 1. Replacing "( 
by -"( if necessary, it suffices to consider the cases c = ° and e = 1. 

ie = 01 
Then a = d = 1 and "(T = T + b. Since 

I Re( T) I -:; ~ and I RebT)1 = I Re(T + b)1 -:; ~, 

it follows that 
b = ±1 and Re(T) = =F~. 

Ie = 11 
By assumption, ITI ::::: 1 and IT + dl -:; 1. Writing T = S + it, this means that 

and 

so 
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1 :s; s2 + t 2 :s; 1 - 2ds - d2 = 1 - d(d ± 1) - d(2s =f 1). 

Since d E Z, the quantity d(d± 1) is non-negative. Similarly since lsi :s; ~, 
the quantity d(2s =f 1) is non-negative for one of the choices of + / - sign. 
We conclude that 

and d(2s + d) = 0. 

We now look at several subcases. 

Ic=l,d=OI 

Then, = (1 (/ ), and since ITI = 1, we have 

Hence one of the following three cases holds: 

a = 0, Is I :s; 1 ITI = 1, ,=S, 2' 

a = 1, _1 
s - 2' T= -p, ,=TS, 

a = -1, s = -~, T = p, , = (ST)2, 

Ic= 1,d= 1,s = -~I 
Then T = P and , = (1 a 11 ), so 

1 ,T = a - -- = a + p. 
p+1 

Since ,T E 3", this leads to two cases: 

a = 0, ,= ST, ,p = p; 

a = 1, ,= (i n, ,p = -po 

Ic=l,d=-l,s=~1 

,T = -liT; 
,(-p) = -p; 

,p =p. 

Then T = -p, , = (1 -~11 ), and ,T = a + T, so just as in the previous 

case there are two possibilities: 

a=O, ,=(TS)2, 

a=-l, '=(11~1)' 

,( -p) = -p; 

,( -p) = p. 

o 
The geometric description of the quotient space f(l)\H provided by 

Proposition 1.5 can be used to give a quick proof of the following purely 
algebraic fact. 
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Corollary 1.6. The modular group f(l) is generated by the matrices 

S = (~ ~ I ) and T = (~ ~). 

PROOF. As in the proof of Proposition l.5(a), we let f' be the subgroup 
of r(1) generated by Sand T. Fix some r in the interior :f, such as r = 2i. 
Let"( E f(1). From the proof of (l.5a) there is a "(' E f' such that "'('("(r) E 
:f. Thus r is in the interior of:f, and ("('''()r is in:f. We conclude from (1.5b) 
that "("(' = 1. Therefore,,( = ,,('-1 E f/, which proves that f' = f(I). 0 

Remark 1.6.1. It is in fact true that r(1) is the free product of its sub­
groups (S) and (ST) of orders 2 and 3. See exercise 1.1. 

§2. The Modular Curve X(I) 

The quotient space f(I)\H classifies the set of lattices in C up to homoth­
ety. Proposition 1.5 provides a nice geometric description of f(I)\H. The 
vertical sides of the fundamental domain :f are identified by T, and the 
two arcs of the circle Irl = I are identified by S, as shown in Figure 1.3. 
Making these identifications, we see that as a topological space, r(1)\H 
looks like a 2-sphere with one point missing. Our next tasks are to supply 
that missing point, define a topology, and make the resulting surface into 
a Riemann surface. 

Rather than adding a single point to f(I)\H, we will give a more gen­
eral construction which is useful for generalizing the results of this chapter. 

Definition. The extended upper half-plane H* is the union of the upper 
half-plane H and the Q-rational points of the projective line, 

H* = H U JlD1(Q) = H u Q U {oo}. 

One should think of JlD1(Q) as consisting of the rational points on the real 
axis together with a point at infinity. The points in JlD1(Q) are called the 
cusps of H*. 

There is a natural action of f(l) on JlD1(Q) defined by 

(: ~) [~] = [::!~]. 
(Here we use [~] to denote homogeneous coordinates for a point in JlD1(Q).) 
Thus r(1) acts on the extended upper half-plane H*. We define 

Y(I) = f(I)\H and X(I) = f(I)\H*. 

The points in the complement X(I) " Y(I) are called the cusps of X(I). 
We now show that X(I) has only one cusp and calculate its stabilizer. 
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---

The Geometry of r(1)\H 

Figure 1.3 

Lemma 2.1. (a) 
X(1) " Y(1) = {oo}. 

(b) The stabilizer in r(I) of 00 E H* is 

1(00) = {(6 n E r(I)} = (the subgroup ofr(I) generated by T). 

PROOF. (a) Let [=J E JPll(Q) be any point in H* "H. Since x and yare 
homogeneous coordinates, we may assume that x, y E Z and gcd(x, y) = 1. 
Choose a, b E Z so that ax + by = 1. Then 

,= (a b) E reI) 
-y x and 

Therefore every point in H* " H is equivalent (under the action of r(1» 
to 00. 
(b) We have (~ ~) [~] = [~] if and only if c = o. 

form (6 n· 
Hence (~ ~) has the 

o 

Topologically, XCI) looks like a 2-sphere. To make this precise, we 
need to describe a topology on XCI). We start by giving a topology for H*. 
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Some Open Sets in H* 

Figure 1.4 

Definition. The topology of H* is defined as follows. For 7 E H, we take 
the usual open neighborhoods of 7 contained in H. For the cusp 00, we 
take as a basis of open neighborhoods the sets 

{7 E H : Im( 7) > f\;} U {OO} for every f\; > O. 

For a cusp 7 i 00, we take as a basis of open neighborhoods the sets 

{the interior of a circle in H tangent to the real axis at 7} U {7}. 

(See Figure 1.4.) 

Remark 2.2.1. For any cusp 70 i 00, Lemma 2.1(a) says that there is 
a transformation 'Y E r(l) with 'YOO = 70. Then one easily checks that 'Y 
sends a set of the form {Im( 7) > f\;} to the interior of a circle in H tangent 
to the real axis at 70. (See exercise 1.2.) In other words, the fundamental 
neighborhoods of 00 and of the finite cusps are sent one-to-another by the 
elements of r(1). 

Remark 2.2.2. From the definition, it is clear that distinct points of H* 
have disjoint neighborhoods. Hence H* is a Hausdorff space. It is also clear 
from (2.2.1) that the elements of r(1) define homeomorphisms of H*. 

The next lemma will help us describe the topology on the quotient 
space X(l) = r(l)\H*. It will also be used later to define a complex 
structure on X (1). 
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Lemma 2.3. For any two poipts TI,T2 E H*, let 

and similarly, for any two subsets UI , U2 ~ H*, let 

Then, for all Tl, T2 E H*, there exist open neighborhoods Ul , U2 C H* 
of TI, T2 respectively such that 

(In other words, if "(UI and U2 have a point in common, then necessar­
ily "(TI = T2.) 

PROOF. For any n, f3 E r(l) we have 

and 

It thus suffices to prove the lemma for any r(l)-translates of Tl and T2. 
Using (1.5a) and (2.1a), we may assume that 

From (1.5) and (2.1), we have a good description of how r(l) acts on H* 
and 9'"*, as illustrated in Figure 1.2. We consider three cases, depending on 
whether or not our points are at 00. 

ITI,T2 E 9'"1 

From (1.5) (or Figure 1.2) we see that 1(9'",9'") is finite; explicitly, 

Let 

1(9'",9'") = {I, T, TS, TST, (TS)2, S, ST, STS, (ST)2, T- 1 }. 

9 = Interior ( U "(9'") . 
,EI(:T,:T) 

Then 9 is an open subset of H containing 9'". Further, 1(9,9) is finite, since 

1(9, 9) ~ U 
" ,,2EI(:T,:T) 

Next we observe that if"( E 1(9,9)" 1(TI,T2), so "(Tl i- T2, then we 
can find open sets V" W, in H satisfying 
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Let 

-yEI(9,9) -yEI(9,9) 
-yIi"I(T"T2) -yIi"I(T"T2) 

By construction, 71 E U1 and 72 E U2 , so 

1(71, T2) S;;; 1(U1, U2). 

Suppose that they are not equal, say'Y E 1(U1, U2) '- l(Tl' T2). Then 

and so 

But V-y n W-y = 0, so 1 f{. l(V-y, W-y). This contradiction shows the other 
inclusion and completes the proof that 1(Tl,T2) = 1(U1 ,U2). 

IT1 E 3", T2 = 001 

Let U1 be an open disk centered at T1. As in the proof of Proposition 1.5, 
we observe that the quantity 

'" = ",(U1) = sup Im("(T) = 
TEU, 

-yEr(I) 

sup 
TEU, 

(~ ~)Er(l) 

Im(T) 

Icr + dl 2 

is finite. (Note that if T = S + it E U1, then sand t are bounded, so 

ICT+dI 2 = (CS+d)2+(ct)2 -> 00 as Icl+ldl -> 00 uniformly in T E Ud 

Now 
U2 = {T E H: Im(T) > "'} U {oo} 

will be a neighborhood of 00 satisfying 

Hence 

IT1 = T2 = 001 

Let 

for all 'Y E r(I). 

U= = {T E H: Im(T) > 2} U {oo}. 

From (1.5) (or Figure 1.2) we see that the only elements of reI) which 
take some point in U= to another point in U= are powers of T. Hence 
from (2.1b) we conclude that 

[(U=, U=) = {Tk E reI) : k E Z} = [(00,00). 
o 

Next we define a topology on XCI) and use Lemma 2.3 to show that 
XCI) is a Hausdorff space. Note that this fact requires proof; it is not 
immediate from the fact that H* is Hausdorff. (See exercise 1.3.) 
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Definition. Let 
¢ : H* ------> r(l)\H* = X(l) 

be the natural projection. The quotient topology on X(l) is defined by the 
condition that U <:;;: X(l) is open if and only if ¢-l(U) is open. Equivalently, 
it is the weakest topology for which ¢ is continuous. Note that ¢ is also an 
open map, that is, it takes open sets to open sets. For if W c H* is open, 
then so is 

¢-l(¢W) = U 1'w. 
'YEr(l) 

Proposition 2.4. X(l) with its quotient topology is a compact Hausdorff 
space. 

PROOF. We start by checking that X(l) is compact. Let {UihEI be an 
open cover of X(l). Then {¢-l(Ui)}iEI is an open cover of H*. In par­
ticular, some ¢-l(Ui ) contains 00, say 00 E ¢-l(Ui,). By definition of the 
topology on H*, there is a constant Ii > 0 so that 

¢-l(Ui,) :2 {7 E H : Im(7) > Ii} U {oo}. 

Hence the set ::r" ¢-l(Ui,) is compact (it is closed and bounded), so there 
is a finite subcover 

Then Ui , U··· U Uin covers X(l). 
Next we verify that X(l) is Hausdorff. Let X}'X2 E X(l) be distinct 

points, and let 71,72 E H* be points with ¢( 7i) = Xi. Then 1'71 =1= 72 for 
all l' E r(l), so in the notation of (2.3), I(7}, 72) = 0. From (2.3), there 
are open neighborhoods U1, U2 <:;;: H* of 7}, 72 satisfying I(U1, U2 ) = 0. 
Then ¢(Ut), ¢(U2 ) are disjoint neighborhoods of Xl, X2. 0 

Making X(l) into a compact Hausdorff space is a good start, but recall 
that our ultimate goal is to give X(l) a complex structure. We recall what 
this means. 

Definition. Let X be a topological space. A complex structure on X is 
an open covering {UihEl of X and homeomorphisms 

'l/Ji : Ui ~ 'l/Ji (Ui ) c C 

such that each 'l/Ji(Ui ) is an open subset of C and such that for all i,j E I 
with Ui n Uj =1= 0, the map 

'l/Jj 0 'l/J;1 : 'l/Ji(Ui n Uj ) ------> 'l/Jj(Ui n Uj ) 

is holomorphic. The map 'l/Ji is called a local parameter for the points in Ui. 
A Riemann surface is a connected Hausdorff space which has a complex 
structure defined on it. 
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Theorem 2.5. The following defines a complex structure on X(l) which 
gives it the structure of a compact Riemann surface of genus 0: 

Let x E X(l), choose Tx E H* with ¢>(Tx) = x, and let Ux C H* be a 
neighborhood of Tx satisfying 

(Such a Ux exists from Lemma 2.3 with T1 = T2 = Tx and Ux = U1 n U2 .) 

Then 

is a neighborhood of x, so {I(Tx)\Ux } xEX(l) is an open cover of X(l). 

Ix # 001 
Let r = #I(Tx), and let gx be the holomorphic isomorphism 

gx : H ---+ {z E C : Izl < I}, 

Then the map 

is well defined and gives a local parameter at x. 

Ix = 001 

We may take Tx = 00, so I(Tx) = {Tk}. Then 

1/Jx (¢>( T)) = {oe27riT if ¢>( T) # 00, 
if ¢>(T) = 00 

is well defined and gives a local parameter at x. 

Remark 2.5.1. If I(Tx) = {I}, then the natural map 

is already a homeomorphism, so 

is a local parameter at x. Thus the only real complication occurs when x 
equals ¢>(i), ¢>(p), or ¢>(oo). (See also exercise 1.4.) 
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Remark 2.5.2. The following commutative diagrams illustrate the defi­
nitions of the local parameters 'l/Jx : I(Tx)\Ux '-> C. 

4> 4> Ux --; I(Tx)\Ux Ux --; I(Tx)\Ux 

19x l1Px 900 "" l1PX 

C 
z~zr 

C C --; 

x =I- 00, 
T - Tx 

goo(T) = e2rriT gx(T) = --_ x = 00, 
T - Tx 

PROOF (of Theorem 2.5). We already know that X(I) is a compact Haus­
dorff space (2.4), and it is clearly connected due to the continuous surjec­
tion <p : H* ......., X(I). Further, an inspection of Figure 1.2 shows that X(I) 
has genus O. (For those who dislike such a visual argument, we will later 
give an explicit map j : X(I) ......., pI(C). See (4.1) below. The interested 
reader can check that our proof that j is analytic does not depend on the 
a priori knowledge that X(I) has genus O. Then the elementary argument 
described in exercise 1.11 shows that j is bijective, hence an isomorphism.) 

By construction, the set 

is a neighborhood of x. We must verify that the maps 

are well-defined homeomorphisms (onto their images) and that they satisfy 
the compatibility conditions for a complex structure. 

We begin with a lemma which shows that the function gx(T) behaves 
nicely with respect to the transformations in I ( T x). 

Lemma 2.6. Let a E H, let R : H ......., H be a holomorphic map with 
R(a) = a, and let geT) = (T - a)/(T - a). Suppose further that 

r times 
~ 
Ro ... oR(T)=T 

and that r :2': 1 is the smallest integer with this property. Then there is a 
primitive rth-root of unity ( such that 

for all T E H. 

PROOF. Note that g is an isomorphism 

g : H ....:::... {z E C: Izl < I} 
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with g(a) = 0, so the map 

G = 9 0 R 0 g-l : {z E IC : Izl < I} ~ {z E IC : Izl < I} 

is a holomorphic automorphism of the unit disk with G(O) = O. It follows 
that G(z) = cz for some constant c E IC. (See, e.g., Ahlfors [1].) Since 
the r-fold composition Go··· 0 G(z) = z and r is chosen minimally, we 
conclude that c is a primitive rth-root of unity. 0 

We resume the proof of Theorem 2.5. Suppose first that x =I 00. Note 
that from (1.5), I(Tx) is cyclic, say generated by R. Then (2.6) implies that 

gX(RT) = (g(T) for all T E H, 

where ( is a primitive rth-root of unity. Hence 

so 'l/Jx is well defined on the quotient I(Tx)\Ux' 
Next we check that 'l/Jx is injective. Let T1, T2 E U x. Then 

'l/Jx(¢(Td) = 'l/Jx(¢(T2)) ~ gx(Td T = gx(T2)'" 

~ gx(T1) = (igx(T2) for some 0 :s: i < r, 

~ gx(Td = gx(RiT2) for some 0 :s: i < r, 

~ T1 = RiT2 for some 0 :s: i < r, 

~ ¢(T1) = ¢(T2)' 

Hence 'l/Jx is injective. Finally, it is clear from the commutative diagram 
given in (2.5.2) that both 'l/Jx and 'l/J:;1 are continuous, since the maps ¢, gx, 
and z I--t ZT are all continuous and open. Therefore 'l/Jx is a homeomorphism. 

The case x = 00 is similar. From (2.1b) we know that 1(00) = {Tk} 
consists of the translations T I--t T + k for k E Z. Hence 'l/Jx ( ¢( T)) = e27riT 
is well defined and injective on the quotient I (00) \ U 00' And, as above, 'l/Jx 
and 'l/J:;1 are continuous, since both ¢ and T I--t e27riT are continuous and 
open. Hence 'l/Jx is a homeomorphism. 

It remains to check compatibility. First let x, y E X(1) with x, y =I 00. 

Then 

Now gy and g:;l are holomorphic, so the only possible problem would be 
the appearance of fractional powers of z. Let ( be the primitive r x th_root 
of unity such that gx (Rx T) = (gx ( T). Then using the fact that ¢ 0 I = ¢ 
for any I E r(l), we find 

g~Y 0 g:;l((Z) = 'l/Jy 0 ¢ 0 Rx 0 g:;l(Z) = 'l/Jy 0 ¢ 0 g:;l(Z) = g~Y 0 g:;l(Z). 
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It follows that g~Y 0 g;;l(Z) is a power series in ZT x , which proves that the 
composition 1/Jy 0 1/J;;l(Z) is holomorphic. (Note the importance of knowing 
that ( is a primitive r x th_ root of unity.) 

By exactly the same computation, taking g=(T) = exp(21TiT) , the 
function 

is holomorphic. 
Finally, we note that 

g~Y(T + 1) = 1/Jy 0 ¢ 0 T(T) = 1/Jy 0 ¢(T) = g~Y(T), 
so g~Y (T) is a holomorphic function in the variable q = e271'iT. (Note T is 
restricted to Uy n U =; it is not allowed to tend toward ioo.) Hence the 
transition map 

is holomorphic. 
This completes the proof that the open sets I(Tx)\Ux and the maps 

1/Jx : I(Tx)\Ux -> C 

define a complex structure on X(l). D 

§3. Modular Functions 

In the previous section we showed that the quotient space X(l) = r(1)\H* 
has the structure of a Riemann surface of genus O. It is natural to look at 
the meromorphic functions on this Riemann surface. 

Example 3.1. Recall that to each T E H we have associated a lattice AT = 
ZT + Z and an elliptic curve CI AT' From Lemma 1.2(b) there is a well­
defined map (of sets) 

r(l)\H --+ C 
T f---+ j (CI AT) . 

We will show later (4.1) that with the complex structure described in (2.5), 
the j function is a meromorphic function on X(l) which gives a complex 
analytic isomorphism 

j : X(l) --.:::..., jp'1(C). 

Every meromorphic function f on X(l) is thus a rational function 
of j, that is, f E C(j). In order to have a richer source of functions, we will 
study functions on H that have "nice" transformation properties relative 
to the action of r(l) on H. Although these transformation properties may 
look somewhat artificial at first, the corresponding functions actually define 
differential forms on X(l), so they are in fact natural objects to study. 
(See (3.5) below for further details.) 
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Definition. Let k E Z, and let f(7) be a function on H. We say that f is 
weakly modular of weight 2k (for r(l)) if the following two conditions are 
satisfied: 

(i) f is meromorphic on H; 
(ii) f(-y7) = (C7 + d)2k f(7) for all)' = (~ ~) E r(l), 7 E H. 

Remark 3.2. Note that a function satisfying f(-y7) = (c7+d)K f(7) for an 

odd integer r;, is necessarily the zero function, since taking), = (rl ~1) 
yields f ( 7) = - f (7). This explains why we restrict attention to even 
weights. 

Remark 3.3. Since (1.6) says that r(l) is generated by the two matri­

ces S = (~ rl) and T = (6 i), a meromorphic function f on H is weakly 

modular of weight 2k if it satisfies the two identities 

f(7 + 1) = f(7) and 

From the first it follows that we can express f as a function of 

and f will be meromorphic in the punctured disk 

{q: 0 < Iql < I}. 

Thus f has a Laurent expansion J in the variable q, or in other words, f 
has a Fourier expansion: 

00 

n=-oo 

Definition. With notation as in (3.3), f is said to be 
00 

meromorphic at 00 if J = L anqn for some integer no, 
n=-no 

00 

holomorphic at 00 if J = L anqn. 
n=O 

If f is meromorphic at 00, say J = a_noq-nO + ... with a_no f= 0, then the 
order of f at 00 is 

ordoo(f) = ordq=o(J) = -no· 

If f is holomorphic at 00, its value at 00 is defined to be 

f(oo) = ](0) = ao. 

Definition. A weakly modular function that is meromorphic at 00 is called 
a modular function. 
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Definition. A modular function that is everywhere holomorphic (i.e., ev­
erywhere on H and at 00) is called a modular form. If in addition f(oo) = 0, 
then f is called a cusp form. 

Example 3.4.1. Let A be a lattice. The Eisenstein series 

is absolutely convergent for all integers k ;:::: 2. (See [AEC VI.3.1].) For T E 

H we let 

GZdT ) = GzdAr) = L 
m.nEZ 

(m,n)#(O,O) 

1 
(mT + n)2k' 

By inspection, 

for any c E C* , 

whereas 
aT + b 1 1 

kyr =Z--d +Z= --d(Z(aT+b)+Z(cT+d)) = --dAr' 
CT+ CT+ CT+ 

Hence 

G 2k hT) = G 2d A')'T) = G2k ( (CT + d) -1 AT ) 

= (CT + d) 2k G Zk (Ar) = (CT + d) Zk G 2k (T). 

Thus G 2k is weakly modular of weight 2k. 

Proposition 3.4.2. Let k ;:::: 2 be an integer. The Eisenstein series G2k 
is a modular form of weight 2k. Its value at 00 is given by G 2k (00) = 
2((2k), where ((s) is the Riemann zeta function. (For the complete Fourier 
expansion ofG2k , see (7.1).) 

PROOF. We have just shown that G2k is weakly modular, so it remains to 
show that G2k is holomorphic on H and at 00 and to compute its value at 00. 

Note that if T is in the fundamental domain J' described in Proposition 1.5, 
then 

Hence the series obtained from G2k (T) by putting in absolute values is 
dominated, term-by-term, by the series obtained from Gzdp) by putting 
in absolute values. Therefore GZk is holomorphic on T But H is covered 
by the r(1)-translates of J', and GzkhT) = (CT + d) 2k G 2k (T), so G 2k is 
holomorphic on all of H. 
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Next we look at the behavior of G2k (T) as T ----- ioo. Since the series 
for G2k converges uniformly, we can take the limit term-by-term. Terms 
of the form (mT + n)-2k with m i- 0 will tend to zero, whereas the others 
give n-2k. Hence 

00 
1 

----u; = 2((2k). 
n 

lim G2k (T) = 
T~'lOO 

n=-oo 
n#D 

This shows that G2k is holomorphic at 00 and gives its value. o 

Example 3.4.3. It is customary to let 

and 

(See [ABC VI.3.5.1].) The (modular) discriminant is the function 

It is a modular form of weight 12, since from (3.4.2) we know that G4(T) 
and G6 (T) are modular forms of weights 4 and 6 respectively. 

Using the well-known values (see (7.2) and (7.3.2)) 

4 

((4) = ;0 

we find that 

47r4 
92(00) = 120((4) = 3' 

and 

~(oo) = O. 

Hence ~(T) is a cusp form of weight 12. We will see below (3.10.2) that it 
is essentially the only one. 

Remark 3.5. Let'"Y = (~ ~) E SL2 (Z), and let dT be the usual differential 

form on H. Then 

( aT+b) ad-bc -2 
d("(T) = d CT + d = (IT + d)2 dT = (CT + d) dT. 

Thus dT has "weight -2." In particular, if J(T) is a modular function of 
weight 2k, then the k-form 

J(T) (dT)k 

is r(l)-invariant. It thus defines a k-form on the quotient space r(l)\H, at 
least away from the orbits of i and p, where the complex structure is a bit 
more complicated. 
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We will soon show that f (T) (dT)k actually defines a meromorphic k­
form on X(I). We begin with a brief digression concerning differential 
forms on arbitrary Riemann surfaces. In particular, formula (3.6b) below 
will be crucial in our determination of the space of modular forms of a 
given weight. 

Definition. Let X/C be a smooth projective curve, or, equivalently, a 
compact Riemann surface. Recall that Ox is the C(X)-vector space of 
differential I-forms on X. (See [AEC II §4].) The space of (meromor­
phic) k-forms on X is the k-fold tensor product 

0'X = O~k = Ox i8lqX) ... i8lqX) Ox. 

0'X is a I-dimensional C(X)-vector space [AEC II.4.2a]. Notice that if we 
00 

set 01- = C(X), then E9 0'X has a natural structure as a graded C(X)-
k=O 

algebra. 
Let w E O'X, x E X, and choose a uniformizer t E C(X) at x. Then 

w = g(dt)k 

for some function 9 E C(X). We define the order of w at x to be 

It is independent of the choice of t. (If t' is another uniformizer, then ap­
plying [AEC II.4.3b] we find that dt/dt' is holomorphic and non-vanishing 
at x.) Just as with I-forms, we define the divisor of w by 

div(w) = L ordx(w)(x) E Div(X); 
xEX 

we say that w is regular (or holomorphic) if 

for all x E X. 

Proposition 3.6. Let X/C be a smooth projective curve of genus g, 
let k 2:: I be an integer, and let w E O'X. 
(a) Let Kx be a canonical divisor on X [AEC II §4]. Then div(w) is 
linearly equivalent to kKx . 
(b) 

deg(divw) = k(2g - 2). 

PROOF. (a) Let r] E 01- be a non-zero I-form with divisor diver]) = Kx. 
Then 

F = w/r]k E 01- = C(X) 
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is a function on X, so 

div(w) = k div(7]) + div(w/7]k) = kKx + div(F) 

is linearly equivalent to kKx . 
(b) From (a), deg(divw} = kdeg(Kx }. Now apply the Riemann-Roch 
theorem [AEC II.5.4bJ, which says that deg(Kx) = 2g - 2. 0 

The next proposition gives the precise relationship between a modular 
function J of weight 2k and the corresponding k-form J(7} (d7)k. 

Proposition 3.7. Let J be a non-zero modular function of weight 2k. 
(a) The k-form J(7) (d7)k on H descends to give a meromorphic k-form wf 
on the Riemann surface X(l). In other words, there is a k-form Wf E n~(1) 
such that 

¢*(wf) = J(7) (d7)k, 

where ¢ : H -> X(l) is the usual projection. 
(b) Let x E X(l), and let 7x E H* with ¢(7x ) = x. Then 

ifx Ie ¢(i),¢(p),¢(oo); 

~ordi(J)-~k ifx=¢(i); 
ord (wf) = ! ordr,,(J) 

x ! ordp(J) _ ~k if x = ¢(p); 

ordoo(J) - k if x = ¢(oo). 

Remark 3.7.1. If J is a modular function, then it is easy to see that the 
order of vanishing of J at 7 E H depends only on the r(l)-equivalence class 
of 7. The point is that since J(7) = (cr + d)2k J(7) and cr + die 0, we 
have 

ordr(J) = ordr (J 0 ')'-1) = ord"Yr(J). 

Thus the expression in (3.7b) really does not depend on the choice of the 
representative 7 x . 

PROOF. (a) As we have seen, the k-form J(7) (d7)k is invariant for the 
action of r(l) on H. We must show that for each x = ¢(7x ) E X(l), 
the k-form J(7) (d7}k descends locally around x to a meromorphic k-form 
on X(l), and that it vanishes to the indicated order. Clearly, we will 
need to use the description of the complex structure on X(l) provided by 
Theorem 2.5. We consider two cases. 

Ix Ie 001 
Using the notation from (2.5), there is a commutative diagram 

q, 
--->. I(7x )\Ux 

1,p" 
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which defines a local parameter 

at x. We write 

so w = ZT is our local parameter. 

and -I() TxZ-Tx 
T = gx Z = Z _ 1 ' 

Let R be a generator of 1(Tl;)' Then from (2.6), 

and so 

Here ( is some primitive rth-root of unity. 
Now 

J(T) (dT)k = J(g;;I(Z)) (dg;;I(Z))k 

= J(g;;I(Z))g;;I'(z)k (dz)k = F(z) (dz)k, 

29 

where F(z) = J(g;I(Z))g;I'(z)k is a meromorphic function of z. Note 
further that since gx is a local isomorphism, we have 

We must show that F(z) (dz)k is a meromorphic function of w = ZT. 
To do this, we use the fact (3.5) that J(T) (dT)k is r(l)-invariant. This 

implies 

F(z) (dz)k = J(T) (dT)k = J(RT) (dRT)k 

= J(g;;I((Z)) (dg;;I((z))k = F((z) (d(z)k = F((z)(k (dz)k. 

In particular, the function zk F(z) is invariant under the substitu­
tion z f-+ (z. Since ( is a primitive rth_root of unity, it follows that 

for some meromorphic function FI (w). Hence 

F(z) (dz)k = r-kzk(l-T)F(z) (d(ZT))k 

= r- kz-1'k FI(zT) (d(ZT))k = r-kw-kFI(w) (dW)k, 

which proves that J(T) (dT)k descends to a meromorphic k-form wf in a 
neighborhood of x. 
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Finally, we compute 

ordT=Tx J(T) = ordz=o F(z) = ordz=o z-k FI(zr) = -k + rordw=o FI(w); 

ordx Wj = ordw=o r-kw-k FI(w) = -k + ordw=o FI(W). 

Eliminating ordw=o FI ( w) from these two equations yields 

ordx Wj = ~ ordT J - (1 - ~) k. r x r 

It only remains to note that from (1.5), 

Ix = 001 

{ 
1 if x -I ¢(i), ¢(p), 

r= 2 ifx=¢(i), 
3 if x = ¢(p). 

Again using (2.5), we have a local parameter 

'l/Jx : J(oo)\Uoo ---> C, 

Let q = e27riT be the local parameter at 00, and write J ( T) 
in (3.3). Since dT = (27riq)-1 dq, we have 

J(T) (dT)k = j(q)(27riq)-k(dq)k. 

/(q) as 

By definition, j is meromorphic at q = 0, so J(T) (dT)k descends to a 
meromorphic k-form Wj in a neighborhood of 00. Finally, 

ordoo Wj = ordq=o j(q) (27riq)-k = ordoo(f) - k. 

o 
Proposition 3.7 describes the local behavior of the k-form Wj E n~(1)" 

The Riemann-Roch theorem, specifically Proposition 3.6(b), gives a global 
description of its degree. Combining these results, we obtain the following 
important formula. 

Corollary 3.8. Let J be a non-zero modular function of weight 2k. Then 

11k 
2 ord, (f) + "3 ordp (f) + ordoo (f) + L ordT (f) = "6. 

TEr(I)\H* 
r-=/=i,p,oo 

(Here the sum is over any set of representatives for r(1)\H* excluding the 
equivalence classes containing i, p, and 00.) 

PROOF. First note that from (3.7.1), the sum is independent of the choice 
of representatives for r(1)\H*. Let Wj E n~(1) be the k-form corresponding 
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to fer) (dr)k as in Proposition 3.7. By the Riemann-Roch theorem (3.6b) 
and the fact that XCI) has genus 0 (2.5), we find that 

deg(divwf) = -2k. 

On the other hand, (3.7) gives 

deg(divwf) = (~ordd - ~k) + U ordp f - ~k) 

+ (ordoo f - k) + L ordT(f). 
TEr(l)\H* 
T,pi,p,oo 

Equating these two expressions for deg( div W f) gives the desired formula. 
o 

Using Corollary 3.8, we can give a good description of the space of all 
modular forms of a given weight. We set the notation 

M2k = {modular forms of weight 2k for r(1)}, 

Mgk = {cusp forms of weight 2k for reI)}. 

Note that both M2k and Mgk are C-vector spaces. 

Example 3.9. For all k ~ 2, the Eisenstein series G2k(r) is in M2k but 
is not in Mgk • The modular discriminant 6(r) is in MP2. See (3.4.2) 
and (3.4.3). 

Theorem 3.10. (a) For all integers k ~ 2, 

M2k ~ Mgk +CG2k· 

(b) For all integers k, the map 

is an isomorphism of C-vector spaces. 
(c) The dimension of M2k as a C-vector space is given by 

dim M2k = { [~/6J 
[k/6 + IJ 

if k < 0; 
if k ~ 0, k == 1 (mod 6); 
if k ~ 0, k =t 1 (mod 6). 

(The square brackets denote greatest integer. For an alternative proof of (c) 
using the Riemann-Roch theorem, see exercises 1.8 and 1.9.) 

PROOF. (a) By definition, Mgk is the kernel of the map 
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so M2k/M8k has dimension at most 1. On the other hand, for k 2': 2, the 
Eisenstein series G2k is in M2k and is not in M8k. (See (3.4.2).) Hence 

for all k 2': 2. 

(b) First we note that 

which implies that G4(p) = 0 and G6 (i) = O. Since G4 and G6 are modular 
forms of weight 4 and 6 respectively (3.4.2), it follows from (3.8) that they 
have no other zeros in r(I)\H. In particular, 

so ~(T) is not identically zero. 
Thus ~(T) is a non-zero modular form of weight 12 with ~(oo) = O. 

It follows from (3.8) that 
ordoo(~) = 1 

and that ~(T) I- 0 for all T E H. (For an alternative proof that ~(T) I- 0 
for all T E H, see [AEC VI.3.6a].) Therefore 1/~ has a simple pole at 00 

and no other poles, so the map 

M8k ~ M2k-12, 

/ t----> / / ~ 

is well-defined. (The main point is that as long as / vanishes at 00, 

then / / ~ will still be holomorphic at 00.) This gives an inverse to the 
map in (b), so M8k ~ M2k-12. 
(c) If k < 0, then (3.8) implies immediately that M2k = o. (Note that all 
of the terms in the left-hand sum are non-negative.) Similarly, if / E M o, 
then (3.8) says that / has no zeros on H*. Thus / gives a holomorphic 
non-vanishing function on X(l). But X(I) is a compact Riemann surface, 
so an analytic map [I, 1] : X (1) ---> pi (C) is necessarily either constant or 
surjective. Hence / is constant and Mo ~ C. 

Next we use (3.8) to describe all functions / E M2k for small values 
of k. Note that for small values of k, the equation 

11k 
-a+ -b+c=-
2 3 6 

will have very few solutions in non-negative integers a, b, c. For example, 
if k = 1, there are no solutions. We compile the results in Table 1.1. 
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Table 1.1 

k ordi f ordr f 
ordrf basis 

7 # i,p for M2k 

1 0 
2 0 1 0 G4 

3 1 0 0 G6 

4 0 2 0 G~ 
5 1 1 0 G4G6 

Everything in Table 1.1 is clear except that the functions in the final 
column actually form a basis. They are in M2k from (3.4.2), so we need to 
show that M2k has dimension 1. But if II, h E M2k with 2 :S k :S 5, then 
Table 1.1 shows that II and h have exactly the same zeros. Hence II / h E 
Mo = C, which proves that dim(M2k) = 1 for 2 :S k :S 5. 

We have now verified (c) for all integers k :S 5. On the other hand, 
if k 2:: 0, then using (a) and (b) we find that 

dim M2k+12 = dim Mgk +12 + 1 

= dimM2k + 1 

from (a) 

from (b). 

Thus the left-hand side of (c) increases by 1 when k is replaced by k + 6. 
Since the same is true of the right-hand side, an easy induction argument 
completes the proof. 0 

Example 3.10.1. Each of the vector spaces 

has dimension 1. For example, since G~ E Ms and Gs EMs, it follows 
immediately that 

Gs = cG~ 

for some constant c E Co Letting 7 -+ ioo and using (3.4.2), we can even 
compute 

2((8) 3 
c = 4((4)2 = 7· 

(See (7.2) for the calculation of ((8).) Similarly, GlO = t1 G4G6 and G14 = 
134°3 G~G6. More generally, M2k has a basis consisting of functions of the 
form G4Gg. (See exercise 1.10.) To appreciate the subtlety of identities 
such as these, the reader might try to give a proof that Gs = ¥G~ directly 
from the series definition (3.4.1) of the G2k 'S. 



34 I. Elliptic and Modular Functions 

Example 3.10.2. Since M2k ~ Mgk+12 from (3.10b), the spaces 

also have dimension 1. In particular, up to multiplication by a constant, 
there is only one cusp form of weight 12, namely ~(7). 

§4. Uniformization and Fields of Moduli 

We begin by proving the Uniformization Theorem for elliptic curves, which 
was stated but not proved in [AEC VI.5.1]. This theorem says that ev­
ery elliptic curve over IC is parametrized by Weierstrass elliptic functions. 
Our main tool will be Theorem 3.7(a), which says in particular that every 
modular function of weight 0 defines a meromorphic function on the Rie­
mann surface X(l). For a more elementary, but less intrinsic, proof of the 
Uniformization Theorem, see exercise 1.11. 

Definition. The modular j -invariant j (7) is the function 

Thus j(7) is the j-invariant of the elliptic curve 

and EAT (IC) has a parametrization using the Weierstrass p-function, 

IC/AT --> EAT(IC), 
z 1----+ (p(z;AT),p'(z;AT)). 

(For details, see [AEC VI.3.6].) 

Theorem 4.1. j(7) is a modular function of weight O. It induces a 
(complex analytic) isomorphism 

PROOF. From (2.4.2) and (2.4.3), both ~(7) and 92(7)3 = 26 33 53 G4 (7)3 

are modular forms, and both have weight 12, so their quotient is a modular 
function of weight o. By (3.7a) with k = 0, j defines a meromorphic 
function on X(l). (N.B. This means that j is meromorphic relative to 
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the complex structure on X(l) described by (2.5).) Hence j gives a finite 
complex-analytic map 

j : X(1) ---., JP'1(C). 

Finally, we note that g2(ioo) = 120((4) cI 0 (3.4.2) and ~(ioo) 
o (3.4.3). Since ~ has weight 12, (3.8) implies that 

ordoo ~ = 1. 

Thus j has a simple pole at the cusp 00 E X(l) and no other poles on X(l), 
so the map j : X(l) ----+ JP'1(C) is an analytic map of degree 1 between 
compact Riemann surfaces. It is therefore an isomorphism. 0 

Corollary 4.2. Let 1 be a modular function of weight O. 
(a) The function 1 is a rational function of j, that is, 1 E C(j). 
(b) If in addition 1 is holomorphic on H, then 1 is a polynomial function 
of j, that is, 1 E qj]. 

PROOF. (a) From (3.7a), 1 defines a meromorphic function on X(l), and 
so by (4.1), 10 j-l is a meromorphic function on JP'l(CC). But the only 
meromorphic functions on JP'1 (CC) are rational functions, so 

for some P(T) E C(T). 

Substituting t = j(x) with x E X(l) gives I(x) = P(j(x)). 
(b) From (a), we know that 1 = P(j) for some rational function P(T) E 
C(T). Suppose P is not a polynomial. Then there is a to E CC such 
that P(to) = 00. The isomorphism j : X(l) -=:-. JP'1(C) from (4.1) sends H 
to CC C JP'1(C), so we can find a TO E H with j(TO) = to. But then I(TO) = 

P(j(TO)) = P(to) = 00, contradicting the assumption that 1 is holomorphic 
on H. Hence P(T) must be a polynomial. 0 

Corollary 4.3. (Uniformization Theorem For Elliptic Curves over CC) 
Let A, B E CC satisfy 4A 3 + 27 B2 cI O. Then there is a unique lattice A c CC 
such that 

and 

The map 
CC / A ---., E: y2 = x 3 + Ax + B, 

Z I-----> (p(z; A), ~p'(z; A)) 

is a complex analytic isomorphism. 

PROOF. Using Theorem 4.1, we can choose aTE H such that 

4A3 

j(T) = 1728 4A3 + 27B2' 
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Assume first that AB =I- O. It follows from this and the definition of jeT) 
that 

so 

Let 

a= and 

Then 
-4 B2g2(T)3 

g2(A) = a g2(AT ) = A2g3(T)2 = -4A, 

-6 B3g2 (T)3 
g3(A) = a g3(AT ) = A3g3 (T)2 = -4B. 

Similarly, if A = 0, then jeT) = 0 and g2(T) = 0, whereas if B = 0, 
then j ( T) = 1728 and g3 ( T) = O. Hence in these two cases it suffices to 
take A = aAT with 

a = {jg3(T) if A = 0, and 
-4B 

a = «g2(T) if B = O. 
-4A 

This gives the existence of A. Since we will not need the uniqueness of A 
in our subsequent work, we will leave this fact to the reader. (See ex­
ercise 1.12.) Finally, we note that the second part of Corollary 4.3 is 
essentially a restatement of [AEC VI.3.6b]. 0 

We are now ready to relate the function jeT), defined as a meromor­
phic function on the Riemann surface X(I), to the j-invariant defined 
in [AEC III §1] which classifies isomorphism classes of elliptic curves. We 
let 

£.G.G = {elliptic curves defined over C} . 
c If"' • h' \l...-IS0mOrp Ism 

Thus an element of £.G.Gc is a C-isomorphism class of elliptic curves. We 
also recall the notation 

.G = {lattices in C} 

from §1. Much of our preceding discussion is summarized in the following 
proposition. 

Proposition 4.4. There are one-to-one correspondences between the 
following four sets, given by the indicated maps: 

.GjC* +- r(1)\H 
{A} = {AT} +- T 
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Here AT = ZT + Z, {EA} denotes the C-isomorphism class of the elliptic 
curve EA : y2 = 4x3 - g2(A)x - g3(A), and {A} is the homothety class of 
the lattice A. 

PROOF. Since j(ioo) = 00, the bijectivity of r(1)\H .L C is (4.1). The 
bijectivity ofr(1)\H -+ £/C* is (1.2bc). Finally, the injectivity of £/C* -+ 

e££c is [AEC 4.1.1] and the surjectivity is (4.3). 0 

Let us describe in a bit more detail the bijective map 

e££c --+ C 

given in Proposition 4.4. Let {E} E e££c be an isomorphism class of 
elliptic curves, and choose a Weierstrass equation 

E : y2 = x 3 + Ax + B 

for some curve E in this class. Now take a basis 1'1,)'2 for the homology 
group HI (E(C) , Z), and compute the periods 

WI = 1 dx and W2 = 1 dx ,1 Y ,2 Y 

(See [AEC VI §1].) Switching WI and W2 if necessary, we may assume that 
WI 

TE = - E H. 
W2 

Then evaluate the holomorphic function j (T) at T = TE. 
Thus the map 

j : e££c --+ C, {E} I----t j (TE) 

involves two transcendental (i.e., non-algebraic) operations, namely the 
computation of the periods WI, W2 and the evaluation of the function j (T). 

From this perspective, it seems unlikely that rationality properties of j (TE) 
should have anything to do with rationality properties of E. To describe 
the relationship that does exist, we make the following two definitions. 

Definition. Let {E} E e££c, and let K ~ c.. We say that K is a field 
of definition for {E} if there is an elliptic curve Eo in the isomorphism 
class {E} such that Eo is defined over K. We say that K is a field of 
moduli for {E} if for all automorphisms a E Aut(C/Q), 

El7 E {E} if and only if a acts trivially on K. 

Note that the field of moduli exists and is unique, since by Galois 
theory an equivalent definition is that the field of moduli is the fixed field 
of the group 

{a E Aut(C/Q): El7 E {E}}. 

From the complex analytic viewpoint described above, it is not clear that 
the number j ( {E}) should have any relationship to fields of definition and 
moduli for {E}. Note that there are lots of bijections e££c -+ c.. For 
example, j' ({ E}) = e71"j ({ E}) + e-7r is also a bijection. But clearly, it is 
not possible for both j and j' to have good rationality properties. 
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Proposition 4.5. Let {E} E £££c. 
(a) Q (j ( {E})) is the field of moduli for {E}. 
(b) Q (j ( {E} )) is the minimal field of definition for {E}. 

PROOF. The j-invariant j(E) of the elliptic curve 

is 

so for any (J E Aut(C/Q), 

j(E<7) = j(E)<7. 

(a) From [AEC III.1.4b] we have 

if and only if 

Since j(E<7) = j(E)<7, this shows that Q(j(E)) is the field of moduli 
for {E}. 
(b) We know from [AEC II1.1.4bc] that there exists an elliptic curve Eo 
defined over Q(j(E)) with j(Eo) = j(E), and so satisfying Eo ~/c E. This 
shows that Q(j(E)) is a field of definition for {E}. 

On the other hand, if K is any field of definition for {E}, let EolK be 
a curve in {E} given by an equation 

with A,B E K. 

Then 
4A3 

j(E) = j(Eo) = 1728 4A3 + 27B2 E K, 

so Q(j(E)) s;;: K. o 

Remark 4.6. The reader should note that the proof of Proposition 4.5 is 
very elementary because we have explicit Weierstrass equations with which 
to work. (This is how [AEC III.1.4bc] was proven.) For modular curves 
of higher level the problem becomes considerably more difficult, since one 
cannot rely on explicit equations. (See Shimura [1, §6. 7].) Finally, we 
should mention that an analogous statement is false for abelian varieties of 
higher dimension; the field of moduli for an isomorphism class of abelian 
varieties need not be a field of definition. 
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§5. Elliptic Functions Revisited 

Let A c C be a lattice. Our fundamental elliptic function is the Weier­
strass p-function, 

1 (1 1 ) p(z;A) = 2" + L ( )2 - 2" . z z-w W 
wEA 
w;iQ 

As we have seen [AEC VI §3], p defines a meromorphic function on the 
elliptic curve Cj A. It has a pole of order 2 at 0 E Cj A and no other poles. 
We have also computed the Laurent series of p around z = 0 [AEC VI.3.5a], 

1 ~ 2k p(z; A) = z2 + ~(2k + 1)G2k+2(A)z , 
k=l 

valid for Izlless than the smallest non-zero vector in A. 
Since p(z; A) has no residues, we can integrate it to find a new function 

which will almost be periodic for the lattice A. Note, however, that when 
we integrate the series for p(z; A) term-by-term, it is necessary to adjust 
the constant of integration in each term so as to ensure convergence. 

Proposition 5.1. (a) The series 

1 "'( 1 1 z) «(z; A) = - + ~ -- + - + 2" 
z z-w w W 

wEA 
w;iQ 

is absolutely and uniformly convergent on compact subsets of C "A. It 
defines a merom orphic function on C with simple poles on A and no other 
poles. «(z; A) is called the Weierstrass (-function (associated to the lat­
tice A). 
(b) The Laurent series for ( around z = 0 is 

1 00 

«(z; A) = - - L G2k+2(A)Z2k+l. 
Z 

k=l 

PROOF. (a) Let C c C" A be a compact set, and let 

E = inf{lz - wi: z E C, wE A} and M = sup{lzl : z E C}. 

Since C is compact, we have E > 0 and M < 00. 

Let z E C, and let w E A satisfy Iwl > 2M. Then 

1_ 1_ + ~ +...:...1 = Z2 . _1_ ::; 21wM132. 
Z - W W w2 w3 1 _ ~ 

w 
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On the other hand, there are only finitely many terms in the sum with 0 < 
Iwl ::::: 2M, and for z E C those terms all satisfy 

--+-+- <--+-+-<-+-+-. I lIz I 1 1 Izl 11M 
z - w W w2 - Iz - wi Iwl Iwl 2 - C Iwl Iwl 2 

Hence 

We know [AEC VI.3.1a] that the last series converges, which proves the 
series defining «(z; A) converges absolutely and uniformly on C. 

It follows that «(z; A) is holomorphic on C" A, and an inspection of 
the series defining ( shows immediately that it has simple poles at each 
point of A. 
(b) Let z be a complex number such that Izi < Iwl for all non-zero w E A. 
Then 

so 

_1_ + ~ + ~ = _~ {_1_ -1-~} 
z - w W w2 W 1 _ ~ w 

w 

1 1 00 Z k 

«(z;A) = - + L -- L (-) 
Z wEA W k=2 W 

w#D 

1 00 

= - - LGk+1(A)zk. 
Z 

k=2 

This is the desired series once one notes that Gk(A) = 0 for odd k. 0 

Differentiating the series (5.1a), we see that ('(z; A) = -p(z; A). Thus 
the derivative of «(z; A) is periodic for the lattice A, so ( itself will have some 
sort of "quasi-periodicity" property as explained in the following proposi­
tion. 

Proposition 5.2. (a) For all z E C, 

d 
dz «(z; A) = -p(z; A). 

(b) For all w E A and all z E C, 

«(z + w; A) = «(z; A) + TJ(w), 
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where the number 7](w) is independent of z. The map 

is called the quasi-period map associated to A. If W E A and W ~ 2A, 
then 7]( w) is given by the formula 

7](W) = 2«(~w;A). 

(c) The quasi-period map is a homomorphism of A into C. 
(d) (Legendre Relation) Let A = ZWI + ZW2 be a lattice with basis satis­
fying Im(wdw2) > O. Then 

PROOF. (a) The series (5.la) defining (converges absolutely and uniformly, 
so it can be differentiated term-by-term. The result is the defining series 
for -!J. 
(b) 

d d 
dz ((z + w; A) = -!J(z + W; A) = -!J(z; A) = dz ((z; A). 

Integrating, we find that the quantity 

7](W) = «(z + W; A) - ((z; A) 

is independent of z. If, further, W ~ 2A, then (does not have a pole at ±~'"-" 
Putting z = -~w and using the fact (evident from the defining series) 
that «(-z;A) = -«(z;A), we find in this case that T)(w) = 2((~w;A). 
(c) We compute 

T)(W + w') = ((z + W + w': A) - ((z; A) 

= {((z + W + w';A) - ((z + w; A)} + {((z + '"-': A) - «(z: A)} 

= 7](w /) + 7](w). 

(d) We integrate ((z; A) around a fundamental parallelogram offset slightly 
so as not to contain points of A on its boundary. Thus let D be the region 

and let 

be its boundary as illustrated in Figure 1.5. 
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An Offset Fundamental Domain for IC / A 

Figure 1.5 

The only pole of ( in D is a simple pole of residue 1 at z = O. (Look 
at the series (5.1a) defining (.) Hence 

r «(z; A) dz = 27fi. laD 
On the other hand, using (b) we get some cancellation when computing 
the line integrals over opposite sides. Thus 

j «(z; A) dz = rl ((a + tW2; A) W2dt + fO ((a + WI + tW2; A) W2dt 
L1+L3 lo 1 

Similarly, 

Therefore 

= fo1 «(a + tW2; A) W2dt - fo1 ((a + tW2) + rl(wr)) W2dt 

= -T)(Wr)W2' 
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Remark 5.3. Let EIC be an elliptic curve given by a Weierstrass equa­
tion, and let 

dx 
WE=------

2y + alX + a3 

be the associated invariant differential. The lattice A for E is the set of 
periods 

where'Y runs over all closed paths on E(C). (Equivalently, 'Y runs through 
the cycles in Hl(E(C),Z). See [AEC VI §1].) The classical name for an 
everywhere holomorphic differential such as WE on a Riemann surface such 
as E(C) is a differential of the first kind. 

Similarly, a differential of the second kind is a meromorphic differential 
with no residues (i.e., with no simple poles), and a differential of the third 
kind is a merom orphic differential with at worst simple poles. 

The differential 

8J(Z; A) dz = X WE 

is thus a differential of the second kind on CIA, and its indefinite integral 
is the multi-valued function -((z; A). The indeterminacy in ( is given by 
the numbers 

1 ra+w 
, XWE = Ja 8J(z; A) dz = -((a + w; A) + ((a; A) = -1](w), 

where W = I, WE is the period associated to the closed path "f-
In terms of our original Weierstrass equation, there is the period map 

whose image is the lattice A. Using this to identify A with the first ho­
mology of E(C), we see that the quasi-period map associates to a path the 
negative of the corresponding period for the differential XWE: 

1] : Hl (E(C), Z) ----7 C, 

The last function we want to examine is essentially the integral of (. 
To eliminate the indeterminacy caused by the simple poles of (, we take 
the exponential of the integral. This leads to a familiar function which we 
used in [AEC VI §3] to construct elliptic functions with a given divisor. 
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Proposition 5.4. (a) The infinite product 

a(z; A) = z II (1 _ ~) eZ / W +(1/2)(z/w)2 

wEA 
w,eo 

defines a holomorphic function on C with simple zeros on A and no other 
zeros. It is called the Weierstrass a-function (associated to the lattice A). 
(b) 

d 
dz log a(z; A) = ((z; A), 

d2 
dz2 log a(z; A) = -p(z; A). 

(c) For all z E C and wE A, 

a(z + w; A) = 1jJ(w)e'7(w)(z+~w)a(z; A), 

where T/ : A --. C is the quasi-period map for A, and 1jJ is defined by 

1jJ : A -+ {±l}, 1jJ(w) = {I ifwE2A; 
-1 ifw tJ- 2A. 

PROOF. (a) This is a restatement of [AEC VI.3.3aJ. 
(b) Taking the derivative of 

loga(z; A) = log(z) + L {log ( 1 - ~) + ~ + ~ (~f} 
wEA 
w,eo 

gives the defining series (5.la) for (, and then from (5.2a) we see that the 
second derivative is -po Note that the logarithms are locally well defined 
up to the addition of a constant which disappears when we differentiate 

and also that we must take the principal branch of log (1 - ~) for almost 

all w in order to ensure the convergence of the series. 
(c) From (b) and (5.2b), 

d a(z+w;A) 
dz log a(z; A) = ((z + w; A) - ((z; A) = T/(w), 

so 

a(z + Wi A) = Ce'7(w)za(zi A) 

for some constant C not depending on z. Note also that a is an odd 
function, a fact that is clear from the product defining a. 

We consider two cases. First, if w tJ- 2A, then a does not vanish at ±~w. 
Hence putting z = - ~w gives 

so 
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c = _e~1/(w)w. 

Next, if W E 2A, then u has a simple zero at ±!w. Using L'Hopital's 
rule yields 

Ce-~1/(W)W = lim 
z--+-w/2 

u(z + W; A) 
u(z; A) 

u' (lw· A) 
2' -1 

u'(-!w;A) - . 

(Note that u' is an even function, since u is odd.) Hence in this case we 
find that 

which completes the proof of (c). o 

Any elliptic function can be factored as a product of Weierstrass u­
functions reflecting its zeros and poles. We give a general result and two 
important examples. To ease notation, since the lattice A is fixed, we will 
write u(z) and p(z) instead of u(z; A) and p(z; A). 

Proposition 5.5. Let fez) be a non-zero elliptic function for the lat­
tice A. Write the divisor of f as 

r 

div(f) = L ni(ai) 
i=1 

for some ai E C, and let 
r 

b = Lniai. 
i=1 

(See [AEC VI §2] for the definition of the divisor of an elliptic function.) 
Then there is a constant c E C* so that 

Corollary 5.6. 

(a) 

(b) 

u(z) rrr n· 
fez) = c u(z _ b). u(z - ai) ' . 

• =1 

( ) _ () __ u(z + a)u(z - a) 
p z p a - u(z)2u(a)2. 

'( ) __ u(2z) 
P z - u(z)4· 
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PROOF (of Proposition 5.5). Let 

From [AEC VI.2.2c] we know that bE A, so using (5.4c), we find that 

O'(z) = ±eT/(b)(z-!b) 
O'(z - b) 

is holomorphic and non-vanishing on all of C. Since O'(z) has simple zeros 
on A and no other zeros, it follows that 9 has exactly the same zeros and 
poles as f. Hence f (z) / g( z) is everywhere holomorphic. 

Next we verify that 9 is an elliptic function. Let w E A, and use (5.4c) 
to write 

O'(z + w) = AeBz 
O'(z) 

for certain constants A and B which depend on w but not on z. Then 

g(z+w) = O'(z-b) O'(z+W)rr(O'(z+w-ai))ni 

g(z) O'(z - b + w) O'(z) i=l O'(z - ai) 
r 

= e-B(z-b)eBz II (AeB(Z-ai)) n, 

i=l 

= eB(b-Enia;J (AeBZ)Eni = 1. 

The last equality follows from the definition of b and the fact [AEC VI.2.2b] 
that the divisor of an elliptic function has degree O. 

This proves that g(z) is an elliptic function, and so f(z)/g(z) is an 
everywhere holomorphic elliptic function. From [AEC VI.2.1] we conclude 
that it is constant. 0 

PROOF (of Corollary 5.6). (a) Since tl(z) is an even function of order 2, 
we see immediately that the zeros of tl(z) - tl(a) are a and -a. Thus 

div(tl(z) - tl(a)) = (-a) + (a) - 2(0). 

Applying (5.5) we find 

( ) _ () =CO'(z+a)O'(z-a) 
tl z tl a 0'(z)2 

for some constant C. Multiplying by z2 and using 

and lim O'(z) = 1 
z-+O z 
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gives the value of C, 

(b) Divide (a) by z - a and let z ~ a. This yields 

, l' a(z - a) a(z + a) __ '( )a(2a) 
p (a) = - 1m ( )2 ( )2 - a 0 a(a)4' 

z--->a Z - a a z a a 

Since a' (0) = 1, this is the desired result. o 

§6. q-Expansions of Elliptic Functions 

As we have seen in §§1-4, it is often convenient to use normalized lattices 

with 7 E H. 

We then use the obvious notation 

p(z; 7), ((z; 7), a(z; 7) for 

We will soon see that p, (, and a are quite well behaved when considered 
as functions of two variables (z; 7) E C x H. 

Note that since 1 E AT) the p function satisfies the relation 

p(z + 1; 7) = p(z; 7). 

This means that it is possible to expand p as a Fourier series in the vari­
able u = e2:rriz. Similarly, since Ar+1 = AT) the p function satisfies 

p(z; 7 + 1) = p(Z; 7). 

Thus, as a function of 7, the p function should have a Fourier expansion 
in terms of q = e2:rrir. 

This idea can be formulated more intrinsically as follows. Let 

and 

and let 

be the cyclic subgroup of C* generated by q. Then there is a complex­
analytic isomorphism 
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Note that this is an isomorphism of complex Lie groups, since it is clearly 
a homomorphism. 

Our first step is to express p(z; r) as a power series in the variables u = 
e21fiz and q = e21fiT • The quickest way to do this is to write down (by 
magic?!?) the correct expression, and then verify that it gives the same 
function as p(z; r). We opt instead for a somewhat lengthier, but hopefully 
more perspicuous, derivation. 

Consider first the series 

1 1 
p(z;A) = 2" + '" ( )2 z 6 z-w 

wEA 
w;iO 

defining p. How does it arise? From [AEC VI.2.3] we know that any non­
constant elliptic function must have at least two poles, so we look for a 
meromorphic function F( z) satisfying 

(i) F(z +w) = F(z) for all z E C, w E A; 
(ii) F(z) has a double pole at each point in A and no other poles. 

The simplest function with a double pole at w is (z - W)-2. Byaver­
aging over w E A, we find a series 

1 
F(z) = 2: (z - w)2 

wEA 

which Jormally satisfies (i) and (ii). The problem is that this series is not 
absolutely convergent. However, by subtracting an appropriate constant 
from each term, we can create a series which does converge and has the 
desired properties. This is how we "discovered" p(z; A) in [AEC VI §3]. 

We apply the same principle to express p(z; r) as a function of u and q. 
Exponentiating the conditions (i) and (ii), we look for a function F(u; q) 
satisfying 

(iii) F( qku; q) = F( u; q) for all u E C*, k E 2; 
(iv) F(u; q) has a double pole at each u E qZ and no other poles. 

As above, we look for F to be an average 

F(u; q) = 2: J(qn u ) 
nEZ 

for some elementary function J. Such an F will clearly satisfy the period­
icity condition (iii). 

To obtain (iv), we need J(T) to have a double pole at T = 1. For 
example, we might use J(T) = (1 - T)-2. But the series 
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does not converge, since iqi < 1. The terms with n --t -00 are all right, 
since then qrt --t 00. But as n --t 00, the nth term goes to 1. 

In order to get convergence, we want f(T) to have a double pole at T = 

1 and also to satisfy 

lim f(T) = 0 
T ..... O 

and lim f(T) = O. 
T ..... oo 

The simplest such function is f(T) = T(1-T)-2, which leads us to consider 
the function F(u; q) in the following lemma .. 

Lemma 6.1. Let 

(a) The series defining F, considered as a function of z, converges abso­
lutely and uniformly on compact subsets of C " AT' 
(b) F is an elliptic function for the lattice AT' It has a double pole at 
each Z E AT and no other poles. 
(c) The Laurent series for F around Z = 0 begins 

1 { 1 qrt} F(u; q) = (21fi)2z2 - 12 - 2 L (1- qrt)2 + (powers of z). 
n;::':l 

PROOF. (a) Note that 

(1 - qrtu)2 

We use this identity to rewrite the terms in F having n < O. This gives an 
alternative expression for F, 

Now let C c C " AT be a compact set. Then u = e27riz is bounded away 
from 0 and 00 uniformly for z E C. Since qrt --t 0 as n --t 00, it follows that 
there are constants Cl and C2 so that 

for all z E C, n ::::: C2. 

This shows that except possibly for the terms with n ::; C2, the series is 
absolutely and uniformly convergent on C. 
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Consider now one of the finitely many terms with n ::; C2. We know 
that u of q" for z E C, so the compactness of C ensures that 

inf 11 - qn u±ll > O. 
zEC 

Hence the terms with n ::; C2 are also uniformly bounded. 
(b) From (a), F is a holomorphic function on rc " AT, and looking at the 
series defining F. it is clear that F has a double pole at each point in AT' 
Finally, since the transformations z f---> Z + 1 and Z f---> Z + T correspond 
to U f---> II and u f---> qu respectively, it is clear again from the series that F 
is an elliptic function for the lattice AT' 
( c ) Note that u = e27riz ---+ 1 as Z ---+ O. Hence the pole at Z = 0 in the 
series for F comes from the term wiLh n = O. Now a liLLIe freshman calculus 
yields 

(1 - u)2 
1 1 

( . )2 - - + (powers of z). 
27r~z 12 

Hence using the alternative series for F given above, we find 

lim {F(ll:q) - ( 1)2 +~} = lim {F(u;q) - ( u )2} 
Z~O 27rzz 12 z--->o 1 - u 

. {q"U q"U- 1 } 
=~n + , 1l~1 L (1 - q"U)2 (1 _ qnu-l )2 

"2"1 
qn 

= 2 L (1 _ qTl) 2 • 
n2"l o 

Theorem 6.2. Let U = e27riz and q = e27riT . 

(a) 

(b) 
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Remark 6.2.1. For IXI < 1 there is the elementary identity 

X d(l) ""' m (1 - X)2 = X dX 1 _ X = ~ mX . 
m2:1 

This is sometimes used to rewrite the final sum in (6.2a) as 

qn mqm 
L (1- qn)2 = L L mqmn = L 1- qm· 
n2:1 n2:1 m2:1 m2:1 

PROOF (of Theorem 6.2). (a) Let F(u; q) be as in (6.1). Consider the 
function 

From (6.1b) we see that this expression is an elliptic function for the lat­
tice AT which is holomorphic on C '- AT. Further, comparing the Laurent 
series for F given in (6.1c) with the known Laurent series for ~, we see that 
it is also holomorphic at z = 0, and in fact it vanishes there. It thus repre­
sents an everywhere holomorphic elliptic function which vanishes at z = o. 
Applying [AEC VI.2.1], we conclude that it is identically zero. This proves 
the first equality in (a), and the second is an easy rearrangement of the 
terms in the initial sum. (See the proof of (6.1a).) 

d . d 
(b) Apply -d = 27rZU- to (a). 0 

z du 

The next step is to find a q-expansion for ((z; T) analogous to (6.2). 
By construction, 

d 
dz ((z; T) = -~(z; T), 

so we try integrating the series (6.2a) for ~ term-by-term. Proceeding 
blindly, we find 

J qnu dz = J qnu ~ = _1_ . 1 . 
(1 - qnu)2 (1 - qnu)2 27riu 27ri (1 - qnu) 

Unfortunately, the series 

is clearly divergent, the nth term goes to 1 as n ---t 00. But just as in 
the original definition of ~, we can improve the convergence by adding a 
constant onto each term. 

The second expression for ~ in (6.2a) has the form 

1 ""' qnu qnu-l 
(27ri)2~(Z;T) = ~ (1- qnu)2 + L (1- qnu-I)2 + GI , 

n2:0 n2:1 

where 
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(We will soon identify C 1 more precisely.) Now integrate: 

for some constant of integration C2 = C2 (q). Note that the last series is 
absolutely and uniformly convergent on compact subsets of C " AT, so it 
defines a meromorphic function on C. (The proof is identical to the proof 
of (6.1a).) Further, the (d/dz)-derivative of this series can be computed 
term-by-term and agrees with the series (6.2a) for SJ. This proves that it 
equals ( for some choice of C2. 

To find C2 , we compute the first few terms of the Laurent series 
around z = O. We already know (5.1b) that 

1 . 
((z; r) = - - G4(r)z3 + hIgher powers of z. 

z 

On the other hand, the pole at z = 0 (i.e., at u = 1) in the above q-series 
comes from the n = 0 term, so we find 

-u { -qnu qnu- 1 } -- + L + 1 -271'iCl z + C2 
1 - U n>l 1 - qnu 1 - qnu-

- '- v .f 

vanishes at z = 0 (u = 1) 

e27riz 
-----;::2----:-· + C2 + (powers of z) 1 - e 7r'Z 

1 1 
= -.- + - + C2 + (powers of z). 

271'lz 2 

Since the Laurent series for ( has no constant term, we see that C2 = - ~. 
This proves part of the following theorem. 

Theorem 6.3. Let ((z; r) be the Weierstrass (-function and T7 : AT --> C 
the quasi-period homomorphism associated to A. 

1 _qnu qnu-l 1 1 
271'i((Z;T) = L 1- qnu + L 1- qnu- 1 + 27ri T7 (l)z - 2' 

n2:0 n2:1 

(a) 
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(b) 1 1 { qn } -( ·)21](1)=- -1+242:( )2. 27rZ 12 1 - qn 
n2:1 

PROOF. Let 

We proved above that 

1 1 
-. ((z; T) = G(z; T) - 27riG1 (q) - -. 
27rZ 2 

Now evaluate at z = ~. From (5.2b), ((~;T) = 1](1). Further, z = ~ 
corresponds to u = erri = -1, so all of the terms in G( ~; T) cancel except 
the n = 0 term. Thus 

Hence 

so 
1 

G1(q) = - (27ri)21](1). 

This completes the proof of both parts (a) and (b). D 

Finally, we integrate the series for ((z; T) and exponentiate to obtain 
an important q-product expansion for a(z; T). 

Theorem 6.4. The Weierstrass a-function has the product expansion 

( . ) ___ 1_ ~'7(1)z2 -rriz(l_ ) II (1 - qnu)(l- qnu- 1 ) 
a Z, T - . e e u ()2' 27rz 1 - qn 

n2:1 

where u = e2rriz and q = e2rriT as usual, and 1](1) is the quasi-period 
associated to the period 1 E AT. 

PROOF. By construction, 

a'(z; T) d 
( ) = -d loga(z; T) = ((z; T). 

a Z;T Z 
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Using (6.3a) and integrating gives 

J J 1 du 
loga(z;7) = ((z;7)dz = -.((Z;7)-

27ft u 

J _qnu du J qnu -1 du J 
= '" 1 - + '" 1 -1 - + (77(l)z - 7fi) dz ~ - qnu U ~ - qnu U 

n;:o.O n;:o. 1 

We claim that the series will converge provided we use the principal branch 
of the logarithm when evaluating 10g(1 - qnu) and 10g(1 - qnu- 1 ). To see 
this, note that for n sufficiently large we have Jqn u±lJ ~ ~. So, for all but 
finitely many n, 

Hence the series will converge. 
Exponentiating, we eliminate any ambiguity arising from the choice of 

a branch of the logarithm and obtain the product representation 

a(z; 7) = eh(l)z2-1Tiz+C3 IT (1 - qnu) IT (1 - qnu- 1 ). 

TI.;:o.O n;:o. 1 

It remains to find C3 . Recall that a was normalized by the condition 
that a(z;7)/Z -+ 1 as Z -+ o. It is the n = 0 term in the product which 
vanishes at Z = 0, so we find 

Hence 

1. a(z;7) 
1 = 1m ---

Z----""?O Z 

= lim e~1)(1)z2-1Tiz+C3 (1 - u) IT (1 _ qTl. u )(l _ qnu- 1 ) 
Z~O Z 
u~l n;:o.l 

=ec3 (-27fi) IT(1- qn)2. 
n;:o.l 

c 1 IT 1 
e 3=-27fi (1_qn)2' 

n;:o.l 

which gives the desired product formula for a(z; 7). o 



§7. q-Expansions of Modular Functions 55 

§7. q-Expansions of Modular Functions 

The Eisenstein series G2dT) is a modular function of weight 2k. It sat­
isfies G2k (T + 1) = G2k (T), so it has a Fourier expansion in terms of the 
variable q = e27riT . In this section we will compute the Fourier series of G2k 
and use it to deduce various properties of the Fourier expansions for ~(T) 
and j( T). 

Proposition 7.1. Let k :::::: 2. Then 

where 
1 

((s) = ~-L...J nS 
n~l 

and 

are respectively the Riemann (-function and the kth-power divisor func­
tion. 

PROOF. 

G2k (T) = E 
m,nEZ 

1 
(mT + n)2k 

(m,n);i(O,O) 

1 00 1 

E n2k +2EE(mT+n)2k' 
nEZ m=l nEZ 
n;iO 

The first sum is just 2((2k). Notice that the rightmost (inner) sum is 
clearly invariant under T t--> T + 1. We now compute its Fourier expansion. 

Lemma 7.1.1. Let k :::::: 1 be an integer. Then for all T E H, 

E 1 (21Ti)2k E(X) 2k-l 27rirT 
~--~~ = r e 
(T+n)2k (2k-l)! . 

nEZ r=l 

PROOF. Ignoring questions of convergence, we have a formal identity 

1 1 d2k 
E (T + n)2k = E (2k _ I)! d2kT 10g(T + n) 
nEZ nEZ 

1 d2k 
= (2k _ I)! d2kT log II (T + n). 

nEZ 

Of course, this product does not converge. But we do get convergence if we 
factor an n out of each term. (Remember this is just a formal manipulation 
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to see what the answer should be. Otherwise one might rightly object that 
dividing by (00!)2 is a highly dubious procedure.) The product 

T II (1 + ~) = T IT (1 - ::) 
nEZ n=l 
no;iO 

converges to give a function that is holomorphic on C, has simple zeros 
at each integer, and no other zeros. With this description, the reader will 
undoubtedly recognize the usual product expansion for the sine function. 
(See Ahlfors [1].) 

sin(?TT) =?TT IT (1 - ::) . 
n=l 

We now reverse our formal argument to produce a rigorous proof. 
Starting with the product expansion of the sine function, we take the log­
arithmic derivative, yielding 

d . 1 E<Xl -2T 
-d log(sm ?TT) = - + 2 2 

T T n=l n - T 

1 <Xl ( -1 1) --+ --+--- T ~ n+T n-T . 

Now taking (2k - 1) more derivatives, we find 

d2k {I <Xl (1 1) } 
d2kT log(sin n) = -(2k - I)! T2k + ~ (n + T)2k + (n _ T)2k 

ing 

1 
= -(2k - I)! E ( )2k' n+T 

nEZ 

Next we compute the Fourier series of (a branch of) log (sin ?TT). Writ-

1" ") 1 "( 2") sin(?TT) = 2i (e1rtT - e-1rtT = - 2i e- 1rtT 1- e 1rtT , 

we find (for T E H) 

log(sin ?TT) = - loge - 2i) - ?TiT + log (1 - e21riT ) 

<Xl 1 " 
= -loge -2i) - ?TiT - E _e21rtrT. 

r=l r 

Differentiating 2k times (with k ;:::: 1) yields 
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Equating this expression for d2k log(sin 7fT) / dT2k with the expression ob­
tained above gives the desired result. 

o 

We resume the proof of Proposition 7.1. Applying (7.1.1) with mT in 
place of T, we find 

(X) 1 
G2k (T) = 2((2k) + 2 L L (mT + n)2k 

m=l nEZ 

(2 ·)2k (X) (X) 

= 2((2k) + 2 7fZ '"""' '"""' r2k-le27rirmT 
(2k -I)! L L 

m=l r=l 

(2 ·)2k (X) 

= 2((2k) + 2 7fZ '"""' '"""' r2k-le27rinT. 
(2k -I)! LL 

n=l rln 
o 

As is well known, ((2k) is a rational multiple of 7f2k. It is frequently 
convenient to factor a 7f2k out of the Fourier series for G2k , yielding a series 
with rational coefficients. We briefly recall the details concerning special 
values of the Riemann (-function at even integers. 

Definition. The Bernoulli numbers Bk are defined by the power series 
expansion 

For example, one easily computes 

Bo = 1, 

and B2k+l = 0 for all k 2: 1. 

For a longer table of Bk's and the corresponding values of ((2k), see (A §1). 

Proposition 7.2. For all integers k 2: 1, 

(X) 1 (27fi)2k 
((2k) = ~ n2k = - 2(2k)! B 2k. 

PROOF. First we use the definition of the Bk's to write 

e7rix + e-7rix 
( 2) 

7fX cot (7fx) = 7fix. . = 7fix 1 + --=-2 --:.--e7r2X _ e-7r2X e 7rtx - 1 

_. ~ B (27fix)k _ ~ B (27fix)2k 
-7fZX+ L k k! - L 2k (2k)! 

k=O k=O 
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Next we use the product expansion for sin(7rx) already considered in the 
proof of (7.1), 

DC ( x2) sin(7rx) = 7rX IT 1 ~ n 2 . 

n=l 

Taking the logarithmic derivative yields 

1 = 2x 1 
7rcot(7rx) =;: + L ~ n2 . 1 ~ (x2/n2) 

71,=1 

1 D0 { 2 = (X2) k } 
= ;: + ~ ~;: {; n2 

1 x 

= ;:{ 1 ~ 2 L ((2k)X2k}. 
k=l 

Comparing the two Laurent series for 7rX cot( 7rx) gives the desired result. 
D 

Remark 7.3.1. We can now define a normalized Eisenstein series E 2k (T) 
as the series 

Using (7.1) and (7.2) we see that 

G2k (T) = 2((2k)E2k(T). 

The fact that the E2k'S have leading coefficient 1 makes them particularly 
easy to compare. For example, E'J and E8 are both modular forms of 
weight 8. Since AI'll, has dimension 1 from (3.10.1), we know that they are 
multiples of one another. But since they are normalized, we see on com­
paring their constant terms that E'J = E8. Equating Fourier coefficients 
gives the identity 

n-l 

0"7(n) = 0"3(n) + 120 L 0"3(rn)0"3(n ~ rn). 
rn=l 

The reader will be able to construct many more identities of this sort. 

Remark 7.3.2. We can also write g2(T) and g3(T) in terms of normalized 
Eisenstein series: 

4 1 
g2(T) = 60G4(T) = 120((4)E4(T) = (27r) 223E4(T); 

6 1 
g3(T) = 140G6(T) = 280((6)E6(T) = (27r) 23 33 E6(T). 

These expressions are useful for computing the Fourier expansion of 6. ( T) 
and j (T), as explained in the next proposition. 
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Proposition 7.4. (a) The modular discriminant has the Fourier expan-
sion 

~(T) = (27r)12 LT(n)qn, 
n21 

where T(l) = 1 and T(n) E Z for all n. The arithmetic function n f---+ T(n) 
is called the Ramanujan T-function. 
(b) The modular j-function has the Fourier expansion 

. 1 ~ J(T) = - + ~c(n)qn, 
q n20 

where c(n) E Z for all n. 

PROOF. (a) Using (7.3.2) we compute 

We must show that every coefficient of E1- El is divisible by 26 33 = 123. 
From (7.3.1) we have 

E4(T) = 1 + 240 L 0"3 (n)qn 
n21 

To ease notation, let us write 

Then 

and 

and 

E6(T) = 1- 504 L0"5(n)qn. 
n21 

E4(T)3 - E6(T)2 = (1 + 240A)3 - (1 - 504B)2 

= 122(5A + 7B) + 123(100A2 -147B2 + 8000A3). 

It remains to show that every coefficient of 5A + 7 B is divisible by 12. 
We have 

and for any integer d, 

Hence 5d3 + 7d5 == 0 (mod 12). This proves that 

~(T) = (27r)12 LT(n)qn 
n21 



60 I. Elliptic and Modular Functions 

for integers T(n). 
Finally, the coefficient of q is 

(2 )12 
1~3 ·122. (50"3(1) + 70"5(1») = (271")12, 

so T(l) = 1. 
(b) We use (a), (7.3.1), (7.3.2), and the definition of j(7) to compute 

(271")12E ( )3 
( ) 3 -- 47 

j(7) = 1728~ = 1728_-,,1=23_,.....-__ 
6(7) (271")12 LT(n)qn 

Since the 0"3(n)'s and the T(n)'s are all integers, this last expression gives a 
Laurent series of the form q-1 + E c( n )qn with integer coefficients. (Note 
the reciprocal of a power series with integer coefficient and leading term 1 
will again have integer coefficients.) 0 

Remark 7.4.1. Using the formulas developed in the proof of (7.4), it is 
easy to compute the first few values of T(n) and c(n). Thus 

(271")- 126(7) = q - 24q2 + 252q3 - 1472q4 + 4830q5 + ... , 

j(7) = q-1 + 744 + 196884q + 21493760q2 + .... 

For a more extensive list, see (A §2). 

Remark 7.4.2. In the next section we will prove that 6(7) has the prod­
uct expansion 

6(7) = (271")12q II (1- qn)24. 
n~1 

This gives an alternative (but less elementary) proof of (7.4a) 

Remark 7.4.3. The c(n) coefficients of j(7) have many interesting arith­
metical properties. For example, Lehner [1,2] proved that they satisfy the 
following divisibility conditions. (See also Apostol [1, Ch. 4].) 

n == 0 (mod 2e) ==> c(n) == 0 (mod 23e+B), 
n == 0 (mod 3e) ==> c(n) == 0 (mod 32e+3), 
n == 0 (mod 5e) ==> c(n) == 0 (mod 5e+1), 
n == 0 (mod 7e) ==> c(n) == 0 (mod 7e), 
n == 0 (mod ne) ==> c(n) == 0 (mod ne). 
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Remark 7.4.4. The values in (7.4.1) and (A §2) suggest that the c(n)'s 
grow quite rapidly. This is indeed the case, as is clear from the following 
asymptotic formula proven by Petersson [1] using the circle method of 
Hardy, Ramanujan, and Littlewood: 

e47ffo 

c( n) '" -vI2=2c-n-3/-4 as n --> 00. 

It also turns out that the c(n)'s are intimately connected with represen­
tations of the largest sporadic groups, in particular with the Fischer-Griess 
monster group. See Conway [1] and Conway-Norton [1] for an interesting 
account of this surprising connection. 

Remark 7.4.5. Ramanujan's T-function also has many interesting prop­
erties. For example, we will later prove (10.7) that it satisfies the identities 

r(mn) = r(m)r(n) if (m, n) = 1, 

r(pe+l) = r(p)r(pe) - pllr(pe-l) for p prime and e 2: 1. 

These identities were conjectured by Ramanujan; the first proof was given 
by Mordell. 

We will also prove (11.2) that the r(n)'s grow much more slowly 
than the c(n)'s. Precisely, we will show that there is a constant c such 
that Ir(n)1 :s: cn6 for all n 2: 1. Another conjecture of Ramanujan, proven 
by Deligne as a consequence of his proof of the Riemann hypothesis for 
varieties over finite fields, says that one can do better. 

Theorem 7.5. (Deligne [1,2]) 

for all n 2: 1. 

(Here ao(n) is the number of divisors of n. For example, if n is prime, 
then ao(n) = 2.) 

In the other direction, there is the following open conjecture of Lehmer. 

Conjecture 7.6. (Lehmer [1]) 

r(n) 1= 0 for all n 2: 1. 
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§8. Jacobi's Product Formula for 6.(7) 

In this section we will prove Jacobi's beautiful product expansion for the 
mod ular discriminant 6. ( 7 ) . 

Theorem 8.1. (Jacobi) 

6.(7) = (211")12q II (1 _ qn)24. 
n~l 

Remark 8.2. We will derive the product (8.1) directly from the definition 
of 6.(7) and the product representation (6.4) for the Weierstrass IT-function. 
There are other methods which can be used to prove (8.1). For example, see 
Serre [3, Ch. 7, Thm. 6] for a proof based on rearrangement of conditionally 
convergent double series, and Apostol [1, Ch. 3, §2] or Siegel [1] for an 
exposition of Siegel's clever proof using residue calculations. The heart of 
both of these proofs lies in first proving that the function 

F(7) = q II (1 - qn)24 
n~1 

satisfies 

Since F visibly satisfies 

F(7 + 1) = F(7) and lim F(7) = 0, 
T~1.cx) 

and since Sand T generate the modular group r( 1), it follows that F is 
a cusp form of weight 12. Hence F(7)/6.(7) is a holomorphic modular 
function of weight 0, so it is constant. Finally, letting 7 --+ ioo, one easily 
checks that this constant is (211")-12. 

PROOF (of Theorem 8.1). By definition, 

is the discriminant of the cubic polynomial 

But we know the roots of this polynomial from [AEC, VI.3.6], namely 
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Thus 

The idea of our proof is to express ~(T) in terms of special values of the 
Weierstrass O"-function and then use the product expansion (6.4) for 0". 

If we differentiate the equation 

and divide by 2g:/, we find 

. . 1 T T+1 . 
Now If we evaluate successIvely at Z = 2' Z = 2' and Z = -2-' we see III 

each case that only one of the three terms survives: 

p" (~'T) = 2(el - e2)(el - e3), 

p" (~, T) = 2(e2 - el)(e2 - e3), 

p" (7; 1, T) = 2(e3 - el)(e3 - e2). 

Comparing these formulas with the expression for ~(T), we write ~(T) in 
terms of values of p", 

Recall (5.6b) that we have expressed p' in terms of the Weierstrass 0"­
function, 

'( ) __ 0"(2Z,T) 
P Z, T - ( )4· 0" Z,T 

Taking derivatives gives 

"( ) _ _ 20"'(2z, T) 40"(2z, T)o"'(Z, T) 
P z, T - ()4 + ()5· 0" Z,T 0" Z,T 

. 1 T 7+1 
If we evaluate p" successIvely at Z = -, -, --, the second term will 

2 2 2 
vanish, since O"(z, T) has zeros at points in the lattice ZT + Z. We obtain 

,,(~ T) = -2 O"'(w, T) 
p 2' (w )4 0" 2,7 

for w = 1, T, T + 1. 
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Combining this with the above formula expressing ~ in terms of pI!, we 
find 

In order to compute the values of the derivatives in this expression, we 
take the transformation formula (5.4c) for o-(z, T) and differentiate it with 
respect to z. This gives 

o-'(z + w, T) = 1/'(w)ry(w)e1)(w)(z+!w)o-(z) + 1/'(w)e1)(w)(z+!w)o-'(z) 

for all w E ZT + Z. 

Now put z = 0 and use the fact that 0-(0) = 0 and 0-'(0) = 1 to get 
o-'(w) = 1/'(w)ew1)(w)/2. Taking w = 1, w = T, and w = T + 1 in succession 
yields 

Next we use Legendre's relation (5.2d), which in our situation reads 7'1](1)­
'I](T) = 27Ti, to eliminate 'I](T). After some algebra we obtain 

where to ease notation we write 'I] = '1](1). 
The next step is to use the product expansion (6.4) for 0- to compute 

0- at the half periods. Thus 
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o 
In view of the exponent appearing in the product expansion for .6.(T), 

it is natural to study the function obtained by taking 24th-roots. 

Definition. The Dedekind TJ-fl1nction TJ( T) is defined by the product 

TJ( T) = e21rir /24 II (1 _ qn) 
n21 

for T E H, q = e21rir . 

Warning. Do not confuse the Dedekind TJ-function with the quasi-period 
map (5.2b) TJ : A ---> C. This may be especially confusing when A = AT> 
since then the symbol TJ( T) has two meanings, and it is quite possible for 
both to appear in a single formula. For example, 

(27r) 12 (Dedekind 1]( T)) 24 = .6.( T) = product of values of a-( T), 

and using the product expansion (6.4) for a will give a formula involving the 
quasi-period TJ(l). Why, you may ask, do we continue to use this confusing 
notation? Tradition! 

Proposition 8.3. (a) The Dedekind TJ-function satisfies the identities 

and TJ ( -~) = V-iTTJ(T). 

Here we take the branch of V which is positive on the positive real axis. 
(b) 

PROOF. Note first that (b) is immediate from the definition of TJ(T) and Ja­
cobi's product formula (8.1) for .6.(T). Next, since the transformation T ~ 
T + 1 does not change q, we see from the definition of TJ(T) that 

TJ(T + 1) = e21ri (r+1)/24 IT (1 - qn) = e21ri/24TJ(T). 
n21 



66 I. Elliptic and Modular Functions 

Finally, we know that A( T) is a modular form of weight 12, so 

Using (b) and taking 24th-roots shows that 

for some 24th_root of unity c. Now evaluate at T = i. Since -Iii = i, we 
find that c = 1. D 

Remark 8.4. More generally, let 

with c:::: o. 

Taking the 24th-root of (8.3b) and using the known transformation property 
of A(T) shows that 

for some integer <I>h) depending on 'Y. For example, (8.3a) says that <I>(S) = 
o and <I>(T) = 1. Note that although <I>h) is only defined modulo 24, we 
can pin down a particular value for <I>h) by fixing a branch of log 7]( T), 
setting 

if c:::: 0 

and requiring <I>(-'Y) = <I>h) if c < O. 
For many purposes it is important to know precisely how 7] transforms. 

The following theorem of Dedekind supplies the answer. First we need one 
definition. 

Definition. Let x and y be relatively prime integers with y > O. The 
Dedekind sum s(x, y) is defined to be 

y-l j (jX [jX] 1) 
s(x, y) = L - - - - -"2 . 

j=l y Y Y 

(The square brackets denote the greatest integer function.) 
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Theorem 8.5. (Dedekind) Let 'Y = (~ ~) E SL2 (Z) with c > O. The 

Dedekind 1]-function satisfies the transformation formula 

where V is the branch of the square root which is positive on the positive 
real axis, <Ph) is given by the formula 

1 d 
<Ph) = - + - -12s(d,c), 

c c 

and s(x, y) is the Dedekind sum defined above. 

PROOF. Since we will not need this result, we omit the lengthy proof. The 
interested reader might consult Apostol [1, Thm. 3.4J or Lang [2, Ch. IX]. 

o 

Remark 8.6. Dedekind sums s(x, y) satisfy many interesting relations. 
Of particular importance is Dedekind's reciprocity law: Let x, y > 0 be 
integers with gcd(x, y) = 1. Then 

x Y 1 
12s(x,y) + 12s(y,x) = - + - + - - 3. 

y x xy 

See Apostol [1, Thm. 3.7J or exercise 1.17. A good source for information 
about Dedekind sums is Grosswald-Rademacher [1]. 

§9. Heeke Operators 

Let E/C be an elliptic curve. We have seen amply demonstrated in [AEC] 
the importance of studying isogenies connecting our given elliptic curve E 
with other elliptic curves. If E(C) ~ C/ A for some lattice A E £." then an 
isogeny E' -> E of degree n corresponds to a sublattice A' c A of index n 
by the natural map 

C/ A' ----> C/ A, Z r--t Z. 

In keeping with our general philosophy in this chapter, rather than 
focusing on a single isogeny, we instead consider the set of all isogenies 
to E of degree n. Equivalently, we look at all sublattices of A of index n. 
This is the same as studying degree n maps from E to other elliptic curves, 
since we can always take the dual isogeny. In our situation, the dual isogeny 
C/ A -> C/ A' is induced by the map z f--t nz. This leads to the notion of a 
Hecke operator. 
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Definition. For any set S, let Div(S) denote the divisor group of the set S, 
that is, the free abelian group generated by the elements of S, 

Div(S) = EB z· s. 
sES 

A homomorphism T : Div(S) --+ Div(S) is called a correspondence on S. 
Notice that a correspondence is determined by linearity once its values are 
known on the elements of S. 

Definition. Let n 2: 1 be an integer. The nth Hecke operator T(n) is the 
correspondence on the set of lattices £., whose value at a lattice A E £., is 

T(n)A = L (N). 
A'CA 

[A:N]=n 

If two lattices are homothetic, then they give the same elliptic curve. 
This suggests that we should also look at the following homothety operator. 

Definition. Let A E ([*. The homothety operator' R)., is the correspondence 
on £., whose value at a lattice A E £., is 

R).,A = AA. 

Since the T(n)'s and the R).,'s are homomorphisms which map the 
group Div(,C) to itself, they can be composed with one another. The fol­
lowing fundamental calculation describes the algebra that they generate. 

Theorem 9.1. 

(a) R).,Rt" = R)"t" for all A, ME C*. 

(b) R).,T(n) = T(n)R)., for all A E C*, n 2: 1. 

(c) T(mn) = T(m)T(n) for all m, n 2: 1 with gcd(m, n) = 1. 

for p prime, e 2: 1. 

PROOF. (a) 

(b) This follows immediately from the definitions and from the fact that N 
is a sublattice of A of index n if and only if AN is a sublattice of AA of 
index n. 
(c) Let A" en A, where the superscript mn denotes the index. Since m 
and n are relatively prime, the quotient AI A" has a unique decomposition 

with I<pml = m and I<pnl = n. 
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It follows that there is a unique intermediate lattice A' satisfying 

A" c A' C A, 

namely 
A' = {x E A : mx E A"}. 

Using this fact, it is now easy to verify (c). 

T(mn)A = L (A") = L L (A") 

= L T(m)(A') = T(m)( L (A')) = T(m)T(n)A. 

pe+1 

(d) Let A E £.,. For a given sublattice A' c A, let a(A') and b(A') be the 
integers defined by 

a(A') = #{r: A' err:. A} 

Then 

and b(A') = {I if A' cpA, 
o if A' rt. pA. 

T(pe)T(p)A = L L (A') = L a(A')(A'), 
e 

p p 
reA A'e r 

e+1 
p 

A'e A 

e+1 
p 

A'e A 

T(pe-l)RpA = L (A") = L b(A')(A'). 
e-1 

p 
Aile pA 

(Note that pA has index p2 in A.) The identity (d) we are trying to prove 
is thus reduced to verifying 

a(A') = 1 + pb(A') 
pe+l 

for all A' c A. 

We consider two cases. 

lease 1. A' cpA, b(A') = 11 
p 

Let rcA. Then r :l pA :l A', so a(A') is increased by one for each 
such r. Hence 

p 
a(A') = #{r : rcA} = p + 1 = 1 + pb(A'). 
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[Quick proof of the middle equality: The set of r t A corresponds to 
subgroups of AjpA ~ (ZjpZ)2 of index p (or equivalently of order p). 
These are the lines in A,2 (ZjpZ), so there are #1P'1 (ZjpZ) = p+ 1 of them. 
For a proof of a more general result, see (9.3) below.] 

lease 2. A' rt. pA, b(A') = 01 

Let r satisfy A' crt A. Note that pA c r. We have inclusions 

A' r p A 
0 c c c 

A' npA pA pA' 
I I 

Not equal, Index p, 

since A' rt. pA. since r t A. 

But AjpA has order p2, so we conclude that the middle inclusion must be 
an equality. Therefore 

r = A' + pA. 

Thus for a given A' rt. pA there is exactly one r satisfying A' crt A. 
Hence 

a(A') = 1 = 1 + pb(A'). 
D 

Corollary 9.1.1. Every T(n) is a polynomial in the T(p) 's and Rp's for 
primes p. lvIore precisely, the rings 

Z[T(n), Rn : nEZ, n ~ 1] and Z[T(p), RI' : p prime] 

are the same. This ring is called the Heeke algebra (afr(l)). (Notice that 
the Hecke algebra is a subring of the ring of correspondences 

End(Div(,C)) = {homomorphisms Div('c) -7 Div('c)}.) 

PROOF. Factor n = p11 ... P;". From (9.1a) and (9.1c) we find 

r r 

Rn = II R~: and T(n) = II T (p:i). 
i=l i=l 

Finally, (9.1d) and an easy induction on e shows that T(pe) is a polynomial 
in T(p) and RI" D 

Corollary 9.1.2. The Hecke algebra Z[T(n), Rn : nEZ, n ~ 1] is com­
mutative. In particular, 

T(m)T(n) = T(n)T(m) for all m, n ~ 1. 
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(Note that End(Div(£)) is definitely not commutative.) 

PROOF. From (9.1a,b,c), we are reduced to showing that T(pe) commutes 
with T(pf). This follows from (9.1.1), since both T(pe) and T(pf) are 
polynomials in T(p) and Rp , which commute from (9.1b). D 

Example 9.2. Using (9.1d), it is easy to illustrate (9.1.1) for small pow­
ers T(pe). For example, 

T(p2) = T(p)2 - pRp, 

T(p3) = T(p)3 - 2pRpT(p), 

T(p4) = T(p)4 _ 3pRpT(p)Z + p2 R;. 

For a general recursion, see exercise 1.19. 

The Hecke operator T(n) sends a lattice A to the sum of its sublattices 
of index n. We now describe these sublattices more precisely. Let A E £." 

n 
and fix an oriented basis ZWI + ZW2 for A. For any A' c A, we choose an 
oriented basis w~, w~ for A' and write 

with integers a, b, c, d. Then one easily checks that 

n = [A : A'] = det (~ :) = ad - bc. 

Here's a quick geometric proof of this fact. The linear transformation a = 

(~ ~) acting on the vector space ffi.2 ~ ffi.wl +ffi.wz = C sends a fundamental 

parallelogram D for C / A to a fundamental parallelogram for C / A'. Hence 

[A . A'] = Area of aD = d ( ) 
. A f D et a . rea 0 

Conversely, if ad - bc = n, then 

is a sublattice of A of index n. We thus obtain a map 

{a E Mz(Z): det(a) = n} 
n 

---> {A' : A' c A} 

a=(~~) f---+ a(A) = Z(awl + bw2 ) + Z(CWI + dw2 ). 

(Here M2 (Z) is the ring of 2 x 2 matrices with integral coefficients.) Note 
that a(A) depends on the choice of basis for A, although our notation does 
not reflect this dependence. 
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It is possible, of course, for different a's to give the same sublattice. 
According to (1.2), we have a(A) = a'(A) if and only if a = ,a' for 
some, E SL2(Z). Note that the basis for a(A) will be oriented if the basis 
for A is, since (1.1) gives 

1m (aWl + bW2) = (deta)lm(wl/w;), 
CWl + dW2 IC(Wl/W2) + dl 

and det(a) = n 2:: 1. This proves the first half of the next lemma, which 
we state after setting some notation. 

Notation. Let n 2:: 1 be an integer. We define 

TIn = { (~ ~) E M2 (Z) : ad - bc = n} , 

Sn = { (~ ~) E M2(Z) : ad = n, a, d > 0, 0 :s; b < d} . 

Note that Sn is a finite subset of TIn having order 

d-l 

#Sn = LL 1 = al(n). 
din b=O 

Note also that SL2(Z) acts on TIn via multiplication: if, E SL2(Z) and a E 
TIn, then detha) = n, so ,a E TIn. 

Lemma 9.3. Let A E £.., be a lattice given with a fixed oriented basis A = 

ZWl + ZW2· 
(a) There is a one-to-one correspondence 

SL2 (Z)\TIn ~ {A' : A' C A} 

a = (~ ~) f-------+ a(A) = Z(awl + bw2) + Z(CWl + dw2). 

(b) The natural inclusion Sn C TIn induces a one-to-one correspondence 

PROOF. (a) This was proven during the discussion above. 

(b) Let a = (~ ~) E TIn. We construct a , E SL2(Z) such that ,a E 

Sn. Suppose first that c i- O. Write the fraction -alc in lowest terms, 
say -alc = sir. Since rand s are relatively prime, we can find integers p 
and q so that ps - qr = 1. Then 

(~~)(~ ~)=(~:) and 
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so we are reduced to the case that c = O. Replacing 0: by -0: if necessary, we 
may also assume that a, d > O. Finally, for an appropriate choice of t E Z, 
the matrix 

satisfies 0 ::; b + td < d, so it is in Sn. This proves that Sn surjects 
onto SL2 (Z)\1Jn . 

Suppose now that 0:,0:' E Sn have the same image. Thus there is a 
'Y = (~ ~) in SL2 (Z) such that 

( aO db) = (Pr qs) (ao' b') - (a' P b' p + d' q ) 
d' - a'r b'r + d's . 

Since a' -I- 0, the lower left-hand entry gives r = O. Next, comparing 
diagonal entries, we find 

a = a'p, d= d's, 
a'd' 

ps ad = 1, a,d,a',d' > O. 

It follows that p = s = 1, and so a = a' and d = d'. Finally, we have 

b = b' + d'q and (by assumption) o ::; b, b' < d' = d. 

Hence Id'ql = Ib - b'l < d', from which we conclude that q = 0 and b = b'. 
Therefore 0: = 0:'. 0 

Proposition 9.4. Let A E £., be a lattice, and let A = Zwl + Zw2 be an 
oriented basis for A. Then the Hecke operator T(n) is given explicitly by 
the formulas 

ad=n, a2l 
O::;b<d 

(The notation o:(A) is as in (9.3a).) 

PROOF. Immediate from (9.3), which says that the sublattices of A of 
index n are precisely the lattices o:(A) with 0: E Sn. 0 

Example 9.4.1. For primes p, (9.4) gives the formula 

p-l 

T(p)A = (ZPWI + ZW2) + E(Z(Wl + bW2) + Zpw2)' 
b=O 
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§10. Hecke Operators Acting on Modular Forms 

In the last section we described Hecke operators T(n) which assign to a 
lattice A E L a formal sum of lattices 

T(n)A = L (A'), 

A'CA 

and we also gave homothety operators RA defined by RA(A) = )"A. Letting 
F : L --> C be any function on the space of lattices, we define new 
functions T(n)F and RAF on L in the natural way, 

(T(n)F) (A) = L F(A') and 

We would like to define an action of T( n) on the space of modular 
functions f of weight 2k. Unfortunately, a modular function f is not a 
well-defined function on the space of lattices L; it is only a function on the 
space of lattices with given bases: 

A = ZWI + ZW2 ~ f (~~) . 
However, we can use the fact that f is modular to construct a function 
on L having a certain homogeneity property, as described in the following 
proposition. 

Proposition 10.1. There is a one-to-one correspondence 

{
lattice functions F : L ----> C } 

{ weakly modular functions} 1-1 
f; H ----> C of weight 2k +----+ satisfying F()"A) = ).. -2k F(A) 

for all ).. E C* 

f --> Ff(ZWl + ZW2) = W22k f(wI/W2), 

F. 

PROOF. First we check that Ff(A) depends only on A, and not on the 
choice of an (oriented) basis for A. From (1.2a), any other oriented basis 
has the form 

for some (~ ~) E SL2 (Z)i 
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Next, it is clear that 

Ff(AA) = Ff(ZAwl + ZAW2) = A -2k Ff(A). 

Similarly, if'Y = (~ ~) E SL2 (Z), then 

k'(T = (cr + d)-I (Z(ar + b) + Z(cr + d)) = (cr + d)-I AT' 

which implies that 

75 

fFhr) = F(A'YT) = F((cr+d)-lAT) = (cr+d)2kF(AT) = (cr+d)2kfF(r). 

This shows that the indicated maps are well defined. 
Finally, we check that they are inverse to one another, which will prove 

that they give one-to-one correspondences between the indicated sets. 

Ffp (A) = wi2k fF ( WI ) = ~F (Awdw2 ) 

w, ,: w," F ( Z ~: +Z) ~ F(wd w,) d'(A). 

D 

Using (10.1), we can define Hecke operators on the space of modular 
functions of weight 2k. It turns out to be convenient to multiply by the 
scalar factor n2k- 1 , which will prevent the appearance of denominators 
in (10.3) below. 

Definition. The nth Heeke operator T2k (n) on the space of (weakly) mod­
ular functions of weight 2k is defined by the formula 

(T2k (n)f)(r)=n2k- 1 L Ff(A')=n2k- 1 L d- 2kf (ar;b). 
A'eAT ad=n,a~l 

O::;b<d 

Here Ff(ZWl + ZW2) = wi2kf(wI/W2) is as in (10.1). The equality of the 
last two expressions is immediate from (9.3), which says that 

{ ' ,n} ) A : A CAT = {Z(ar + b + Zd : ad = n, a 2: 1, 0 ::; b < d}. 

Theorem 10.2. Let f be a modular function (respectively modular form, 
respectively cusp form) of weight 2k. Then so is T2k(n)f. 

PROOF. First, we verify that T2k (n)f has weight 2k. By definition, T2k (n)f 
is associated as in (10.1) to the lattice function n2k- 1T(n)Ff. The scalar 
factor n 2k- 1 is immaterial, and we have 

(T(n)F)(AA) = L F(A') = L F(AA') 
n 

A'cA 

= r2k L F(A') = A-2k (T(n)F) (A). 

A'eA 
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Again invoking (10.1), it follows that T(n)Ff corresponds to a weakly mod­
ular function of weight 2k, and so T2k (n)J is weakly modular of weight 2k. 

Next we observe that if J is meromorphic (respectively holomorphic) 
on H, then the formula 

(T2k (n)J)(T) = n 2k- 1 L d-2k J (aT: b) 
ad=n, a:2:1 

O':;b<d 

shows that the same is true of T(n)J. 

It remains to check the behavior ofT2k (n)J at 00. The next proposition 
gives an explicit formula for the Fourier coefficients ofT2k (n)J, from which 
it follows by inspection (10.3.2) that T2k (n)J is meromorphic (respectively 
holomorphic, respectively zero) at 00 if J is. This completes the proof 
of (10.2). 0 

Proposition 10.3. Let J(T) = 2: c(m)qm be a modular function of 
weight 2k. Then the Fourier series for T2k (n)J is 

(T2k (n)J)(T) = L ,(m)qm, where ,(m) = L a2k- 1c (:~) . 
mEl': al gcd(m,n) 

As a special case of (10.3), we list the values of ,(0), ,(I), and ,(p) for 
primes p. Notice in particular that ,(I) = c(n). Thus in some sense T2k(n) 
acts as a shifting operator on the Fourier coefficients of J. 

Corollary 10.3.1. With notation as in (10.3), 

(a) 

and ,(I) = c(n). 

(b) For primes p, 

( ) = {c(pn) + p2k-1c(n/p) ifpin, 
, p c(pn) ifp t n. 

Remark 10.3.2. Notice that if c(m) = 0 for m ::; -mo ::; 0, then ,(m) = 0 
for m ::; -mono This is clear because ,(m) is a sum of terms of the 
form c(mn/a2) with ai gcd(m, n), so mn/a2 ::; -mo. Thus T2k(n)J will be 
meromorphic (respectively holomorphic, respectively zero) at 00 if J is. 
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PROOF (of Proposition 10.3). We use the formula defining T2k(n)f and 
compute 

(T2k (n)f)(T) = n2k- 1 L d- 2k f (aT: b) 
ad=n,a~l 
O~b<d 

= n2k- 1 L d- 2k L c(m)e211"im(aT+b)/d 
ad=n, a~ 1 mEZ 
O~b<d 

= n2k- 1 L L c(m)d-2ke211"imaT/d L e27rimb/d. 
mEZ ad=n, a~ 1 O~b<d 

The innermost sum is 

~ e27rimb/d = {do if dim, 
L...J if d f m. 

O~b<d 

Replacing m by md = mnja and using njd = a, we find 

(T2k(n)f)(T) = L L a2k-le27rimaT c C:n ) , 
mEZ ad=n, a~ 1 

and collecting equal powers of q = e211"iT (let M = ma) yields 

L L a2k- 1c ( ~2n ) e27riMT . 

MEZ al gcd(M,n) 0 

Suppose that a modular function f is an eigenfunction for the Heeke 
operator T2k(n). This means that there is a constant oXen) E C so that 

(T2k(n)f)(T) = oX(n)f(T) for all T E H. 

Using (10.3) to compare the Fourier coefficients of oX(n)f and T2k(n)f, it 
is clear that the eigenvalue oXen) is related in some way to the Fourier 
coefficients of f. 

Of particular importance are those modular forms which are simul­
taneous eigenfunctions for every T2k(n). Although it may seem unlikely, 
a priori, that there are any such functions, we will later observe (10.9) that 
in fact M~k has a basis of such functions. In any case, we can already 
construct the following examples. 

Example 10.4. The modular discriminant fl.(T) is an eigenfunction for 
every Heeke operator T12(n), n ~ 1. To see this, note that (10.2) says 
that T12(n)fl. is also a cusp form of weight 12. But from (3.10.2) the space 
of weight 12 cusp forms MP2 has dimension 1. It follows that T12(n)fl. is a 
constant multiple of fl.. 

Similarly, G4(T) and G6(T) are eigenfunctions for T4(n) and T6(n) 
respectively, since the spaces M4 and M6 have dimension 1 (3.10.1). In 
fact, it is not hard to show that G2k(T) is an eigenfunction for T2k(n) for 
all k ~ 2 and n ~ 1. See exercise 1.25. 
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We now describe the relationship between the eigenvalues and the 
Fourier coefficients of simultaneous eigenfunctions. 

Theorem 10.5. Let f(7) = 2: c(m)qm i- 0 be a cusp form of weight 2k, 
and suppose that f is an eigenfunction for all Hecke operators T2k (n), say 

T2k (n)f = A(n)f· 

Then 

c(l)i-0, and c(n) = A(n)c(l) for all n ~ 1. 

PROOF. Comparing the leading coefficient in 

A(n)f = A(n)c(l)q + ... and T2k (n)f = c(n)q + ... , 

(see (10.3.1b)), we find that c(n) = A(n)c(l). This proves the second part 
of the theorem. 

Suppose now that c(l) = O. Then what we have proven implies 
that c(n) = A(n)c(l) = 0 for all n ~ 1, so f = O. This contradicts 
our original assumption that f i- O. Hence c(l) i- O. 0 

Definition. A simultaneous eigenfunction as in (10.5) is called normalized 
if c(l) = 1. In view of (10.5), every simultaneous eigenfunction is a constant 
multiple of a normalized eigenfunction. 

In the last section we proved several identities (9.1) for Heeke oper­
ators T(n) acting on the space of lattices'c. These give us the following 
identities for the action of Heeke operators on modular functions, which in 
turn give us relations on the Fourier coefficients of simultaneous eigenfunc­
tions. 

Proposition 10.6. Let f be a (weakly) modular function of weight 2k. 

for all m, n E Z with gcd(m, n) = 1. (a) 

(b) T2k (pe)T2k (p)f = T2k (pe+l)f + p2k-1T2k(pe-l)f 

for all primes p and all e ~ 1. 

PROOF. (a) This is immediate from (9.1c). 
(b) We apply the identity (9.1d) to the lattice function Ff described 
in (10.1). Since 

we find 
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By definition, Tzk(n)J = n 2k- 1T(n)Fj , so multiplying by p(e+l)(2k-l) gives 
the desired result. 0 

Corollary 10.6.1. Let J(T) = L c(n)qn f. 0 be a cusp form of weight 2k 
that is a normalized eigenfunction for every Hecke operator TZk (n). 

(a) c(mn) = c(m)e(n) for all m, n E Z with ged(m, n) = 1. 

for all primes p and e ;::: 1. 

PROOF. (a) We combine (10.5) and (10.6a) to find (note that e(l) = 1) 

c(mn)J = ),.(mn)J = T2k (mn)J 

= Tzdm)T2k (n)J = ),.(m),.(n)J = e(m)e(n)f. 

(b) This follows similarly from (10.5) and (1O.6b). 

Example 10.7. Let T(n) be Ramanujan's T-function defined by 

o 

(See (7.4a) and (8.1).) Then (10.4) says that L T(n)qn is a normalized 
simultaneous eigenfunction, so (10.6.1) gives the relations 

T(mn) = T(m)T(n) for all m, n E Z with gcd(m, n) = 1. 

for all primes p and all e ;::: 1. 

These identities, conjectured by Ramanujan, were first proven by Mordell. 

Remark 10.8. It is clear from (10.6.1) that modular forms that are si­
multaneous eigenfunctions have many interesting arithmetical properties. 
(We will see some additional ones in the next section.) We have given 
examples of such functions (e.g., b.(T)), but so far we only know finitely 
many such examples. The following theorem of Petersson shows that there 
are many functions to which (10.6.1) applies. We will not give the proof, 
which requires additional machinery involving subgroups of SL2(Z), 

Theorem 10.9. (Petersson [2]) The set 

{J E MYk : J is a normalized eigenfunction for all T2k (n), n ;::: I} 

is a basis for the space MJk of CllSp forms of weight 2k. 

PROOF. See Lang [2, Ch. III §4]' Ogg [1], Shimura [1, Ch. 3 §§4,5]' or 
exercise 1.22. 0 
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§11. L-Series Attached to Modular Forms 

Let I ( T) = L: c( n )qn i- 0 be a cusp form of weight 2k which is a normalized 
eigenfunction for all Hecke operators T2k (n). Then the Fourier coefficients 
of I satisfy the identities given in (10.6.1). We now show that these identi­
ties are equivalent to an Euler product decomposition for a certain Dirichlet 
series attached to I. 
Definition. For any power series 

1= L c(n)qn E C[q], 
n~l 

the L-series attached to I is the (formal) Dirichlet series 

L(f, s) = L c(n)n- s. 
n~l 

Proposition 11.1. Let I = L: c(n)qn be a power series with c(l) = 1. 
n~l 

Then the coefficients of I satisfy the identities 

(i) c(mn) = c(m)c(n) for all m, n with gcd(m, n) = 1, 

(ii) c(pe)c(p) = c(pdl) + p2k-l c(pe-l) for primes p and e ~ 1, 

if and only if the associated L-series L(f, s) has the Euler product expansion 

(iii) L(/) IT 1 ,s = 1 _ c(p)p-s + p2k-1-2s· 
p 

(Note that this is an equality of formal Dirichlet series. We have said 
nothing yet about convergence properties.) 

PROOF. Suppose first that I satisfies (i) and (ii). The multiplicativity 
relation (i) implies that we can decompose L(f, s) into a product over 
primes, 

If we multiply the inner sum by 1 - c(p)p-S + p2k-1-2s, we find 

(1 - c(p)p-S + p2k-1-2s) (2: c(pe)p-es) 

e~O 

= {c(l)+c(p)p-S} - {c(p)c(l)p-S} 

+ 2: (c(pe) - c(p)c(pe-l) + c(pe-2)p2k-l)p-eS 

e~2 

= 1 using (ii) and c(l) = 1. 
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Hence 
" ( e) -es 1 
L...Jc P P = 1 _ c(p)p-S + p2k-1-2s' 
e~O 

which proves that LU,s) has the Euler product expansion (iii). 
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We leave the converse as an exercise, since it will not be needed in the 
sequel. See exercise 1.23. 0 

In order to prove that the formal Dirichlet series LU, s) converges in 
some half-plane Re( 8) > 80, we need an estimate for the size of the Fourier 
coefficients of I. 
Theorem 11.2. (Hecke) Let 1(7) be a cusp form of weight 2k with 
Fourier expansion ~ c( n )qn. There is a constant /'i" depending only on I, 
such that 

for all n ~ 1. 

Remark 11.2.1. Let 1(7) = ~c(n)qn be a normalized cusp form of 
weight 2k which is a simultaneous eigenfunction for all Hecke operators 
T2k(n). Then the Fourier coefficients of 1 actually satisfy the stronger 
estimate 

Ic(n)1 s ao(n)nk-!, 

where ao(n) is the number of positive divisors of n. This is the generalized 
Ramanujan conjecture (for r(1)), which was proven by Deligne [1,2] as a 
consequence of his proof of the Riemann hypothesis for varieties over finite 
fields. 

Remark 11.2.2. If 1(7) is a modular form of weight 2k which is not a 
cusp form, then the Fourier coefficients of 1 grow at the faster rate 

See exercise 1.24. 

PROOF (of Theorem 11.2). For any y > 0, we can extract the nth Fourier 
coefficient of 1 by integrating 

c(n) = 11 e-27rin(x+iy) I(x + iy) dx. 

Hence 
Ic(n)1 s e 27rny sup I/(x + iy)l· 

0~x~1 

Next consider the (non-negative) real-valued function 
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Using (1.1) and the fact that f is modular of weight 2k, we see that 

for all 'Y E r(l). 

Hence 
SUp¢(T) = SUP¢(T), 
TEH TE:F 

where J'is the usual fundamental domain (1.5) for r(l)\H. Further, ¢ is 
continuous on J', and 

Note the importance of knowing that f is a cusp form, since if c(o) =F 0, 
the limit would not exist. It follows that ¢ is bounded on J', and so it is 
bounded on all of H. 

Let 
C = SUp¢(T). 

TEH 

Then 

If(x + iy)1 = ¢(x + iy)y-k S Cy-k for all x + iy E H. 

Substituting this estimate for f into the above inequality for Ic( n) I yields 

This inequality is valid for all y > 0. In particular, putting y = lin gives 
the desired result. 0 

Corollary 11.3. Let f be a cusp form of weight 2k. Then the as­
sociated L-series L(f, s) converges to give a holomorphic function in the 
half-plane 

Re(s) > k + 1. 

PROOF. From (11.2) we have 

Hence I: c(n)n- S is absolutely convergent provided Re(s) > k + 1. 0 

Our next goal is to show that the L-series L(f, s) attached to a cusp 
form f has an analytic continuation to all of C and that it satisfies a 
functional equation similar to the functional equation satisfied by the Rie­
mann (-function. 
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Theorem 11.4. (Hecke) Let J (7) be a cusp form of weight 2k. 
(a) L(j, s) has an analytic continuation to all ofe. 
(b) Let 

R(j, s) = (27r)-Sf(s)L(j, s), 

where f(s) is the usual f-function. Then 

R(j, 2k - s) = (_l)k R(j, s) for all sEe. 

PROOF. The f-function is given by the integral 

for Re(s) > O. 
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(For basic facts about f, see Ahlfors [1].) Replacing t by 27rnt in the 
integral, we obtain the useful formula 

Write J(7) = L-c(n)qn. Multiplying our formula for n- S by c(n) and 
summing over all n 2: 1 gives 

= (2JrYf(S)-l 1= t s - 1 L c(n)e-27rnt dt 
o n2'l 

= (27r)Sf(s)-1 1= t s - 1 J(it) dt. 

Note that since Ic(n)1 ::; tcn k from (11.2), the quantity 

is absolutely convergent for Re( s) > k + 1, so it is permissible for us to 
reverse the order of the sum and the integral. 

We split the above integral for L(j, s) into two parts. For large t the 
integral will converge for all sEe. For small t we replace t by lit and use 
the fact that J satisfies 

J C) = J(S(it)) = (it)2k J(it). 
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Thus 

from above, 

= 11 t s- 1 f(it) dt + /00 ts- 1 f(it) dt 

= J~ (~r-l f (D d (~) + /00 tS- 1 f(it)dt 

= /00 (_1)k t2k-S-l f(it) dt + /00 t s- 1 f(it) dt. 

This gives us the integral representation 

valid a priori for Re( s) > k + 1. 
But r(S)-l is holomorphic on C, and by inspection the integral is 

absolutely and uniformly convergent for s in any compact subset of C. 
(Note that since f is a cusp form, if(it)i goes to 0 like a multiple of e-21rt 
as t --> 00.) Hence this integral gives the analytic continuation of L(J, s) 
to C. Finally, we observe that the expression 

satisfies c(2k - s, t) = (_1)kc(s, t). 

It follows immediately that 

R(J,s) = (271rSr(s)L(J,s) = 100 c(s,t)f(it)dt 

has the same functional equation, R(J, 2k - s) = (_1)k R(J, s). 0 

We record as a corollary the useful integral expression for L(J, s) de­
rived during the course of proving (11.4). 

Corollary 11.4.1. Let f(7) be a cusp form of weight 2k. Then 

L(J,s) = (271")sr(s)-11°O {tS- 1 + (-1)k t2k-s-l}f(it)dt. 

EXERCISES 

1.1. Prove that the modular group rei) is the free product of its subgroups (S) 
and (ST) of orders 2 and 3. 
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1.2. Let TO E Q, and let "( E r(1) satisfy "(00 = TO. Prove that "( sends the set 

{T E H : Im(T) > "'} 

to the interior of a circle in H which is tangent to the real axis at TO. Prove 
that the radius of the circle goes to 0 as '" -> 00. 

1.3. Give an example of a Hausdorff space X and a topological group r acting 
continuously on X such that the quotient space r\X, taken with the quo­
tient topology, is not Hausdorff. (By definition, the action of r on X is 
continuous if the map r x X -> X, ("(, x) I---> "(x, is continuous.) 

1.4. For any a E <C, let ga(T) = (T - a)/(T - a). 
(a) Prove directly that 

and 

(As usual, i = e7ri / 2 and p = e27ri / 3 .) 

(b) Find the largest disk U C H centered at i such that the map 

{1, S} \U '---> <C, 

is injective. Compute its image and its inverse. 
(c) Same as (b) for U centered at p with 

{l,ST, (ST)2} \U '---> <C, 

1.5. Let T E H be a point satisfying a quadratic equation 

T2 - aT + b, a,b E Z, a2 - 4b < O. 

Suppose further that Z[T] is the ring of integers of the quadratic imaginary 
field Q(T). 
(a) Prove that the fractional ideals of Q( T) are in one-to-one correspon­
dence with the lattices L contained in Q(T) which satisfy TL c; L. (In this 
context, a lattice is a free Z-module of rank 2.) 
(b) Prove that every ideal class is represented by a fractional ideal of the 
form 

satisfying the following conditions: 
(i) x, y E Z with y > 0, 
(ii) 4y2 - (4b - a 2 ):<:; (2x + a? :<:; y2, 

(iii) Ylx 2 + ax + b. 
Conclude that the class number of Q( T) is finite. 
(c) Prove that the ideal classes in (b) are distinct provided that we discard 
all pairs (x, y) satisfying either of the following conditions: 

(iv) 2x + a = -y, 
(v) x 2 + ax + b = y2 with 2x + a < O. 

(d) Use the above algorithm to compute the class number of the following 
quadratic fields: 

Q(H), Q(v'-5), Q(V-23), Q(V-29), Q(V-47). 
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1.6. (a) Prove that the natural reduction map 

is surjective. 
(b) Define r(N) to be the subgroup of reI) consisting of matrices congru­
ent to 1 (mod N), that is, 

r(N)={(ac db) Er(I): a==d==I(mOdN)}. 
b == c == 0 (mod N) 

Prove that 

if N = 2, 

ifN ~ 3. 

(c) Prove that r(N) is a normal subgroup of r(l) and that 

r(1)/r(N) ~ SL2 (Z/NZ) /{±1}. 

1.7. Define subgroups ro(N) and r1(N) of reI) by 

ro(N) = { (~ ~) E reI) : c == 0 (mod N) } , 

r 1 (N) = { (~ ~) E r(I) : a == d == 1 (mod N), c == 0 (mod N) } . 

(a) Prove that rl(N) is a normal subgroup of ro(N), and show that 

rO(N)/rl(N) ~ (Z/NZ)* /{±l}. 

(b) Prove that 

r 1 (N)/r(N) ~ Z/NZ (taken additively). 

(c) Prove the following two formulas: 

[reI) : ro(N)] = N I1(1 + p-l). 
piN 

if N = 2, 

if N ~ 3. 



Exercises 87 

1.8. Let X/C be a smooth projective curve of genus g. For any divisor D = 
L nx(x) with real coefficients nx E R, let 

[DJ = 2)nx](x) E Div(X) 
xEX 

be the integer part of D, where [nxJ denotes the greatest integer in n x . 

Also let 

.c(D) = {J E qX)* : div(f) ~ -D} U {O}. 

(a) Prove that £"'(D) ~ £..,([DJ). 
(b) Let k ~ 1 be an integer, and let Kx be a canonical divisor on X. 
Prove that 

{W E O~ : div(w) ~ -D} ~ £..,(kKx + [DJ). 

1.9. Let tjJ: H* -> X(l) be the usual projection, and let 

Do = HtjJ(i)) + HtjJ(p)) + (tjJ(oo)) E Div(X(l)) 0 Q. 

(a) Prove that the map 

M2k ------> {w E O~(l) : div(w) ~ -kDo}, f 1-----+ wf 

is an isomorphism. Here wf is the k-form described in (3.7a) having the 
property tjJ*wf = f(T) (dT)k. 
(b) Conclude that M2k ~ £..,(kKx(l) + [kDoJ). Use the Riemann-Roch 
theorem [AEC II.5.4J to calculate the dimension of M 2k , thereby giving an 
alternative proof of (3.lOc). 

1.10. (a) Prove that the set 

{G~G~ : a, bE z., a, b ~ 0, 2a + 3b = k} 

is a basis for M 2 k. 

(b) Conclude that the map 

is an isomorphism of graded C-algebras, where we grade qx, YJ by assign­
ing weights wt(X) = 2 and wt(Y) = 3. In particular, the functions G4(T) 
and G6(T) are algebraically independent over Co 
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1.11. This exercise outlines an elementary proof that the modular j-invariant 
defines a bijectivemap 

j : r(1)\H --+ C. 

Fix some jo E C, let H be a large real number, and let ~(H) c H be the 
region bounded by the curves 

ITI = 1, Re(T) =~, Re(T) = -~, Im(T) = H. 

Let a~(H) be the boundary of ~(H), which we take with a counter­
clockwise orientation. Assume for now that j(T) # jo for all T E a~(H). 
(a) Prove that 

#{T E ~(H) : j(T) = jo} = f= ( /t). dr. 
7l't i8:J'(H) J T - Jo 

(b) Prove that 

1· _1 1 j' (T) d - 1 
1m 2 . .(). T - • 

H_oo 7l't 8:J'(H) J T - Jo 

(Hint. Use j(T) = j(T+1) = j( -l/T) to cancel out most of the line integral, 
and use j(T) = q-l + (power series in q) to evaluate the remaining piece.) 
(c) Conclude that j(~) = C and that j is injective on the interior of~. 
(d) If j(TO) = jo for some T E a~, use a slightly modified region to show 
that j is still injective. Conclude that j maps the quotient r(l)\H bijec­
tively to C. 
(e) Use the bijectivity from (d) to prove the Uniformization Theorem (4.3). 

1.12. Let A, A' c C be lattices satisfying 

G4 (A) = G4 (A') 

Prove that A = A'. 

and G6 (A) = G6 (A'). 

1.13. *Let A = IEwI + 1Ew2 be a lattice given with an oriented basis, and let 'f/ : 
A --+ C be the associated quasi-period map. Prove that 

'f/(wI) "" 1 'f/(W2) " " 1 
~ = L-, L-, (mwl + nw2)2' w;- = L-, L-, (mwl + nw2)2' 

nEZ mEZ mEZ nEZ 
n¥O m¥O m¥O n¥O 

N.B. These double series are not absolutely convergent; the order of sum­
mation really does matter. 

1.14. (a) Provethat 

II (p(z + U; A) - p(z + V; A» 
u,vEj,A/A 

u¥v 

(b) Prove that 

II 
u,vE.t,A/A 

uiE±v (mod A) 
u,viEO (mod A) 

2 2 (2N 2 _3)(N2 _1) 
= ±NN p'(NZ;A)N -l,6,(A) 12 . 

2 (N 2_1)(N2 _3) 
(p(U;A) - p(v;A» = ±N-2 (N -3),6,(A) 6 . 
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1.15. Let EIC be the elliptic curve associated to the oriented lattice A = ZWl + 
Zw2. Recall the Weil pairing 

em : E[m] X E[m] --> J-tm 

defined in [AEC III §8]. Prove that on 

E[m] = m-lA/A C CIA, 

the Weil pairing is given by the formula 

(
awl + bw2 CWl + riMJ2) _ 27ri(ad-bc)/m em , - e . 

m m 

(Hint. Use (5.5) to write the elliptic functions appearing in the definition 
of em as products of (J" functions.) 

1.16. Let sex, y) be the Dedekind sum defined in §8. 
(a) Prove that 

s(l,y) = (y - ~;~ - 2). 

(b) Derive a similar formula for s(2, y). (The answer will depend on the 
parity of y.) 
(c) Prove that S(y2 + 1, y) = 0 for all integers y > o. 

1.17. Let 'Y = (~ ~) E SL2 (Z) with c> 0, and let <I> be as in (8.4) and (8.5). 

(a) Prove that <I>("(T) = <I>("() + 1. 
(b) • Prove that <I>("(S) = <I>("() - 3 provided that d > O. (Hint. Use the 
definition of <I> (8.5) and (8.3a) to show that 

2ri ri 
2(<I>("(S) - <I>("()) "24 = log(cSr + d) + log(r) -log(dr - c) - "2. 

Now evaluate at r = i.) 
(c) Use (b) and (8.5) to deduce Dedekind's reciprocity law (8.6), 

x y 1 
12s(x,y) + 12s(y,x) = - + - + - - 3. 

y x xy 

1.18. Let 

Po = II (1 _ qn), P l = II (1- qn-~), 
n;:::l n~l 

P2 = II (1 + qn), P3 = II (1 + qn-~). 
n2:1 n2:1 
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(a) Prove that 

I. Elliptic and Modular Functions 

{ ~ (~) - ~ (~) } ! = PoP;, 

{~G) _~C;l)}! =PoP{, 

{~C;l)_~G)}! =2qkpop;' 

(Hint. Use (5.6a) and the product expansion (6.4) of G.) 
(b) Prove that 

P1 P2 P3 = 1. 

(Hint. It's easier to show that POP1P2 P3 = Po.) 
(c) Use (a) and (b) to prove Jacobi's formula 

~(T) = (27r)12q II (1- qn)24. 
n2:1 

1.19. Verify the following identities for the Hecke and homothety operators acting 
as correspondences on the space of lattices £'. (Note that there are similar 
identities for the operators T2k(n) acting on the space of modular forms of 
weight 2k which will differ from these identities by various scalar factors.) 

(a) 

(b) T(pr)T(pS) = LpiR~T(pr+s-2i) for 0:::; T :::; S. 

i=O 

(c) T(m)T(n) = L dRdT (:~) . 
dl gcd(rn,n) 

1.20. (a) Let f(T) be a modular function of weight 2k. Prove that 

( df )2 d2f 
9 = (2k + 1) - - 2k· f·-

dT dr2 

is a modular function of weight 4k + 4. 
(b) If f is a modular form, prove that 9 is a cusp form. 
(c) If f is the Eisenstein series G4(T), prove that 

Similarly, if f = G6 (T), prove that 9 = CG4(T)~(T), and find the value of 
the constant c. 
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1.21. For any matrix a = (~ ~) with real coefficients and det(a) > 0, define 

/1(00, r) = cr + d. 

For any function f : H ----> C, define a new function fl[abk by 

(a) Prove that f is weakly modular of weight 2k if and only if 

(b) Prove that 

where wf is the differential form described in (3.7). 
(c) Verify the identities 
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(d) Prove that the action of T2k (n) on a weight 2k modular function f is 
given by the formula 

(See §9 for the definition of'Dn .) 

1.22. Let f, 9 E Mfk' The Petersson inner product of f and 9 is defined by the 
integral 

( -- k dr /\dr 
(f,g) = I/(r)g(r)(Imr) -2i(Imr)2' 

(Here J" is the usual fundamental domain for r(l)\H. See (1.5).) 
(a) Prove that the integral converges. (Note that f and 9 are assumed to 
be cusp forms.) 
(b) Prove that ( , ) is a positive definite Hermitian inner product on the 
complex vector space Mfk' 
(c) Let w(j, g) be the integrand 

-- k dr/\dr 
w(j,g) = f(r)g(r)(Imr) -2i(Imr)2 

Prove that for any matrix a with real coefficients and det(a) > 0, and any 
functions f, 9 on H, 
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In particular, if I, g E M2k and "( E SL2 (Z), then 

w(j,g) o"{ = w(j,g). 

(See exercise 1.21 for the notation II[ahk.) 
(d) • Prove that T2k(n) is self-adjoint with respect to the Petersson inner 
product: 

for all I,g E M~k' n ~ 1. 

(e) If I,g E M~k are normalized eigenfunctions for every T2k(n), prove 
that either 

(j,g) =0 or I=g· 

(f) Prove that 

{j E M~k : I is a normalized eigenfunction for all T2k (n), n ~ I} 

is a basis for M~k' 
1.23. Prove that if L(j,s) has an Euler product expansion as in (iii) of (11.1), 

then the coefficients of I satisfy the identities (i) and (ii) of (11.1). 

1.24. (a) Let G2k(r) = Ec(n)qn be the Fourier expansion of the Eisenstein 
series G2k. Prove that there are constants 11:1,11:2 > 0, depending only on k, 
such that 

for all n ~ 1. 

(b) Let I(T) = Ec(n)qn be a modular form of weight 2k which is not 
a cusp form (i.e. c(O) =f 0). Prove that there are constants 11:1,11:2 > 0, 
depending on I, such that 

for all n ~ 1. 

1.25. (a) Prove that the normalized Eisenstein series E2k is a normalized eigen­
function for every Hecke operator T2k(n). See (7.3.1) for the definition 
of E2k. 
(b) Let I E M2k be a modular form of weight 2k ~ 4 which is not a cusp 
form, and suppose that I is a normalized eigenfunction for every Hecke 
operator T2k(n). Prove that 1= E2k. 

1.26. Let f E M2k be a modular form of weight 2k ~ 4 which is not a cusp 
form, say f has the Fourier expansion I = c(O) + c(I)q + ... with c(O) =f O. 
Let L(j,s) be the L-series attached to I as described in §11. 
(a) Prove that L(j, s) can be analytically continued to C" {2k} and that 
it has a simple pole at s = 2k with residue 

( _I)kc(0)(271')2k 
reSB=2k L(j,s) = r(2k) 

(b) Let R(j, s) = (271rBr(s)L(j, s). Prove that L(j, s) satisfies the func­
tional equation R(j, 2k - s) = (_l)k R(j, s). 
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1.27. Let f(T) be a cusp form of weight 2k with k an even integer. 
(a) Prove that 

2 ~ c(n) 
L(J, k) = (k _ I)! ~ ~r(k, 2·rrn) , 

n~l 

where r(s,x) is the incomplete r-function 

r(s,x) = l=e- Je- t dt forsEC,x>O. 

(b) Prove that 

k 

L(J, k) = 2(27rl L c(n)e- 211"n L (27l"n)m~k _ m)!· 
n~J m=J 
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(Note that this series converges quite rapidly, since from (11.2), Jc(n) I grows 
no faster than n k.) 

1.28. Let f( T) = 2: c( n )qn be a cusp form of weight 2k, let p be a prime, and let 

X : (Z!pZ)* ---> C* 

be a primitive Dirichlet character and extend X to Z be setting X(p) = O. 
The Gauss sum g(X) associated to X is given by the formula 

p-l 

g(X) = L X(b)e211"ib/p . 

b=O 

We define the the twist of f by X to be the function 

n=l 

(As usual, we set x(n) = 0 if gcd(p, n) > 1.) We will denote the associated 
twisted L-series by 

L(J, x, s) = L(j(X, . ), s) = L c(n)x(n)n- s . 

( a) Prove that 

p-J 

x(n) = !g(x) L X( -a) e211"ian/p • 

p a=O 

(b) Let R(J, X, s) be the function 

( P)8r(S) 
R(J,X,s) = 27l" g(x)L(J,x,s). 

Prove that R has the integral representation 

R(j, X, s) = 1: {(Pt)S f;(~)t) + (_1)k(pt)2k-S f;~~)t) } ~t. 
(c) Prove that L(J, X, s) has an analytic continuation to all of C and that 
it satisfies the functional equation 

R(J, X, s) = (-l)k X( -l)R(J, X, 2k - s). 
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1.29. Let aI, a2, ... be a sequence of complex numbers, and suppose that there 
is a constant c > 0 such that Ian I ::; n C for all n. Let ,\ > 0 be a constant 
and k > 0 an integer, and define functions 

f(7) = Lane27rinT/>'. 

n21 

(a) Prove that ¢(s) is absolutely convergent provided Re(s) is sufficiently 
large. 
(b) Prove that f(7) is holomorphic on H. 
(c) 'Prove that the following two facts are equivalent: 

(I) <I>(s) has an analytic continuation to all ofC, is bounded on every 
vertical strip, and satisfies the functional equation 

<I>(k - s) = ±<I>(s). 

(A vertical strip is a region of the form CI ::; Re( s) ::; C2') 
(II) f (7) satisfies the functional equation 



CHAPTER II 

Complex Multiplication 

Most elliptic curves over <C have only the multiplication-by-m endomor­
phisms. An elliptic curve that possesses extra endomorphisms is said to 
have complex multiplication, or CM for short. Such curves have many spe­
cial properties. For example, the endomorphism ring of a CM curve E is 
an order in a quadratic imaginary field K, and the j-invariant and tor­
sion points of E generate abelian extensions of K. This is analogous to the 
way in which the torsion points of Gm (<C) = <C* generate abelian extensions 
of Ql. An important result in the cyclotomic theory is the Kronecker-Weber 
Theorem, which says that every abelian extension of Ql is contained in a 
cyclotomic extension. We will prove corresponding results for a quadratic 
imaginary field K. For example, we will show how to construct an elliptic 
curve E such that K (j (E)) is the Hilbert class field of K, and we will 
explain how to use the torsion points of E to generate the maximal abelian 
extension of K. 

We have generally not tried to assign credit for the results described 
in this chapter but will content ourselves with mentioning Kronecker, We­
ber, Fricke, Hasse, Deuring, and Shimura, who are largely responsible for 
that part of the theory of complex multiplication that we will cover. In 
particular, the algebraic proofs in §§4 and 5 are essentially due to Deuring, 
and the idelic description of complex multiplication in §§8 and 9 is mainly 
due to Shimura. 

The material included in this chapter barely scratches the surface of 
the theory of complex multiplication; a complete treatment of even the 
basics would fill (at least) an entire volume. The reader desiring further 
information might profitably consult the following sources, as well as the 
references they contain. We must especially acknowledge Lang [1 J, Serre [6J, 
and Shimura [1], whose expositions strongly influenced our organization of 
this chapter. 

Borel et al. [1 J: A development of the basic theory of CM using an analytic 
approach, together with some useful computational methods. 

Cassou-Nogues-Taylor [lJ: The basic theory of CM is developed in the first 
few chapters, followed by the use of CM to generate rings of integers. 
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Coates [1]: The basic theory of CM is described, followed by an introduc­
tion to the Iwasawa theory of CM elliptic curves. 

Lang [1]: Part II develops the theory of CM much as we do, with addi­
tional material on the arithmetic properties of special values of elliptic 
and modular functions. 

Perrin-Riou [1]: Iwasawa theory for CM elliptic curves. 
Serre [6]: A very brief, but beautifully written, summary of the main 

theorems of CM for elliptic curves. 
Shimura [1]: The idelic formulation of CM for elliptic curves is covered in 

Chapter 5 and is extended to abelian varieties in §§5.5 and 7.8. For a 
more complete treatment of the theory of complex multiplication on 
abelian varieties, see Shimura-Taniyama [1]. 

Vladut [1]: A nice historical account of Kronecker's Jugendtraum, the 
theory of complex multiplication, and the relationship with the theory 
of modular forms. 

The main prerequisite for this chapter is some familiarity with the basic 
theorems of class field theory. We have provided in §3 a resume (without 
proof) of the results we will need. We also assume that the reader is familiar 
with basic properties of elliptic curves over the complex numbers. 

§l. Complex Multiplication over C 

In this section we are going to discuss elliptic curves with complex multi­
plication from the viewpoint of complex analysis. Although interesting in 
its own right, this should be viewed mainly as the preparation needed to 
study arithmetic questions. 

Let E IC be an elliptic curve with complex multiplication. We know 
from [AEC VI.5.5] that End(E) Q9Q1 is isomorphic to a quadratic imaginary 
field and that End(E) is an order in that field. If End(E) ~ R c C 
and K = R Q9 QI, then we will say that that "E has complex multiplication 
by R" or that "E has complex multiplication by K." We also let 

RK = ring of integers (maximal order) of K. 

Much of the theory becomes easier if one restricts attention to elliptic curves 
with complex multiplication by R K , so we will usually take this course. For 
the general theory, see Lang [1] or Shimura [1, Ch. 5]. 

The uniformization theorem for elliptic curves [AEC VI. 5 .1] says that 
for every elliptic curve E IC there is a lattice A C C and an isomorphism 

f: CIA ---? E(C) 
z f-----+ (SJ(z,A),SJ'(z,A)). 
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We will denote the elliptic curve corresponding to a lattice A by EA; it is 
given by the usual Weierstrass equation 

If E has complex multiplication, then there are two ways to embed the 
order End( E) into C. It is important to pin down one of these embeddings. 
This is done by the following proposition, which also provides an important 
tool for studying arithmetic properties of various analytically defined maps. 
The reader might compare Proposition 1.1 with [AEC 111.5.3], which gives 
the case that a E Z. We will use Proposition 1.1 to make deductions in a 
manner similar to the way we used [AEC 111.5.3] to deduce [AEC 111.5.4] 
and [AEC 111.5.5]. 

Proposition 1.1. Let E/C be an elliptic curve with complex multipli­
cation by the ring R C C. There is a unique isomorphism 

[ .] : R --=::.. End(E) 

such that for any invariant differential wE OE on E (see [AEC III §5]), 

[a]*w = aw for all a E R. 

We say in this case that the pair (E, [ . ]) is normalized. 

PROOF. Choosing a lattice A and an isomorphism E ~ EA, it suffices to 
prove the proposition for EA. (Note that [AEC III §1, Table 1.2] says 
an isomorphism has the effect of multiplying an invariant differential by a 
constant.) 

Next we recall [AEC V1.5.3] that the endomorphism ring of EA is 
isomorphic to 

{a E C : aA C A} = R c C. 

More precisely, each a E R gives an endomorphism [a] : EA -+ EA deter­
mined by the commutativity of the following diagram: 

z ........ az 

[aJ 

We claim that this map [.] : R --=::.. End(E) satisfies [a]*w = aw. 
To verify our claim, we first note that any two non-zero invariant 

differentials on EA are scalar multiples of one another. This follows trivially 
from the fact that their quotient would be a translation invariant function, 
hence would be constant. So if we take any invariant differential w E OE 
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and pull back via the isomorphism f : C/ A -+ EA(C) , we obtain a multiple 
of the invariant differential dz on C/ A, say 

f*w = cdz. 

Now tracing around the commutative diagram shown above gives the de­
sired result: 

[al*w = (1-1)* 0 ¢: 0 j*(w) 

= (1-1)* 0 ¢:(cdz) = (1-1)*(cadz) = aw. 

o 

Corollary 1.1.1. Let (E1' [ . 1 E,) and (E2' [ . 1 E2 ) be normalized elliptic 
curves with complex multiplication by R, and let ¢ : E1 -+ E2 be an 
isogeny. Then 

for all a E R. 

PROOF. Let 0 -=f. w E OE2 be an invariant differential. Then 

(¢ 0 [alE,)* w = [alEl (¢*w) 

= a¢*w since ¢*w is an invariant differential on E1 

= ¢*aw 

= ¢* ([alE2 w ) 

= ([alE2 0 ¢)* w. 

Every non-zero isogeny E1 -+ E2 is separable (we're working in character­
istic 0), so [AEC II.4.2cl says that the map 

Hom(E1' E2) ---+ Hom(OE2 , OE,), 

is injective. Therefore ¢ 0 [alEl = [alE2 0 ¢. o 

We have seen in Chapter I that in order to understand particular ellip­
tic curves, it is often useful to study the set of all elliptic curves. Similarly, 
in order to study a particular elliptic curve with complex multiplication, 
it turns out that one should look at the set of all elliptic curves with the 
same endomorphism ring. Of course, by "elliptic curves" we really mean 
isomorphism classes of elliptic curves, which leads us to define the following 
set: 

e.G.G(R) = {elliptic curves E /C with End(E) ~ R} 
isomorphism over C 

{lattices A with End(EA) ~ R} 
homothety 
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If we start with a quadratic imaginary field K, how might we construct 
an elliptic curve with complex multiplication by RK? If a is a non-zero ideal 
of R K , or more generally if it is a non-zero fractional ideal of K, then using 
the embedding a eKe C we see that a is a lattice in C. (This is clear 
from the definition of fractional ideal, which for quadratic imaginary fields 
implies that a is a Z-module of rank 2 which is not contained in JR.) Hence 
we can form an elliptic curve Ea whose endomorphism ring is 

End(Ea) ~ {a E C : aa C a} 
= {a E K : aa C a} since a C K 

since a is a fractional ideal. 

Thus each non-zero fractional ideal a of K will give an elliptic curve 
with complex multiplication by R K . On the other hand, since homothetic 
lattices give isomorphic elliptic curves, we see that a and ca give the same 
elliptic curve in U: ... .G(RK). This suggests that we look at the group of 
fractional ideals modulo principal ideals, which the reader will recognize as 
one of the fundamental objects of study in algebraic number theory: 

e.G(RK ) = ideal class group of RK 

{non-zero fractional ideals of K} 
{non-zero principal ideals of K} . 

If a is a fractional ideal of K, we denote by a its ideal class in e.G(RK). 
We have seen that there is a map 

More generally, if A is any lattice with EA E £.G.G(RK) and a is any non­
zero fractional ideal of K, we can form the product 

We will now prove the elementary, but crucial, fact that this induces a 
simply transitive action of the ideal class group e.G(RK) on the set of 
elliptic curves £.G.G (RK ). This proposition forms the basis for all of our 
subsequent work on complex multiplication. 

Proposition 1.2. (a) Let A be a lattice with EA E £.G.G(RK)' and let a 
and b be non-zero fractional ideals of K. 

(i) aA is a lattice in C. 

(ii) The elliptic curve EaA satisfies End(E"A) ~ RK. 

(iii) EaA ~ EbA if and only if a = b in e.G(RK). 

Hence there is a well-defined action of e.G(RK ) on £.G.G(RK) determined 
by 
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(The reason for using ll-l instead of II will become apparent below.) 
(b) The action ofe,qRK ) on C£.,,qRK) described in (a) is simply transi­
tive. In particular, 

PROOF. (a) (i) By assumption, End(EA) = R K , so RKA = A. Choose a 
non-zero integer d E Z so that da c RK, which is possible by the definition 

1 
of fractional ideal. Then llA C dA, so llA is a discrete subgroup of C. Simi-

larly, choosing a non-zero integer d so that dRK C ll, we find that dA ellA, 
hence llA spans C. This proves that llA is a lattice. 
(ii) For any a E C and any fractional ideal a =f. 0, we have 

Hence 

End(EIlA) = {a E C aaA C aA} 

= {a E C : aA C A} = End(EA) = RK. 

(iii) From [AEC VI.4.1.l], the isomorphism class of EllA is exactly deter­
mined by the homothety class of aA. In other words, EllA ~ EbA if and 
only if there is acE C' such that llA = cbA. Multiplying by a- 1 and using 
the fact that RK A = A, we see that 

Similarly, multiplying by c-1 b- 1 gives 

Hence if EllA ~ EbA, then both Cll- 1 b and c- 1ab- 1 take A to itself, so they 
are both contained in RK, and hence are equal to RK. Therefore 

II = cb, 

from which we see immediately that c E K and a = b. This completes the 
proof of (iii). 

Finally, the trivial observation 

shows that the definition a * EA = EIl-lA gives a group action of e£.,(RK) 
on C£.,,qRK). 
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(b) Let EAl and EA2 be two elliptic curves in £'cL(RK). To show that 
the class group e,C(RK) acts transitively on £,C,C(RK), we must find a 
fractional ideal a with the property a * EAl = EA 2 • Choose any non-zero 

1 
element >'1 E AI, and consider the lattice al = Al AI. From [AEC VI.5.5] 

we see that al is contained in K, and by assumption it is a finitely gen­
erated RK-module, hence it is a fractional ideal of K. Similarly, choosing 

1 
a non-zero A2 E A2, we obtain a second fractional ideal a2 = A2 A2 of K. 

Then 

Note the last equality follows from the fact that homothetic lattices give iso­
morphic elliptic curves. This shows that the action of eL(RK ) on £'cL(RK) 
is transitive. 

To prove that the action is simply transitive, we must show that if 
a * EA = b * EA, then a = b. But this is immediate from part (ii) of (a). 

o 

We have already seen two sorts of elliptic curves which have complex 
multiplication, namely the curves with j = 0 and j = 1728 whose auto­
morphism groups are strictly larger than {±1}. (See [AEC lILlO.l].) Now 
we'll look at these curves from a complex analytic viewpoint. 

Example 1.3.1. Let A = Z[i] be the lattice of Gaussian integers. Then 
the endomorphism ring of EA is Z[i]. In particular, Aut(EA) ~ {±1, ±i}, 
so our general theory [AEC IILlO.I] tells us that j(EA) = 1728. But we 
can see this directly in the following way. The lattice A satisfies iA = A. 
Hence 

g3(A) = g3(iA) = i6 g3(A) = -g3(A), 

so g3(A) = o. Therefore EA is given by the Weierstrass equation 

from which we see immediately that j(EA ) = 1728. 
Since j(EA) is rational, we know that EA is isomorphic over C to an 

elliptic curve defined over Ql; for example, it is isomorphic to the curve y2 = 

x 3 + x. But it does not follow that g2(A) itself is in Ql. In fact, a theorem 
of Hurwitz [1] says that 

(11 dt )4 
g2 (Z[i]) = 64 ~ 

o 1 - t 4 
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Example 1.3.2. Similarly, let p = e27ri / 3 be a primitive cube root of unity, 
and let A = Z[p] be the associated lattice. Then pA = A, so 

g2(A) = g2(pA) = p4g2(A) = pg2(A), 

and hence g2(A) = o. Thus EA is given by the equation 

EA : y2 = 4x3 - g3(A), 

so j(EA ) = O. This confirms [AEC III.lO.l], since Aut(EA) = Z[p]* = 
{±l, ±p, ±p2}. Further, we see that EA is C-isomorphic to the curve 
y2 = x 3 + 1, which is defined over {Q. 

If E has complex multiplication by K, we will eventually use torsion 
points of E to generate abelian extensions of K. We could restrict ourselves 
to studying points of order m for various integers m, but because E has 
complex multiplication, there are other natural finite subgroups to look at. 
In general, if a is any integral ideal of R K , we define 

E[a] = {p E E : [alP = 0 for all a E a}. 

We call E[a] the group of a-torsion points of E. For example, if a = mRK, 
then E[a] is just E[m]. Notice that the definition of E[a] depends on 
choosing a particular isomorphism [.] : RK .::. End(E); we always choose 
the normalized isomorphism described in (1.1). 

If a is an integral ideal of RK, then A c a-I A. This means that there 
is a natural homomorphism 

Z f-----+ Z, 

which in turn induces a natural isogeny 

EA ---+ a * EA· 

The following useful proposition gives a precise description of this isogeny 
and of E[a]. 

Proposition 1.4. Let E E £.GqRK), and let a be an integral ideal 
ofRK· 
(a) E[a] is the kernel of the natural map E ~ a * E. 
(b) E[a] is a free RK/a-module of rank 1. 

PROOF. Let A be a lattice corresponding to E. Fixing an analytic isomor­
phism C/ A ~ E(C), we find that 

E[a]~{zEC/A: az=OforallaEa} 

= {z E C : az E A for all a E a} / A 

= {z E C : za C A} / A 

= a-IA/A 

= ker (C/A ~ C/a-IA) 

= ker(E ~ a * E). 
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(b) Continuing with the notation from (a), we choose a non-zero lattice 
element'x E A. Then [AEC VI.5.5] says that the lattice (1/ 'x)A is contained 
in K, and it is a finitely generated RK-module, so it is a fractional ideal 
of K. Since homothetic lattices give isomorphic elliptic curves, we may 
assume that A is a fractional ideal of K. 

From (a) we know that E[a] ~ a-lA/A as RK/a-modules. Note that 
if q is any integral ideal dividing a, then the fact that RK A = A implies 

(a-lA/A) Q9RK (RK/q) ~ a-lA/(A+ qa-lA) = a- lA/qa- 1A. 

Hence if we use the Chinese Remainder Theorem to write 

RK/a ~ II RK/pe(p), then E[a]~ II a-lA/pe(p)a-lA. 
p prime p prime 

So it suffices to prove that if b is a fractional ideal of RK (such as b = a-I A) 
and if pe is a power of a prime ideal, then b/peb is a free RK /pe-module of 
rank one. 

To ease notation, we momentarily write 

and 

Notice that R' is a local ring with maximal ideal p'. (In fact, the only 
ideals in R' are (0), p,e-l, ... , p', (1).) Consider the quotient 

b'/p'b' ~ b/pb as a vector space over the field R'/p' ~ RK /p. 

We claim that it is a one-dimensional vector space. 
First we observe that any two elements of bare RK-linearly dependent, 

so the dimension of b/pb over RK/P is at most one. On the other hand, 
if the dimension were zero, then we would have b = pb, which is absurd. 
Hence the dimension is one. By Nakayama's lemma (Atiyah-MacDonald [1, 
Prop 2.8]) applied to the local ring R' and the R'-module b', it follows 
that b' is a free R'-module of rank one. This completes the proof of Propo­
sition 1.4. 

o 

We can use (1.4) to compute the degree of the isogeny E ---> a * E, as 
well as the degree of an endomorphism [0:] : E ---> E. 

Corollary 1.5. Let E E £.c.qRK ). 

(a) For all integral ideals a C R K, the natural map E ---> a * E has de­
gree N{§ a. 
(b) For all 0: E RK, the endomorphism [0:] : E ---> E defined in (1.1) has 
degree IN{§ 0:1· 

PROOF. Both parts are immediate from (1.4). For example, 

deg(E ---> a * E) = #E[a] 
K = N,Qa 

from (1.4a) 
from (l.4b). 
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Similarly, 

deg[a] = #ker[a] = #E[aRK] = N{§(aRK) = IN{§al. 

D 

Remark 1.6. Before going on to arithmetic questions, we want to make 
one brief remark about terminology. The classical name for the j-invariant 
of an elliptic curve with complex multiplication is a singular j -invariant. 
This terminology, meant to single out such j-invariants as being unusual, 
is somewhat unfortunate, since it suggests that the elliptic curve itself has 
singularities. We will not use the word "singular" in this sense, but the 
reader should be aware of this usage, since it is still fairly common. 

Notice that an elliptic curve defined over a finite field always has a 
"singular" j-invariant, since its endomorphism ring is always larger than Z 
[AEC, V.3.1]. In those rare cases that the endomorphism ring is a quater­
nion algebra, the singularity is especially exceptional, which explains the 
origin of the term "supersingular" to describe such curves. 

§2. Rationality Questions 

In this section we will study the field of definition for complex multiplica­
tion elliptic curves and their endomorphisms. We begin by showing that 
every elliptic curve with complex multiplication is defined over an algebraic 
extension of Q. 

Proposition 2.1. (a) Let EIC be an elliptic curve, and let (j : C ----+ C be 
any field automorphism of C. Then 

End(EO") ~ End(E). 

(b) Let E IC be an elliptic curve with complex multiplication by the ring 
of integers RK of a quadratic imaginary field K. Then j(E) E Q. (Later 
we will show that j(E) is an algebraic integer. See (II §6) and (V. 6. 3).) 
(c) 

U.J£.,(RK ) ~ {elliptic curves EIQ with End(E) ~ RK}. 

isomorphism over Q 

(Note that the original definition of £££.,(RK ) is in terms of isomorphism 
classes of elliptic curves over C, not over Q.) 

PROOF. (a) This is clear, since if ¢ : E ----+ E is an endomorphism of E, 
then ¢O" : EO" ----+ EO" is an endomorphism of EO". 
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(b) Let a E Aut(C) be as in (a). Now E" is obtained from E by letting a 
act on the coefficients of a Weierstrass equation for E, and j(E) is a rational 
combination of those coefficients, so it is clear that 

On the other hand, (a) implies that End(E") ~ RK, so (1.2b) implies 
that E" is in one of only finitely many ([:-isomorphism classes of elliptic 
curves. Since the isomorphism class of an elliptic curve is determined by 
its j-invariant [AEC III.1.4b], it follows that j(E)" takes on only finitely 
many values as a ranges over Aut(C). Therefore [Q(j(E)) : Q] is finite, 
so j(E) is an algebraic number. 
(c) For any subfield F of C, let us momentarily denote by e,CJ:.JF(RK) the 
set 

e["[,,F(RK) ~ {elliptic cu~ves E/~ with End(E) ~ RK}. 
IsomorphIsm over F 

If we fix an embedding Q C C, then there is a natural map 

We need to show that this map is a bijection. 
Let E/C represent an element of e["[,,rc(RK). Then we have: 

(i) j(E) E Q, from (b); 
(ii) there is an elliptic curve E' /Q(J(E)) with j(E') = j(E), from 

[AEC III.1.4c]; 
(iii) E' is isomorphic to E over C, from [AEC III.1.4b]. 

These three facts imply that seE') = E, which proves that s is surjective. 
Next let EdQ and E2/Q represent elements of c["[,,iQ(RK ), and sup­

pose that s(E1) = S(E2)' Then j(El) = j(E2) from [AEC III.1.4b]' and 
another application of [AEC III.1.4b] says that E1 and E2 are isomorphic 
over Q. Hence El and E2 represent the same element of e["[,,iQ (RK), which 
shows that s is also injective. 0 

Next we study the effect that field automorphisms have on the maps 
[a] : E ----t E described in (1.1). In particular, we will find a field of defini­
tion for these maps. Note that if <I> is an endomorphism of E and a is any 
automorphism of C, then <1>" will be an endomorphism of E". 

Theorem 2.2. (a) Let E/C be an elliptic curve with complex multiplica­
tion by the ring R C C. Then 

for all a E R and all a E Aut(C), 

where the isomorphisms [']E : R ~ End(E) and [']E~ : R ~ End(E") 
are normalized as in (1.1). 
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(b) Let E be an elliptic curve defined over a field L c C and with com­
plex multiplication by the quadratic imaginary field K c C. Then every 
endomorphism of E is defined over the compositum LK. 
(c) Let Ed Land E2 / L be elliptic curves defined over a field L c C. Then 
there is a finite extension L' / L such that every isogeny from E1 to E2 is 
defined over L'. 

PROOF. Let w E OEo" be a nOll-zero invariant differential on E. Then the 
normalization described in (1.1) says that 

[a]~w = ow for all 0 E R. 

Further, wO" is an invariant differential on EO", so again from (1.1) we get 

for all ;3 E R. 

Now for any a E R and any (J" E Aut(C), we compute 

Thus [a] EO" and [aCT] E~ have the same effect on the invariant differential WCf • 

Now we use [AEC II.4.2c]' which says that the natural map 

End(E") ---> End(nEa), 

is injective. (Note we are working in characteristic 0, so all finite maps are 
separable.) This proves that [a]E<T = [aIT]w. 
(b) Let (J" E Aut(C) be an automorphism of C that fixes L. Since E is 
defined over L, we can take a ~Weierstrass equation for E with coefficients 
in L, so E Cf = E. Then (a) says that for all 0 E R, 

If in addition (J" fixes K, then aa = a. This proves that 

[OlE IT = [alE for all (J" E Aut(C) such that (J" fixes LK. 

Hence the endomorphism [a] is defined over LK. 
(c) As in (b), we take Weierstrass equations for E1 and E2 with coefficients 
in L. Let ¢ E Hom(E1' E2) be an isogeny. Then for any (J" E Aut(C) such 
that (J" fixes L, we have ¢CT E Hom(E1,E2). Note that deg¢a = deg¢. 
From [AEC III.4.11], we see that an isogeny ¢ E Hom(E1, E 2 ) is determined 
by its kernel, at least up to an automorphism of E1 and E2. Since E1 has 
only finitely many subgroups of any given finite order, and since Aut(E1 ) 

and Aut(E2 ) are finite, it follows that Hom(E1 , E 2 ) contains only finitely 
many isogenies of a given degree. Therefore the set 

{¢CT : (J" E Aut(C), (J" fixes L} 
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is finite, which implies that ¢ is defined over a finite extension of L. Fi­
nally, we observe from [AEC III.7.5] that Hom(El' E 2 ) is a finitely gener­
ated group, so it suffices to take a field of definition for some finite set of 
generators. 0 

Remark 2.2.1. Notice that the proof of (2.1b) together with the estimate 
in (1.2b) shows that if End(E) ~ RK, then 

where hK = # e£(RK) is the class number of K. We will prove later (4.3) 
that this is an equality. In particular, j(E) is in Q if and only if K has 
class number 1. For a complete list of these Q-rational j-invariants, see 
Appendix A §3. 

Remark 2.2.2. In view of (2.2.1), we see that if RK has class number 1, 
then E has a model defined over Q. We have already seen examples of this 
in (1.3.1) and (1.3.2), where we looked at curves with complex multiplica­
tion by Z[i] and Z[p]. (Here p = e271"i/3.) We can also illustrate (2.2) for 
these curves. For example, to normalize the curve 

we use the isomorphism [.j : Z[ij -> End(E) determined by 

[i](x,y) = (-x,iy). 

To see that this is the correct normalization, we compute 

[ij*dx = d(~x) =i dx . 
y zy y 

If a E Aut(CC) is complex conjugation, then 

([i](x,y))"" = (-x,iy)O" = (_xO",iO"yO") 

= (_xO",_iyO") = [_i](xO",yO") = [iO"](xO",yO"). 

Hence [W equals [iO"], as it should by (2.2). 
Similarly, for the curve 

we take the isomorphism [.] : .z[p] -> End(E) determined by 

[p](x, y) = (px, y). 
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Remark 2.2.3. There is an interesting converse to (2.1b). Suppose that 
A = Zwl + Zw2 is a lattice satisfying 

that is, WI/W2 is an algebraic number of degree at least 3 over 1Ql. Then one 
can show that j(EA ) is a transcendental number. Notice the analogy with 
the Gel'fond-Schneider theorem, which says that if a E Q with a i=- 0,1 
and if f3 satisfies 2 ::; [1Ql(f3) : 1Ql) < 00, then a{J is transcendental. The 
transcendence of j(EA) was first proven by Schneider. The interested reader 
will find a proof of this fact in Schneider [1, Thm. 17] or Waldschmidt [1, 
Cor. 3.2.4]. For a general account of the transcendence properties of elliptic 
and modular functions, see for example Waldschmidt [1, Ch. 3]. 

It is an immediate consequence of (l.4b) and (2.2b) that the torsion 
points of E generate abelian extensions of K (j (E) ). Before giving the 
proof, we remind the reader of the analogous result for cyclotomic fields. 
Thus let (E C* be a primitive Nth-root of unity and let (j E Gal(IQl«()/IQl). 
Then (17 is another primitive Nth_root of unity, say C = (PC 17 ) , and it is 
an easy matter to check that the map 

p: Gal(IQl«()/IQl) ---> Aut(ILN) ~ (7!../N7!..)* 

is an injective homomorphism. (Here ILN = e is the group of Nth_roots 
of unity.) Hence 1Ql«()/1Ql is an abelian extension. We now prove the same 
thing for elliptic curves. (For another proof, see exercise 2.6.) 

Theorem 2.3. Let E Ie be an elliptic curve with complex multiplication 
by the ring of integers RK of the quadratic imaginary field K, and let 

L = K(j(E), Etars ) 

be the field generated by the j-invariant of E and the coordinates of all 
of the torsion points of E. Then L is an abelian extension of K(j(E»). 
(N.B. In general, L will not be an abelian extension of K.) 

PROOF. To ease notation, let H = K(j(E)). Further let 

Lm = K(j(E), E[m]) = H(E[m]) 

be the extension of H generated by the m-torsion points of E. Since L is 
the compositum of all of the Lm's, it suffices to show that Lm is an abelian 
extension of H. 

As usual, there is a representation 

p: Gal(K / H) ---> Aut(E[m]) 
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determined by the condition 

p(a)(T) = T a for all (J E Gal(R/H) and all T E E[m]. 

(See [AEC III §7].) For an arbitrary elliptic curve, all we would be able to 
deduce from this is that Gal(Lm/ H) injects into the automorphism group 
of the abelian group E[m], so we would find that Gal(Lm/ H) is isomorphic 
to a subgroup of GL2 (Z/mZ). 

But the fact that our elliptic curve has complex multiplication gives us 
additional information. We take a model for E defined over H = K(j(E)), 
and then (2.2b) says that every endomorphism of E is also defined over H. 
So elements of Gal(Lm/ H) will commute with elements of RK in their 
action on E[m]: 

for all (J E Gal(LTn/ H), T E E[m], and a E RK. 

In other words, p is actually a homomorphism from Gal( R / H) to the group 
of RK /mRK-module automorphisms of E[m]. Hence p induces an injection 

Now we use (l.4b), which says that E[m] is a free RK/mRwmodule 
of rank one. This implies that 

and hence Gal(Lm/ H) is abelian. o 

Before proceeding with the general theory, we will pause to construct a 
few more examples of elliptic curves having complex multiplication. More 
precisely, we will find all elliptic curves that possess an endomorphism of 
degree 2. We already know one such curve, namely the curve y2 = x 3 + x 
with complex multiplication by Z[i], since the map [1 + i] has degree 2. 
From (1.5b), we need to find all quadratic imaginary fields K that have an 
element a E RK satisfying IN[fal = 2. This is an easy exercise (which we 
leave to the reader), the answer being that there are three such fields: 

K =Q(R), RK = Z [R], a = 1 + R; 

K = Q (vC2), RK = Z [vC2], a= vC2; 

K = Q (V-'l), R =Z[l+P] l+P a= K 2' 2 

Since all three of these rings RK have class number 1, we know from (2.2.1) 
that the corresponding elliptic curves have j-invariants in Q. 
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How can we find equations for these curves and their endomorphisms? 
It is possible to proceed analytically, but we will take another approach. 
If ¢ : E -> E has degree 2, then its kernel E[¢] consists of two points, 0 
and a point of order 2. If we move the point of order 2 to (0,0), then E 
will have a Weierstrass equation of the form 

For this elliptic curve E, we have already determined an elliptic curve E' 
and an isogeny ¢ : E -> E' whose kernel is {O, (0, O)}, namely 

(See [AEC III.4.5]' although note we have taken the negative of the isogeny 
defined there and have substituted x 3 + ax2 + bx for y2.) Hence E will 
possess an endomorphism of degree 2 if and only if this E' is isomorphic 
to E. 

To see when E and E' are isomorphic, we set their j-invariants to be 
equal and solve for a and b, or more precisely for the ratio a2 lb. Now 

'(E) = 256(a2 - 3b)3 
J b2(a2 - 4b) and '(E') = 16(a2 + 12b)3 

J b(a2 _ 4b)2 . 

Setting j(E) = j(E'), we find after some calculation that 

The first two cases, b = 0 and a2 - 4b = 0, give singular curves, so 
we discard them. The third case, a = 0, gives the curve y2 = x3 + bx 
with j(E) = 1728 and complex multiplication by Z[i]. 

Next consider the case a2 - 8b = O. Taking b = 2 and a = 4 gives the 
curve 

E : y2 = x 3 + 4x2 + 2x 

with j (E) = 8000 = 26 53 . Similarly, E' is given by the equation 

E' : y2 = X 3 - 8X2 + 8X 

with j-invariant j(E') = 8000. Hence E and E' are isomorphic, and we 
easily find an isomorphism 

E' --+ E, (X Y) f-----+ (-~X __ l_y) . 
, 2' 2H 
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Composing the isogeny E -+ E' with this isomorphism, we obtain the 
desired endomorphism of E of degree 2: 

E : y2 = x 3 + 4x2 + 2x 

(x,y) 

E 

(-~ (X+4+~) ,--y (1- ~)). 
2 x 2yC2 x 2 

There remains the case 16a4 - 81a2 b + 324b2 , which (taking a = 36) 
leads to the elliptic curves 

E: y2 = x3 + 36x2 + 18 (9 + 50) x, 

E': y2 = X 3 -72X2 + 72 (9 - 50) X 

with j(E) = j(E') = -3375 = -33 53 . We will leave it to the reader to 
make the appropriate variable changes which lead to models for E and E' 
over Q and to an explicit formula for the corresponding endomorphism 
of degree 2. The final answer is given in the following summary of our 
calculations. 

Proposition 2.3.1. There are exactly three isomorphism classes of el­
liptic curves over <.C which possess an endomorphism of degree 2. The 
following are representatives for these curves and endomorphisms. 

(i) E: y2 = x 3 + x, j = 1728, a = 1+O, 

(ii) E: y2 = x 3 + 4x2 + 2x, j = 8000, a =.;=2, 

(iii) E : y2 = x 3 - 35x + 98, j = - 3375, l+H 
a= 

2 

We now resume our development of the general theory of complex 
multiplication. From here on we will use (2.1) to identify ££..,qRK) with 
the Q-isomorphism classes of elliptic curves having complex multiplication 
by RK. Then there is a natural action of Gal(K/K) on ££"'£"'(RK) defined 
by the property that a E Gal( K / K) sends the isomorphism class of E to 
the isomorphism class of El7. On the other hand, (1.2b) says that the action 
of the class group e£"'(RK) on ££"'£"'(RK) is simply transitive, so there is 
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a unique a E e£.,(RK ) , depending on u, such that a * E = ElI. In other 
words, there is a well defined map 

characterized by the property 

ElI=F(u)*E for all u E Gal(R / K). 

It is by studying this map F that we will be able to precisely describe 
the field K(j(E)). An easy property of F, which we will prove below, is 
that F is a homomorphism. A much deeper property, which we will also 
prove, is that F is independent of the choice of the curve E E ££'-£.,(RK). 
The astute reader will have noticed that F is actually well defined on the 
larger group Gal(Q/Q). However, it is only on the smaller group Gal(R / K) 
that F will be independent of E. 

Before proving these basic properties about F, we want to stress that 
the definition of F has an essential analytic component, since F(u) depends 
on the way in which the lattice of an elliptic curves changes when the lattice 
is multiplied by an ideal. Thus if we denote by j(A) the j-invariant of 
the elliptic curve EA, then as described in Chapter I, j(A) is an analytic 
function of A. The map F is then characterized by the formula 

so F converts the algebraic action of u into the analytic action of multipli­
cation by F ( u ) -1 . 

Proposition 2.4. Let K /Q be a quadratic imaginary field. There exists 
a homomorphism 

uniquely characterized by the condition 

ElI=F(u)*E for all u E Gal(R/K) and all E E e£'-£'-(RK)' 

PROOF. As described above, (2.1) and (1.2b) ensure that for any element 
u E Gal(R / K) and any E E ££.-£.,(RK), there is a unique a E e£.,(RK) with 
ElI = a * E. So for a fixed E, we get a well-defined map 

F: Gal(R/K) --> e£.,(RK) 

determined by the property ElI = F(u) * E for all u E Gal(R/K). It is 
easy to check that F is a homomorphism, since 

F(UT) * E = ElIT = (ET)lI = (F(T) * Et 

= F(u) * (F(T) * E) = (F(u)F(T») * E. 
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(Note that Gal(KjK) acts on the left.) 
It remains to show that the definition of F is independent of the choice 

of a particular elliptic curve in c£..J:,,(RK). So let E l , E2 E Cf..,qRK) , 
let a E Gal(KjK), and write Ef = ill * El and E2 = il2 * E 2 . We need to 
show that ill = il2' Since ef..,(RK) acts transitively on Cf..,f..,(RK), we can 
find some b with E2 = b * E l . Then 

So if we can prove that (b * EdO' is equal to b * Ef, then we can cancel b 
from both sides to conclude that Ef = (il2illl) * Ef; and then (1.2(iii)) 
will give 01 = 02. Hence the following proposition completes the proof of 
Proposition 2.4. (Note that bO' = b, since be K and a E Gal(K j K).) 

Proposition 2.5. Let E jQ be an elliptic curve representing an element 
of cf..,f..,(RK), let 0 E ef..,(RK ), and let a E Gal(QjlQ). Then 

Although the statement of Proposition 2.5 looks relatively innocuous, 
it is giving a relationship between the algebraic action of a and the ana­
lytic action of multiplication by o. This suggests that the proof may not 
be entirely straightforward. The main idea is to find an algebraic descrip­
tion of 0 * E. One of the tools we will need is the following lemma from 
commutative algebra, whose proof we leave as an exercise. 

Lemma 2.5.1. Let R be a Dedekind domain, let a be a fractional ideal 
of R, and let M be a torsion-free R-module. Then the natural map 

¢ : a- 1M -----+ HomR(a, M) 
x f---t (¢x: a f---) ax) 

is an isomorphism. 

PROOF (of Proposition 2.5). Choose a lattice A so that E 9! EA. Also fix 
a resolution (i.e., an exact sequence) 

R'K ~ RK -----+ a -----+ 0, (i) 

where A is an m x n matrix with coefficients in RK. The idea underlying 
the proof of Proposition 2.5 is that we should have 

Cja- l A 9! il * E 9! Hom(a, E), 

where we want to describe Hom( a, E) as an algebraic variety and not just 
as an RK-module. (Here and in the following, Hom means homomorphisms 
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of RK-modules.) \Ve begin by applying Horn to the "product" of the exact 
sequence (i) and the exact sequence of RK-modules 

o -----> A -----> e -----> E -----> O. (ii) 

This gives us the following commutative diagram: 

0 0 0 

1 1 1 
0 -----> Hom(a, A) -----> Hom(a,q -----> Hom(a, E) 

1 1 1 (iii) 

0 -----> Hom(R7(,A) -----> Hom(R7(,q -----> Hom(R7(, E) 

lA lA lA 
0 -----> Hom(RK , A) -----> Hom(RK,q -----> Hom(RK' E) 

For any RK-module M, we have Hom(RK,AJ) ~ AI", and applying 
Lemma 2.5.1, first with M = A and then with AI = C, we get 

and Hom(a, q = a- 1e = C, 

Using these isomorphisms, we can rewrite the diagram (iii) as 

0 0 0 

1 1 1 
0 -----> a- 1 A -----> e -----> Hom(a,E) 

1 1 1 (iv) 

0 -----> A" -----+ en -----+ En -----+ 0 

l'A ltA ltA 
0 -----+ Am -----+ em -----+ Em -----+ 0 

Here tA is the transpose of the matrix A, and the bottom two rows are 
clearly exact on the right, since they are just a number of copies of the 
exact sequence (ii). 

Applying the snake lemma to the bottom two rows of (iv) gives the 
exact sequence 

o -----> a -1 A -----> e -----+ (ker ~on ~ Em) -----+ An jtAA m . (v) 
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Notice that En ~ Ern is an algebraic map of algebraic varieties, since tA is 
an m x n matrix whose coefficients are elements of End(E) = RK. Hence 
the inverse image of the point (0,0, ... ,0) E Em is an algebraic subvariety 
of En. Of course, En and Em are group varieties, so what we are saying is 

that the kernel of En ~ Ern is an algebraic group variety. Further, (2.2a) 
says that for any CT E Aut(IC), the corresponding map from E an ----> Earn 
is obtained by applying CT to the entries of tA, treating those entries as 
elements of RK C IC. 

On the other hand, looking at the complex topology for one more mo­
ment, we note that An;tAAm is discrete and lC/a- 1A is connected. Hence 
the exact sequence (v) gives 

(a * E)(iC) = lC/a- 1 A ~ identity component of ker(En ~ Ern). 

We have thus described a * E algebraically in terms of the algebraic 

map En ~ Em, and it now easy to finish the proof of Proposition 2.5. 
For any CT E Gal(rQ/Q), we apply our characterization first to E and then 
to E(T to deduce that 

(a * E)(T = (identity component of ker(En ~ E'n) r 
= identity component of ker ( (Ea) 11 t~ (Ea) Tn) 
= aCT * Ea. 

This completes the proof of Proposition 2.5, and with it the proof of Propo­
sition 2.4. 

o 

§3. Class Field Theory - A Brief Review 

Class field theory describes the abelian extensions of a number field K 
in terms of the arithmetic of K. The theory of complex multiplication 
provides an analytic realization of class field theory for quadratic imaginary 
fields, much as cyclotomic theory gives a realization of class field theory 
for Q. In this section we will briefly review, without proof, the basic facts 
from class field theory which will be used in the sequel. We will begin with 
the classical version using ideals and ideal class groups. Afterwards we will 
present the more modern idelic version. For proofs of the theorems stated 
in this section and for additional material on (global) class field theory, the 
reader might consult Lang [5], Tate [7], or Neukirch [lJ. We will mostly 
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restrict attention to totally imaginary fields, that is, fields with no real 
embeddings, since (except for §7) that is the only case we will use in the 
sequel. 

Let K be a totally imaginary number field and let L be a finite abelian 
extension of Kj that is, L/ K is Galois with abelian Galois group. As usual, 
we write RK and RL for the rings of integers of K and L respectively. Let p 
be a prime of K which does not ramify in L, and let q:J be a prime of L 
lying over p. Thus the picture is 

L q:J RL/q:J 
I finite abelian 

extension 
I unra~ified 

prIme 
I extension of 

finite fields 

K p RK/P 

By restriction, we get a homomorphism from the decomposition group of q:J 
to the Galois group of the residue fields, 

{a E Gal(L/ K) : q:J" = q:J} --- (~:7~ ~~~~~~/p) . 
The right-hand Galois group is cyclic, generated by the Frobenius auto­
morphism 

Further, since p is unramified, there is a unique element ap E Gal(L/ K) 
which maps to Frobenius. Our notation reflects the fact that ap is deter­
mined by the prime ideal p in K. For a general Galois extension L/K, p 
will only determine the conjugacy class of ap , and making a new choice 
for q:J will change ap by conjugation. But in our situation a p will not 
change, since we have assumed that L/K is abelian. Thus ap E Gal(L/K) 
is uniquely determined by the condition 

for all x E RL . 

Let c be an integral ideal of K that is divisible by all primes that 
ramify in L / K, and let 

J(c) = group of fractional ideals of K which are relatively prime to c. 

Then the Arlin map is defined using the ap's and linearity: 

(. ,L/K): J(c) --- Gal(L/K), 

(a,L/K) = (I]pnp,L/K) ~f I]a;p. 
Notice that the Artin map is defined by piecing together local information, 
one prime at a time. The following theorem, which is a weak version of 
Artin's reciprocity law, provides important global information. 
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Proposition 3.1. (Artin Reciprocity) Let L/K be a finite abelian ex­
tension of number fields. There exists an integral ideal c c RK, divisible 
by precisely the primes of K that ramify in L, such that 

((a),L/K) = 1 for all a E K* satisfying a == 1 (mod c). 

If (3.1) is true for the ideals C1 and C2, then it also true for C1 + C2. 

There is thus a largest ideal for which (3.1) is true. We call this ideal the 
conductor of L/K and denote it by CL/K. 

In view of (3.1), it is natural to define the group of principal ideals 
congruent to 1 modulo c: 

Pee) = {(a) : 0 E K*, a == 1 (mod en. 
Artin reciprocity says that the kernel of the Artin map contains pee) for 
an appropriate choice of Co More precisely, 

a E P(CL/K) ===} (a,L/K) = 1. 

It is important to observe that a principal ideal (0) may be in P( e) even 
if 0 ¢. 1 (mod e); all that is necessary is that there exist a unit ~ E R'K such 
that ~o == 1 (mod e). 

Let p be a prime of K which is unramified in L. Then p splits com­
pletely in L if and only if the extension of residue fields has degree 1, or 
equivalently if and only if (p, L / K) = 1. Thus the unramified prime ideals 
in the kernel of the Artin map are precisely the primes of K that split 
completely in L. 

Definition. Let e be an integral ideal of K. A my class field of K (mod­
ulo e) is a finite abelian extension Ke/ K with the property that for any 
finite abelian extension L / K, 

Intuitively, one can think of the ray class field as the "largest" field 
with a given conductor. However, it is important to note that the conductor 
of Ke need not actually equal e. For example, the ray class field of Q(i) 
modulo the ideal (2) is just Q(i) itself, so Q(i)(2) has conductor (1). 

Theorem 3.2. (Class Field Theory) Let L/ K be a finite abelian exten­
sion of number fields, and let e be an integral ideal of K. 
(a) The Artin map 

(·,L/K): I(eL/K) -> Gal(L/K) 

is a surjective homomorphism. 
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(b) The kernel of the Artin map is (Nj{h)P(cL/ K), where h is the group 
of non-zero fractional ideals of L. 
(c) There exists a unique ray class field Ke of K (modulo c). The conductor 
of Ke/ K divides c. 
(d) The ray class field Ke is characterized by the property that it is an 
abelian extension of K and satisfies 

{ primes of K that } { .. . } 
l ·t 1 t 1 . K = prIme Ideals In P(c) . sp I camp e e y In e 

Example 3.3. Consider the ray class field of K modulo the unit ideal c = 
(1). It is the maximal abelian extension of K which is unramified at all 
primes. We call K(1) the Hilbert class field of K and denote it by H or H K . 

Notice that 

I(CH/K) = 1((1)) = {all non-zero fractional ideals of K}, 

P(CH/K) = P((I)) = {all non-zero principal ideals of K}, 

so the Artin map induces an isomorphism between the ideal class group 
of K and the Galois group of the Hilbert class field of K: 

(. ,HjK) : e,c(RK) ~ Gal(H/K). 

We will also need the following version of Dirichlet's theorem on primes 
in arithmetic progressions. 

Theorem 3.4. Let K be a number field and c an integral ideal of K. 
Then every ideal class in I (c) j P( c) contains infinitely many degree 1 primes 
of K. 

The Idelic Formulation of Class Field Theory 

We will now briefly recall how class field theory is formulated using ideles. 
This material will not be used until §7, so the reader may wish to omit the 
rest of this section until arriving at that point. 

Let K be a number field, and for each absolute value v on K, let Kv 
be the completion of K at v. Further, let Rv be the ring of integers of Kv 
if v is non-archimedean, and let Rv = Kv otherwise. The idele group of K 
is the group 

where prime indicates that the product is restricted relative to the Rv's. 
This means that an element SEll K; in the unrestricted product is in A'K 



§3. Class Field Theory - A Brief Review 119 

if and only if Xv E R~ for all but finitely many v. In particular, we can 
embed K* into Ai< by using the natural diagonal embedding 

Q 1----+ ("', Q, Q, Q," .), 

since any Q E K* is in R~ for all but finitely many K. Similarly, for any 
given v we embed K~ as a subgroup of Ai< via 

t 1----+ ( ••• ,1,1, t, 1, 1, ... ). 

i 
v-component 

If v is a non-archimedean absolute value corresponding to a prime 
ideal 13, we will often write Kp and Rp in place of Kv and Rv' We will also 
write ordp for the corresponding normalized valuation. 

Let s E Ai< be an idele. We define the ideal of s to be the fractional 
ideal of K given by 

(s) = II pord p sp, 

p 

where the product is over all prime ideal of K. Note that (s) is well defined, 
since sp is a p-adic unit for all but finitely many p. 

One makes Ai< into a topological group in the usual way; we will not 
need the precise definition of the topology. For any integral ideal c of K, 
let U, be the subgroup of Ai< defined by 

U, = {s E Ai< : sp E R~ and sp == 1 (mod cRp) for all primes p}. 

Then U, is an open subgroup of Ai<, and one proves that K*U, is a subgroup 
of finite index in Ai<. 

If Lj K is a finite extension, then there is a natural norm map from Ai'. 
to Ai<. This is a continuous homomorphism 

Nf< : Ai'. ----> Ai< 

defined by the prescription that the v-component of Nf<x is 

IIN~:Xw. 
wlv 

The idelic formulation of class field theory is given in terms of the 
reciprocity map described in the following theorem. 

Theorem 3.5. Let K be a number field, and let Kab be the maximal 
abelian extension of K. There exists a unique continuous homomorphism 

S 1----+ [s, K], 
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with the following property: 

Let L/ K be a finite abelian extension, and let s E Ai. 
be an idele whose ideal (s) is not divisible by any primes 
that ramify in L. Then 

[s,KliL = ((s),L/K). 

Here (., L/ K) is the Artin map, and Gal(Kab / K) is given the usual pro­
finite topology. The homomorphism [., K] is called the reciprocity map 
forK. 

The reciprocity map has the following additional properties: 
(a) The reciprocity map is surjective, and K* is contained in its kernel. 
(b) The reciprocity map is compatible with the norm map, 

for all x E AL. 

(c) Let p be a prime ideal of K, let I;b C Gal(Kab/K) be the inertia 
group of p for the extension Kab / K, let 7rp E K; be a uniformizer at p, 
and let L/ K be any abelian extension that is unramified at p. Then 

[7rp ,K]IL = (p,L/K) = Frobenius for L/K at p, 
and 

There is, of course, much more to class field theory that we have not 
mentioned. For example, one often wants to know the exact kernel of 
the reciprocity map and the correspondence between subgroups of Ai. and 
subfields of Kab. However, the only additional fact that we will need in 
this chapter is the following idelic characterization of ray class fields. 

Theorem 3.6. Let K be a number field, let c be an integral ideal of K, 
let Kc be the ray class field of K modulo c, and let Uc be the subgroup 
of Ai. described above. Then the reciprocity map induces an isomorphism 

[. ,K] : Ai./K*Uc ~ Gal(Kc/K). 

In other words, [s, K] acts trivially on the ray class field Kc if and only if s 
can be written as s = au with a E K* and u E Uc. 
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§4. The Hilbert Class Field 

Our goal in this section is to prove the following theorem. 

Theorem 4.1. Let KIQ be a quadratic imaginary field with ring of 
integers RK, and let Elf:- be an elliptic curve with End(E) ~ RK. Then 
K (j (E») is the Hilbert class field H of K. 

Remark 4.1.1. Note that it is easy to produce an elliptic curve with 
endomorphism ring equal to RK. For example, we could take E to be the 
curve corresponding to the lattice RK. Then 

is given in terms of series g2(RK) and g3(RK ) involving the elements of RK. 
Alternatively, if we write RK = ZT + Z, then 

1 00 . 

j(E) = j(RK ) = -2-' + '"' c(n)e21UnT , e ?ITT L 
n=O 

where the c( n) E Z are the coefficients in the q-series expansion of j (1. 7.4b). 
So Theorem 4.1 says that the Hilbert class field of a quadratic imaginary 
field K is generated by the value of a certain holomorphic function jeT) 
evaluated at a generator for the ring of integers of K. 

We will actually prove much more than the mere statement of The­
orem 4.1. We will give an explicit description of how the Galois group 
of HI K acts on j (E). To do this, we recall the homomorphism 

from §2 characterized by the condition 

ElY = F(a) * E for all a E Gal( K I K) and all E E ££.,£,( RK ). 

Note that the kernel of F is actually a finite quotient of Gal(K I K), since 
any E will be defined over some finite extension LIK, and then F(a) = 1 
for a E Gal(KIL). Since e£,(RK) is an abelian group, F factors through 

where K ab is the maximal abelian extension of K. Recall also the Frobenius 
element a p E Gal(Kab I K) corresponding to a prime pin K. The following 
proposition, together with basic class field theory, will serve to completely 
determine F. 
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Proposition 4.2. There is a finite set of rational primes S C Z such that 
ifp 1. S is a prime which splits in K, say as pRK = pp', then 

Proposition 4.2 does not look very strong, since it determines F on 
fewer than half of all Frobenius elements. But we will be able to use it 
to get complete information about F. Before proceeding with the proof of 
Proposition 4.2, we will derive some of its consequences, including a proof 
of Theorem 4.1. 

Theorem 4.3. Let E be an elliptic curve representing an isomorphism 
class in ELL(RK). 
(a) K (j (E)) is the Hilbert class field H of K. 

(b) [Q(j(E)) : Q] = [K(j(E)) : K] = hK, 
where hK = # eJ:.,(RK ) = # Gal(H/ K) is the class number of K. 
(c) Let E 1 , •.• ,Eh be a complete set of representatives for ELL(RK). 
Then j(Ed, ... ,j(Eh) is a complete set ofGal(K / K) conjugates for j(E). 
(d) For every prime ideal p of K, 

j(E)l7p = j(jJ * E). 

More generally, for every non-zero fractional ideal a of K, 

j(E)(a,H/K) = j(o. * E). 

Remark 4.3.1. It is now clear why we took the inverse when we defined 
the action of an ideal class 0. on an elliptic curve EA. If we had used the 
more natural definition 0. * EA = EllA, then the action of the Artin symbol 
on j(E) in (4.3d) would instead have been j(E)(Il,H/K) = j(o.-l * E). Thus 
we put the inverse into the action of eJ:.,(RK ) on ELJ:.,(RK) so that the 
Artin symbol would act without an inverse. 

PROOF (of Theorem 4.3). Let L/ K be the finite extension corresponding to 
the homomorphism F: Gal(K/K) -+ eJ:.,(RK), by which we mean that L 
is the fixed field of the kernel of F. Then 

Gal(Kj L) = ker F 

= {a E Gal(KjK) : F(a) = I} 

= {a E Gal(K / K) : F(a) * E = E} since by (1.2), eL(RK ) 

acts simply transitively on ELJ:.,(RK) 

= {a E Gal(K / K) : EI7 = E} from the definition of F 

= {a E Gal(K / K) : j(E17 ) = j(E)} 

= {a E Gal(K / K) : j(E)17 = j(E)} 

= Gal(K j K(j(E))). 
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Hence L = K(j(E»). Further, since F maps Gal(LjK) injectively into 
eL(RK ), we see that Lj K is an abelian extension. So we have shown 
that L = K (j (E») is an abelian extension of K. 

Let CLjK be the conductor of LjK, and consider the composition of 
the Artin map with F, 

We claim that this composition is just the natural projection of I(cLjK) 
onto eL(RK)' In other words, we wish to establish the 

Claim: F(o, LjK») = Ii for all 0 E I(cLjK)' 

Let 0 E I( CLj K), and let S be the finite set of primes described in (4.2). 
From Dirichlet's theorem (3.4) there exists a degree 1 prime p E I(cLjK) 
in the same P(cLjK)-ideal class as 0 and not lying over a prime in S. In 
other words, there is an a E K* satisfying 

a == 1 (mod CLjK) 

We compute 

F(o, LjK») = F((a)p,LjK») 

= F(p, LjK») 

=p 
=0 

This completes the proof of the claim. 

and 0= (a)p. 

since 0 = (a)p 

since a == 1 (mod CLjK) 

from (4.2), since Nlfp tJ. S 

since 0 = (a)p. 

Notice that as an immediate consequence we find that 

F ( (a), L j K») = 1 for all principal ideals (a) E I(cLjK), 

and not just for those that are congruent to 1 modulo CLjK' We also know 
that the map F : Gal(L/ K) ---+ eqRK ) is injective, so this implies that 

(a),LjK) = 1 for all (a) E I ( C L j K ). 

But the conductor of Lj K is the smallest integral ideal c with the property 
that 

a == 1 (mod c) ~ (a),L/K) = l. 

(See §3.) It follows that CL/K = (1). The conductor is divisible by every 
prime that ramifies (3.1), from which we conclude that the extension Lj K 
is everywhere unramified. Therefore L is contained in the Hilbert class 
field H of K. 
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On the other hand, the natural map 1(cL/K) = 1((1)) --+ eqRK) is 
clearly surjective, so the claim implies that F : Gal(LI K) --+ eqRK ) is 
surjective, hence an isomorphism. Therefore 

[L: K] = # Gal(LIK) = #eqRK ) = # Gal(HIK) = [H: K]. 

This combined with the inclusion L c H proves that L = H. Since L = 
K(j(E)), this completes the proof of (a), as well as the second equality 
in (b). 

To prove the first equality in (b), we use the observation (2.2.1) that 

This inequality combined with [K(j(E)) : K] = hK and [K : Q] = 2 
implies that [Q(j(E)) : Q] = hK, which completes the proof of (b). 

Next, from (1.2b) we know that eqRK) acts transitively on the set 
of j-invariants 

a = {j(Ed,··· ,j(Eh )}, 

since by [AEC III.1.4b] the set e.c.c(RK) may be identified with the j­
invariants of its elements. The map F : Gal(K I K) --+ e.c(RK) is defined 
by identifying the action of Gal( K I K) on a with the action of eq RK ) 
on a, so Gal( K I K) also acts ttansitively on a. Therefore a is a complete 
set of Gal( K I K) conjugates of j (E), which proves (c). 

Finally, we see that the claim proven above gives (d) for all ideals 
in 1(cL/K). But CL/K = (1), so 1(cL/K) is the set of all non-zero fractional 
ideals of K. 0 

It remains to prove Proposition 4.2. For that purpose we will need the 
following result which says that isogenies behave nicely under reduction. 

Proposition 4.4. Let L be a number field, ~ a maximal ideal of L, Ell L 
and E21 L e11iptic curves with good reduction at ~, and El and E2 their 
reductions modulo~. Then the natural reduction map 

¢~¢, 

is injective. Further, it preserves degrees, 

deg(¢) = deg(¢). 

PROOF. Since the degree of a non-zero isogeny is non-zero, the injectivity 
follows from the preservation of the degree. However, the proof of injectiv­
ity is more elementary, so we will give a separate proof. 
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Let ¢ : E1 --+ E2 be an isogeny satisfying ¢ = [0]. For any integer m 
prime to 13, [AEC VII.3.lb] says that E2[m] injects into E2. On the other 
hand, if T E Edm], then by assumption 

¢(T) = ¢(T) = O. 

Since ¢(T) E E2[m], it follows that ¢(T) = O. Therefore Edm] C ker(¢). 
This holds for arbitrarily large m, so we must have ¢ = [0]. 

Now we begin the proof that deg(¢) = deg(¢). Choose a rational 
prime e relatively prime to 13. Our idea is to use the Weil pairing and 
calculate everything on the Tate modules. (See [AEC 111.8.3] for the prop­
erties of the Weil pairing eE : T£(E) x 1£(E) --+ Te(/L) that we will need.) 
For any x, y E Tp(Ed we have 

eE, (x, y)deg ¢ = eEl ((deg cp)x, y) = eE, (¢cpx, y) = eE2 (¢x, cpy), (i) 

and a similar calculation on E1 gives 

(ii) 

Next we observe that if E / L is any elliptic curve with good reduc­
tion at 13, then T£ (E) ~ Tp (E). This crucial equality is a consequence 
of [AEC VII.3.lb]' which says that E[en ] ~ E[en ] for all n. Looking at the 
definition of the Weil pairing [AEC III §8]' we see that 

for all x, y E Te(E). 

We now take x, y E T£(Ed and compute 

~ dcg¢ 
( - -)deg ¢ () eEL x,y = eE, x,y 

= eE2 (cpx, cpy) 

= eE2 (cpx,cpy) 

= e E2 (¢x, ¢y) 
( - -)deg¢ = eE, x,y 

from (iii) 

from (i) 

from (iii) 

from (ii). 

(iii) 

This equality holds for all x, y E Te(EJ), hence for all X, y E T£(EJ). The 
non-degeneracy of the Weil pairing on Te(EJ) now implies that deg ¢ = 
degcp. 0 

PROOF (of Proposition 4.2). We know that ££-.qRK) is finite from (1.2b) 
and that every curve in ££-£-(RK) can be defined over Q from (2.lc), so 
we can choose a finite extension field L / K and representatives E 1 , ... , En 
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defined over L for the distinct k isomorphism classes in c£.c(R). Further, 
using (2.2c) we may replace L by a finite extension so that every isogeny 
connecting every pair of Ei'S is defined over L. We now let S be the finite 
set of rational primes satisfying anyone of the following three conditions: 

(i) p ramifies in L, 
(ii) some Ei has bad reduction at some prime of L lying over p, 

(iii) p divides either the numerator or the denominator of one of the 
numbers N~(j(Ei) - j(Ek )) for some i -=f- k. 

Notice that condition (iii) means that if p rt- S and if q3 is a prime of L 
dividing p, then Ei ~ Ek (mod q3), since their j-invariants are not the same 
modulo q3. 

Now let p rt- S be a prime which splits as pRK = pp' in K, and let q3 
be a prime of L lying over p. Also let A be a lattice for E, so E(C) ~ CIA. 
Choose some integral ideal a C RK relatively prime to p such that ap is 
principal, say 

ap = (a). 

From [AEC VI.4.1b] there are isogenies connecting E, p * E, and a * p * E 
corresponding to the natural analytic maps as indicated in the following 
diagram: 

CIA ----> C/p-1A ----> Cla-1p-l A C/(a-1)A ----> CIA 
Z'-'Z ZI->Z z~az 

11 1 1 1 1 11 
¢ 1/1 A 

E ----> P * E ----> a*p*E (a)*E ----> E 

Next we choose a Weierstrass equation for ElL which is minimal 
at q3 (see [AEC VII §§1,2]) and let 

dx 
w=-----

2y + alx + a2 

be the associated invariant differential on E. The pull-back of w to CI A will 
be some multiple of dz. Since the map along the top row of our diagram is 
simply z --- az, we see that dz pulls back to d(az) = adz. Tracing around 
the commutative diagram, we conclude that 

(>. 0 '¢ 0 ¢)*w = aw. 

As usual, we will use a tilde to denote reduction modulo q3. Since the 
equation for ElLis minimal at q3, we obtain an equation for E by reducing 
the coefficients modulo q3, and so the reduced differential 

dx w--=:-----
- 2y + ihx + ih 
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is a non-zero invariant differential on E. Further, since (a) 
since IfJ divides p, we find 

(,\ 0 -If; 0 J)*w = (>. 0 1jJ 0 ¢)*w = aw = O. 

It follows from [AEC II.4.2c] that 

,\ 0 -If; 0 J is inseparable. 

On the other hand, using (4.4) and (1.5a), we see that 

- K deg ¢ = deg ¢ = NQI P = p, 
- K 

deg 1jJ = deg 1jJ = NQI a, 

deg ,\ = deg >. = 1. 
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ap and 

Since N{I a is prime to p by assumption, both -If; and ,\ are separable, so we 
conclude that 

¢:E----p*E 

must be inseparable. Now any map (such as J) factors as a qth_power 
Frobenius map followed by a separable map [AEC II.2.12], so the fact 
that J has degree p and is inseparable implies that J must "be" the pth_ 
po~Frobenius map. More precisely, there is an isomorphism from E(p) 

to p * E so that the composition 

pth_power ~ 
E -----+) E(p) ~ P * E 

Frobenius 

equals J. 
In particular, we find that 

so 

But from the original choice of excluded primes S, we have 

if and only if 

Hence p * E ~ F(al» * E, and the simplicity of the action of e£(RK ) 

on e££.,(RK) (1.2b) gives the desired conclusion 

D 
We also record for later use the following fact which we proved during 

the course of proving Proposition 4.2. 
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Lemma 4.5. Let E be an elliptic curve with complex multiplication 
by R K , and suppose that E is defined over a number field L. Then for all 
but finitely many degree 1 primes p of K, the natural map 

has degree p, and its reduction 

is purely inseparable. (Here we reduce modulo some prime $ of L lying 
above p.) 

§5. The Maximal Abelian Extension 

Let E be an elliptic curve with complex multiplication by a quadratic imag­
inary field K. In this section we are going to describe the field generated 
by the points in E(C)tors, much as we described the field generated by j(E) 
in the last section. Our goal is to use the torsion points of E to generate 
abelian extensions of K. 

Before beginning, we briefly recall the analogous (but simpler) case of 
cyclotomic extensions. In this case the elliptic curve E(C) is replaced by 
the multiplicative group Gm(C) = C*. Let 

be the group of N-torsion points of G'Tn as usual; that is, /LN is the group 
of Nth-roots of unity. As is well known, the extension Q(/LN )/Q is an 
abelian extension that is ramified only at primes dividing N. Let p be a 
prime with p t N, choose a generator ( for /LN, and let (Tp E Gal(Q(()/Q) 
be the Frobenius element associated to p. Also let $ be a prime of Q( () 
lying above p. Then by the definition of (Tp we have 

But 1, (, (2, ... , (N-l are distinct modulo $, since our assumption $ t N 
implies that X N - 1 is separable in characteristic p. Hence the congruence 
is an equality, 

and so we conclude that 

(Tp = 1 ¢==> p == 1 (mod N). 
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Therefore Q«() = Q(J.LN) is the ray class field of Q of conductor N. (Ac­
tually, it is the ray class field of conductor N 00. Since the base field Q is 
not totally imaginary, we have to also consider ramification of the infinite 
place.) 

Now let L/Q be any abelian extension, and let N be the conductor 
of L. Then class field theory (3.2) says that L is contained in the ray class 
field of conductor N, so we recover the following famous result. 

Theorem 5.1. (Kronecker-Weber Theorem) Every abelian extension of 
Q is contained in a cyclotomic extension; that is, given any finite abelian 
extension L/Q, there is a root of unity ( such that L C Q«(). 

Thus the ray class fields of Q are generated by the values of the analytic 
function 

evaluated at points of finite order in the circle group lR/Zj that is, they 
are generated by numbers of the form e27ria/N with a, NEZ. Further, the 
action of a Frobenius element up on the value e27ria/N is given explicitly by 
the formula 

provided p f N. 

Thus the Galois action of up is transformed into a multiplication action on 
the circle group. The reader who has a good understanding of this cyclo­
tomic theory will have no trouble seeing how all of its main elements are 
reproduced in the theory of complex multiplication as described in this sec­
tion and in §8, albeit with a number of additional technical complications. 

As usual, we let RK be the ring of integers in a quadratic imaginary 
field K, and let E be an elliptic curve with complex multiplication by RK. 
We will always assume that the isomorphism [. J : RK ..':::', End(E) is nor­
malized as in (1.1). 

We begin with an important lemma which tells us when an endomor­
phism of the reduced curve E (mod!.p) actually comes from an endomor­
phism of E. 

Lemma 5.2. Suppose that E is defined over the number field L, let !.p 
be a prime of L at which E has good reduction, and let E be the reduction 
of E modulo!.p. Let 

(): End(E) -> End(E) 

be the natural map which takes an endomorphism to its reduction mod­
ulo!.p. Then for any'Y E End(E), 

'Y E Image«()) {=:::> 'Y commutes with every element in Image«()). 
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In other words, Image(B) is its own commutator inside End(E). 

PROOF. One direction is trivial, since if'Y E Image(B), then, certainly 
commutes with elements of Image(B). This is immediate from the fact 
that End(E) ~ R K , which implies that Image(B) is a commutative ring. 

For the other direction, we first note that B is injective from (4.4). 
From [AEC 111.9.4]' End(E) is an order in either a quadratic imaginary 
field or in a quaternion algebra. If it is an order in a quadratic imaginary 
field, then B is an isomorphism, since, by assumption, End(E) ~ RK is the 
maximal order in K. So in this case we are done. 

Next we consider the case that End(E) is an order in a quaternion 
algebra JC. Then Image(B) 129 Q is a quadratic subfield of ~, call it X. 
(Note X ~ K, but it is possible for ~ to contain several distinct sub fields 
each isomorphic to K.) We start by choosing a Q-basis {I, a} for X such 
that 002 E Q; and then we extend it to a Q-basis for ~ of the form 

~ = Q + Qa + Q(3 + Qa(3 

satisfying 

and 00(3 = -(300. 

(See the proof [AEC 111.9.3].) Now it is easy to find the commutator of X 
in~. For any, E ~, we write 'Y = d + aa + b(3 + ca(3 with a, b, c, dE Q 
and compute: 

'Y commutes with X 

{==? ,a = a'Y 

{==? (d + aa + b(3 + ca(3)a = a(d + aa + b(3 + ca(3) 

{==? da + aa2 + b(3a + ca(3a = da + aa2 + ba(3 + ca2 (3 

{==? -ba(3 - ca2 (3 = ba(3 + ca2 (3 since 00(3 = -(300 

{==? b=c=O 

since 002 E Q and {I, a, (3, a(3} is a Q-basis for ~ 

{==? 'Y = d + aa E Q + Qa = X. 

Finally, let {j E End(E) commute with Image(B). Then {j commutes 
with X, so from what we have just done, {j is in X. But we also know that {j 
is integral over Z and that Image(O) ~ RK is the maximal order in X ~ K, 
hence {j E Image(B). This completes the proof of Lemma 5.2. 0 

As usual, let E be an elliptic curve with complex multiplication by RK. 
In the last section (4.3a) we proved that 

H = K(j(E)) 

is the Hilbert class field of K. Since j(E) E H, this means we can find an 
equation for E with coefficients in H, so we may as well assume that E is 
defined over H. The next proposition says that we can lift the pth_power 
Frobenius map E --> E(p) to a map in characteristic o. 
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Proposition 5.3. Let K be a quadratic imaginary field, H the Hilbert 
class field of K, and E/ H an elliptic curve with complex multiplication 
by R K . Let ITp E GH / K be the Frobenius element associated to a prime p 
of RK, and let \13 be a prime of H lying over p. Assume that p has degree 1 
and is not in the finite set of primes specified in (4.5), so in particular E 
has good reduction at \13. Then there exists an isogeny 

whose reduction modulo \13, 

5. : jj; ----+ jj;(p) , 

is the pth-power Frobenius map. 

Remark 5.3.1. In general, there is no reason to expect an elliptic curve 
to be isogenous to one of its Galois conjugates. Of course, there are always 
maps 

E E"p 

1 1 
E 

pth power jj;(p) 
Frobenius 

where the vertical maps are "reduction modulo \13." The content of Propo­
sition 5.3 is that there is an isogeny .x : E ---> E"p which makes this picture 
into a commutative square. Thus .x lifts the Frobenius map from charac­
teristic p to characteristic O. 

PROOF (of Proposition 5.3). To ease notation, we will write IT in place 
~. From (4.5) there is an isogeny E ---> p * E whose reduction jj; ---> 

p * E is purely inseparable of degree p. Composing this isogeny with the 
isomorphism p * E ~ E" provided by (4.3), we get an isogeny 5. : jj; ---> E" 
which is purely inseparable of degree p. It follows from [AEC 111.4.6] that 5. 
factors as 

jj; .-.'!..... jj;(p) --=--. E", 

where ¢ is the pth_power Frobenius map and deg E = 1. But, by definition, 
the reduction of E" is precisely jj;(p) , so E is an automorphism of E". If we 
can show that E is the reduction modulo \13 of some EO E Aut(E"), then we 
can replace .x by EOl o.x and be done. So we need to prove the 

Claim: E lies in the image of Aut(E") inside Aut(E"). 

From (5.2), it suffices to show that E commutes with the image of End(E") 

inside End(E"). (This will allow us to lift E to an Eo in End(E"), and 
then (4.4) will imply that Eo has degree 1, so it is in Aut(E").) Recall that 
we have normalized isomorphisms 

[ ·]E : RK ....::-.... End(E) and 
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and that from (1.1.1) these isomorphisms satisfy 

A 0 [alE = [alE" 0 A for all a E RK. 

Next we look at the reduction of [al modulo \p. In general, suppose 
that f : V ----> W is any rational map of algebraic varieties over a field k 
of characteristic p, let CPv : V ----> V(p) and CPw : W ----> W(p) be the pth_ 
power Frobenius maps, and let a E Aut(k) be the pth-power Frobenius 
automorphism of k. Then ffI : V(p) ----> W(p) is a rational map and 

CPwof =r ocpv. 

To see that this is true, write f = [fa, ... , fnl (locally) as a map given 
by homogeneous polynomials. The desired result then follows from the 
observation that for a polynomial f(x) = f(Xl, ... ,xm ) = L: aixi, we have 

We now apply this general fact to the map [alE: E ----> E. Note that 

[alE = [alE" 

from (2.2a), since a E GH / K fixes a E K. Thus we get 

cp 0 [alE = [alE 0 cp = [alE" 0 cp. 

Using this, we compute 

[alE" 0 c 0 cp = ~ 0 >­

= >- 0 [alE 

= cO cpo [alE 

= cO [alE" 0 cp 

since c 0 cp = >­

from above, 

from above. 

Therefore [alE" 0 c = cO [alE'" which completes the proof of our claim and 
with it the proof of Proposition 5.3. 0 

An important special case of Proposition 5.3 occurs when the ideal p 
is principal, in which case ap = (p, HI K) = 1. Then A is an endomorphism 
of E. We can identify that endomorphism quite precisely as follows. 
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Corollary 5.4. Let K be a quadratic imaginary field, H the Hilbert class 
field of K, and E / H an elliptic curve with complex multiplication by RK. 
For all but finitely many degree 1 prime ideals l' of K that satisfy 

(p,H/K) = 1, 

there is a unique 'iT = 'iTp E RK such that 

E 
[IT I 

E 

l' ='iTRK, and 1 1 
pth power 

E E 
Frobenius 

is a commutative diagram. (Note that the condition (1', H / K) 1 1S 

equivalent to l' being a principal idea1.) 

PROOF. Let ',p be a prime of H lying over p. Having excluded finitely 
many p's, including those for which E (mod ',p) is singular, we may use (5.3) 
to obtain a commutative diagram 

E 

1 1 
E 

Here O"p = (p,H/K), A is an isogeny, ¢ is the pth_power Frobenius map, 
and the vertical maps are reduction modulo ',p. 

Our assumption that (1', H / K) = 1 means that EeYp = E, so A is really 
an endomorphism of E, say A = ['iT]. It also implies that E(p) = E. Thus 
we have a commutative diagram 

Now we compute 

K NQJp = p 

= deg¢ 

= deg['iT] 

= I NS''iT I 

E 
[IT I 

--+ E 

1 1 
E ~ E. 

since l' has degree 1 

since ¢ is pth power Frobenius 

from (4.4), since ['iT] = ¢ 

from (l.4b). 

Since l' is a prime ideal in the quadratic field K, this means that either 

or 
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where 7r' is the Gal(K/Ql)-conjugate of 1r. We can use the fact that (E, [.]) 
is normalized to check which one it is. 

We take an equation for E / H with good reduction at \JJ and let W E OE 
be a non-zero invariant differential whose reduction w is a non-zero invariant 
differential on E. Then the normalization (1.1) says that [7r]*w = 7rW, so 

irw = irW = [7r]*w = [7r]*w = ¢*w = o. 

The last equality follows from [AEC II.4.2c], since the Frobenius map ¢ is 
inseparable. Now OF; is a one-dimensional vector space generated by W, 
so ir = o. In other words, 

7r == 0 (mod \JJ), 

so 7r E \JJ n K = p. Since we saw above that p equals either 7r RK or 7r' RK , 
we conclude that p = 7rRK. This finishes the existence half of (5.4). 

To see that 7r is uniquely determined, we need merely observe that the 
composition 

[.J -
RK ------+ End(E) ------+ End(E) 

is injective. Since 7r is required to satisfy [7r] = ¢ E End(E), there is at 
most one such 7r. D 

Our goal is to show that the torsion points of an elliptic curve E with 
complex multiplication by RK can be used to generate abelian extensions 
of K. It would be nice if the torsion points themselves should generate 
abelian extensions of K, but unfortunately it turns out that they only 
generate abelian extensions of the Hilbert class field H of K. In order to 
pick out the correct subfield, we take a model for E defined over H and fix 
a (finite) map 

h : E ------+ E/ Aut(E) ~ pI 

also defined over H. Such a map h is called a Weber function for E / H. 

Example 5.5.1. If we take a Weierstrass equation for E of the form 

with A,B E H, 

then the following is a Weber function for E / H: 

h(P) = hex, y) = {~2 
x3 

if AB i= 0, 
if B = 0, 
if A = O. 

So in essence, except for the two exceptional cases j = 0 and j = 1728, a 
Weber function is just an x-coordinate for the curve. 
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Example 5.5.2. It is also possible to define a Weber function analytically 
in such a way that we don't have to worry about fields of definition. For 
example, if we choose a lattice A and an isomorphism 

f:C/A~E(q, z""'-' (p(z,A), p'(z,A)), 

then the following is a Weber function for E: 

g2(A)g3(A) ( A) 
~(A) P Z, 

if j(E) -10,1728, 

h(J(z)) = g2(A)2 )2 
~(A) p(z,A if j (E) = 1728, 

g3(A) ( )3 
~(A) p z,A if j(E) = o. 

Here ~(A) = g2(A)2_27g3(A)3 -lOis the usual modular discriminant. The 
reader may easily verify that this Weber function is model independent; 
that is, it does not change if we take a new lattice for E, or equivalently 
a new Weierstrass equation for E. Since we know from (4.3a) that it is 
possible to find an equation for E defined over H, it follows from the model 
independence that this Weber function h : E _pI is defined over H. 

To generate abelian extensions of K, we will use the values of a Weber 
function on torsion points, which essentially means we will take the x­
coordinates of the torsion points. Recall from §1 that for any integral 
ideal c of RK we defined the group of c-torsion points of E to be 

E[cl={PEE: blP=Oforall"(Ec}. 

The reader is advised to compare the following theorem with the cyclotomic 
theory discussed at the beginning of this section. 

Theorem 5.6. Let K be a quadratic imaginary field, let E be an elliptic 
curve with complex multiplication by RK, and let h : E - pI be a Weber 
function for E / H as described above. Let c be an integral ideal of R K . 

Then the field 
K(j(E), h(E[c])) 

is the ray class field of K modulo c. 

Corollary 5.7. With notation as in Theorem 5.6, 

K ab = K(j(E),h(Etors)). 

In particular, if j(E) -10,1728 and if we take an equation for E with coef­
ficients in K (j (E) ), then the maximal abelian extension of K is generated 
by j(E) and the x-coordinates of the torsion points of E. 

PROOF (of Theorem 5.6). Let 

L = K(j(E),h(E[c])). 
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Then L ::J K(j(E)), and from (4.3a) we know that K(j(E)) = H is the 
Hilbert class field of K. In order to show that L is the ray class field of K 
modulo e, we need to prove that 

(p,L/K)=l ¢=} pEP(e). 

As usual, it suffices to prove this for all but finitely many degree 1 primes 
in K. 

Suppose first that p is a degree 1 prime of K with P E P( e). This 
means that 

for some p, E RK with p, == 1 (mod e). 

In particular, p is principal, so (p,H/K) = 1. Hence we can apply (5.4) 
(after excluding finitely many p's) to get some 7r E RK such that 

EnE 

p = 7rRK and 1 1 commutes. 

E ~ E 
Since 7r RK = P = P,RK, there is a unit ~ E R'K such that 7r = ~p,. Notice 
that [~] E Aut(E), so [7r] and [p,] differ by an automorphism of E. 

We already know that (p,L/K) fixes H = K(j(E)), so in order to 
show that it fixes all of L, we must show that it fixes h(E[eJ). Let T E E[e] 
be any e-torsion point. Then the commutative diagram gives 

T(p,L/ K) = 4>(1') = [7r]T. 

On the other hand, [AEC VII.3.1b] tells us that the reduction map E -+ E 
is injective on torsion points whose order is prime to p. So if we exclude from 
consideration the finitely many p's which divide #E[e], then the reduction 
map 

E[e] ------> E[e] 

is injective. Therefore 
T(p,L/ K) = [7r]T. 

Now we compute 

h(T)(p,L/K) = h (T(P,L/K)) 

= h([7rJT) 

= h([~] 0 [p,]T) 

= h([p,]T) 

= h(T) 

since (p,H/K) = 1 and 

h : E -+ pI is defined over H 

from above 

since 7r = ~p, 

since h is Aut(E)-invariant and 

[~] E Aut(E) 

since T E E[e] and p, == 1 (mod e). 
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This completes the proof that 

P E pee) => (p,LjK) = 1. 

In order to prove the converse, we take a prime of degree 1 satisfy­
ing (p, Lj K) = 1. Then 

(p,HjK) = (p,LjK)1 = 1, 
H 

so (excluding finitely many p's) we can apply (5.5) as usual to get a 1r E RK 
such that 

E kL E 

and 1 1 commutes. 

E ~ E 

We also choose some a E G K I K whose restriction to K ab is (p, Kab j K). 
Then in particular aiL = (p, Lj K) = 1, and also alH = 1 since He L. 

Now let T E E[el be any e-torsion point. We compute 

h([1rlT) = h([1rlT) 
= h(¢(T)) 

= h (Ta) 

= h(Ta) 

= h(T)a 
~ 

= h(T) 
= h(T). 

from the commutative diagram 

since a reduces to pth power Frobenius 

since a I H = 1 and h is defined over H 

since h(T) ELand aiL = 1 

Next we observe that the reduction of h modulo IiJ is the map 

h: E -+ Ej AutE ~ EjA.;;t"E. 

(N.B. The image is not Ej Aut E, since Aut E may be larger than Aut(E).) 
It follows from this and the equality h([1rlT) = h(T) proven above that 
there is an automorphism [~l E Aut(E) such that 

Again using the injectivity of the torsion E[e] '"--> E[e] from [AEC VII.3.1b]' 
we find that [1r - ~]T = o. 

A priori, the particular ~ for which [1r - ~]T = 0 might depend on T. 
But from (l.4b) we know that E[e] is a free RKje-module of rank one. 
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Hence there is a single ~ E R'K such that [7f - ~] annihilates all of E[c], 
which implies that 7f == ~ (mod c). Therefore 

C l 7f == 1 (mod c), 

and of course we have p = 7fRK = (~-l7f)RK since ~ is a unit. This proves 
that p E P(c), which completes the proof of Theorem 5.6. 0 

PROOF (of Corollary 5.7). Let L / K be any finite abelian extension and 
let CL/K be the conductor of L/ K. By class field theory (3.2c), L is con­
tained in the ray class field of K modulo CL/K' Using (5.6), this means 
that 

L C K(j(E), h(E[CL/K]))' 

Taking the compositum over all conductors gives L c K(j(E),h(Etors )), 
and then taking the union over all L's gives Kab C K(j(E),h(Etors))' 
But (5.6) says that K(j(E), h(Etors )) is a compositum of abelian exten­
sions, hence it is abelian, hence it equals Kab. This completes the first part 
of (5.7). 

The second part of (5.7) is then immediate from (5.5.1), which says 
that if j(E) f= 0,1728, then the x-coordinate on a Weierstrass equation 
for E/Q(j(E)) is a Weber function for E. 0 

Example 5.8. Corollary 5.7 raises the obvious question of what happens if 
we adjoin all of E tors to K, rather than just the values of a Weber function. 
In general one does not get an abelian extension of K, although we have 
seen (2.3) that E tors generates an abelian extension of H. (The reader 
might try to use (5.4) to construct another proof of this fact.) Suppose 
now we look at the special case that K has class number 1, so H = K. 
Then we have inclusions 

Thus 

K has class number 1 ==} K ab = K(h(Etors )) = K(Etors). 

The j-invariants of these curves will be in Q. For a complete list of all CM j­
invariants in Q, together with representative Weierstrass equations, see 
Appendix A §3. 

Example 5.8.1. We will illustrate (5.6) and (5.8) with the curve 

E: y2 = x 3 + x 

which has complex multiplication by the ring of Gaussian integers Z[i] in 
the field K = Q(i). Clearly 

E[2] = {O, (0,0), (±i,O)}, 
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so K (E[2]) = K. One can easily check that the ray class field of K mod­
ulo 2 is K, so this confirms (5.6). 

Next we look at points of order 3. Letting T = (x, y) E E, the dupli­
cation formula reads 

_ (X4 - 2X2 + 1 x6 + 5x4 - 5x2 - 1) 
2T - 4y2' 8y3 . 

So setting x(2T) = x(T), we find (after some algebra) that 

3T = ° {::=} 3x4 + 6x2 - 1 = O. 

The four roots of this equation are 

1 1 J2v'3 - 3 a, -a, v'3a' - v'3a' where a = 3' 

Since the Weber function on E is h(x,y) = x2, this gives K(h(E[3])) 
K ( v'3), which the reader may verify is indeed the ray class field of K 
modulo 3. 

Substituting these four values for x into y2 = x3 + x and solving for y, 
we find the y-coordinates of the points in E[3]. If we let 

(3 = «8v'3 - 12 = ~ 
9 yJ3' 

then the nine points in E[3] are 

E[3] = {o, (a,±(3), (-a, ±i(3) , (~a' ~(3)' (~~, ;;(3)}' 
Since K = Q(i) has class number 1, (5.8) says that the field K((3) is an 
abelian extension of K, but it is not necessarily a ray class field. We leave 
it for the reader to check directly that K ((3) / K is abelian. 

Next, T = (x, y) is a point of exact order 4 if and only if y(2P) = O. 
Using the duplication formula given above, if we let "( = (J2 - 1) i, then 
the x-coordinates of the points of order 4 satisfy 

0= x6 + 5x4 - 5x2 - 1 = (x - l)(x + l)(x - "()(x + "()(x - "(-I)(X + "(-1). 

Hence K(h(E[4])) = K("(2) = K(J2), which is the ray class field of K 
modulo 4. Finally, if we let 8 = (1 + i) (J2 - 1), then we find that 

E[4] = {O, (0,0), (±i,O), (1, ±J2), (,,(, ±8), 

(-,,(, ±i8), (,,(-l, ±,,(-28), (-,,(-I, ±h-28)}. 

So in this case K(E[4]) = K(,,(,8) = K (J2) is equal to K(h(E[4])). 
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§6. Integrality of j 

We have seen (2.1b) that the j-invariant of an elliptic curve E with complex 
multiplication is an algebraic number. In this section we are going to 
prove that j(E) is in fact an algebraic integer or, equivalently, that E has 
everywhere potential good reduction. The results of this section will not 
be needed until §1O, so the reader primarily interested in the relationship 
between complex multiplication and class field theory may wish to skip 
directly to §7. 

Theorem 6.1. Let EIC be an elliptic curve with complex multiplication. 
Then j (E) is an algebraic integer. 

We are going to give three proofs of this important fact, two in this section 
and a third in (V.6.3). In order to help the reader understand the different 
approaches used in these three proofs, we will start with a brief description 
of each. 

The Complex Analytic Proof 

Let Al and A2 be lattices corresponding to elliptic curves EriC and E2/C, 
and suppose that El and E2 are isogenous. Then we will show that j(E1 ) 

and j(E2 ) are algebraically dependent over IQl by explicitly constructing 
a polynomial F(X, Y) E Z[X, Y] with F(j(E1),j(E2)) = O. If E has 
complex multiplication, then by taking El = E2 = E we will obtain a 
monic polynomial with j(E) as a root. Thus we show that j(E) is integral 
over Z by explicitly constructing a monic polynomial with j(E) as a root. 
This proof has the advantage of being very explicit, and the disadvantage 
that it does not generalize to higher dimensions. 

The f-adic (Good Reduction) Proof 

This proof, which is due to Serre and Tate [1], readily generalizes to abelian 
varieties of arbitrary dimension. The idea is to use the criterion of Neron­
Ogg-Shafarevich [AEC VII.7.3] to prove directly that E has potential good 
reduction at all primes, which implies by [AEC VII.5.5] that j(E) is in­
tegral at all primes. Thus let L be a local field and ElL an elliptic 
curve with complex multiplication. We have seen (2.3) that the action 
of Gal(LI L) on the Tate module Ti(E) is abelian. (For another proof ofthis 
fact that uses nothing more than a little linear algebra, see exercise 2.6.) 
In other words, Gal(Lab I L) acts on Ti(E). Next we use the description 
of Gal( Lab I L) provided by local class field theory to show that the action 
must factor through a finite quotient of Gal(Lab I L), which allows us to 
apply [AEC VII.7.3J. 

The p-adic (Bad Reduction) Proof 

For this proof, which is due to Serre, we assume that j(E) is not integral at 
some prime p and prove that E has no non-trivial endomorphisms. Let L 
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be a complete local field with maximal ideal p, and let E/ L be an elliptic 
curve whose j-invariant is non-integral at p. We will show (V §§3,5) that 
after replacing L by a quadratic extension, there is an element q E L * and 
a p-adic analytic isomorphism of groups 

L* /qZ ~ E(L). 

Using this isomorphism, we construct (V.6.1) an element of Gal(L/ L) which 

acts on the Tate module of E via the matrix (6 I) (relative to a suitable 

basis). Then the fact that endomorphisms commute with the action of Ga­
lois will allow us to conclude that there are no non-trivial endomorphisms, 
so E does not have complex multiplication. 

It is worth remarking that the second and third proofs are local; one 
shows that j(E) is integral by working one prime at a time. The first proof, 
on the other hand, is more global in nature. We are going to give the first 
two proofs in this section. For proof number three, see (V.6.3). 

Example 6.2.1. Note that the three elliptic curves in (2.3.1) possessing 
an endomorphism of degree 2 all have j-invariants in Z, as they should 
from (6.1), since the corresponding quadratic imaginary fields have class 
number 1. More generally, if K has class number 1, then j(RK) will be a 
rational integer. 

As is well known, there are only nine quadratic imaginary fields of 
class number 1, a fact conjectured by Gauss and proven by Heegner [1]. 
(See also Baker [1] and Stark [1].) These fields are 

Q(V-I) , Q(v=2) , Q(vC3) , Q(P), Q(v'-ll), 

Q (v'-19), Q (v'-43), Q(v'-67), Q (v'-163) . 

A list of the corresponding j-invariants is given in Appendix A §3. It follows 
for example that 

. (1 + vCI63) '11 J 2 E~. 

Recall (I.7.4b) that j(7) has the q-expansion 

j(q) = ~ + 744 + 196884q + 21493760q2 + ... , 
q 

where q = e2rriT . If we substitute 7 = (1 + v'-163) /2, then 

q = _e- rr v'163 "" -3.809. 10-18 

is very small. Thus the main term in j(q) will be l/q, which means that l/q 
should be "almost" an integer. Computing l/q to 40 significant digits we 
find that 

e rr v'163 =262537412640768743.999999999999250072597 ... , 
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so e7rv'T63 is an integer to 12 decimal places. Of course, we know a priori 
that e7rv'T63 is not an integer and in fact is not even an algebraic number, 
since the Gel'fond-Schneider theorem says that e7r<> = (_1)-i<> is transcen­
dental whenever ia is algebraic of degree at least 2 over Q. 

Example 6.2.2. Now let's look at an example with class number larger 
than 1. For example, consider the field K = Q ( y' -15) and its ring of 

integers RK = Z[a], where to ease notation we will write a = 1 + fI5. It 

is not hard to check that RK has class number 2 and that a non-trivial ideal 
class is given by a = 2Z + aZ. Further, One can check that the field H = 
K ( v'5 , R) is everywhere unramified over K, so it is the Hilbert class 
field of K. (See exercise 2.11.) It follows from (4.3) that H = K(j(RK)) 
and that Q (j (RK )) is a quadratic extension of Q contained in Hand 

disjoint from K. Hence Q(j(RK)) is either Q(v'5) or Q(R). We will 
see in a moment that j(RK) E JR, so we must have Q(j(RK)) = Q(v'5). 
(This also follows from exercise 2.9, which says in general that j(c) E JR if 
and only ifC2 = 1 in e.c(RK ).) 

It remains to compute j(RK ) explicitly as an element ofQ (v'5). Let A 
and B be rational numbers so that 

From (4.3c) we see that j(a) is the Gal(K/K)-conjugate of j(RK ), so 

j(a)=A-BV5. 

Solving these two equations for A and B gives 

A = j(RK ) + j(a) 
2 

and B = j(RK) - j(a). 
2v'5 

In order to compute the two values of j numerically, we can use the q­

series (I.7.4b), where q = e27rir is the parameter for the normalized lat­
tice Z + ZT: 

-

j(q) = ~ + 744 + 196884q + 21493760q2 + 864299970q3 + 20245856256q4 
q 

+ 333202640600q5 + 4252023300096q6 + 44656994071935q7 + .... 

Thus for RK we find that 

j(RK) = j(Z + aZ) = j (e27ri<» = j( _e-v'I57r ) 

;:::; j (-5.19748331238· 10-6 ) ;:::; -191657.832863. 



§6. Integrality of j 143 

(Notice in this case that q = _e- V1571' E JR, so j(RK) E JR.) Similarly for a 
we calculate 

j(a) = j(2Z + aZ) = j ( Z + ~aZ ) = j(e-V1571'/2i) 

~ j (2.27979896315 . 1O-3i) ~ 632.83286254. 

Using these values gives (to 12 significant digits) A = -95512.5000002 
and B = -42997.5000001, so 

1 + v'5 [1 + v'5] j(RK ) ~ -95512.5 - 42997.5V5 = -52515 - 85995-2- E Z -2- . 

Thus j(RK ) is (at least approximately) integral over Z, which gives a nu­
merical verification of Theorem 6.1 for this example. 

The A nalytie Proof of Theorem 6.1 

Before beginning, we give a few words of motivation. It is not hard to see 
that an elliptic curve E has complex multiplication if and only if there is 
an endomorphism E ~ E whose degree is not a square. This suggests that 
we take an arbitrary elliptic curve E and a positive integer n and study 
the set of all elliptic curves E' for which there is an isogeny E ~ E' of 
degree n. We took this point of view in (I §9,1O) when we studied Heeke 
operators. What we are going to do is show that in this situation j(E') is 
integral over Z [j (E)]. We will do this by explicitly constructing a monic 
polynomial Fn (j(E), X) with coefficients in Z[J(E)] having j(E') as a root. 
Finally, if E has complex multiplication, then for an appropriate choice of n 

we can take E' = E. This means that Fn(j(E),j(E)) = 0, which we will 
show implies that j(E) is integral over Z. 

We now begin the analytic proof of Theorem 6.l. We fix a positive 
integer n and recall the sets of matrices 'Dn and Sn defined in (I §9): 

'Dn = { (~ ~) E M 2 (Z) ad - be = n} , 

Sn = { (~ ~) E M 2 (Z) ad = n, d> 0, 0:::; b < d}. 

We also recall (1.9.2), which says that Sn = SL2 (Z)\'Dn. For any ma­

trix a = (~ ~) E M2 (JR) with det a > 0, we define the function j 0 a as 

usual by the formula 

. () . (aT + b) Joa T =J -- . 
cT+d 
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Of course, if a E SL2(1:), then j 0 a = j. We are going to study the 
polynomial 

whose coefficients 8 m = 8 m (T) are holomorphic functions on the upper half­
plane H. More precisely, 8 m is the m th elementary symmetric function in 
the j 0 a's. We are going to prove several claims concerning the 8 m 'S. 

Claim 1: 8m ('yT) = 8m (T) for all 'Y E SL2(1:) and all T E H. 

Let I E SL2(1:). For any a E Sn we have al E :Dn , so (1.9.2) says that 
there is a (unique) 8", E SL2(1:) such that baal is back in Sn. Further, 
if 8aal = 8f3!h for some (3 E Sn, then (3 = (bi318a)a, so (1.9.2) implies 
that a = (3. In other words, the map 

is one-to-one, hence is a bijection since Sn is a finite set. 
Now we observe that 

{j 0 (al ) : a E Sn} = {j 08;;10 (8aal) : a E Sn} 

= {j 0 (8aal) : a E Sn} since j is SL2(1:)-invariant 

= {j 0 a : a E Sn} since Sn = {baal : a E Sn}. 

Hence any symmetric function on the set {j 0 a : a E Sn} will be invariant 
under T f-+ IT for I E SL2(1:). In particular, this applies to the 8 m (T)'S, 
which completes the proof of Claim l. 

Claim 2: 8 m E qj]. 

In other words, we are claiming that there is a polynomial fm(X) E qX] 
such that 8m(T) = fm(j(T)) for all T E H. From Claim 1 we know that 8 m is 
holomorphic on H and is SL2 (1:)-invariant. In particular, 8m (T+1) = 8m (T), 
so 8 m has a Fourier expansion in q = e2-n:iT. We want to study what happens 
as T --+ ioo, or equivalently as q --+ O. Recall (1.7.4b) that j has the Fourier 
expansion j = q-1 + ~k>O Ckqk, so j has a pole of order 1 at q = o. Now 

if a = (3 ~) E Sn, then -

so in particular qn+l (j 0 a) (T) --+ 0 as q --+ O. It follows from the definition 
of the 8 m 'S that there is an integer N such that qN 8m (T) --+ 0 as q --+ o. 
This means that each 8m (T) is meromorphic at 00 (see I §3), so 8 m is a 
modular function of weight 0 which is holomorphic on H. Now (1.4.2b) says 
that 8 m E qj], which completes the proof of Claim 2. 
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Claim 3: The Fourier expansion of 8 m has coefficients in Z. 

To ease notation, let ( = e21filn and Q = ql/n = e27riT In. For any 0 

(3 ~) E 3n we have 

2rr'; ar+b 
qOO(T)=e d = (abQa 2

• 

(Note that ad = n.) Using the q-expansion of j(T) (I.7.4b), we find as 
above that j 0 0 has the Q-expansion 

"" 
j 0 a(t) = (-abQ-a 2 + L Ck(abkQa 2 k, 

k=O 

where CO, Cl, ... are integers. In particular, the Fourier coefficients of j 0 0 

lie in Z[(], and so the same is true of the 3 m 'S. 

Let a E Gal(Q(()/Q), and write ('" = (r(O") for some integer r(a) 
relatively prime to n. If we apply a to the Q-Fourier coefficients of j 0 0, 

we get the series 

"" (j 0 or = (-r(u)abQ-a 2 + L Ckc(u)abkQa2 k. 

k=O 

Comparing the series for j 0 0 and (j 0 0)"', we see that 

r(a)b) 
d . 

In general, the value of j 0 (3 ~) only depends on b (mod d), since 

and j is SL2 (Z)-invariant. Further, if r is any integer prime to n = ad, 
then the set {rb : 0 S; b < d} is a complete set of residue classes modulo d. 
It follows that for any integer r relatively prime to n we have 

{. (a rb) (a 
)0 0 d : 0 

Applying this with r = r(a) for a E Gal(Q(()/Q), it follows that 

{(joa)"": OESn}={joo: OESn }. 

Now consider the Q-Fourier coefficients of the 3m (T)'S, which we know 
from above lie in Z[(]. Since 3m (T) is a symmetric polynomial in the 
functions {j 0 0 : 0 E 3n }, we see that its Q-Fourier coefficients are fixed 
by Gal(Q(()/Q) and so lie in Q. Hence the Fourier coefficients of Sm(T) 
are in Z[(]nQ = Z. Finally, we note that arn(T+l) = am(T) from Claim 1, 
so am is in fact represented by a Fourier series in q = Qn. This completes 
the proof of Claim 3. 
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Claim 4: 8m (T) E Z[j]. 

\Ve already know from Claim 2 that Sm E C[j] and from Claim 3 that 8 m E 
Z[q, q~l]. \Ve will show that 

which will give the desired result. Let f(j) E C[j] n Z[q, q~l] be a polyno­
mial of degree d, and wriLe f(j) = ao1'l + add~l + ... + ad with ai E C. 
Substituting in the q-expansion of j (1. 7.4b) gives 

f = ao + a 1 + 744dao + ... 
qd qd~l ' 

so the fact that f E Z[q, q~l] implies that ao E Z. Now 

f - aoll = add~l + ... + ad E C[j] n Z[q, q~l]. 

so repeating the above argument gives (11 E Z. Continuing in this way, we 
find that every coefficient of f in Z, which completes the proof of Claim 4. 

Combining Claims 1, 2. 3, and 4, we have completed the proof of the 
first half of the following important result. 

Theorem 6.3. (a) There is a polynomial Fn(Y X) E Z[Y, X] so that 

II (X - j 00) = Fn(j,X). 
nES n 

(b) Let ,3 E J\h(Z) be a matrix with integer coefficients and det;3 > O. 
Then the function j 0 .3 is integral over the ring Z [j]. 
(c) Ifn is not a perfect square, then the polynomial Hn(X) = F,,(X,X) 
is non-constant and has leading coefficient ± 1. 

PROOF. (a) The four claims proven above say that 

II (X - j 0 0) = L 8 m X m with 8 m E Z[j]. 
nES n 

(b) Let Tl = det;3, so ;3 E 'Dn. Using (1.9.2), we can find a matrix 1 E 
SL2 (Z) such that 1;3 E Sn. The SL2(Z)-invariance of j says that j 0;3 = 
j 0 (r(:I), while the definition of Fn shows that X = j 0 (r,3) is a root 
of Fn(j,X). Since Fn is monic by definition and has coefficients in Z[j] 
from (a), it follows that j 0 ,3 is integral over Z[j]. 

(c) Let ct = (3 ~) E Sn. Then using the Q-expansion of j 0 a described 

above during the proof of Claim 3, we sec that the Q-expansion of j - j 0 a 
is 



§6. Integrality of j 147 

(Here we are again writing ( = e21ri/ n and Q = ql/n.) Since n is not a 
square, the leading terms cannot cancel, so j - j 0 a has a pole as Q -7 

o and the coefficient of the leading term is necessarily a root of unity. 
(Precisely, the coefficient is 1 if n > a2 , and it is _(-ab otherwise.) It 
follows that Fn(j,j) has a pole as Q -7 0 and that the leading Q-coefficient 
is a root of unity. But the Q-expansion of Fn(j, j) has integer coefficients, 
so the leading coefficient is a root of unity in Z; hence it must be ±1. 
Further, Fn (j, j) is actually a series in q = Qn, so we have proven that 

for some m ~ 1. But we also know that Fn(j,j) E ZU] and that j has a 
simple pole at q = O. Hence Fn(j,j) = ±j'm + ... E Z[j], which proves 
that Fn(X, X) is a non-constant polynomial with leading coefficient ±l. 

o 

It is now a simple matter to complete the proof of Theorem 6.l. 

Corollary 6.3.1. (Theorem 6.1). Let EIC be an elliptic curve with 
complex multiplication. Then j(E) is an algebraic integer. 

PROOF. Let R ~ End(E) be an order in a quadratic imaginary field K. We 
consider first the case that R = RK is the ring of integers of K. Choose 
some element pER such that n = IN[f pi is not a perfect square. For 

example, if K = Q(i), take p = 1 + i, and if K = Q (V-D) with square­
free D ~ 2, take p = V-D. Then (l.5b) says that the isogeny [p] : E -7 E 
has degree n. Fix aTE H with jeT) = j(E). Then multiplication by p 
sends the lattice ZT + Z to a sublattice of index n, say 

pT = aT + b 

p=cT+d 
for some a, b, c, d E Z with ad - bc = n. 

So if we let a = (~ ~) E TIn, then 

. . (aT + b). . J(aT) = J CT + d = J(T) = J(E). 

By definition, j 0 a is a root of Fn(j, X), so if we substitute X = j 0 a and 
evaluate at T, we get 

0= Fn(j(T),j(aT)) = Fn(j(E),j(E)) = Hn(j(E)). 

From (6.3c), the polynomial Hn(X) has integer coefficients and leading 
coefficient ±1. This proves that j(E) is integral over Z. 
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Now we deal with the case that R is an arbitrary order in K. Let A = 
ZWI + ZW2 be a lattice for E. From [AEC VI.5.5] we know that K = 
Q(WI/W2). Hence replacing A by )'A for an appropriate). E C*, we may 
assume that A c RK. We also choose a 7 E H so that RK = Z7 + Z. Then 
we can write 

W2=C7+d 
for some a, b, c, d E Z. 

Let n = ad - bc. Switching WI and W2 if necessary, we may assume 

that n ~ 1. The matrix a = (~ ~) is in nn, so (6.3b) says that the func­

tion j 0 a is integral over the ring Z[j]. Taking the equation Fn(j, X) = ° 
which gives that integrality and evaluating it at 7, we find that j(a7) is 
integral over Z [j (7)]. But j (a7) = j (E), and we already know that j (7) is 
integral over Z because it is the j-invariant of an elliptic curve with complex 
multiplication by RK . Therefore j(E) is integral over Z. 0 

Example 6.3.2. The polynomials Fn(Y, X) E Z[Y, X] and Hn(X) E Z[X] 
described in (6.3) can be extremely complicated. For example, 

F2(Y, X) = _(Xy)2 + X 3 + y3 + 24 .3.31. XY(X + Y) 

+ 34 .53 .4027. XY - 24 .34 . 53(X2 + y2) 

+28 .37 . 56 (X + Y) - 212 . 39 .59 , 

H2 (X) = _X4 + 2.1489. X 3 + 34 .54 .17.47. X2 

+29 .37 .56 . X - 212 . 39 . 59. 

According to [AEC III.4.5], the elliptic curves E : y2 = x3 + ax2 + bx 
and E' : y2 = x3 - 2ax2 + (a2 - 4b)x are connected by an isogeny E --> E' 
of degree 2. It follows from exercise 2.19 that 

. ., (256(a2 -3b)3 16(a2 +12b)3) 
F2(J(E),J(E)) = F2 b2(a2 _ 4b) , b(a2 _ 4b)2 = 0, 

a fact that the interested reader can check by a direct computation (prefer­
ably with the assistance of a symbolic calculator). 

The £-adic Proof of Theorem 6.1 

We now begin the £-adic proof of Theorem 6.1. If E / L is an elliptic curve 
with complex multiplication, then we know from (2.3) that the action 
of Gal(L/ L) on Etors is abelian, so in particular the action on the Tate 
module T£(E) is abelian. (For another proof of this result which uses only 
a little linear algebra and is valid even if End(E) is not a maximal order, 
see exercise 2.6.) We now use Proposition 2.3, local class field theory, and 
the criterion of Neron-Ogg-Shafarevich to prove that E has everywhere po­
tential good reduction. Although somewhat involved, this proof has the 
advantage that it generalizes to abelian varieties of arbitrary dimension 
(see Serre-Tate [1]). 
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Theorem 6.4. Let L be a number field and E / L an elliptic curve with 
complex multiplication. Then E has potential good reduction at every 
prime of L. 

PROOF. (Serre-Tate) Every endomorphism of R is defined over a finite 
extension of L (2.2b), so replacing L by a finite extension, we may assume 
that EndL(E) is strictly larger than Z. Fix a prime v of L. We set the 
following notation: 

Lv = the completion of L at v, 

Rv = the ring of integers of Lv, 

rotv = the maximal ideal of Rv , 

p = char Rv/rotv = the residue characteristic of Rv, 

f = a rational prime not equal to 2 or p, 

Iv = the inertia subgroup of Gal(Lv/Lv), 

L~b = the maximal abelian extension of Lv, 

I~b = the inertia subgroup ofGal(L~b/Lv). 

By assumption, EndL(E) -=I Z, so certainly EndLv (E) is strictly larger 
than Z. Applying (2.3), we see that the action of Gal(Lv/ Lv) on Tt(E) is 
abelian. In particular, Iv acts through the quotient I~b. 

Local class field theory says that there is an isomorphism 

l ab!:>! R* v-v· 

(See, e.g., Lang [5], Serre [4, XIV §6, Cor. 2(ii) to Thm. 1], Serre [5].) This 
gives us a very good picture of I~b, since we can decompose R~ using the 
exact sequence 

1 ~ R~,l ~ R* ~ (Rv/rotv)* ~ 1. v 

-------- --------pro-p group III finite 

lab v 

Here R~,l is the group of I-units, 

R~,l = {u E R~ : u == 1 (mod rotv)}. 

There is an isomorphism from the formal multiplicative group Gm (rotv ) 

to R~,l given by 

t f-----+ 1 + t. 
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Hence R~,l is a pro-p group; that is, it is the inverse limit of finite groups 
of p-power order (see [AEC IV.3.l.2] and [AEC IV.3.2]). 

Similarly, if we fix an isomorphism Aut T£(E) ~ GL2 (Z£) correspond­
ing to some basis for T£ (E), then there is an exact sequence 

1 --> GL2 (Zdl --> GL2 (Z£) --> GL2 (ZIi!.Z) --> l. 
'"--..---' 
pro-£ group 

Aut T£(E) --> 

III 
AutE[i!.] 
'---v--' 

finite 

Here GL2 (Z£h is the group of matrices congruent to the identity matrix 
modulo i!., and it is not hard to see that this is a pro-i!. group. More precisely, 
the logarithm map gives an isomorphism 

where M 2 (Zl) is the group of 2 x 2 matrices with coefficients in i!.Zl under 
addition. This isomorphism is the GL2 analogue of [AEC IV.6.4b]. (See 
also exercises 2.22 and 2.23.) 

It follows from the above discussion that the map 

Iv --> Aut Tl(E) 

fits into the following diagram: 

Iv 

1 
lab v 

III 
1 --> R~,l R* v --> (Rvlmv)* --> 1 

1 
1 --> GL2(Z£h --> Aut Tl(E) --> GL2 (ZI CZ) --> 1 

Next we observe that since i!. i= p, then there can be no non-trivial ho­
momorphisms from a pro-p group to a pro-i!. group, so the images of R~,l 
and GL2(Zlh in Aut T£(E) have trivial intersection. Therefore there is an 
injection 

Image(R~,l --> Aut T£(E)) <---> GL2 (ZIi!.Z). 

Since also (Rvlmv)* is finite, it follows that 

Image(R~ --> AutT£(E)) is finite, 
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since it consists of finitely many cosets ofImage(R~,l ~ Aut Tf(E)). 
This proves that the image of Iv in Aut Tf(E) is finite. Now the crite­

rion of Neron-Ogg-Shafarevich (specifically [AEC VII.7.3]) says that E has 
potential good reduction at v, which concludes the proof of Theorem 6.4. 

o 

It is now a simple matter to deduce (6.1) from (6.4). 

Corollary 6.4.1. (Theorem 6.1). Let EIC be an elliptic curve with 
complex multiplication. Then j(E) is an algebraic integer. 

PROOF. The elementary result (2.1b) says that j(E) is an algebraic num­
ber, so we may take an equation for E with coefficients in the number 
field L = Q(j(E)). Then (6.4) says that E has potential good reduction 
at every prime of L, so [AEC VII.5.5j implies that j(E) is integral at every 
prime of L. 0 

§7. Cyclotomic Class Field Theory 

In this section we are going to formulate the class field theory of Q in 
terms of special values of analytic functions, specifically special values of 
the exponential function. This is analogous to the way we will later be 
describing the class field theory of quadratic imaginary fields via the theory 
of complex multiplication. We hope that studying the simpler cyclotomic 
case first will aid the reader in understanding the more intricate proofs 
required in the complex multiplication case. However, the results in this 
section will not be used later, so the reader who already feels comfortable 
with class field theory may wish to skip directly to §8. 

We begin with the multiplicative group 

The exponential map provides a complex analytic parametrization of the 
multiplicative group, 

f: C/Z 
t 

Sitting inside of Gm(C) is its torsion subgroup 

The elements of Gm(Chors are roots of unity, so they generate abelian 
extensions of Q. Our aim is to give an analytic description of the action 
of Gal(Qab IQ) on Gm(Chors. 
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From class field theory (see §3) we have the reciprocity map, which is 
a surjective homomorphism 

AQ -+ Gal(Qab /Q), 8 t---+ [8, Q]. 

Each idele 8 thus defines an isomorphism 

Gm(Chors -+ IGm(C}tors, 
( t---+ ([s,lQll. 

The algebraic action of Gal(Qab /Q) on IGm(C)tors is determined by these 
isomorphisms. 

In general, if x E AQ is any idele, we want to define a subgroup xZ c Q 
and a multiplication-by-x map 

Q/Z~Q/xZ. 

The definition of xZ is easy; it is just the ideal of x, which we recall is the 
fractional ideal of Q given by 

xZ = (x) = IIpordpx p . Z = NxZ. 
p 

For convenience, we will write N x as indicated for a rational number gen­
erating the ideal xZ. Later we will pin down N x precisely by requiring 
that sign(Nx ) = sign(xoo ). 

In order to define the multiplication-by-x map, we decompose Q/Z 
into its p-primary components and multiply the p-component by xp. Note 
that 

(p-primary component of Q/Z) = Z(P-l]/Z 9! Qp/Zp. 

The first equality is immediate, since if t = a/n E Q/Z has p-power order, 
then n must be a power of p. For the second equality, we clearly have an 
injection 

Z(P-l]/Z ~ Qp/Zp. 

To check surjectivity, let ~ E Qp/Zp. We can write ~ = a/pe for some a E 

Zp and some integer e ::::: O. Choose an integer a E Z with a == a (mod pezp). 
Then 

and 

Similarly, we observe that for any N E Q*, the p-primary part of Q/ NZ is 
isomorphic to Qp/NZp. 

It is a general fact that an abelian group whose elements all have finite 
order is the direct sum of its p-primary components. (See (8.1) and (8.1.1) 
for something stronger.) Hence 

and for any idele x E AQ, 
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p p 

The last equality follows from the fact that ordp(Nx ) = ordp(xp), so the 
ideals NxZp and xpZp are the same. Now we can define the multiplication­
by-x map to be multiplication of the p-component by xp; in other words, 
multiplication-by-x is defined by the commutativity of the following dia-
gram: 

p p 

We are now ready for the main theorem of this section. The reader 
should compare this cyclotomic result (7.1) with the corresponding complex 
multiplication theorem (8.2). 

Theorem 7.1. Fix the following quantities: 

u E Aut(C), an automorphism of the complex numbers, 

8 E AQ, an idele ofQl satisfying [8, QlJ = UllQlab. 

Further, fix the complex analytic isomorphism 

J: C/Z ~ IGm(C), J(t) = e27fit . 

Then there exists a unique complex analytic isomorphism 

l' : C/8- 1Z ~ IGrn(C) 

so that the following diagram commutes: 
-1 

~ Ql/8- 1z 

a 
---'t 

Remark 7.1.1. Theorem 7.1 says that 

J(t) [s,lQl] = !'(s-lt) for all t E Ql/Z. 

Of course, l' depends on s. We will see during the proof of (7.1) that 

!,(t) = e27riNst, 

where Ns is a certain non-zero rational number. Thus written out explic­
itly, (7.1) says that 

for all t E Ql/Z. 

This formula makes it very clear how the algebraic (Galois) action of [s, QlJ 
is transformed into the analytic (multiplication) action t -+ Nss-1t. Later 
we will have more to say about N s , see (7.2). 



154 II. Complex Multiplication 

PROOF (of Theorem 7.1). Let t E Q/Z, say t = a/n(mod Z) as a frac­
tion in lowest terms. To ease notation, let ( = f(t) be the corresponding 
primitive nth-root of unity. Suppose first that our idele s has the property 

sp == 1 (mod nZp ) for all primes p, and further that s= > o. (*) 

In particular, sp is a unit for all primes dividing n, and we know that Q( () 
is ramified only at these primes, so by (3.5) the action of [05, Q] on Q(() is 
given by the Artin symbol 

[s,Q]IQl(() = ((s),Q(()/Q). 

For any idele s, we will write Ns E Q* for the unique rational number 
satisfying 

and 

Then ((s),Q(()/Q) = (NsZ,Q(()/Q), from which it follows that ([;;.QlJ = 
(Ns, or equivalently 

Next we decompose t (mod Z) into p-primary components, 

Then 

by definition of multiplication by S-l 

== t. 

This suggests that we should take f' to be the map is defined by 

Then for any idele s satisfying (*), we have 

To recapitulate, we have proven that 

provided t == 5!. E Q/Z and s satisfies (*). 
n 
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Now let s E AQ and t E IQ/Z be arbitrary, and as usual write t = 
a/n (mod Z). Using the weak approximation theorem, we can find a ratio­
nal number r E IQ* so that r s satisfies (*). From the definitions, it is easy 
to check that 

and 

Notice that the requirement sign(Ns ) = sign(soo) ensures that Nrs = rNs, 
even when r is negative. Using these equalities, we compute 

f(t) [s,lQl] = f(t)[rs,lQl] since [rs, IQJ = [s, IQJ 

= frs((rs)-St) from above, since rs satisfies (*) 

= e27riNrs-{rs)-1t from the definition of frs 

= e27riNs·s-1t since Nrs = rNs and (rs)-1t = r-1(s-1t) 

= fs(S-lt) from the definition of fs. 

This completes the proof of the existence half of (7.1), with the additional 
information that f' is given by the map f' (t) = fs (t) = e27riNs t. As for 
uniqueness, we need merely observe that the commutative diagram deter­
mines f' on IQ/ s -1 Z, which is a dense subset of Gm UC), so there is at most 
one possibility for f'. 0 

As an alternative version of (7.1), we could use only the single analytic 
parametrization f and replace the multiplication-by-s-1 map so as to make 
the following diagram commute: 

We can (try) to do this because every a E Aut(C) maps Gm(C) to itself. 
In the case of an elliptic curve E, this will only be possible for those a's 
such that EO- ~ E. For the elliptic analogues of our next two results (7.2) 
and (7.3), see (9.1) and (9.2). 

Theorem 7.2. Let s E AQ be an idele. With notation as in (7.1), there 
is a unique rational number Ns E IQ* such that the following diagram 
commutes: N -1 sS 

---> 

Gm(C) ~ GmUC). 

More precisely, Ns is the unique rational number satisfying 

and 
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PROOF. During the proof of (7.1) we showed that f' is the map f'(t) = 
e27riNst, where Ns is as specified in (*). The commutative square in (7.1) 
then says that 

This proves that the square in (7.2) is commutative with Ns chosen to 
satisfy (*). It remains to prove that this commutative diagram uniquely 
determines N s . But if N~ also makes the diagram commute, then we 
find that multiplication by N s- 1 N~ induces the identity map on rQjZ. 
Hence Ns = N~. 0 

From (7.2) we have a well-defined map 

AQ ----> Q* c C, 

and it is clear that this map is a homomorphism. Further, the explicit 
description of Ns given by (*) in (7.2) shows that the map is continuous. 
Recall that for any number field L, a homomorphism 

X: AI, ----> <C* 

is called a Grossencharacter of L if it is continuous and satisfies X(L*) = 1; 
that is, the kernel of X must contain the image of L * in A I,. It is easy to 
see that our map S I---> Ns does not have this property. In fact, if s is the 
image of some a E L *, then clearly Ns = a. We can get a Grossencharacter 
by making a small modification to N s . 

Theorem 7.3. For any idele s E AQ, let Soo be the archimedean compo­
nent of s. Define a map 

X : AQ ----> lR. * c C*, 

where Ns E Q* is the unique rational number satisfying 

NsZ=(s)=sZ and 

Then X is a Grossencharacter of Q. 

PROOF. It is clear that both of the maps 

and Sf------> Soo 

are continuous homomorphisms from AQ to C*. Further, they clearly take 
the same value on the image of Q* in AQ. Hence X is a continuous homo­
morphism that is trivial on Q*; that is, it is a Grossencharacter. 

o 
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§8. The Main Theorem of Complex Multiplication 

Let K be a quadratic imaginary field with ring of integers RK as usual. 
For each prime ideal p of K, let Kp be the completion of Kat p and let Rp 
be the ring of integers of Kp. Similarly, if (1 is any fractional ideal of K, 
let (1p = (1Rp be the fractional ideal of Kp generated by (1. 

Let M be an RK-module. The p-primary component of M, which by 
definition is that part of M annihilated by some power of p, is denoted by 

M[pOO] = {m EM: pem = (0) for some e 2: o}. 

We begin with an elementary lemma about p-primary decompositions. 

Lemma 8.1. (a) Let M be a torsion RK-module; that is, for everym E M 
there is a non-zero a E RK such that am = O. Then the natural summation 
map 

S : EB M[pOO] ~ M, 
p 

is an isomorphism. Here the sums are over all prime ideals of R K, and /-Lp 
denotes the p-component of /-L. 
(b) Let (1 be a fractional ideal of K. Then for each prime ideal p of K, the 
inclusion K '----+ Kp induces an isomorphism 

(c) Again let (1 be a fractional ideal of K. Then there is an isomorphism 

Remark 8.1.1. As our proof will show, Lemma 8.1 is true more gen­
erally for any Dedekind domain R with fraction field K. For example, 
taking R = Z gives the decomposition of a torsion abelian group into p­
primary components as discussed in §7. 

PROOF (of Lemma 8.1). (a) Suppose first that /-L E kereS). For each 
prime p, let e(p) 2: 0 be the smallest integer such that pe(p) /-Lp = (0). 
Note that e(p) exists, since /-Lp E M[poo], and that all but finitely many 
of the e(p) 's are zero since /-L has only finitely many non-zero components. 
Now fix a prime ideal q and let 
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By construction, we have ilJ1p (0) for all p =I q. On the other hand, 
since 8(J1) = 0 by assumption, we have 

(0) = il8(J-t) = il L J-tp = L ilJ-tp = ilJ-tq. 
p p 

But il is relatively prime to q, so () + qe(q) = (1). Hence 

which proves that J-tq = O. Since q was arbitrary, we have proven that J-t = 0 
and hence that 8 is injective. 

Next we check surjectivity. Take any element m E M, and choose a 
non-zero a E RK with am = O. Factor the ideal aRK as 

Then we can find 101, ... ,lOr E RK satisfying 

101 + ... + lOr = 1 and 

[Proof: Let e; = ap-ei . Then e1 + .. ·+er = (1), so it suffices to take 10; E e; 

with 101 + .. ·+cr = 1.] Notice that pe i c ; C aRK, so peic;m C amRK = (0). 
Hence Cim E M[Pi], so if we set 

= {cim if p = Pi for some 1 :::; i :::; r, 
J-tp 0 otherwise, 

then J-t E EBM[poo] and 8(J-t) = L,J-tp = 101m + ... + Crm = m. This 
completes the proof that 8 is surjective. 
(b) First, suppose that a E (Kia) [pOOl is in the kernel of T. Choosing a 
representative a E K for a, this means that pea C a for some integer e ~ 0 
and that a E ap = aRp • These two inclusions imply respectively that 

Therefore aRK C a, so a E a, which means that a = O. This proves that T 
is injective. 

Next, let fJ E Kp/ap and choose a representative f3 E Kp for fJ. By the 
weak approximation theorem (essentially the Chinese Remainder Theorem) 
we can find an a E K satisfying 

and ordq(a) ~ ordq(a) for all q =I p. 
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The first inequality says that a == (3 (mod ap), so T(a) = 13. Let e be a non­
negative integer greater than ordp(a) - ordp(a). Then ordq(pea ) ~ ordq(a) 
for all primes q, including q = p, so pea Ea. Hence a E (K/a) [1'00], which 
completes the proof that T is surjective. 
(c) This is immediate from (a) and (b). 0 

Let x E A'K be an idele. Recall that the ideal of x is the fractional 
ideal 

(x) = IIpordp(xp). 

p 

If a is any fractional ideal of K, we define xa to be the product (x)a. Using 
the equality (x)p = (x)Rp = xpRp, we see that 

Now (8.1c) gives natural isomorphisms 

and K/xa ~ EBKp/xpap. 
p 

We define the multiplication-by-x map on K / a to be multiplication 
of the p-primary component by xp. In other words, multiplication-by-x is 
defined by the commutativity of the following diagram: 

K/a 
x 

K/xa ~ 

11 11 
EBKp/ap ~ EB Kp/xpap 

p p 
( tp) f---+ (Xptp) 

We also recall from §3 that the reciprocity map for K, 

S f---+ [s, K], 

is surjective and its kernel contains K*. 
We are now ready to state and prove the main theorem of complex 

multiplication in its adelic formulation. At the risk of making the statement 
overly long, we include a summary of our notation and assumptions. 

Theorem 8.2. (The Main Theorem of Complex Multiplication) Fix the 
following quantities: 

K /Q a quadratic imaginary field with ring of integers RK, 

E/f:- an elliptic curve with End(E) ~ RK, 
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E Aut(C), an automorphism of the complex numbers, 

E A~, an idele of K satisfying [s, K] = O"IKab. 

Further, fix a complex analytic isomorphism 

I: Cia ~ E(<C), 

where a is a fractional ideal of K. Then there exists a unique complex 
analytic isomorphism 

(depending on I and 0") so that the following diagram commutes: 

Kia ~ KIs-1a 

if if' 
E(<C) ~ Ea(<C). 

Remark 8.2.1. The statement of Theorem 8.2 remains true for elliptic 
curves whose endomorphism ring is a non-maximal order of K. Of course, 
one first must explain how to mUltiply Kia by an idele x when a is an 
arbitrary lattice in K. For details, see Shimura [1] or Lang [1, Ch. 8, 10]. 

Remark 8.2.2. Notice how Theorem 8.2 transforms the algebraic action 
of 0" on the torsion subgroup I (Kia) = E tors into the analytic action of 
multiplication by S-l: 

for t E Kia and s E A~. 

Compare with (7.1.1). 

PROOF (of Theorem 8.2). Clearly, there is at most one 1', since the 
commutative diagram determines I' on K Is-la, which is a dense subset 
ofCls-1a. 

Suppose that EdC is an elliptic curve that is isomorphic to E and 
that h : Cia 1 ---+ E1 (<C) is an analytic isomorphism. We are going to 
begin by proving that if Theorem 8.2 is true for (£1. h), then it is also 
true for (E, f). This will allow us to reduce to the case that E is defined 
over Q (j (E)) and a is an integral ideal. 

So we are assuming that there is an analytic isomorphism 

and a commutative diagram 
-1 

Kla1 "----+ K/s- 1a1 
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Since E and El are isomorphic, we may fix an isomorphism i : El -::+ E. 
Further, the lattices for E and El are homothetic [AEC VI.4.l.1], so we 
have al = ')'a for some,), E K*. Then each of the squares in the following 
diagram is commutative: 

1/; 
Ef(e) 

1 i~ 
EC7(e). 

Hence (8.2) is true for (E, f) if we take for f' the map 

We are now reduced to proving (8.2) under the assumptions that E 
is defined over Q(j(E)) and that a C RK is an integral ideal. Fix an 
integer m ~ 3 and let Lj K be a finite Galois extension satisfying 

j(E) E L and E[m] C E(L). 

We note that (5.6) implies that L contains K(m), the ray class field of K 
modulo m. We are going to begin by proving that (8.2) is true on the m­
torsion points of E. As usual, our main tool will be reduction modulo a 
suitable prime. 

Let l,}} be a prime ideal of L satisfying the following five conditions: 

(i) aiL = (l,}}, Lj K); that is, the restriction of a to L is a Frobeniuse­
lement for l,}}. 

(ii) P = l,}} n K is a prime of degree 1; that is, p = Nffp is a rational 
prime. 

(iii) p is unramified in L. 
(iv) p is not one of the finitely many primes excluded in (4.5). 
(v) l,}} does not divide m. 

Such an ideal always exists, since the Tchebotarev Density Theorem (Lang 
[5, Ch. VIII, Thm. 10]) says that there are infinitely many primes satis­
fying (i) and (ii), whereas each of (iii), (iv), and (v) excludes only finitely 
many primes. 
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Using the fact that L contains K(rn)' we find 

[s,K]IK =alK 
(=) (=) 

= (p,K(rn)/K) 

since [s, K] = alKab by assumption 

from (i) and (ii). 

This last map is the Frobenius element associated to p. Let 1r E A'k be an 
idele with a uniformizer at the p-component and l's elsewhere. Then (3.5c) 
says that [1r,K] also equals (p,K(m)/K). Hence [s1r- 1,K] acts trivially 
on K(m)' so the idelic characterization (3.6) of the ray class field K(rn) says 
that the idele S1r- 1 factors as 

Here 0: E K*, and for each prime q, U E A'k satisfies 

U q E R~ and U q == 1 (mod mRq ). 

Next we use (5.3) to find an isogeny 

whose reduction modulo IlJ is the pth_power Frobenius map. Note that 
since L contains K(j(E)), (i) implies that 

aIK(j(E)) = (IlJ,L/K)IK(j(E)) = (p,K(j(E))/K). 

Since E is defined over Q(j(E)), we see that the isogeny described in (5.3) 
is indeed from E to Er7. 

We claim that on m-torsion points, ). acts like a. To see this, let T E 

E[m] and use tilde's to denote reduction modulo 1lJ. Then 

)'(T) = 5..(T) = Tr7, 

since both), and aiL = (1lJ, L/ K) act on the residue field modulo IlJ as 
the pth_power map. Now IlJ f m from (v), so [AEC VII.3.1b] says that 
on m-torsion points the reduction map ElT[m] --+ ElT[m] is injective. Hence 

for all T E E[m]. 

In other words, we have produced a commutative diagram 

E[m] ~ ElT[m] 

1 1 
E(C) ~ E""(C). 
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(N.B. This diagram describes a deep mathematical relationship, because it 
transforms the algebraic action of (J on m-torsion points into the geometric 
action of >.. Notice that for general points P E E(k), >.(P) and pO' will 
not be equal.) 

We also note from (4.3d) that EO' is isomorphic to p * E, where p * E 
is an elliptic curve associated to the lattice p -1 a. Using the given analytic 
isomorphism f : Cia ----+ E(C), this means there is an analytic isomor­
phism ff!: C/p-1 a ----+ EO'(C) so that we have a commutative diagram 

1 
id 

------> C 

1 
C/p-1 a (*) 

if" 
EO'(C). 

Recall that we factored the idele 8 as 8 = O:7rU. Since every component 
of U is a unit, and every component of 7r is 1 except for a uniformizer in 
the p-component, we have 

(8) = (0:)(7r) = (o:)p, and so 

Thus multiplication by 0:- 1 gives an isomorphism 

so we can extend (*) to form the larger commutative diagram 

C 
id 

C 
a- 1 

C ------> ------> 

1 1 1 
Cia ------> C/p-1 a ------> C18- 1a (** ) 

if if" if' 
E(C) A EO'(C) id EO'(C). ------> ------> 

Here f' : C I 8 -1 a -=:-. EO' (C) is the unique analytic isomorphism making (**) 
commute. We claim that f' satisfies 

To verify this claim, we note from above that 

f(t)O' = >.(J(t)). 
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Combining this with the commutativity of (**), we must check that 

for all t E m-1a/a; 

and since l' is bijective, this is equivalent to showing that 

? 
a-It - S-l t E s-la 

Recalling that s-l t E K/s- 1 a is defined by multiplying the q-primary 
component by Sq, we must prove for each prime q of K that 

Now multiplying through by Sq and using the decomposition Sq 

a7rqu q from above, we must check that 

or equivalently that 
? 

(7rqU q - l)aq C maq . 

By construction, u q is in R~ and satisfies u q 

red uced to proving 
? 

(7rq -l)aq C maq • 

1 (mod mRq), so we are 

There are two cases to consider. First, if q # p, then 7r q = 1, so we are 
done. Second, if q = p, we know that 7r p is a uniformizer, so (7r p -1) ap = ap. 
Further, we know from (v) that p f m, so m is a p-adic unit and hence map = 
ap . This proves the desired inclusion for all q, thereby completing the proof 
of our claim. 

To recapitulate, for each integer m ::::: 3 we have produced an analytic 
isomorphism 

and a commutative diagram 

m-1a/a 
s-1 m-1 S-1 a/ s-1a ---+ 

1/ 1/:.. 
E(C) 

u Ei7(C). ---+ 

To complete the proof of (8.2) it suffices to show that all of the f:n maps 
are the same, since then these commutative diagrams will fit together to 
give the desired result on all of K/a. 
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So let n 2: 1 be an integer, and let f:nn : Cis-Ia ~ EO"(C) be the 
corresponding analytic isomorphism. Note that the composition f:nn 0 f:n -1 

is an automorphism of EO", say f:nn 0 f:n -1 = [~] E Aut(EO"). Then for 
any t E m-Iala we have 

[~] 0 f:n(S-I t ) = f:nn(s-I t ) 

= f(tt 
= f:n(s-I t ) 

by definition of ~ 

from construction of f:nn 

from construction of f:n. 

This holds for all t E m-Ia, so we conclude that 

[~]T=T for all T E EO"[m]. 

Since m 2: 3, this can only happen if [~] = [1], since for [~] -I [1] the kernel 
of [1 - ~] contains at most six points. (If j(E) -I 0,1728, then ~ = ±1, 
and in the two exceptional cases, ~4 = 1 or ~6 = 1. See [AEC IILlO.l].) 
Therefore f:nn = f:n, which concludes the proof of (8.2). 0 

§9. The Associated Grossencharacter 

In this section we will use the main theorem of complex multiplication 
to define a Grossencharacter associated to an elliptic curve with complex 
multiplication. Recall that a Grossencharacter on a number field L is a 
continuous homomorphism 

1jJ : Ai ---+ C* 

with the property that 1jJ(L*) = 1. Our first result describes a map Ai ~ 
C* which, with some small modifications, will be the desired Grossencha­
racter. 

Theorem 9.1. Let ElL be an elliptic curve with complex multiplication 
by the ring of integers RK of K, and assume that L ::) K. Let x E Ai 
be an idele of L, and let s = Nf{x E Ak. Then there exists a unique a = 

aE/dx) E K* with the following two properties: 
(i) aRK = (s), where (s) c K is the ideal of s. 
(ii) For any fractional ideal a C K and any analytic isomorphism 

f: Cia ---+ E(C), 

the following diagram commutes: 

Kia Kia 
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Before beginning the proof of (9.1), we should make a few remarks. 
First, from (2.3) we know that K(j(E), E tors ) is an abelian extension 
of K(j(E)). Further, since E is defined over L, we know that j(E) E L, 
and so we see that L(Etors) C Lab. This shows that the images of the verti­
cal maps in (ii) do lie in E(Lab ). Second, since K(j(E)) is the Hilbert class 
field of K from (4.3), we know that N~2t is principal for any ideal 2t of L. 
Since (s) = (N~x) = N~((x)), we see that there always exists an a E K* 
satisfying (i), and (i) determines a up to a unit of K. It then remains 
for (ii) to pin a down precisely. Third, we note that (i) gives 

so the top row of the diagram in (ii) is well-defined. 

PROOF (of Theorem 9.1). Let 

L' = L(Etors ). 

Since j(E) E L, it follows from (5.7) and (2.3) respectively that there are 
inclusions 

Choose an automorphism a E Aut(C) such that 

alLab = [x,L]. 

A standard property of the reciprocity map (3.5b) says that 

so applying the main theorem of complex multiplication (8.2), we find an 
analytic isomorphism f' : Cia ----+ E(C) and a commutative diagram 

Kia 

11 
E(C) 

8- 1 

-----+ 

CT 
-----+ 

Kis-la 

1/' 
ECT(C). 

Now E CT = E, since a fixes L. Hence a and s-la must be homothetic, so 
there is a (3 E K* such that (3s-1a = a. Our commutative diagram then 
becomes 

Kia Kia 

E(C) ~ E(C). 
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Note that 1" 0 f- 1 is an automorphism of E, say 1" = [~] 0 f. If we 
set 0: = ~!3 and use the facts that alLab = [x, L] and E tors C E(Lab), we 
get 

Kia 
-1 as 

--'> Kia 

E(Ub ) ~ E(Lab), 

which is exactly (ii). Further, we have an equality of ideals 

so o:RK = (s). 

This proves that 0: satisfies both (i) and (ii), which completes the proof of 
the existence of part of (9.1). 

Next we check that 0: is unique. Suppose that 0:' E K* also has prop­
erties (i) and (ii). From (ii) and the fact that f and [x, L] are isomorphisms, 
we get a commutative triangle 

Kia 
~ 0",.,--1 

Kia Kia 

Hence multiplication by 0:'0:- 1 is the identity map on Kia, so 0:' = 0:. 

Finally we must show that 0: is independent of the choice of f. Suppose 
that!, : Cia' -> E(C) is another analytic isomorphism. Then a = ,a' 
for some, E K*, and I' 0 f- 1 is an automorphism of E, so there is a 
unit ~ E R'K such that I'(z) = f(~,z). Then (ii) for f gives 

l'(t)[x,L] = f(~,t)[x.L] = f(O:S-lbt) = !'(o:s-l t ) for all t E Kia, 

so (ii) remains true if f is replaced by 1'. Hence 0: is independent of f. 
o 

Theorem 9.1 gives us a well-defined map 

O:£/L : A~ --'> K* c C*, 

and it is clear that O:£/L is a homomorphism. However, it is easy to see 
that 0:£/ d L *) i= 1, so 0: £ / L is not a G rossencharacter. More precisely, 
if!3 E L* and xj3 E A~ is the corresponding idele, then [Xi', L] = 1. So (9.1) 
says that 0: = o:£/dxj3) is the unique element of K* such that o:RK = 

N~((x(,))RK = N~(!3)RK and such that multiplication by GNJ(XiJl in­
duces the identity map on Kia. Clearly, the required 0: is just N~!3. In 
other words, we have proven that 

for all !3 E L * , 

which is the first step in proving the following important result. 
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Theorem 9.2. Let ElL be an elliptic curve with complex multiplication 
by the ring of integers RK of K, assume that L :J K, and let aE/ L : Aj> ---> 

K* be the map described in (9.1). For any idele 8 E Ax, let 8 00 E C* 
be the component of 8 corresponding to the unique archimedean absolute 
value on K. Define a map 

'l/JE/L : AI ---> C*, 

( a ) 'l/J E / L is a G rossencharacter of L. 
(b) Let S-lJ be a prime of L. Then 'l/J E / L is unramified at;:p if and only if E 
has good reduction at S-lJ. (Recall that a Grossencharacter 'l/J : At ---> C* is 
said to be unramified at S-lJ if 'l/J(R~) = 1.) 

PROOF. (a) It is clear that 'l/JE/L is a homomorphism. We saw above that 
if (3 E L *, then a E / d x (3) = N i (3. On the other hand, untwisting the 
definitions we find 

Ni(x{3)oo = II fr = Ni{3· 
r:L<-+C 
rlK=l 

Therefore 'l/JE/dx(3) = 1. This holds for all (3, so 'l/JE/dL*) = 1. 
Next we are going to verify that a E / L : At ---> C is continuous. Fix an 

integer m 2': 3. We know from (2.3) that L(E[mJ) is a finite abelian exten­
sion of L. Let Em C At be the open subgroup corresponding to L(E[mJ); 
that is, Em is the subgroup so that the reciprocity map induces an isomor­
phism 

AjjBm ~ Gal(L(E[mJ)/L) 

x f----+ [x, LlIL(E[TnJ). 

Let 

W m = {8 E A x 8p E R~ and 8 p == 1 (mod mRp) for all p}, 

and let 

Urn = Em n {x E At : Nix E W rn }. 

We note that Urn is an open subgroup At. We are going to prove the 

Claim: aE/L(x) = 1 for all x E Urn. 

Let x E U Tn, and to ease notation let a = a E / d x). Also fix an analytic 
isomorphism 

f: Cia ~ E(C) 
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as in (9.1). Then for any t Em-la/a we have J(t) E E[m], so 

f(t) = f(t)[x,L] since x E B m , so [x, L] fixes L(E[mJ) 

= f(o:Nix-1 t) from (9.1ii) 

= J(o:t) since t Em-la/a and 

(Nix)p E (1 + mRp) n R; for all p. 

Hence multiplication by 0: fixes m-1a/a or, equivalently, 

(0: - l)m-1a C a. 

This inclusion of fractional ideals means that (0: - I)RK C mRK' so 

and 

On the other hand, for any prime 13 of K we have 

ordp 0: = ordp (Nix)p from (9.1i) 
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= 1 since the p-component of Nix E Wm is a unit. 

This holds for all 13, so 0: must be a unit, 0: E R'K. But 0: == 1 (mod mRK) 
from above, so the only possibility is 0: = 1. This proves our claim. 

It follows from the claim and the definition of '¢E/L that 

for all x E Um . 

From this formula it is clear that '¢E/L is continuous on Um. But Um is 
an open subgroup of At. Therefore '¢E/L is continuous on all of Ai" which 
completes the proof that '¢E/L is a Gr6ssencharacter. 
(b) Let I~r c Gal(Lab / L) be the inertia group for~. The reciprocity map 
sends % to I~b, 

[R~, L] = I~b, 
where we embed R~ into At in the usual way, 

R~ ~At, U f----> [ ••• , 1, l,u, 1, 1, ... ]. 

i 
~ - component 

Let m be an integer with ~ t m. We know from (2.3) that E[m] C 
E(Lab), so I~b will act on E[m]. We want to characterize when this action 
is trivial in terms of values of the Gr6ssencharacter '¢E/L. Thus 

I~b :~t~t[~iallY ~ f(t)U = f(t) for all (J' E I~b and all t Em-la/a 

~ f(t)[x,L] = f(t) for all x E R~ and all t Em-la/a 

~ f(O:E/dx)(Nix-l)t) = f(t) 

for all x E % and all t Em-la/a, 
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where for the last equivalence we have used (9.1). We make two observa­
tions. First, 

for all x E R~, 

since the archimedean components of x E R~ are all 1. Second, multipli­
cation by NJ<x-1 induces the identity map on m-1a/a. This follows from 
Lemma 9.3 (see below) and the assumption that Ifj t m. Hence we find 

I<$b acts trivially -¢==} f('l/JE/dx)t) = f(t) 
onE[m] 

for all x E R~ and all t E m-la/a 

-¢==} 'l/JE/dx) == 1 (mod mRK) 

for all x E R~, since f : m-1a/a -.:::::. E[m]. 

Next we apply the criterion of Neron-Ogg-Shafarevich, which relates 
the action of I<$b on E[m] to the reduction of E modulo Ifj. More pre­
cisely, [AEC VII.7.1] says that 

I<$b acts trivially on E[m] for -¢==} E has good reduction at Ifj. 
infinitely many m prime to Ifj 

Combining this with the equivalence proved above, we obtain the desired 
result: 

E has good there are infinitely many m with Ifj t m such that 
-¢==} 

reduction at Ifj 'l/JE/L(X) == 1 (mod mRK) for all x E R~ 

-¢==} 'l/JE/L(X) = 1 for all x E R~ 

-¢==} 'l/J E / L is unramified at Ifj. 
o 

It remains to prove the elementary result used in the proof of (9.2b). 

Lemma 9.3. Let a be a fractional ideal and b an integral ideal of K. 
Let s E A'K be an idele with the property that 

sp = 1 for all primes p dividing b. 

Then the multiplication-by-s map s : K / a -+ K / a induces the identity map 
on b-la/a. In other words, 

st = t for all t E b-1a/a. 

PROOF. From (8.1), the decomposition of b-la/a into p-primary compo­
nents is 

b-1a/a ~ EB (b-la/a)p ~ EB bp-lap/ap = EB bp-lap/ap. 
p p plb 
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Here the last equality follows from the fact that bp = Rp for all p t b, 
so the only non-zero terms in the direct sum are those with plb. The 
multiplication-by-s map on b-1aja is now defined by the commutative 
diagram 

But by assumption, sp 
identity map. 

s 
-----+ 

1 for all plb, so multiplication-by-s is just the 
o 

§10. The L-Series Attached to a CM Elliptic Curve 

The L-series attached to an elliptic curve is an analytic function that is 
used to encode arithmetic information about the curve. One then hopes 
to deduce further arithmetic properties of the elliptic curve by studying 
the analytic properties of its L-series, much as one uses the Riemann zeta 
function to study the set of rational primes. In this section we will define 
the L-series of an elliptic curve E and show that if E has complex multipli­
cation, then its L-series can be expressed in terms of Hecke L-series with 
Gr6ssencharacter. 

Let L jQ be a number field, and let E j L be an elliptic curve. For each 
prime >,p of L, let 

IF\j3 = residue field of L at >,p, 

q\j3 = N~>,p = #IF \j3. 

If E has good reduction at >,p, we define 

a\j3 = q\j3 + 1 - #E(lF\j3), 

L\j3(Ej L, T) = 1 - a\j3T + q\j3T2. 

The polynomial L\j3( E j L, T) is called the local L-series of E at >,p. If E has 
bad reduction at >,p, we define the local L-series according to the following 
rules: 

{
1-T 

L\j3(Ej L, T) = : + T 

if E has split multiplicative reduction at >,p, 
if E has non-split multiplicative 

reduction at >,p, 
if E has additive reduction at >,po 
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Remark 10.1. In the case that E has good reduction at Sfj, we can give 
a more intrinsic definition of the local L-factor in terms of the action of 
Frobenius on the Tate module. Thus let ¢<p : E -t E be the q<p-power 
Frobenius map, and let 

be the associated map on the Tate module of E (see [AEC III. §7]), where 
we take some P relatively prime to the characteristic of IF'<p. If we choose a 
basis for the Tate module, so Tp(E) ~ Zp x Zt, then ¢<p,£ is represented by 
a 2 x 2 matrix with coefficients in Z£. The characteristic polynomial of the 
linear transformation cP<p,£ is 

and this polynomial is independent of the chosen basis for Tp(E). 
In fact, [AEC V.2.3] says that the characteristic polynomial of ¢<p,p 

has coefficients in Z and is independent of P. More precisely, we find that 

tr¢<p.f = 1 + deg¢ - deg(l- ¢) from [AEC V.2.3] 

= 1 + qv - #E(lF'<p) from [AEC II.2.l1c] and [AEC V §1]. 

Similarly, 
det ¢<P'£ = deg ¢ from [AEC V.2.3] 

= qu from [AEC 1I.2.l1c]. 

Hence 

For a general discussion of this material in terms of P-adic cohomology, see 
Hartshorne [1, App. CJ. 

We now piece together the local L-factors to form the global L-series 
of E. 

Definition. The (qlobal) L-series of E / L is defined by the Euler product 

L(E/L,s) = II L<p(E/L,q;p8)-1, 
<p 

where the product is over all primes of L. 

Using the estimate la<p1 :S 2VQ\i3 from [AEC V.2.4], it is not hard to 
show that the product converges and gives an analytic function for all s 
satisfying Re( s) > ~. Conjecturally, far more is true. 
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Conjecture 10.2. Let ElL be an elliptic curve defined over a num­
ber field. The L-series of ElL has an analytic continuation to the entire 
complex plane and satisfies a functional equation relating its values at s 
and 2 - s. 

We are going to verify this conjecture for elliptic curves with complex 
multiplication by showing that L( ElL, s) is a product of Hecke L-series 
with Grossencharacter. In general, suppose that 

'IjJ: Ai -t C* 

is a Grossencharacter on Lj that is, 'IjJ is a continuous homomorphism which 
is trivial on L * . Let ~ be a prime of L at which 'IjJ is unramified, so 
'IjJ(R;JJ) = 1. We then define 'IjJ(~) to be 

'IjJ(~) = 'IjJ( ... , 1, 1,71", 1, 1, ... ), 

i 
~ - component 

where 71" is a uniformizer at ~. Note that since 'IjJ is unramified at ~, 'IjJ(~) 
is well-defined independent of the choice of 71". For convenience, we also set 

'IjJ(~) = 0 if'IjJ is ramified at ~. 

Definition. The Hecke L-series attached to the Grossenchamcter 

'IjJ: Ai -t C* 

is defined by the Euler prod uct 

L(s,'IjJ) = II(1- 'IjJ(~)q;PSrl, 
'.J.l 

where the product is over all primes of L. 

Heeke L-series with Grossencharacter have the following important 
properties, whose proof we will omit. 

Theorem 10.3. (Heeke) Let L(s, 'IjJ) be the Hecke L-series attached to 
the Grossencharacter 'IjJ. Then L( s, 'IjJ) has an analytic continuation to the 
entire complex plane. Further, there is a functional equation relating the 
values of L(s, 'IjJ) and L(N - s,;j;) for some real number N = N('IjJ). 

PROOF. This was originally proven by Hecke. It was reformulated and 
reproven by Tate [8] using Fourier analysis on the adele ring AL . 0 

The key to expressing L( ElL, s) in terms of Heeke L-series is to express 
the number of points in E(IF'.J.l) in terms of the Grossencharacter attached 
to ElL. 
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Proposition 10.4. Let ElL be an elliptic curve with complex multipli­
cation by the ring of integers RK of K, and assume that L ::J K. Let \13 
be a prime of L at which E has good reduction, let E be the reduction 
of E modulo \13, and let ¢'lJ : E -> E be the associated q'lJ-power Frobenius 
map. Finally, let 'l/JE/L : At -> C* be the Grossencharacter (9.2) attached 
to ElL. Then the following diagram commutes: 

[..pE/d'lJ)] 
E • E 

1 1 
<P'P 

------+. E, 

where the vertical maps are reduction modulo \13. 

PROOF. Before we begin the proof, two remarks are in order. First, 'l/JE/L 
is unramified at \13 from (9.2b), so 'l/JEI d\13) is well-defined. Second, since 
'l/JE/d\13) is the value of 'l/JE/L at an idele with l's in its archimedean com­
ponents, we have 'l/JE/d\13) = D:E/d\13) E R K , so it makes sense to talk 
about ['l/JE/d\13)] as an endomorphism of E. 

Let x E At be an idele with a uniformizer in its \13-component and l's 
elsewhere. Then as we just remarked, 

The commutative diagram (9.1) used to define D:E/L tells us that 

for all t E Kia. 

Fix some integer m with \13 f m. Then (9.3) says that Nix-It = t for 
all t E m-In/n, so we get 

f(t)[x,L] = ['l/JE/dx)]f(t) for all t E m-1ala. 

Now consider what happens when we reduce modulo \13. We have [x, L] = 
(\13,pb IL) from (3.5), so [x,L] reduces to the q'lJ-power Frobenius map. 
Hence 

for all t E m-1nla. 

Since this is true for all m prime to \13, and since an endomorphism of E 
is determined by its effect on torsion (or even on e-primary torsion for a 
fixed prime e [AEC 111.7.4]), we conclude that 

o 
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Corollary 10.4.1. With notation as in (10.4), we have 

(a) q'll = N~q3 = N{f (1/JE/dq3)) , 

(b) 

(c) 

#E(F'll) = N~1.l3 + 1 -1/JE/L(I.l3) -1/JE/dq3), 

a'll = 1/JE/dq3) + 1/JE/dq3)· 

(The bar indicates complex conjugation of elements of K.) 

PROOF. (a) We compute 

N~q3 = deg</>'ll 

-------
= deg [1/JE/dl.l3)] 

= deg[1/JE/dq3)] 

= N{f (1/JE/L(I.l3)) 

(b) Similarly, we compute 

#E(F'll) = # ker(l - </>'ll) 

= deg(l - </>'ll) 

from [AEC II.2.11c] 

from (10.4) 

from (4.4) 

from (1.5). 

from [AEC III.5.5] 

and [AEC 1Il.4.IOc] 

= deg [1 -1/JE/dq3)] from (10.4) 

= deg[l -1/JE/dl.l3)] from (4.4) 

= N{f (1 -1/JE/L(q3)) from (1.5) 

= (I-1/JE/dq3))(1 -1/JE/dl.l3)) 

= 1 -1/JE/dq3) -1/JE/dl.l3) + N~1.l3 from (a). 
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(c) Immediate from (a), (b), and the definition of a'll' 0 

We now have all of the tools needed to relate the L-series of E to 
the L-series attached to its Grossencharacter, at least in the case that the 
field of definition of E contains the CM field. We will leave the proof in 
the other case to the reader. 

Theorem 10.5. (Deuring) Let E / L be an elliptic curve with complex 
multiplication by the ring of integers RK of K. 
(a) Assume that K is contained in L. Let 1/JE/L : AI, ---+ C* be the Gros­
sencharacter (9.2) attached to E / L. Then 

L(E/L,s) = L(S,1/JE/dL(s,1/JE/d. 
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(b) Suppose that K is not contained in L, and let L' = LK. Further 
let'l/JEILI : ALI -t C* be the Gr8ssencharacter attached to E/L'. Then 

L(E/L,s) = L(S,'l/JElu). 

Using Heeke's theorem (10.3), we immediately deduce that the L-series 
of a CM elliptic curve has an analytic continuation and satisfies a functional 
equation. A more careful analysis yields the following result. We will leave 
the proof to the reader. 

Corollary 10.5.1. Let E/L be an elliptic curve with complex multiplica­
tion by the ring of integers RK of K. The L-series of E admits an analytic 
continuation to the entire complex plane and satisfies a functional equation 
relating its values at s and 2 - s. 

More precisely, define a function A( E / L, s) as follows: 
(i) If K c L, let 

A(E/L,s) = (N~(1)LIQC",)r(27r)-sr(s))[L:Q]L(E/L,s), 

where c", is the conductor of the Grossencharacter 'l/JEIL, 1)L/Q is the dif­
ferent of L/Q, and res) = 1000 tS-1e- t dt is the usual r-function. 
(ii) If K ct L, let L' = LK and 

A(E/ L, s) = (N~' (1) U IQC~))sI2 (27r)-Sr(s)) [L:Q] L(E/ L, s), 

where c~ is the conductor of the Gr8ssencharacter 'l/J E I U· 

Then A satisfies the functional equation 

A(E/L,s) = wA(E/L,2 - s), 

where the quantity w = WElL E {±1} is called the sign of the functional 
equation of ElL. 

PROOF (of Theorem 10.5). We know from (6.1) and [AEC VII.5.5] that E 
has potential good reduction at every prime of L, so [AEC VII.5.4(b)] tells 
us that E has no multiplicative reduction. Hence 

L (E/L T) = {1- a<.pT + q<.pT2 if E has good reduction at \13, 
<.p , 1 if E has bad reduction at \13. 

Now suppose E has good reduction at \13. Then 

L<.p(E I L, T) = 1 - a<.pT + q<.pT2 by definition of L<.p, 

= 1 - ('l/JE/d\13) + 'l/JE/L(\13))T + (N[f'l/JEILC\13))T2 
from (10.4.1) 
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On the other hand, (9.2b) says that 'l/JE/L is unramified at $ if and only 
if E has good reduction at $, and the same is true for 'l/JE/L. Thus 

if E has bad reduction at $, 

so the formula given above for L'i3(E / L, T) is also true for primes of bad 
reduction, since it reduces to L'i3(E / L, T) = l. Therefore 

L(E/L,s) = IT L'i3(E/L,q;i/)-l 
'i3 

= IT(1- 'l/JE/d$)q$S)-l(l- 'l/JE/d$)q$S)-l 
'i3 

= L(s, 'l/JE/dL(s, 'l/JE/d. 

(b) See exercises 2.30, 2.31, and 2.32. D 

Example 10.6. Let D E Z be a non-zero integer, and let E be the elliptic 
curve 

E: y2 = x 3 + D 

having complex multiplication by the ring of integers RK of the field K = 

Q (A). Let p be a prime of RK with P t 6D. Since RK is a PID, we 
can write p = (7r), and one can check that there is a unique 7r generating p 
which satisfies 7r == 2 (mod 3). It is then a moderately difficult exercise 
using Jacobi sums (see Ireland-Rosen [1, 18 §§5,7]) to show that 

where (:;)6 is the 6th-power residue symbol; that is, (:;)6 is the 6th-root of 
unity satisfying 

a(N{iP-l)/6 == (;)6 (mod 7r). 

Using (10.4.1), we see that the Grossencharacter attached to E is given 
either by 

or else by 

To determine which one it is, we use (5.4) to find a root of unity ~ E 

Rk such that the reduction of [~7rl modulo p is Nlj p-power Frobenius. 
Note that (5.4) says this is possible for almost all degree 1 primes of K. 
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But (10.4) says that [1PEjK(P)] also reduces to Frobenius. We conclude 
that 

where P = (7r) and 7r == 2 (mod 3), 

at least for almost all degree 1 primes p of K. By the continuity of 1P and 
the reciprocity law for (;i:-)6' we see that this formula holds for all p. 

Using (10.5) and Ntj7r = 7rn, we find that the L-series of E over K 
and over Ql can be written explicitly using residue symbols as 

L(E/K,s) = II 
7rE RK prime 
,,=2 (mod 3) 

L(E/Ql, s) = II 

EXERCISES 

7rERK prime 
7r=2 (mod 3) 

(1+ C:),K'-"-')-' 
X (1 + (4;)6 7r- S n1- S ) -1 , 

(1+ (4:)/,._,)-' 

2.1. Let K/Q be a quadratic field with ring of integers RK, and let R c K be 
an order in K. Prove that there is a unique integer f 2: 1 such that 

R = Z+ f· RK. 

The integer f is called conductor of the order R. 

2.2. 'Let A = Z[i] be the lattice of Gaussian integers, and let A be the elliptic 
integral 

A- ---11 dt 
- o~· 

(a) Prove that 

(b) More generally, prove that for all integers n 2: 1, G4n (A) is a rational 
number multiplied by A 4n . 

2.3. Let K/Q be a quadratic imaginary field, and let E/C be an elliptic curve 
with End(E) @ Q ~ K. Let E' /C be another elliptic curve. Prove that E' 
is isogenous to E if and only if End(E') @ Q ~ K. 
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2.4. Let E be an elliptic curve defined over a number field L with complex 
multiplication by K, and let '+l be a prime of L of characteristic p at which E 
has good ordinary reduction. Prove that Qp contains a subfield isomorphic 
to K. 

2.5. Let EjQ be an elliptic curve with complex multiplication by the ring of 
integers in Q (~). 'Without using an explicit Weierstrass equation for E, 
prove the following two facts: 
(a) If cjJ : E -+ E is an endomorphism of degree 2 and P is the non-zero 
point in the kernel of ¢, then P rt E(Q) and PEE (Q (~)). 
(b) R(Q) contains exactly one point of order 2. 
(Hint. Use (2.2a).) 

2.6. (a) Let F be a field, let G be a subgroup of GL 2 (F), and let C(G) be the 
centralizer of G; that is, 

C(G) = {ex E GL2 (F) : ex, = ,cx for all, E G}. 

Prove that one of the following two conditions is true. 

(i) C(G)={(~~) :CEF*}. 
(ii) G is abelian. 

(Hint. If C(G) contains a non-scalar matrix ex, make a change of basis to 
put cx into Jordan normal form and then calculate C(cx).) 
(b) Let L be a perfect field, let E j L be an elliptic curve, and let £ be a 
prime with £ # char(L). Suppose that EnddE) is strictly larger than Z. 
Use (a) to prove that the action of Gal(Lj L) on the Tate module T£(E) is 
abelian. 

2.7. The following fact (2.5.1) from commutative algebra was used in the proof 
of Proposition 2.4. Let R be a Dedekind domain, let a be a fractional ideal 
of R, and let it! be a torsion-free R-module. Prove that the natural map 

q; : a-lit! HomR(a, it!) 
x t---------+ (¢;.r:OI------4Qx) 

is an isomorphism. (Hint. Prove that it is an isomorphism after you localize 
at any prime p of R. Note that the localization Rp is a principal ideal 
domain.) 

2.8. Let Lj K be a finite abelian extension of number fields. 
(a) Let Q{ be a non-zero fractional ideal of L. Prove that 

(N~Q{, Lj K) = 1. 

(b) Prove that an unramified prime p of K splits completely in L if and 
only if (p, Lj K) = 1. 

2.9. Let a be a fractional ideal of K, and let E be an elliptic curve corresponding 
to the lattice a. 
(a) Prove that j(E) E lR. if and only if (j2 = 1 in eqRK). 
(b) Prove that the following are equivalent: 

(i) Q(j(E)) is Galois over Q. 
(ii) Q(j(E)) is totally real. 
(iii) Every element of eqRK ) has order 2. 
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2.10. Let K be a number field, RK its ring of integers, and c an integral ideal 
of RK. Prove that there is an exact sequence 

R'K --+ (RK/C)* -> I(c)/P(c) -> e.c(RK) -> 1. 
o(modc)....... (0) 

2.11. Let K = Q (vI-15), and let RK be the ring of integers of K. 
(a) Prove that e.c(RK) = Z/2Z. 

(b) Let L = Q (A, v'5). Prove that L/K is everywhere unramified, and 
deduce that L is the Hilbert class field H of K. 

(c) Let K = Q ( vi - 23). Prove that the Hilbert class field of K is given 
by H = K(o), where 0 satisfies 0 3 - 0 - 1 = O. 

2.12. Let E/f:- be an elliptic curve such that End(E) is an order in the quadratic 
imaginary field K. 

(a) Show that there exists an elliptic curve E'If:- and an isogeny 4> : E -> E' 
such that End(E') = RK. 

(b) "If E is defined over the field L, prove that it is possible to choose E' 
and 4> in (a) so that both are defined over L. 

2.13. Let K = Q(i) and let KN be the ray class field of K modulo N. 

(a) Prove that 

(b) Verify directly that the field 

is an abelian extension of K, and compute its Galois group over K. 
(This exercise verifies some of the statements made in (4.9.1).) 

2.14. Let E be the elliptic curve y2 = x 3 + 1, and let K = Q (A). For each 
integer N 2': 1, let KN = K(h(E[NJ») and LN = K(E[nJ). 

(a) Calculate K2, K3, and K4 explicitly and in each case verify that KN 
is the ray class field of K modulo N. 

(b) Calculate L2, L 3 , and L4 explicitly and show that they are abelian 
extensions of K. 

2.15. Let E be the elliptic curve E : y2 = x 3 + 4x2 + 2x, and let K = Q (A). 
From (2.3), this curve has complex multiplication by K. Redo the previous 
exercise for this curve E and field K. 

'. 
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2.16. For each of the quadratic imaginary fields in the following table, verify that 
the given a generates the Hilbert class field of K, and calculate the value 
of j (RK) explicitly as an element of K (a). (We have filled in the first row 
for you, see Example 6.2.2.) 

Disc K/rQ hK a a root of j(RK) 

(a) -15 2 x 2 - 5 -52515 - 85995¥ 

(b) --20 2 x 2 + 1 

(c) -23 3 x 3 - x-I 

(d) -24 2 x 2 +3 

( e) -31 3 x 3 + x-I 

2.17. Let 'D~ and S~ be the sets of matrices defined by 

'D~ = { (~ ~) E Nh(Z) : ad - bc = n, gcd(a, b, c, d) = I} , 

S~ = { (~ ~) E 'D~ : d > 0, 0::; b < d} . 
(a) Prove that the natural map S~ --> SL2(Z)\'D~ is a bijection. 
(b) Prove that 

#S~ = n II ( 1 + ~ ) . 
pin 

(Notice that if n is squarefree, then 'D~ and S~ are just the sets 'Dn and Sn 
considered in §6.) 

2.18. Let S~ be as in the previous exercise, and define 

<pn(X) = II (X - j 0 a). 

<Pn is called the modular polynomial of order n. 
(a) Prove that <Pn E Z[jJ[X]. We will write <Pn(j, X) to indicate that <Pn 
is a polynomial in two variables. 
(b) Prove that <Pn is irreducible over <C(j). 
(c) Prove that <pn(Y, X) = <Pn(X, V). 
(d) Prove that if n is not a perfect square, then <pn(X, X) is a non-constant 
polynomial with leading coefficient ±l. 
(e) Let Fn(j,X) be the polynomial from (6.3). Prove that 

Fn(j,X) = II <Pnld2 (j,X). 
d2 1n,d21 

In particular, if n is square-free, then Fn = <Pn. 
(f) 'Let I<pnl denote the magnitude of the largest coefficient of <pn(Y, X). 
Prove that 

lim log l<Pn I = 6 
n_= (deg<pn)(logn) . 
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2.19. Let Fn(Y,X) be the polynomial from (6.3), and let <l>n(Y,X) be the poly­
nomial from the previous exercise. Let El/C and E2 /C be elliptic curves. 

(a) Prove that Fn (j(E1 ),j(E2 )) = 0 if and only if there is an isogeny 
El --> E2 of degree n. 

(b) Prove that <l>n (j (Ed, j (E2)) = 0 if and only if there is an isogeny 
El --> E2 whose kernel is cyclic of degree n. 

2.20. Let p be a prime. Prove Kronecker's congruence relation 

Fp(Y, X) == (X - yP)(XP - Y) (mod pZ[X, Yj), 

where Fp is the polynomial defined in (6.3). 

2.21. Let J(T) be a modular function of weight 0 that is holomorphic on Hand 
that has the q-expansion J = L: anqn. Let R be a ring containing all of 
the an's. Prove that J E R[j], where j = jeT) is the modular j-function. 
This strengthens (I.4.2b), which says that J E C[j). 

2.22. Let f 2': 3 be a prime, let 

and let M2 (fZe) be the additive group of 2 x 2 matrices with fZe-coefficients. 
Prove that the map 

<Xl ( l)n+lfnA n 
1 + fA f---7 log(1 + fA) = L - n ' 

n=l 

is a well-defined isomorphism. 

2.23. This exercise generalizes the previous one. Let L be a finite extension of Qe, 
let R be the ring of integers of L, and let wt be the maximal ideal of R. 
For each integer r 2': 1 define a subgroup Gr of GLn(R) by 

Gr = {A E GLn(R) : A == In (mod wtr )}, 

where In is the n x n identity matrix. 

(a) Prove that for every r 2': 1, the quotient Gr/Gr+1 is a finite group 
whose order is a power of f. 
(b) Prove that 

and deduce that G 1 is a pro-f group. 

(c) Prove that if r is sufficiently large, then G r is isomorphic to the additive 
group of n x n matrices with coefficients in R. (Hint. For the case n = 1, 
see [AEC IV.6.4b].) 
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2.24. Let E and E' be elliptic curves given by Weierstrass equations 

and let cp : E --t E' be a non-zero isogeny. 
(a) Prove that there is a rational function R(x) and a constant c such 
that cp has the form 

cp(x, y) = ( R(x), cy d~~X)) . 
(Hint. Look at the invariant differentials.) 
(b) Prove that there is a commutative diagram 

CIA ----> CIA' 
Zl-+c- 1 z 

1 1 
'" E'(C) ----> E(C) 

where the vertical maps are complex analytic isomorphisms and c is the 
constant from part (a). 

2.25. Let ElL be an elliptic curve defined over a number field L with com­
plex multiplication by the ring of integers of K, and assume that K c L. 
Let X E H1(GL/L,Aut(E)), and let EXIL be the corresponding twist 
of E. (See [AEC X §5] for basic facts about twists.) If we identify Aut(E) 
with p,n [AEC III.1O.2], then X gives a homomorphism 

and we can extend X to a homomorphism on the ideles by the rule 

X : Ai- ----> C' , x(x) = X([x, L]). 

Prove that 

2.26. Let ElL be an elliptic curve defined over a number field (not necessar­
ily with complex multiplication). Prove that the infinite product defin­
ing the L-series L( ElL, s) converges absolutely and uniformly in the half­
plane Re(s) > ~. 

2.27. Let ElL be an elliptic curve defined over a number field (not necessarily 
with complex multiplication), let \P be a prime of L at which E has good 
reduction, and let IF<,p be the residue field at \p. For each integer n ~ 1, 
let IF<,p,n be the extension of IF<,p of degree n. Recall [AEC V §2] that the 
zeta function of E IlF <,p is the formal power series 

Z(E/lF<,p,T) = exp(f:#E(lF<,p,n)~). 
n=l 



184 II. Complex Multiplication 

(a) Prove that 

Z(EIF T) = £.:p(EIF'i), T) 
'i), (1 - T)(l - q'i)T) , 

where L'i) is the local L-series described in §1O and q'i) = N~\p. 
(b) The zeta function of the field L is given by the usual Euler product 

(L(S) = 11(1- q-il 8 )-I, 
'i) 

and the (global) zeta function of ElL is defined by the product 

((ElL,s) = 11 Z(EIF'i),q-il 8
). 

'i) 

Find the "correct" definition for the factor Z(EIF'i) , T) in the case that E 
has bad reduction at \p, and prove that 

((ElL,s) = (ds)(ds - l)L(EIL,s)-I. 

2.28. With notation as in §1O, prove that 

L (E-/"" -1) _ #En.(F'll) 
'i) ll''i),q'i) - . 

q'i) 

Here En. is the non-singular part of E. Note that we do not assume E has 
good reduction at \p. (See [AEC III §2] and [AEC exer. 3.5].) 

2.29. Prove the functional equation (10.5.1) for the L-series of an elliptic curve 
with complex multiplication. (Hint. Use the functional equation for Hecke 
L-series with Grossencharacter as described, for example, in Tate [8].) 

In the next three exercises we sketch the proof of Theorem 1O.5(b). We 
set the following notation: Let ElL be an elliptic curve with complex 
multiplication by the ring of integers RK of K, and assume that L does 
not contain K. Let L' = LK, so L' is a quadratic extension of L, and let \p 
be a prime of L. From (9.2) there is a Grossencharacter 'l/JE/LI : ALI --+ C'. 
Let q'i), a'i),'" be the quantities described in §1O. 

2.30. Assume that E has good reduction at \p. 
(a) Prove that \p is unramified in L'. 
(b) Suppose \p splits in L' as \pRu = \p'\p". Prove that 

and 

(c) Suppose \p remains inert in L', say \pRu = \p'. Prove that 

a'll = 0, 

(d) Let E be the reduction of E modulo \p, and let p be the residue 
characteristic of \p. Prove that 

-. {ordinary if \p splits in L' and p splits in K, 
E IS 

supersingular if \p is inert in L' and p does not split in K. 
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2.31. We continue with the notation and assumptions from above. Let \13' be a 
prime of L' lying over \13. 
(a) If \13 ramifies in L', prove that E has bad reduction at \13. 
(b) If \13 is unramified in L', prove that 

E has good reduction at \13 ¢=> E has good reduction at \13'. 

2.32. We continue with the notation and assumptions from above. 
(a) Prove that the local L-series of Eat \13 is given by 

if \13Ru = \13'\13" splits in L', { 

(1- V;E/LI(\13')T)(l - V;E/u(\13")T) 

Lrv(E / L, T) = ./. (m')T'f mR m'" . L' 1 - 'l'E/L' .,., 1.,., L' =.,., IS mert m , 

1 if \13Ru = \13,2 ramifies in L'. 

(b) Prove that the global L-series of E / L is given by 

L(E/L,s) = L(S,V;E/L')' 

2.33. Fix a non-zero integer D E IZ and let E be the elliptic curve 

E : y2 = x 3 - Dx. 

Let p E IZ be a prime with p f 2D. 
(a) If p == 3 (mod 4), prove that 

and 

(b) If p == 1 (mod 4), factor p in lZ[i] as 

with 7r == 1 (mod 2 + 2i). 

Prove that 

where (;:) 4 is the 4th -power residue symbol. 

2.34. Continuing with the notation from the previous exercise, let p C lZ[i] be a 
prime ideal with P f 2D. Write 

P = (7r) for an element 7r E lZ[i] satisfying 7r == 1 (mod 2 + 2i). 

Prove that the Grossencharacter associated to E /Q( i) is given explicitly 
by the formula 

V;E/Q(i)(P) = (~) 4 7r · 

Here V;E/Q(i)(P) equals the value of V; at an idele with a uniformizer at 
the p-component and 1 '6 elsewhere. 
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2.35. Let E / L be an elliptic curve with complex multiplication by the ring of 
integers RK of K, and assume that K C L. Let I' be a degree 1 prime 
of K, let p = N[P"p, and let Rp be the completion of RK at p. Notice 
that Rp ~ Zp. 

Fix an integer h ~ 1 so that ph is principal, say ph = 7r RK. We make 
the collection of groups E[pn], n = 1,2, ... , into an inverse system using 
the maps 

n = 1,2, .... 

The p-adic Tate module of E is then defined to be the inverse limit 

(a) Prove that Tp(E) is a free Rp-module of rank 1. Deduce that Aut Tp(E) 
is isomorphic to R; ~ Z;. 
(b) Let Lp be the compositum of the fields L(E[pnJ) for all n ~ lor, 
equivalently, the field defined by 

Gal(L/Lp) = ker{Gal(L/L) ---> Aut Tp(E)}. 

Prove that there is a finite extension L' / L contained in Lp such that 

(c) Let r = Zp, and define a ring Zp[q to be the inverse limit 

(Note that Zp[q is not the same as the group ring Zp[r].) Prove that 

and hence that Tp(E) is a Zp[q-module. 
(d) Prove that Zp[q is isomorphic to the power series ring Zp[T]. (Hint. 
Let , E r be a topological generator, send ,n to (1 + T) n, and show that 
this extends to an isomorphism.) Zp[q-modules are often called Iwasawa 
modules. 
(e) Let Lp be the field of definition of Tp(E) = lim E[pn]. Prove that there 
is a finite extension L" / L contained in Lp such that 

(Hint. Write pRK = PI". Show that Lp = LpLp/, and that Lp n Lpl is a 
finite extension of L.) 
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Elliptic Surfaces 

Elliptic surfaces appear in many guises. They are one-parameter algebraic 
families of elliptic curves, they are algebraic surfaces containing a pencil of 
elliptic curves, and they are elliptic curves over one-dimensional function 
fields. In this chapter we will see elliptic surfaces arising in all of these 
ways. Since our emphasis in this book is primarily on arithmetic questions, 
we will concentrate on those properties of elliptic surfaces which resemble 
the arithmetic properties of elliptic curves defined over number fields. This 
means we will neglect many of the fascinating geometric questions raised by 
the study of elliptic surfaces over algebraically closed fields, especially the 
classical theory of elliptic surfaces defined over C. The interested reader will 
find a nice introduction to this material in Beauville [1], Griffiths-Harris [1, 
Ch. 4, §5] and Miranda [1]. 

We will also find it necessary to restrict attention to fields of character­
istic zero. We do this in order to apply the results from [AEC] , especially 
Chapters I, II, and III, to elliptic curves defined over the function field k( C) 
of a projective curve C /k. All of the main theorems in [AEC] were proven 
for elliptic curves E / K under the assumption that the field K is perfect; if k 
has characteristic p > 0, then the field k(C) will certainly not be perfect. 

However, we must in all honesty point out that elliptic curves defined 
over non-perfect fields such as IFq(T) are also extensively studied. (Equiv­
alently, one would study elliptic surfaces £ ...... pI defined over IFq.) In fact, 
since the rings IF q [T] and Z share the property that all of their residue 
fields are finite, elliptic curves defined over IF q (T) behave arithmetically 
very much like elliptic curves defined over Q. Thus conjectures about el­
liptic curves defined over Q are often first tested and proven in the easier 
setting of elliptic curves over IFq(T). Notice that k(T) does not have this 
property if char(k) = 0, so we will find that the theory of elliptic surfaces 
in characteristic zero differs in some respects from the theory of elliptic 
curves over number fields. 

The main results proven in this chapter are the Mordell-Weil theo­
rem for elliptic surfaces (6.1), two constructions of the canonical height 
pairing (4.3, 9.3), and specialization theorems for the canonical height 
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(11.1, 11.3.1) and for the homomorphism from sections to points on fibers 
(11.4). Unfortunately, it will not be possible to prove all of the background 
results we need from algebraic geometry. However, we will give a pre­
cise statement of the results we use and give at least some indication of 
the proofs. Briefly, we will use abelian varieties and Jacobian varieties in 
§2, rational maps between varieties in §3, intersection theory and minimal 
models of surfaces in §§7 and 8, and divisors on varieties in §10. Much of 
the material we need is contained in Hartshorne [1], but in any case, we 
will give references for all assertions that we do not prove. 

§1. Elliptic Curves over Function Fields 

One way to define an elliptic surface is as a one-parameter algebraic family 
of elliptic curves. In this guise we have already seen numerous examples 
of elliptic surfaces. For example, during the proof of [AEC III.1.4(c)] we 
wrote down the elliptic curve 

E' 2 X _ 3 _ 36 x _ 1 
. Y + Y - x jo - 1728 jo - 1728 

with j-invariant jo. In reality, E is a family of elliptic curves, one for 
each choice of the parameter jo (except that E is singular or non-existent 
for jo = 0 and jo = 1728). Similarly, in [AEC IX §7] and [AEC X §6] we 
looked at the elliptic curves 

and 

for varying values of D. Again these are families of elliptic curves, in this 
case parametrized by D, and each value of D other than D = 0 gives an 
elliptic curve. 

More generally, if k is any field (of characteristic not equal to 2) and 
if A(T), B(T) E k(T) are rational functions of the parameter T, then we 
can look at the family of elliptic curves 

ET : y2 = x 3 + A(T)x + B(T). 

For most values of t E k we can substitute T = t to get an elliptic curve 

E t : y2 = x 3 + A(t)x + B(t). 

Precisely, Et will be an elliptic curve provided 

A(t) =I 00, B(t) =I 00, and ~(t) = -16(4A(t)3 + 27B(t)2) =I O. 

Later in this chapter we will pursue further this idea of an algebraic 
family of elliptic curves. But for now we want to alter our perspective a 
bit. Rather than considering the equation 

E : y2 = x 3 + A(T)x + B(T) 
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as defining a family of elliptic curves, one for each value of T, we will 
instead view E as a single elliptic curve defined over the field k(T). As 
long as the discriminant 

f}.(T) = -16(4A(T)3 + 27B(T)2) =1= 0 in k(T), 

E will be an elliptic curve defined over the field k(T). So we will be able 
to apply much of the general theory developed in [AEC] to the elliptic 
curve E/k(T), at least provided that the field k(T) is perfect. For this 
reason we will henceforth make the assumption: 

I k is a field of characteristic zero. [ 

(For further comments about this assumption, see the introduction to this 
chapter.) 

Example 1.1.1. Consider the elliptic curve E/Q(T) given by the Weier-
strass equation 

with discriminant 
f}. = 16T4 (4T2 - 27). 

This curve has the rational point 

P= (T,T) E E(Q(T)), 

and one can easily use the addition law to compute 

2P = (T2 - 2T, _T3 + 3T2 - T), 

3P = (T3 - 2T2 - 3T + 4 3T4 - 15T3 + 21T2 - 9T + 8) 
(T - 3)2' (T - 3)3 . 

If we substitute T = t for some t E Q, then we will obtain an elliptic 
curve E t unless t = 0 or t = ±~V3. 

Example 1.1.2. The elliptic curve 

E : y2 = x 3 + (T2 - l)x + T2 

has many rational points defined over Q(T), such as the point (-1,0) of 
order 2 and the point (0, T) of infinite order. However, if we replace Q 
by Q ( V2), we find a new point of infinite order: 

(1, V2T) E E(Q(vI2) (T)). 
In general, if E/Q(T) is a non-constant elliptic curve (i.e., j(E) (j. Q), then 
there exists a finite extension k/Q so that 

E(k(T)) = E(CCT)). 

In practice it is often difficult to find k. See Kuwata [1,2J and exercise 3.17. 
Shioda [lJ has constructed an interesting example for which the action 
of Gal(k/Q) on E(k(T)) is a representation of type E 8 , so [k : QJ may be 
quite large. 
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We have been taking the coefficients A and B of the elliptic curve 

to lie in the field ofrational functions k(T). This is unnecessarily restrictive. 
We observe that k(T) is the function field of the projective line pI, so we 
might consider choosing A and B from the function field of some other 
curve. Thus we can take a non-singular projective curve C / k and look at 
elliptic curves E defined over the field k(C). 

Example 1.1.3. Let C/Q be the (elliptic) curve 

that is, C is the projective curve corresponding to this affine equation. 
Then the equation 

E : y2 + (st + t - s2)xy + s(s - 1)(s - t)t2y = x3 + s(s - 1)(s - t)tx2 

defines an elliptic curve E over the function field Q( C) of C. Notice that E 
contains the rational point 

P = (0,0) E E(Q(C)). 

It is not hard to verify (at least if you have access to a computer with a 
symbolic processor) that 

[l1lP = 0, 

so P is a point of order 11. 
In fact, E is in some sense the universal family of elliptic curves con­

taining a point of order 11. This means the following: Let A be any 
elliptic curve and Q E A a point of order 11. Then there is a unique 
point (so, to) E C such that if we substitute (s, t) = (so, to) into the equa­
tions for E and P, we will obtain an elliptic curve Eo and a point Po E Eo 
of order 11 such that there is an isomorphism ¢ : A ---> Eo with ¢(Q) = Po· 
In the literature, the curve C is called the modular curve Xl (11), and E is 
usually denoted EI(11). For further details, see exercise 3.2. 



§2. The Weak Mordell-Weil Theorem 191 

§2. The Weak Mordell-Weil Theorem 

Our task in this section is to prove the following weak Mordell-Weil theorem 
for elliptic curves defined over function fields. We emphasize again our 
assumption that the constant field k always has characteristic O. 

Theorem 2.1. (Weak Mordell-Weil Theorem) Let k be an algebraically 
closed field, let K = k (C) be the function field of a curve, and let E / K be 
an elliptic curve. Then the quotient group E(K)/2E(K) is finite. 

The theory of function fields of curves is analogous to the theory of 
number fields, and the proof of the weak Mordell-Weil theorem is similar 
in both cases. In other words, we could save space here by merely quoting 
the proof given in [AEC, VIII §1] with the words "number field" replaced 
by the words "function field." However, there are enough differences that 
we feel it is worthwhile giving the proof. We will place our main emphasis 
on highlighting the differences between the two cases. 

Recall that the proof for number fields has two main steps. The first 
step [AEC, VIII.1.5] depends on properties of the elliptic curve E / K. It 
says that the extension field L = K([m]-lE(K)) is an abelian extension 
of K, has exponent m, and is unramified outside a certain finite set of 
primes S. This step carries over word-for-word to the function field case 
once one has developed the theory of valuations. We will give a slight 
variant of the argument in [AEC, VIII §1]' using divisors supported on a 
finite set of points, but the reader will have no trouble seeing that this is 
merely a matter of using geometric language to deal with the same ideas. 
We will also consider only the case m = 2, since this allows us to work 
more directly with the equation for E/ K. 

The second step [AEC, VIII. 1.6] has nothing to do with elliptic curves. 
Instead, one uses Kummer theory to show that the maximal abelian ex­
tension of K of exponent m unramified outside of S is a finite extension. 
The proof of this proposition is not hard, but it ultimately relies upon the 
two fundamental finiteness theorems of algebraic number theory, namely 
the finiteness of the class group and the finite generation of the unit group. 
In general, neither of these last two results is true for function fields. 

For example, if K = k( C) is a function field, then the "unit group" 
in K* is the constant field k*. To see that this is the right analogy, note 
that for a number field K, the unit group can be described as the set of 
elements 0: E K* satisfying v(o:) = 0 for all discrete valuations on K*. 
But the discrete valuations on a function field K = k( C) correspond to the 
points of C(k) (at least if k is algebraically closed). Thus if a function f E K 
has valuation 0 for all valuations, then it has no zeros or poles on C, so 
by [AEC, 11.1.2] it is a constant. Hence the "unit group" of K will be k*, 
and in general k* will not be finitely generated. 

Similarly, we will see during the proof of the weak Mordell-Weil theo-



192 III. Elliptic Surfaces 

rem that the "ideal class group" of a function field K = k( C) is the Picard 
group Pic( C), that is, the group of divisors modulo linear equivalence. The 
Picard group need not be finitely generated; see (2.6) below. 

However, all is not lost. A closer examination of [AEC, VIII.l.6] shows 
that it does not require the full strength of the finiteness theorems. In­
stead we used the facts that the ideal class group has only finitely many 
elements of order m and the unit group R* has the property that the quo­
tient R* / R*m is finite. These weaker results are true for function fields 
under appropriate assumptions on the constant field k of K. For exam­
ple, if k is algebraically closed, then k* / k*m is certainly finite, since it is 
actually trivial. 

Similarly, the Picard group Pic( C) has only finitely many elements of 
order m. Unfortunately, the proof of this last statement requires results 
from the theory of Jacobians and abelian varieties which we will not be 
able to develop in full. So we will just state here the proposition that we 
need and postpone until the end of the section a sketch of the proof. For 
the proof of the weak Mordell-Weil theorem (2.1), we will only need to use 
the m = 2 case of the following proposition. 

Proposition 2.2. Let C be a non-singular projective curve defined over 
an algebraically closed field k. Then for any integer m 2 1, the Picard 
group Pic( C) has only finitely many elements of order m. 

PROOF. See (2.7) at the end of this section for a complete description of 
the torsion subgroup of Pic(C). In particular, if C has genus g, then (2.7) 
implies that Pic(C)[m] is isomorphic to (Z/mZ)29. 0 

PROOF (of Theorem 2.1). Our first observation is that if L / K is a fi­
nite Galois extension and if we can prove that E(L)/2E(L) is finite, then 
it will follow that E(K)/2E(K) is also finite. This is the content of 
[AEC, VIII.l.l.1], and we gave another proof using Galois cohomology 
in [AEC, VIII §2]. We leave it to the reader to verify that these proofs 
made no use of the assumption that the field K is a number field, so they 
are also valid in our case. Note that [AEC, II.2.5] ensures that any such L 
will be the function field of a curve over k. 

Replacing K by a finite extension and C with the corresponding curve, 
it thus suffices to prove (2.1) under the assumption that E(K) contains 
all of the points of order 2. Equivalently, we may assume that E has a 
Weierstrass equation of the form 

Consider the map 

¢ : E(K)/2E(K) --> (K* / K*2) x (K* / K*2) 
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defined by 

ifx:/=el,e2, 
ifx=el, 
if x = e2, 
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if x = 00 (P = 0). 

In the case that K is a number field, we proved in [AEC, X.1.4] that ¢ 
is an injective homomorphism, and the same proof works for an arbitrary 
field K. 

The map ¢ can also be defined using group cohomology. We briefly 
sketch the proof. Taking G K / K-cohomology of the exact sequence 

- [2J -o ----+ E[2] ----+ E(K) ----+ E(K) ----+ 0 

gives an exact sequence 

Now our assumption that E[2] c E(K) implies that there are isomorphisms 

HI (G K/ K, E[2]) ~ HI (G K/ K, (7l/27l)2) ~ Hom( G K/ K, (7l/27l)2) 

~ Hom(GK / K ,7l/27l)2 ~ Hom(GK / K ,JL2)2 ~ HI(GK / K ,JL2)2. 

Finally, the Kummer sequence for fields and Hilbert's theorem 90 give an 
isomorphism [AEC, VIII.2.2] 

Combining the above maps, we obtain an injective homomorphism 

E(K)/2E(K) ~ HI(GK/ K ,E[2]) ~ HI(GK / K ,JL2)2 

8-~-1 (K* / K*2) x (K* / K*2). 

Of course, one still needs to unscramble the connecting homomorphisms 
and check that this map is the same as the map ¢ defined above. See 
[AEC, X §1] for the details. 

We will prove that E(K)/2E(K) is finite by proving that the im­
age ¢(E(K)/2E(K)) is finite. The basic idea is to show that for any P E 

E(K), the two coordinates of ¢(P) are almost squares in K. The following 
lemma quantifies this assertion. 
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Lemma 2.3.1. Let k be an algebraically closed field, let K = k( C) be 
the function field of a curve, let E / K be an elliptic curve, and suppose 
that E has a \Veierstrass equation of the form 

E : y2 = (.r - ed(x - e2)(x - e3) with el, e2, e3 E K. 

Let SeC be the set of points where anyone of e l, e2, e3 has a pole, 
together with the points where.6. = (el - e2)2(eJ - e3)2(e2 - (3)2 vanishes. 
Then for any point P = (x, y) E E(K) with x of. el, 

ordt(:r - ed == 0 (mod 2) for all t E C wiih t ¢:. S. 

Here ordt : k( C) * ---> Z is the normalized valuation on k( 0) which measures 
the order of vanishing of a function at t [AEC II § 1]. 

PROOF. Let t E C with t ¢:. 8, and let n = ordt(x - ed. Our choice of S 
implies that ordt (ei) ~ O. We consider three cases. First, if n = 0, then 
clearly ordt(x - ed = n == 0 (mod 2). 

Second, if n < 0, t.hen t must be a pole of .J: and n = ordt (x). It follows 
that 

n = ordt(x - ed = ordt(x - e2) = ordt(:r - e3)' 

Using the vVeierstrass equation for E, we find that 

2ordt (y) = ordt (y2) = ordt((x - eJ(::r - e2)(x - e3)) = 3n, 

which proves that ordt(x - eJ) = n == 0 (mod 2). 
Third, suppose that n > O. This means that x - el vanishes at t. vVe 

claim that x - e2 and J; - e3 do not vanish at t. To see this, we let i = 2 
or 3 and use the triangle inequality to compute 

min{ordt(x-eJ),ordt(x-ei)} :::; ordt((.J:-eJ)-(x-ei)) = ordt(e;-cJ) = O. 

The last equality follows from the assumption that C1, C2, e3 do not. have 
poles at. t and .6. does not vanish at t. But ordt(x - C1) = n ~ 1, so we 
get ordt(x - e2) = ordt(x - e:,) = O. Therefore 

2ordt (y) = ordt (y2) = ordt((x - eJ)(.r - e2)(::r - C3)) = ordt(x - C1). 

Hence ordt(x - cJ) == 0 (mod 2), which completes the proof of (2.3.1). 
o 

vVe now resume the proof of (2.1). Let S be as in the statement 
of (2.3.1), and define a subgroup of K* / K*2 by 

K(S,2) = {J E K* / K*2 : ordt(J) == 0 (mod 2) for all t ¢:. S}. 

(Compare with [AEC, X.1.4].) Then (2.3.1) tells us that the image of ¢ 
lies in K(S, 2) x K(S, 2), so we have an injective homomorphism 

¢ : E(K)/2E(K) --> K(S, 2) x K(S, 2). 

In order to complete the proof of (2.1), it suffices to prove that the group 
K(S, 2) is finite. Note that the finiteness of K(S, 2) is an assertion about 
the curve C; it has nothing to do with the elliptic curve E. We record this 
statement in the following lemma, whose proof also completes the proof of 
the weak l\lordell-Wei! theorem (2.1). 
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Lemma 2.3.2. Let k be an algebraically closed field, let K = k( C) be the 
function field of a curve, let SeC be a finite set of points, and let m ~ 1 
be an integer. Then the group 

K(S, m) = {J E K* jK*m : ordt(f) == 0 (mod m) for all t t/:- S} 

is a finite subgroup of K* j K*m. 

PROOF. Let s = #S. Then there is an exact sequence 

o ----> K(0,m) ----> K(S,m) ----> 

f f---> 

(ZjmZ)S. 
(ordt(f))tES 

It thus suffices to prove that 

K(0, m) = {J E K* j K*m : ordt(f) == 0 (mod m) for all t E C} 

is finite. 
Let f (mod K*m) E K(0, m). Then div(f) has the form 

div(f) = mDf for some Df E Div(C). 

Notice that if we take some other representative f gm for the coset of f 
in K* j K*m, then Dfg~ = Df + div(g) changes by a principal divisor. 
Thus the divisor class of D f in Pic( C) is independent of the choice of 
representative. Further, mD f = div(f) is itself principal, so we get a well­
defined homomorphism 

K(0, m) ----> Pic(C)[m], 

where Pic(C)[m] denotes the elements of Pic(C) of order dividing m. 
Now suppose that f (mod K*m) is in the kernel of this homomorphism. 

Then D f is principal, say D f = div( Ff ) for some function Ff E K*, which 
means that 

div(f Fim) = div(f) - m div( Pf ) = div(f) - mD f = O. 

Thus fFim has no zeros or poles, so [AEC, 11.3.1] tells us that it is con­
stant. Using the assumption that k is algebraically closed, we can write this 
constant as cm , so f = (cFf)m. In other words, f == 0 (mod K*m). This 
proves that the homomorphism K(0, m) ----> Pic(C)[m] is injective. Finally, 
we use the fact (2.2) that Pic(C)[m] is finite to conclude that K(0,m) is 
finite. D 

In the remainder of this section we briefly discuss abelian varieties and 
Jacobians, including a sketch of the proof that the Picard group of a curve 
has only finitely many elements of a given order. 
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Definition. An abelian variety consists of a non-singular projective vari­
ety A, a point 0 E A, and two morphisms 

p, : A x A -----> A, i : A -----> A, 

which make the points of A into an abelian group. In other words, 

(i) p,( 0, P) = p,(P, 0) = P for all PEA, 

(ii) p,(P,i(P)) = 0 for all PEA, 

(iii) p,(p,(P,Q),R) = p,(P,p,(Q,R)) for all P,Q,R E A, 

(iv) p,(P, Q) = p,(Q, P) for all P, Q E A. 

If A, p" and i are defined over a field k, and 0 E A(k), then we say that A 
is defined over k. Basic references for the theory of abelian varieties are 
Griffiths-Harris [1, Ch. 2, §6], Milne [2], and Mumford [1], but we will need 
very little of the general theory. 

Example 2.4.1. An elliptic curve is an abelian variety of dimension one. 
The fact that the addition and negation operations on an elliptic curve 
satisfy (i)-(iv) is [AEC, III.2.2]' and the fact that they are morphisms 
is [AEC, III.3.6]. Conversely, every abelian variety of dimension one is an 
elliptic curve, see exercise 3.5. 

Example 2.4.2. Let A be an abelian variety of dimension d defined over C. 
Then one can show that there is a lattice A C Cd and a complex analytic iso­
morphism A(C) ~ Cd / A. By lattice we mean a full sublattice, that is, a free 
subgroup of Cd of rank 2d which contains an ffi.-basis for Cd. The isomor­
phism A(C) ~ Cd / A is an isomorphism both as complex manifolds and as 
abelian groups. For elliptic curves, the existence of this isomorphism is the 
essential content of the uniformization theorem [AEC, VI.5.1.1]. Further, 
in the one dimensional case every lattice A c C corresponds to an elliptic 
curve [AEC, VI.3.6]. But in higher dimensions, a complex torus Cd / A will 
only be isomorphic to an abelian variety if the lattice A satisfies the Rie­
mann conditions (see Griffiths-Harris [1, Ch. 2, §6]). In other words, there 
are certain restrictions on the lattice A in order for there to be a complex­
analytic embedding of Cd / A into projective space ]P'n(C). Just as in the 
case of elliptic curves, this complex uniformization of abelian varieties is 
very useful in analyzing the group structure of A(C). 

Remark 2.5. A more succinct way to define abelian varieties is to say that 
an abelian variety is a group variety in the category of projective varieties. 
It turns out that the group law forces A to be non-singular. Further, the 
completeness of the variety A forces the group law to be commutative, so 
we actually did not need to include property (iv) in our definition. See 
Mumford [1, pp. 1, 41, 44] for three proofs of this fact. 

The next proposition tells us that the Picard group of a curve is es­
sentially an abelian variety, called the Jacobian variety of the curve. Its 
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dimension is equal to the genus of the curve. Some general references for 
Jacobian varieties include Griffiths-Harris [1, Ch. 2, §§2, 3, 7], Milne [3], 
and Mumford [2]. 

Proposition 2.6. Let C be a non-singular projective curve of genus 9 
defined over an algebraically closed field k. 
(a) The degree map deg : Div(C) ----> Z induces an exact sequence 

where Pico( C) is the group of degree 0 divisor classes on C. 
(b) There exists an abelian variety Jac(C) of dimension 9 and a natural 
isomorphism of groups 

Pico(C) ~ Jac(C). 

(For the meaning of "natural", see (2.6.1) below.) Jac(C) is called the 
Jacobian variety of C. 

PROOF. (a) The exact sequence merely defines the subgroup Pico(C), so 
all we need to do is verify that the degree map is well-defined on Pic( C). 
This follows immediately from the fact that every principal divisor has 
degree 0 [AEC, II.3.l]. 
(b) (Proof Sketch) We start with the two easy cases. First, if 9 = 0, then 
every divisor of degree 0 on C ~ pI is principal [AEC, II.3.2]. It follows 
that Pico (C) = 0, which is the desired result in this case. 

Next suppose that 9 = 1. Fixing a point 0 E C(k), we turn Clk into 
an elliptic curve, so C is an abelian variety (2.4.1). Then there is a natural 
group isomorphism Pico(C) ..::-. C as described in [AEC, III.3.4]. Hence C 
is its own Jacobian variety. 

For curves of higher genus, one can construct the Jacobian variety 
analytically if k = <C or algebraically in general. We briefly describe both 
approaches. For the algebraic method, we fix a basepoint Po E C and 
consider the map 

Let the symmetric group Sg act on cg by permuting the coordinates. The 
map <pg is clearly invariant under this action, so it induces a map on the 

quotient C(g) d~f cg ISg . One checks that C(g) is a non-singular variety, 
that cPg : C(g) ----> Pic°(C) is surjective, and that <pg is injective off of a 
Zariski closed subset of C(g). Further, the group law on PicO(C) induces 
an algebraic (Le., rational) map C(g) x C(g) ----> C(g). Unfortunately, this 
rational map is not defined everywhere, so one takes certain "group chunks" 
and glues together enough translates to form a group variety. This idea 
of gluing together group chunks is due to Andre Weil [3] and works in all 
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characteristics. We refer the reader to the discussion in (IV, §6) for further 
details. See also exercise 4.29. 

The analytic approach to constructing the Jacobian for curves over «::: 
is much older. The Riemann-Roch theorem [AEC, 11.5.3, 1I.5.5a] says that 
on a curve of genus g, the space of holomorphic differential forms has di­
mension g. Let l<h, ... , Wg be a basis for this space. Next, a curve C of 
genus 9 over «::: is a Riemann surface with 9 holes, so there are 2g inde­
pendent cycles on C. Let r 1 , ... , r 2g be a basis for the space of cycles; 
that is, r 1 , ... ,r2g is a basis for the first homology Hl(C,Z). We fix a 
basepoint Po E C and consider the map 

Here the integrals are to be computed along some path from Po to P. 
Unfortunately, the value of the integrals is not path-independent! (See 
[AEC, VI, §1] for a discussion when 9 = 1.) 

In order to salvage this idea, we consider the subgroup A c «:::g defined 
to be the image of the map 

Then the integrals give a well-defined map cp : C -+ «:::g / A, since A elim­
inates the path dependence of the integrals. Next one proves that A is 
a lattice which satisfies Riemann's conditions (2.4.2), so «:::g / A is complex­
analytically isomorphic to an abelian variety. Denoting this abelian variety 
by Jac(C), one verifies that the map cp : C -+ Jac(C) is a morphism of al­
gebraic varieties. 

Extending cp by linearity gives a map 

cp : Divo(C) --+ Jac(C), 

In other words, use d> to map the points in a divisor to points of J ac( C), and 
then use the group law on Jac(C) to add them up. Finally, the theorems 
of Abel and Jacobi say that the map cp : Divo(C) -+ Jac(C) is a surjective 
homomorphism whose kernel consists of precisely the principal divisors. 
Hence d> induces the desired isomorphism Pico(C) ..::::. Jac(C). For further 
details, see Griffiths-Harris [1, Ch. 2, §§2,7]. 0 

Remark 2.6.1. What do we mean in (2.6b) when we say that the isomor­
phism Pico(C) -+ Jac(C) is "natural"? Recall [AEC, 11.3.7] that a mor­
phism d> : C1 -+ C2 of curves induces a homomorphism cp* : Pico(C2 ) -+ 

PicO(C1 ) of their Picard groups. Then one can prove that the corresponding 
map cp* : Jac(C2 ) -+ Jac(C1 ) is a morphism of varieties. In fancy language, 
the association C f---> Jac(C) is a functor from the category of (non-singular 
projective) curves to the category of abelian varieties. 
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Remark 2.6.2. If C is defined over an arbitrary field k, then its Jacobian 
variety Jac( C) will be an abelian variety defined over k. Further, the group 
isomorphism PicD (C) ---> J ac (C) will commute with the action of the Galois 
group Gk/ k . This is another way in which the Jacobian is a natural object. 
For example, if C is a curve of genus 1 with C(k) = 0, then C cannot be its 
own Jacobian variety. However, we can always find an elliptic curve Elk 
so that Clk is a homogeneous space for E [AEC, exercise 10.3]. Then 
[AEC, X.3.8] says that there is a group isomorphism PicD(C) ~ E, so E is 
the Jacobian of C. 

Remark 2.6.3. For hyperelliptic curves, it is possible to construct the 
Jacobian variety quite explicitly, see Mumford [3, Ch. IlIa, §§2,3]. In this 
case one can also precisely describe all of the elements of order 2 in Pic( C), 
see exercise 3.38. 

The following corollary of (2.6) and (2.4.2) is a strengthened version 
of (2.2). 

Corollary 2.7. Let Clk be a non-singular projective curve of genus 9 
defined over an algebraically closed field k. Then 

In particular, for any integer m ::::: 1, Pic(C)[m] ~ (ZjmZ)2g, so Pic (C) has 
only finitely many elements of order dividing m. 

PROOF. The field k has characteristic 0 by assumption, so the Lefschetz 
principle [AEC, VI §6] says that we may take k to be a subfield of C. 
Let J = Jac(C) be the Jacobian variety of C. Then (2.6) tells us that 
Pic(Chors ~ PicD(C)tors ~ J tors . On the other hand, (2.4.2) implies 
that there is a lattice A c reg and a complex-analytic group isomor­
phism J(C) ~ C9 I A. (See also the proof of (2.6) for a concrete description 
of the isomorphism PicD (C) ~ C9 I A.) 

As abstract groups, reg ~ 1R2g and A ~ Z29, and if we use a Z-basis 
for A as our IR-basis for re9, then we obtain a group isomorphism of the 
quotients reg I A ~ (IR/Z) 29 . Hence 

This proves the first assertion of (2.7), and the other assertions are an 
immediate consequence. 0 
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§3. Elliptic Surfaces 

We now return to the idea that an elliptic surface should be a one-parameter 
family of elliptic curves. For example, we might consider a family 

ET : y2 = x3 + A(T)x + B(T) 

with rational functions A(T), B(T) E k(T). Or, more generally, we could 
fix a non-singular projective curve C / k and take 

E : y2 = x3 + Ax + B 

for some A, B E k( C) with 4A 3 + 27 B2 =I O. Then for almost all points t E 
C(k) we can evaluate A and B at t to get an elliptic curve 

Et : y2 = x3 + A(t)x + B(t). 

Suppose now that we do not evaluate A and B at particular points 
of C, but instead we treat t as a variable just like x and y. In other words, 
we look at the subset of]P>2 x C defined by 

Note that c is a subvariety of ]p>2 x C of dimension two; it is a surface 
formed from a family of elliptic curves. 

Remark 3.1. Actually, in defining c we need to take a little more care 
with the points t E C where A or B has a pole. Here's one way to handle 
this problem. Consider the set 

{ 2 A or B has a pole at t, or } 
([X, Y, z], t) E]P> xC: y2 Z = X 3 + A(t)X Z2 + B(t)Z3 . 

This set will consist of a number of irreducible components, all but one of 
which will look like 

]p>2 X {to} 

for a pole to of A or B. We take c to be the one component not of this 
form. Equivalently, c is the Zariski closure in JP'2 x C of the set 

{ 
2 t is not a pole of A or B, and } 

([X, Y, Z], t) E]P> xC: y2 Z = X3 + A(t)X Z2 + B(t)Z3 . 

Since c is a subvariety of ]p>2 x C, projection onto the second factor 
defines a morphism 

7r: c 
([X, Y, Z], t) 

-----> C, 
f------7 t. 
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And for almost every t point t E C, the fiber 

is the curve Et that we considered earlier. Further, since we have assumed 
that 

~ = -16(4A3 + 27B2) i- 0 in k(C), 

it will be true that almost every fiber £t is an elliptic curve. We just need 
to choose points t E C such that A(t) i- 00, B(t) i- 00, and ~(t) i- O. 

However, our family of elliptic curves £ has one other important prop­
erty. Recall [AEC III §3] that an elliptic curve is really a pair (E,O), 
where E is a curve of genus 1, and 0 is a point of E. The equation we 
used to define £ gives a one-parameter family of elliptic curves. This means 
that for almost all values of t we get an elliptic curve £t, which we should 
really write as (£t, Ot) to emphasize that each £t comes equipped with a 
zero element Ot E £t. 

The family £ is an algebraic family, which is a fancy way of saying 
that it is given by an equation whose coefficients A and B are algebraic 
functions, in our case functions on the curve C. The additional property 
that £ possesses is that the collection of zero elements Ot is an algebraic 
family of points. In other words, we claim that the coordinates of Ot are 
algebraic functions of t; the coordinates of Ot are in the function field of C. 
Using the definition of £ given above, we see that 

Ot = ([0,1,0], t) E £t C jp'2 x C. 

So the coordinates [0,1,0] of Ot are actually constant functions. 
We can describe this property in another way. Since each fiber £t is 

an elliptic curve with zero element Ot, we get a map 

0'0: C -----+ £, 
t ~ Ot. 

Clearly, this map has the property that 

for all t E C(k). 

Further, the fact that Ot is an algebraic family of points is equivalent to 
the fact that the map 0'0 is a rational map of varieties. (In fact, since C is 
a non-singular curve, 0'0 will be a morphism [AEC 11.2.1].) This prompts 
the following definition. 

t The phrases "for almost every" and "for almost all" are contractions of the 
expression "for all but finitely many." 
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Definition. Let Jr : V -+ W be a morphism of algebraic varieties. A 
section to Jr is a morphism 

such that the composition 

Jroa: W ----+ W 

is the identity map on W. 

Example 3.2. Consider the surface given by the equation 

£ : y2 Z = X 3 _ T2 X Z2 + T2 Z3. 

(See (1.1) for our original discussion of this equation.) More precisely, let £ 
be the projective surface in p2 x pI corresponding to this equation. The 
projection Jr is the map 

Jr : £ ----+ pI, 

This map has a section 

([X, Y, Z], T) f-t T. 

a : pI ----+ £, T f-t ([T, T, 1], T). 

To avoid excessive notation, one often says that Jr : £ -+ pI has the sec­
tion a = [T, T, 1]; one can even use the inhomogeneous equation 

y2 = x 3 _ T2 X + T2 

for £ and say that a = (T, T) is a section to Jr. 

We are now ready for the formal definition of an elliptic surface. 

Definition. Let C be a non-singular projective curve. An elliptic surface 
over C consists of the following data: 

(i) a surface £, by which we mean a two dimensional projective vari­
ety, 

(ii) a morphism 
Jr : £ ----+ C 

such that for all but finitely many points t E C(k), the fiber 

£t = Jr-I(t) 

is a non-singular curve of genus 1, 
(iii) a section to Jr, 

ao : C ----+ £. 

Let £ -+ C be an elliptic surface. The group of sections of £ over C is 
denoted by 

£(C) = {sections a : C -+ £}. 

Note that any rational map C -+ £ is automatically a morphism, since C 
is a non-singular curve and £ is a projective variety [AEC, II.2.1], so every 
section is a morphism. We will see later (3.10) that fCC) is a group with 
zero element ao. 
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Remark 3.3.1. Since all but finitely many fibers of an elliptic surface 
have genus 1, one can show that any fiber which is a non-singular curve 
will automatically have genus 1. See Hartshorne [1, III.9.13]. These non­
singular fibers are often called the good fibers. The fibers Gt which are 
not non-singular curves will be called the singular fibers or the bad fibers. 
Of course, when we refer to the non-singular fiber Gt, we really mean the 
elliptic curve consisting of the pair (Gt, ao (t)) . 

Remark 3.3.2. Our definition of elliptic surface is non-standard in two 
ways. First, most books require that G be a non-singular surface. In such 
a case we will call G a non-singular elliptic surface. Second, most algebraic 
geometers would define an elliptic surface to be a (non-singular) surface 
satisfying properties (i) and (ii) of our definition; they would not require 
that there be a section. This leads to many interesting geometric questions, 
such as the possible existence of multiple fibers. (See Griffiths-Harris [1, 
p. 564].) It is only our emphasis on questions with an arithmetic flavor 
which prompts us to require the existence of at least one section. 

Remark 3.3.3. The classical theory of elliptic surfaces deals with surfaces 
defined over the field k = <C, or more generally over an algebraically closed 
field. We will also want to look at other fields, such as k = IQ. We will say 
that an elliptic surface E over C is defined over k if the curve C is defined 
over k, the surface G is defined over k, and both of the maps 

7r : E ------> C and ao : C ------> E 

are defined over k. In this case we write 

c ( C / k) = {sections a : C ----> E such that a is defined over k} 

for the group of sections defined over k. For example, the elliptic sur­
face (3.2) is defined over IQ, and the section a = (T, T) is in G(C /IQ). 

Let E be an elliptic surface over C defined over k. We would like 
to associate to E an elliptic curve E / k( C). Conversely, to each elliptic 
curve E / k( C) we will assign a birational equivalence class of elliptic sur­
faces. In this way we will be able to apply our earlier results to study 
elliptic surfaces. 

We begin by recalling some general definitions and basic facts about 
rational maps. For more details, see Hartshorne [1, I §4]' Harris [1, Lec­
ture 7], or Griffiths-Harris [1, 4 §2J. 

Definition. Let V and W be projective varieties. A rational map from V 
to W is an equivalence class of pairs (U, <Pu), where U is a non-empty Zariski 
open subset of V and <Pu : U ----> W is a morphism. Two pairs (U, <Pu) 
and (U', <Pu 1 ) are deemed equivalent if <Pu = <Pu 1 on un U'. If <P is repre­
sented by a pair (U, <Pu), we say that <P is defined on U. 
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The image of a rational map ¢, denoted tj>(V) , is defined as follows: 
Let U c V be an open subset on which ¢ is defined, take the Zariski closure 
in V x W of the graph 

{(u,¢(u)) E V x W : u E U}, 

and take the projection to W. (N.B. Since ¢ is not actually defined at 
all points of V, this "image" of ¢ may not agree with your intuition. For 
example, there may be points w E ¢(V) which are not equal to ¢( v) for 
any v E V.) 

A rational map ¢ : V ~ W is dominant if ¢(V) = W. Equivalently, ¢ 
is dominant if for one (hence every) open set U on which it is defined, the 
image ¢(U) is Zariski dense in W. 

The domain of definition of a rational map ¢ : V ~ W, which we de­
note by Dom(¢), is the largest open subset of Von which ¢ is a morphism. 
(Such a largest set exists, see Hartshorne [1, I exercise 4.2].) 

A rational map ¢ : V ~ W is a birational isomorphism if it has a 
rational inverse 'lj; : W ~ V; that is, ¢ and 'lj; are dominant and 

¢o'lj;:W~W and 

are the identity maps at all points for which they are defined. If there 
is a birational isomorphism from V to W, then V and Ware said to be 
birationally equivalent. If V, W, ¢, and 'lj; are all defined over a field k, 
then we say that V and Ware birationally equivalent over k. 

Remark 3.4. In [AEC, I §3] we defined rational maps more naively using 
coordinates on lpm. The reader will easily check that the two definitions 
are equivalent. For examples of rational maps that are not morphisms, 
see [AEC, 1.3.6 and 1.3.7]. Notice that [AEC, 1.3.7] gives an example of non­
isomorphic varieties that are birationally equivalent. Another important 
example of this phenomenon is provided by the process of "blowing-up"; 
see Hartshorne [1, I §4] or Harris [1, Lecture 7]. 

Proposition 3.5. Let ¢ : V ~ W be a rational map of projective 
varieties. 
(a) The image ¢(V) is an algebraic subset ofW. If V is irreducible, then 
so is ¢(V). 
(b) Suppose that V is non-singular. Then ¢ is defined except on a set of 
codimension at least two. In other words, every component of the comple­
ment of Dom( ¢) in V has codimension at least two. 

PROOF. (a) See Harris [1, Lecture 7, p. 75] or Griffiths-Harris [1, 4 §2, 
p. 493] for the first part. The second part is immediate from the definition 
of irreducibility; see exercise 3.7. 
(b) See Griffiths-Harris [1, 4 §2, p. 491]. 0 
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Proposition 3.6. Let V/k and W/k be projective varieties. The follow­
ing are equivalent. 
(i) V and Ware birationally equivalent over k. 
(ii) The function fields k(V) and k(W) are isomorphic as k-algebras. 
(iii) There are non-empty Zariski open sets U1 C V and U2 C W defined 
over k such that U1 and U2 are isomorphic over k. 

\ 
PROOF. This is a standard (and elementary) result in algebraic geometry. 
See, for example, Hartshorne [1,1.4.5] or Harris [1, exercise 7.10]. 0 

Let ¢ : V ----> W be a dominant rational map, and let f E k(W) 
be a rational function on W. Then f is defined (i.e., regular) on a non­
empty open subset of W, and ¢(Dom(qI)) is Zariski dense in W, so the 
composition f 0 ¢ is a regular function on a non-empty open subset of V. In 
other words, fo¢ is a rational function on V, so we obtain a homomorphism 
of k-algebras 

k(W) 
f 
~ k(V), 
f-------> fo¢. 

The next result says that the theory of varieties up to birational equiv­
alence is essentially the same as the theory of their function fields. (See 
Hartshorne [1,1.4.4] for a more precise categorical statement.) 

Proposition 3.7. Let V/k and W/k be projective varieties. The associ­
ation 

{ dominant rational maps} ~ 
V ----> W defined over k 

¢ f-------> 

is a bijection. 

PROOF. See Hartshorne [1, 1.4.4]. 

{ k-algebra homomorPhisms} 
k(W) ----> k(V) , 

(fr-tfo¢) 

o 

We are now ready to apply the theory of rational maps to study elliptic 
surfaces. Recall that according to our definition, an elliptic surface consists 
of three pieces of data: 

(i) a projective surface c, 
(ii) a projection map 7r : C ----> C, 

(iii) a zero section 0'0 : C ----> c. 
Given two elliptic surfaces c and C' over the same base curve C, it thus 
makes sense to consider the rational maps c ----> C' which commute with 
projections and/or zero sections. This prompts us to make the following 
definitions. 
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Definition. Let 7r : £ --+ C and 7r' : £' --+ C be elliptic surfaces over C. 
A rational map from £ to £' over C is a rational map ¢ : £ --+ £' which 
commutes with the projection maps, 7r' 0 ¢ = 7r. The elliptic surfaces £ 
and £' are birationally equivalent over C if there is a birational isomor­
phism ¢ : £ --+ £' which commutes with the projection maps. If the elliptic 
surfaces and rational maps are defined over a field k, we will say that £ 
and £' are k-birationally equivalent over C. 

The next two propositions explain precisely how the theory of elliptic 
curves over k( C) is the same as the birational theory of elliptic surfaces 
over C. 

Proposition 3.8. (a) Fix an elliptic curve E/k(C). To each Weierstrass 
equation for E, 

E : y2 = x3 + Ax + B, A, BE k(C), 

we associate an elliptic surface 

as described in (3.1). Then all of the £(A, B) associated to E are k-bira­
tionally equivalent over C. 
(b) Let £ be an elliptic surface over C defined over k. Then £ is k-bira­
tionally equivalent over C to £(A, B) for some A, B E k(C). Further, the 
elliptic curve 

E : y2 = x3 + Ax + B 

over k(C) is uniquely determined (up to k(C)-isomorphism) by £. 
(c) Let E / k( C) be an elliptic curve and £ --+ C an elliptic surface associ­
ated to E as in (a). Then 

k(£) ~ k(C)(E) as k(C)-algebras. 

Here the projection map 7r : £ --+ C induces an inclusion of fields k( C) <---+ 

k(£) which makes k(£) into a k(C)-algebra. 
We say that E/k(C) is the generic fiber of £ --+ C. 

PROOF. (a) Suppose we take another Weierstrass equation for E/k(C), say 

E : y,2 = x,3 + A' x' + B', A', B' E k(C). 

Then there is au E k(C)* such that u4 A' = A and u6 B' = B [AEC III.1.3]. 
Now the map 

£(A', B') ---+ £(A, B), ([X',Y',Z'],t) t---+ ([u2 X',u3Y',Z'],t) 

shows that £(A, B) and £(A', B') are k-birationally equivalent over C. 
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(b,c) The projection map 7r : £ --> G induces an inclusion of function 
fields k( G) '----t k( £) in the usual way, I f-+ I 0 7r. Further, £ is a surface 
over k, and G is a curve over k, so k(£)jk has transcendence degree 2 
and k( G) j k has transcendence degree 1. It follows that k( £) j k( G) has 
transcendence degree I, so there exists a curve Ejk(G), unique up to k(G)­
isomorphism, whose function field k( G) (E) is isomorphic to k( £) as k( G)­
algebras [AEC 11.2.5]. 

We claim that E is a curve of genus 1. To see this, we write E as a 
subvariety of 1pm, so E is the set of zeros of a collection of homogeneous 
polynomials {hex) : 1::; i::; r} with coefficients in keG). Note that for 
almost all t E G, we can evaluate the coefficients of the I;'s to get polyno­
mials with coefficients in k. To indicate the dependence of the h's on t we 
will write h(t, x). Then we can consider the algebraic variety in 1pm x G 
defined by 

V ~f {(x,t) E]p>n x G : h(t,x) = 0 for 1::; i::; r}. 

Projection onto the second factor gives a map V --> G which makes k(V) 
into a k(G)-algebra, and by construction we see that k(V) is isomorphic 
to k(G)(E) as k(G)-algebras. Hence k(V) is isomorphic to k(£) as k(G)­
algebras, so (3.6) tells us that V and £ are birationally equivalent over G. 
In particular, for almost all t E G the fibers Vi and £t are isomorphic, so 
almost all of the Vi's are curves of genus 1. 

Now suppose that W E OEjk(C) is a differential form on E. (See 
[AEC, II §4] for general properties of differential forms on curves.) Any such 
differential can be written as a sum W = 2: Uj dVj with Uj, Vj E k( G) (E). 
For almost all t E G we can evaluate the Uj'S and Vj'S at t to get a differ­
ential form Wt = wet, x) on Vi. Further, if w is a holomorphic differential 
form on E, then Wt will be a holomorphic differential form on Vi for almost 
all t E G. 

Let WI,W2 E OE/k(C) be non-zero holomorphic differential forms. We 
claim that they are k(G)-linearly dependent. To prove this, we observe 
that for almost all t E G, the forms WI (t, x) and W2(t, x) are holomor­
phic differentials on the curve Vi of genus I, so they are k-linearly de­
pendent from [AEC, II.5.3,II.5.5a]. In other words, there are non-zero 
constants at, bt E k such that 

But this means that the function WI(t,X)jW2(t,X) E k(Vi) is constant; 
that is, it is in k. It follows that the function WdW2 E k(V) = k(G)(E) is 
actually in k(G), which proves that WI and W2 are k(G)-linearly dependent. 

To recapitulate, we have proven that the vector space of holomorphic 
differential forms in OEjk(C) has k(C)-dimension at most one. It follows 
from [AEC, II.5.3,II.5.5a] that E has genus at most 1. Suppose that Ejk(C) 
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has genus O. We will see below that E(k(G)) is non-empty, so we can 
assume that E = pI and V = pI X G. But then the fibers vt ~ pI are 
all curves of genus 0, contradicting the fact that vt ~ Ct has genus 1 for 
almost all t. This contradiction shows that E j k( G) does not have genus 0, 
so the only possibility is that Ejk(G) has genus l. 

Further, the section ao : G --; C corresponds to a point Po E E(k(G)). 
To see this we use the fact that V and care birationally equivalent over G 
to get a section ab : G --; V. This section is a map of the form ab = 
[ho, ... , hnl for certain functions ho, ... , hn E keG), which is the same as 
saying that Po = [ho, ... ,hnl E pn (k( G)) is a point in E (k( G)). Taking Po 
to be the identity element, E becomes an elliptic curve defined over keG). 

We have now proven that Ejk(G) is an elliptic curve, so we can take 
a Weierstrass equation for it, say 

with A, B E keG). 

Then the corresponding surface V is precisely the elliptic surface c(A, B) 
described in (a), and we have already observed above that V is birationally 
equivalent to £ over G. This completes the proof of the first part of (b) 
which asserts that every elliptic surface is birationally equivalent over G 
to some £(A, B). Further, we showed above that there are isomorphisms 
of k(G)-algebras 

k(c) ~ k(V) ~ k(G)(E), 

which completes the proof of (c). 
It remains to prove that E is determined up to k(G)-isomorphism by C. 

Suppose that c is also birationally equivalent to c(A',B'). Then c(A,B) 
and £(A', B') are birationally equivalent over G. This means that for al­
most all t E G, there is an isomorphism on the fibers 

From general principles [AEC, III.3.1b]' we know that this isomorphism is 
given by a map of the form (x, y) f-t (atx, f3tY) for some at, f3t E k. But the 
birational equivalence c(A, B) --; £(A', B') is an algebraic map, so we see 
that a and f3 are functions on c(A, B) which depend only on t. In other 
words, a, f3 E k( G), which proves that the corresponding elliptic curves 

and 

are isomorphic over keG). o 

Proposition 3.9. There is a natural bijection 

{ dominant rational maps} {non-constant maps E --; E'} 
E --; E' over G r---t defined over k( G) , 
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where we identify the set of elliptic curves defined over k( G) with the set 
of (birational equivalence classes) of elliptic surfaces over G as described in 
Proposition 3.8. 

PROOF. Let <p : £ ----+ £' be a dominant rational map over G. Choose 
Weierstrass equations for £ and £', or equivalently for E and E', 

£ : y2 = x3 + Ax + B, C' : y,2 = X,2 + A'x' + B'. 

Then the map <p will have the form 

<p: ((x,y),t) >-> ((J(t,x,y),g(t,x,y)),t), 

where f,g E k(£) ~ k(G)(E) = k(G)(x,y). Hence F = (f,g) defines a 
mapF:E----+E'. 

Suppose that F is a constant map from E to E' over keG). This 
means that f, 9 E k( G), so <p( (x, y), t) = ((J(t), g(t)), t) depends only on t, 
independent of x and y. It follows that the image of <p has dimension at 
most one, since it is the image of a map G ----+ £', so in particular <p is not 
dominant. This proves that if <p : £ ----+ £' is dominant, then the associated 
map F : E ----+ E' is non-constant. 

The proof going the other direction is similar. Fix Weierstrass equa­
tions for E and E' as above, and let F : E ----+ E' be a map defined over k( G). 
Then F has the form F = (f,g) for some f,g E k(G)(E) ~ k(£), and we 
can define a map <p: £ ----+ C' over G by 

<p: ((x,y),t) >-> ((J(t,x,y),g(t,x,y)),t). 

If <p is not dominant, then its image must consist of a curve, since 1f 

maps the image <p(c) onto G. But this means that if we fix (almost any 
point) t E G and vary x, yon the fiber Ct, then <p((x, y), t) can assume only 
finitely many values. In other words, the map <p(', t) : Ct ----+ p1 takes on 
only finitely many values, so it is constant [AEC 11.2.3]. Hence f and g do 
not depend on x,y, so f,g E keG) and F = (f,g) : E ----+ E' is a constant 
map. This proves that if F : E ----+ E' is non-constant, then the associated 
map <p : C ----+ £' is dominant, which completes the proof of Proposition 3.9. 

o 

Our final task is to explain how the set of sections £ (G) has a natural 
group structure. Recall that for almost all points t E G, the fiber Ct is an 
elliptic curve (3.3.1), so given any two points on Ct, we can add them or 
take their inverses. Let 0'1,0'2 E C (G) be two sections to £. We define new 
sections 0'1 + 0'2 and -0'1 by the rules 

and 

valid for all t E G such that the fiber Ct is non-singular. We will verify 
below (3.10) that 0'1 + 0'2 and -0'1 define rational maps G ----+ C, so in fact 
they define morphisms since G is a non-singular curve [AEC, 11.2.2.1]. The 
next proposition says that this "fiber-by-fiber" addition makes £(G) into a 
group. 
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Proposition 3.10. Let c ---> C be an elliptic surface defined over k. 
(a) Let CTI,CT2 E c(Cjk) be sections defined over k. Then the maps CTI +CT2 
and -CT2 described above are in c(Cjk). 
(b) The operations (CTI' CT2) ---> CTI + CT2 and CT ---> -CT make c (C j k) into an 
abelian group. 
(c) Let Ejk(C) be the elliptic curve associated to c as described in (3.8). 
Then there is a natural group isomorphism 

E(k(C)) 
P=(xp,yp) 

c(Cjk), 
(CTP : t ---> ((xp(t), yp(t)), t)). 

PROOF. (a) Take a Weierstrass equation for c ---> C as described in (3.8), 

A,B E k(C). 

Then a section CTi : C ---> c is given by a pair of functions 

CTi : t f----> (Xi(t), Yi(t)) 

which satisfy the given Weierstrass equation for (almost all) t E C. Equiva­
lently Xi, Yi E k(C) are functions satisfying Y; = xy + AXi + B as elements 
of k (C). By definition, (CTI + CT2) (t) is the sum of the two points CTI (t) 
and CT2(t) using the addition law on the elliptic curve 

Ct : y2 = x3 + A(t)x + B(t). 

So the usual addition formula [AEC III.2.3] says that if XI(t) f= X2(t), then 

(We leave it to you to fill in the y-coordinate.) In other words, if Xl f= X2 
in k(C), then the map CTI + CT2 is given by the formula 

which shows that CTI +CT2 is a rational map from C to c defined over k. Simi­
larly, if Xl = X2 and YI f= Y2, the duplication formula [AEC III.2.3(d)] yields 
the same conclusion. Finally, the map -CTI is given by -CTI = (Xl, -yd, 
so -CTI also gives a rational map C ---> c defined over k. But C is a non­
singular curve, so all of these rational maps are morphisms [AEC 11.2.2.1], 
which completes the proof that CTI + CT2 and -CTI are in c( C j k). 
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(b) This is clear from the fact that the points on almost every fiber form a 
group. For example, for any three sections 0'1,0'2,0'3 E [( C I k) and almost 
all points t E C, we have 

(0'1 + 0'2) + a3)(t) = (0'1 + a2)(t) + a3(t) = (al(t) + a2(t)) + a3(t) 

= al(t) + (a2(t) + a3(t)) = al(t) + (0'2 + a3)(t) = (0'1 + (0'2 + a3))(t). 

Hence (0'1 + 0'2) + 0'3) = (0'1 + (0'2 + 0'3)) as sections, which verifies 
the associative law. The other group axioms can be verified in a similar 
fashion. 
(c) Fix a Weierstrass equation for [ ---+ C as in (a). If P = (xp,yp) E 

E(k(C)), then Xp and yp satisfy the given Weierstrass equation as ele­
ments of the function field k(C), so (xp(t),yp(t)) E [t for almost all t E 
C. This shows that ap is a well-defined element of [(Clk). Similarly, 
any a E [(Clk) has the form a(t) = (xo-(t),yo-(t)),t) for some rational 
functions xo-, Yo- E k( C) satisfying 

for almost all t E C. 

It follows that Po- = (xo-, Yo-) satisfies the given Weierstrass equation, 
so Po- E E(k(C)). The identifications P f--+ ap and a f--+ Po- are clearly 
inverse to one another, so they define bijections E(k(C)) +-+ [(Clk). Fi­
nally, for any PI, P2 E E(k(C)) we have 

(a P, + ap2) (t) = (xP, (t), YP, (t)) + (XP2 (t), YP2 (t)) = ap, +P2 (t). 

Similarly, -ap = a_p, which shows that the map E(k(C)) ---+ [(Clk) is a 
homomorphism, hence an isomorphism. 0 

Remark 3.11. It is important to observe that we can only add points 
on [ if they lie on the same (non-singular) fiber. This enables us to add 
two sections together, but it does not make the surface [ itself into a 
group. Another way to say this is to use the notion of fiber product (Hart­
shorne [1, II §3]). The fiber product [ Xc [ of [ with itself relative to the 
map 7f : [ ---+ C is the set of pairs (ZI' Z2) in the ordinary product [ X [ 

with the property that 7f(zr) = 7f(Z2); that is, [ Xc [ consists of all pairs 
of points on [ which lie on the same fiber over C. It is a variety, and the 
"group operation" is then the rational map 

[ Xc [ ---t [ 

defined by addition on each (non-singular) fiber. One might say that c 
is a group relative to the projection map 7f : [ ---+ C. We will see this 
construction appearing in a much more general setting when we discuss 
group schemes in the next chapter. 
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§4. Heights on Elliptic Curves over Function Fields 

Let ElK be an elliptic curve defined over a function field. We have 
proven (2.1) that the quotient E(K)/2E(K) is finite. We would like to 
use the Descent Lemma [AEC VIII.3.1] to prove that E(K) is a finitely 
generated group. This means we need a height function on E(K) that sat­
isfies certain properties. We begin by defining a height function on K and 
then use it to define a height on E(K). 

Definition. Let K = keG) be the function field of a non-singular algebraic 
curve Glk. The height of an element f E K is defined to be the degree of 
the associated map from G to pI, 

h(f) = deg(f : G --+ pI). 

In particular, if f E k, then the map is constant and we set h(f) = O. 
Let ElK be an elliptic curve given by a Weierstrass equation 

The height of a point P E E(K) is defined to be 

h(P) _ { 0 if P = 0, 
- hex) if P = (x, y). 

(Note that h(f) is really the height relative to the field K, and h(P) depends 
on the choice of a Weierstrass equation for E, although our notation does 
not reflect this. See [AEC VIII §5].) 

Remark 4.1. For each t E G, let 

ordt : k(G)* ~ Z 

be the normalized valuation on keG) [AEC II §1]; that is, ordt(f) is the 
order of vanishing of the function f at the point t. Then [AEC II.2.6a] 
implies that 

h(f) = deg f = L max{ ordt(f), O} = L max{ - ordt(f), O}. 
tEC tEC 

This definition of the height as a sum of local values is analogous to the 
definition of the height for number fields described in [AEC VIII §5]. Notice 
that we can count either the total number of zeros of f or the total number 
of poles. 
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The properties that we want the height to possess are of two very 
different sorts. First, we want the height to satisfy certain transformation 
properties relative to the group law on E. We will be able to prove this 
below by a straightforward calculation that is very similar to the proof in 
the number field case. Indeed, there is a theory of height functions for 
a wide class of fields which includes number fields and function fields as 
special cases. (See Lang [4] for details.) 

The second property we require of the height is a finiteness property, 
namely that a set of bounded height should contain only finitely many 
points. In the case of a number field K, we first showed that this was true 
of K itself; that is, a number field contains only finitely many elements of 
bounded height [AEC VIII.5.11]. This immediately implied the same result 
for E(K). However, matters are more complicated for function fields, since 
a function field may have infinitely many elements of bounded height. For 
example, the elements of height 0 in k(T) are precisely the elements of the 
field k. More generally, the elements of height at most d in k(T) are the 
rational functions of the form 

ao + a1T + a2T2 + ... + adTd 

bo + bIT + b2T2 + ... + bdTd . 

Thus it is not clear whether E( K) might possess infinite subsets of bounded 
height. We will postpone further discussion of this question until the next 
section. 

The following proposition summarizes the principal geometric trans­
formation properties of the height. 

Theorem 4.2. Let ElK be an elliptic curve defined over a function 
field K. 
(a) h(2P) = 4h(P) + 0(1) for all P E E(K). 
(b) h(P + Q) + h(P - Q) = 2h(P) + 2h(Q) + 0(1) for all P, Q E E(K). 
(The 0(1) bounds depend on the curve E and can be given explicitly; see 
exercise 3.11.) 

Remark 4.2.1. We will prove Theorem 4.2 using the triangle inequality 
and elementary polynomial computations. Later we will give another proof 
using intersection theory on a non-singular model for the elliptic surface c; 
see (9.3). 

PROOF (of Theorem 4.2). Fix a Weierstrass equation for E of the form 

E : y2 = x 3 + Ax + B. 

For any t E C, we write ordt(f) as usual for the order of vanishing of f E 
k( C) at t. To ease notation and avoid the inevitable confusion caused by 
repeated minus signs, we will also write 

7rt(f) = (order of the pole of f at t) = - ordt(f). 
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Note that the (non-archimedean) triangle inequality for 7ft has the form 

7ft(f + 1') :::; max{ 7ft(f), 7ft(f')}, with equality unless 7ft(f) = 7ft(f'). 

(a) Let P = (x, y) E E(K). The duplication formula [AEC III.2.3d] says 
that x(2P) = ¢j1j;, where 

¢=¢(x)=x4 -2Ax2 -8Bx+A2 and 1/J=1/J(x)=4x3+4Ax+4B. 

We compute 

h(2P) = h(x(2P)) definition of height 

= 2....: max{ 7ft ( ¢/1/J) , o} from (4.4) 
tEG 

tEG tEG 

So we need to show that max{7ft(¢),7ft(1/J)} and 4max{7ft(x),0} are ap­
proximately equal. If x has a large order pole at t, this is fairly clear, 
since ¢ = X4 + . .. will then have a pole four times larger than x. On 
the other hand, if x does not have a large pole, we will be in good shape 
provided ¢ and 1/J don't both have large order zeros at t. In order to make 
these vague comments precise, we define a quantity 

and consider the following two cases. 

17f t (x) > ILt (x has a large pole at t) I 
The definition of JLt shows that in this case we have strict inequalities 

7ft(x4) > max{ 7ft(2Ax2), 7ft(8Bx), 7ft (A2) }, 

7ft(x3) > max{ 7ft(Ax), 7ft (B) }. 

It follows from the triangle inequality that 7ft(¢) = 7ft(x4) and 7ft(1/J) 
7ft(x3). We also have 7ft(x) > JLt .:2: 0, which proves that 

max{7ft(¢),7ft(1/J)} = 7ft(x4) = 4max{ 7ft(x),O}. 

l7ft(x) :::; ILt (x has a small pole at t)1 

The triangle inequality gives us trivial upper bounds 

7ft(¢) :::; max{ 7ft(x4), 7ft(2Ax2), 7ft (8B:c) , 7ft(A2)} 

:::; max{ 4JLt, 7ft (A) + 2JLt, 7ft (B) + (tt, 27ft (A)} 

and 
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Hence 

7rt('l/J) :::; max { 7rt(X3), 7rt(Ax), 7rt(B)} 

:::; max{3J.tt, 7rt(A) + J.tt, 7rt(B)} 

:::; 3J.tt· 

max{ 7rt( 4», trt (1,b)} :::; 4J.tt :::; 4J.tt + 4 max { 7rt(x), O}. 

215 

In order to get a lower bound, we need to know that 4> and 1,b cannot 
both vanish to high order at t. We define functions 

q> = 12x2 + 16A, w = 3x3 - 5Ax - 27 B, 6. = 4A3 + 27B2 , 

and observe that there is an identity 

q> . 4> - w . 'l/J = 46.. 

(We've used this identity many times before, for example [AEC VIII.4.3].) 
Note that the discriminant 6. = 4A3 + 27 B2 E k( C) is not identically zero, 
since E / k( C) is assumed to be non-singular. Intuitively, our assumption 
that 7rt(x) :::; J.tt implies that q> and W have bounded poles at t, and then 
the identity says that 4> and 1,b cannot both have high order zeros at t. More 
precisely, we start with the upper bounds 

7rt(q» :::; max{ 7rt(12x2), 7rt(16A)} :::; 2J.tt, 

7rt(w) :::; max{ 7rt(3x3), 7rt(5Ax), 7rt(27B)} :::; 3J.tt. 

Next, using the above identity, we find that 

ordt (6.) = ordt (q>4> - w1,b) ~ min{ ordt (4)), ordt (1,b)} - max{ 7rt(q», 7rt(w)} 

~ min {ordt ( 4», ordt (1,b)} - 3J.tt· 

Now multiplying by -1 and using - ordt = trt yields 

max{ 7rt(4)), 7rt('l/J)} ~ -3J.tt - ordt (6.) 

~ -3J.tt - ord t (6.) - 4 (J.tt - max{ 7rt(x), O}) 
since J.tt ~ max{ 7rt(x),O} 

= -7J.tt - ordt (6.) + 4 max{ 7rt(x), O}. 

Combining the upper and lower bounds in this case, we obtain 

-7J.tt - ord t (6.) :::; max{ 7rt(4)), 7rt( 'l/J)} - 4 max { 7rt(x), O} :::; 4J.tt. 

In both cases we have now proven bounds of the form 
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where the quantities CI (t) and C2(t) have the property that they are inde­
pendent of the point P = (x, y) and are equal to zero for all but finitely 
many t E C. Summing this inequality over t E C gives the desired estimate 

CI ::; h(2P) - 4h(P) ::; C2 

for certain constants Ci = ci(E) which do not depend on P. 
(b) If P = 0 or Q = 0, the assertion is trivial, and if P = ±Q, then (b) 
reduces to (a). So we will assume that P, Q -I 0 and P -I ±Q. We write 

The condition that P -I ±Q ensures that the coordinates are all finite. The 
addition formula [AEC III.2.3d] on the elliptic curve gives 

_ (Y2 - YI)2 _ (A + XIX2)(XI + X2) + 2B - 2YIY2 
X3 - - Xl - X2 - , 

X2 - Xl (X2 - Xt}2 

X4= (Y2+YI)2 -XI-X2= (A+XIX2)(XI+X2)+2B+2YIY2. 
X2 - Xl (X2 - XI)2 

Next we compute 

h(P + Q) + h(P - Q) = h(x3) + h(x4) 

= Lmax{7rt(x3),O} +max{ 7rt(x4),O} 
tEG 

::; Lmax{7rt(x3X4),7rt(X3 + X4)'O}, 
tEG 

where the last inequality needs some justification. In fact, for any func­
tions a, b, c, d E k( C)* we have 

max { 7rt(a), 7rt(b)} + max{ 7rt(c), 7rt(d)} = max { 7rt(ac), 7rt(ad + bc), 7rt(bd)}. 

This is easily verified using the triangle inequality and checking the various 
cases. For reasons which will become apparent in a moment, we will add 
o = E 7rt ((Xl - X2)2) to both sides of this inequality, which yields 

h(P + Q) + h(P - Q) ::; Lmax{7rt((XI - X2)2 X3X4 ), 
tEG 

7rt ((Xl - X2)2(X3 + X4)), 7rt ((Xl - X2)2)}. 

Next we use a little algebra and the fact that the points P3 and P4 lie 
on E to compute 

(Xl - X2)2 x3X4 = (XIX2 - A)2 - 4B(XI + X2), 

(Xl - X2)2(X3 + X4) = 2(XI + x2)(A + XIX2) + 4B. 



§4. Heights on Elliptic Curves over Function Fields 217 

Substituting in above and using the triangle inequality yields 

h(P + Q) + h(P - Q) 

~ L max { trt ((XIX2 - A)2 - 4B(XI + X2)), 

tEe 7rt (2(Xl + X2) (A + XIX2) + 4B), 7rt ((Xl - X2)2) } 

~ L max{ 7rt(xix~), 7rt(AXIX2), 7rt(A2), 7rt(BXl), 7rt(BX2), 

tEe 7rt(AXl), 7rt(AX2), 7rt(XrX2), 7rt(XIX~), 

7rt(B), 7rt(xi), 7rt(XIX2), 7rt(X~)} 

~ L(2max{7rt(Xl),O} +2max{ 7rt(X2),O} 

tEe +2max{7rt(A),o} +max{7rt(B),O}) 

= 2h(XI) + 2h(X2) + 2h(A) + h(B) 

= 2h(P) + 2h(Q) + 0(1). 

It remains to prove an inequality in the opposite direction. It is possi­
ble to do this directly, as is done, for example, in [AEC VIII.6.2]. But we 
will instead use the following clever trick which is due to Don Zagier. We 
have proven that the inequality 

2h(P) + 2h(Q) ~ h(P + Q) + h(P - Q) + 0(1) 

holds for all P, Q E E(K). Given two points P', Q' E E(K), we apply this 
identity with P = pI + Q' and Q = P' - Q' and then use (a) to obtain 

2h(P' + Q') + 2h(P' - Q') ~ h(2P') + h(2Q') + 0(1) 

= 4h(P') + 4h(Q') + 0(1). 

Dividing by 2 gives the opposite inequality, which completes the proof 
of (b). D 

Just as in the number field case, we can construct a canonical height 
which is a quadratic form on the group E(K). However, in order to prove 
that the canonical height is non-degenerate, we need to know that sets of 
bounded height are finite. The exact conditions under which this occurs 
will be described in the next section. We have included the construction of 
the canonical height here, since it seems to fit in better with the material 
in this section. We hope the reader will excuse this textual non-linearity. 

Theorem 4.3. Let E / K be an elliptic curve defined over a function 
field K = k(C). 
(a) For every point P E E(K), the limit 
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exists. The quantity h( P) is called the canonical (or N eron- Tate) height 
of P. 
(b) The canonical height has the following properties: 

(i) h(P) = ~h(P) + 0(1) for all P E E(K). 

(ii) h(mP) = m 2 h(P) for all P E E(K) and all mE Z. 
(iii) h(P + Q) + h(P - Q) = 2il.(p) + 2h.(Q) for all P, Q E E(K). 

(c) The canonical height is a quadratic form on E(K). In other words, 
h(-P) = h(P), and the pairing 

( . , . ) : E(K) x E(K) -+ lR 

(P, Q) = h(P + Q) - i~(p) - h(Q) 

is bilinear. (N.B. The pairing is normalized so that h(P) = ~ (P, P).) 
(d) Assume that E does not split over k. (This means that E is not K­
isomorphic to an elliptic curve defined over k. See §5 for more details.) 
Then h(P) 2:: 0, and 

h(P) = 0 if and only if P is a point of finite order. 

(e) Any function E( K) -+ lR which satisfies (b )(i) and (b )(ii) for some 
integer m 2:: 2 is equal to the canonical height. 

PROOF. We will just briefly sketch the proof, since it is exactly the same 
as in the number field case [AEC VIII.9.1, VIII.9.3]. For any integers n 2:: 
m 2:: 0 we have 

T/'-1 

14- nh (2np) - 4-mh(2rnp) I = I L 4- i - 1 h(2 i+1 P) - 4- i h(2i P) I 

n-I 

i=m 

n-I 

::; L 4- i - 10(1) from (4.2a) 
i=rrt 

00 

i=rn 

This shows that the sequence 4-7) h(2n P) is Cauchy, hence converges, which 
proves (a). Further, taking m = 0 and letting n -+ oc gives 

12h(P) - h(p)1 ::; 0(1), 

which is (b)(i). 
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N ext we apply (4.2b) to the points 2n P and 2nQ to obtain 

Dividing by 4n and letting n ---> 00 gives (b)(iii). Evaluating (b) (iii) at P = 

mQ yields the identity 

h((m + l)Q) + h((m - 1)Q) = 2h(mQ) + 2h(Q). 

Taking m = 0 gives h( -Q) = h(Q), and then an easy induction (up and 
down) on m gives (b)(ii). This completes the proof of (b). 

It is a standard computation to show that a function satisfying the 
parallelogram law (b)(iii) is a quadratic form; see for example the proof 
of [AEC VIII.9.3c]. This gives (c). 

If P E E(K) has finite order, then 2n P takes on only finitely many 
values, so it is obvious from the definition that h(P) = O. Conversely, 
suppose that h(P) = o. Then for all m E Z we use (b)(ii) and (b)(i) to 
compute 

h(mP) = 2h(mP) + 0(1) = 2m2h(P) + 0(1) = 0(1). 

It follows that {mP : m E Z} is a set of bounded height. We will prove in 
the next section (5.1) that if E does not split over k, then sets of bounded 
height are finite. Hence P is a point of finite order, which completes the 
proof of (d). 

Finally, suppose that 9 : E(K) ---> lR satisfies (b) (i) and (b)(ii) for 
some m 2: 2. Then we compute for every P E E(K) and every i 2: 1, 

2h(P) - 2g(P) = m-2i (2h(mi p) - 2g(mip)) 

= m-2i ((h(mi p) + 0(1)) - (h(mip) + 0(1))) 

= 0(m-2i ). 

Letting i ---> 00 shows that h(P) = g(P). D 

Remark 4.3.1. It is also possible to construct the canonical height using 
intersection theory on the minimal elliptic surface associated to E. See §9 
for details, especially (9.3). One consequence of the geometric construction, 
which is not at all evident from the definition, is that for function fields 
the canonical height h(P) is always a rational number. This is (probably) 
false for number fields, where it is conjectured that h(P) is transcendental 
for all non-torsion points. 
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§5. Split Elliptic Surfaces and Sets of Bounded Height 

We proved in the last section that the height function h : E(K) ----+ lR. 
behaves nicely with respect to the group law on E. In order to prove 
that E(K) is finitely generated, it remains to show that sets of bounded 
height in E(K) are necessarily finite. The reader will recall that in the 
case of number fields, this was comparatively easy to do. Unfortunately, 
for function fields it is easy to construct a counterexample to this assertion! 

For example, let Eo I k be an elliptic curve, let E = Eo x C be the elliptic 
surface with E ----+ C being projection onto the second factor, and let ElK 
be the corresponding elliptic curve over K. Then every point, E Eo(k) 
gives a section 

(J', : C ---+ E = Eo X Co 

and this section corresponds to a point P, E E(K). Clearly, distinct ,'s 
give distinct P, 's, and just as clearly the map 

Eo(k) ---+ E(K), 

is a homomorphism. It follows that E(K) cannot possibly be finitely gen­
erated, since the fact that k is algebraically closed means that Eo (k) is not 
finitely generated. (For example, if k = re, then Eo(k) ~ iLl A for some 
lattice A c IC.) 

It will turn out that this is the only way in which E(K) can fail to be 
finitely generated, which suggests that we make the following definition. 

Definition. An elliptic surface E ----+ C splits (over k) if there is an elliptic 
curve Eo I k and a birational isomorphism 

i: E ~ Eo x C 

such that the following diagram commutes: 

Eo xC 

71' "" ,/ proiz 

C 

There are several other ways of characterizing split elliptic surfaces. 
The following one will be used later in this section. For others, see exer­
cises 3.9 and 3.10. 

Proposition 5.1. Let E ----+ C be an elliptic surface over k, and let E / K 
be the corresponding elliptic curve over the function field K = k( C). The 
following are equivalent: 
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(i) The elliptic surface c ---+ C splits over k. 
(ii) There is an elliptic curve Eo/k and an isomorphism E ...:::..... Eo defined 
over K. 

PROOF. Suppose first that 7r : e ---+ C splits. This means that there is a 
birational isomorphism i : e ---+ Eo x C so that proh 0 i = 7r. A dominant 
rational map induces a corresponding map on function fields (3.7), so we 
obtain an isomorphism k(c) ~ k(Eo x C) which is compatible with the 
inclusions 

keG) '--> k(c) and keG) '--> k(Eo x G). 

In other words, if we let K = keG) as usual, then the fields k(c) = K(E) 
and k(Eo x G) = K(Eo) are isomorphic as K-algebras. Each of them is 
a field of transcendence lover K, so each corresponds to a unique non­
singular curve defined over K (see [AEC, II.2.5] or Hartshorne [1, 1.6.12]). 
In other words, there is an isomorphism E ~ Eo defined over K. This 
completes the proof that (i) implies (ii). 

Conversely, suppose that we are given an elliptic curve Eo/ k and an 
isomorphism E ...:::..... Eo defined over K. Then K(E) ~ K(Eo) as K­
algebras, which is the same as saying that k(e) ~ k(Eo x C) as k(C)­
algebras. Again using (3.7), this isomorphism of fields induces a birational 
isomorphism of varieties c ---+ Eo x G commuting with the maps to G, which 
shows that e ---+ G is split over k. Hence (ii) implies (i), which completes 
the proof of (5.1). 0 

Example 5.2. Note that the isomorphism in (5.lii) is not required to be 
defined over the constant field k. In fact, since E is only defined over K, 
it really only makes sense to talk about maps being defined over K . For 
example, take C = pi and K = k(T), and consider the elliptic surfaces 

Cl : y2 = x 3 + 1, 

C3 : y2 = x 3 + T, 

Also let Eo/k be the elliptic curve 

C2 : y2 = x 3 + T 6 , 

e4 : y2 = x 3 + X + T. 

Eo : y2 = x 3 + 1. 

Then Cl is clearly split over k, since it is precisely Eo x G. The surface e2 
also splits over k, as can be seen from the isomorphism 

The elliptic surface e3 does not split over k, although it will split if we 
replace the base field k(T) by the larger field k(T1 / 6 ). Finally, C4 does not 
split over k; and since its j-invariant is non-constant, it will still not split 
even if we replace k(T) by a finite extension. See exercises 3.9 and 3.10 for 
general statements. 
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Remark 5.3. For a number field K, it was not hard to show that there are 
only finitely many elements of K having bounded height [AEC VIII.5.11], 
which immediately gave the same result for E(K). Unfortunately, this 
assertion is clearly false for function fields, since there may be infinitely 
many maps C -> 1P'1 of any given degree. In other words, for number fields 
we proved that a set of bounded height 

{p E E(K) : h(P):::; d} 

is finite by reducing to an assertion about elements of bounded height in K. 
But for function fields we will need a new sort of argument which makes 
use of the fact that the coordinates of P = (x, y) satisfy the equation of 
an elliptic curve. Further, we need to rule out split elliptic curves, since 
they will have infinitely many points of bounded height. All of this will 
help to explain why the proof of the following result is far from trivial and 
requires techniques different from those used when studying number fields. 
The proof will take us the rest of this section. 

Theorem 5.4. Let c -> C be an elliptic surface over an algebraically 
closed field k, let E / K be the corresponding elliptic curve over the function 
field K = k( C), and let d be a constant. If the set 

{p E E(K) : h(P) :::; d} 

contains infinitely many points, then c splits over k. 

PROOF (of Theorem 5.4). We will divide the proof of Theorem 5.4 into 
two steps. The first step says that if c has infinitely many sections of 
bounded degree (i.e., E(K) has infinitely many points of bounded height), 
then there is a one-parameter family of such sections. The second step says 
that if there is a one-parameter family, then c splits. We begin with the 
existence of the family. 

Proposition 5.5. Under the assumptions of Theorem 5.4, there is a (non­
singular projective) curve r / k and a dominant rational map ¢ : r x C -> c 
such that the following diagram commutes: 

1> 
fxC 

C 

PROOF. We fix a Weierstrass equation for E / K of the form 

with A, BE K = k(C), 
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and we define a set 

E(K, d) ~f {p E E(K) : h(P) ::; d}. 

Our assumption is that E(K, d) is infinite, and we wish to use this fact to 
find an appropriate curve r and map r x C --. e 

The first step is to parametrize the set of maps from C to lP'2. Recall 
that if D is a divisor on C, then L(D) is defined to be the space ofrational 
functions 

L(D) = {J E k(C) : div(f) + D 2: a}. 

This is a finite dimensional vector space whose dimension is denoted by 
C(D). (For basic facts about L(D), see [AEC, II §5].) Taking three functions 
from L(D) will define a map from C to lP'2, so we get a natural map 

Map( C, lP'2), L(D)3 ,,{O} -----. 
(Fa, FI, F2 ) f--+ (t f-> [Fo(t), FI(t), F2 (t)]). 

Multiplying (Fa, FI , F2 ) by a scalar clearly gives the same map C --. lP'2, so 
we actually have an association 

lP'3f(D)-I ~ L(D):." {O} -----. Map(C,lP'2). 

The key here is that we have taken a collection of maps in Map( C, lP'2) 
and have parametrized this collection using the points of the algebraic 
variety lP'3R-l, where to ease notation we will write C for C(D). Some of these 
maps C --. lP'2 will actually correspond to elements of E(K). The next step 
is to show that the maps corresponding to E(K) form an algebraic subset 
of lP'3R-l . 

For simplicity, we will assume henceforth that D 2: 0, and we fix a 
basis h, ... , Ie for L(D). Further, we choose a divisor D' 2: 3D large 
enough so that 1, A, B E L(D' - 3D), and we let hI, .. " hr be a basis 
for L(D'). 

Every element in L(D)3 can be written uniquely in the form 

f f R 

F = (Fa,Fb,Fc) = (I:adi,I:bdi,I:cdi)' 
i=1 i=1 i=1 

Such an F will give an element of E(K) if and only if Fa, Fb, Fe satisfy the 
homogeneous equation of E, 

F;Fc = F~ + AFaF; + BF:. 

In other words, F will give an element of E(K) if 

(I: bdi) 2 (I:Cdi) = (I: adi) 3 + A (I:adi ) (I: Cdi) 2 

+ B (I: cdi ) 3 . 
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Multiplying this out gives a sum involving monomials of the form fdjik 
and Afdjik and Bfdjfk. Our choice of D' ensures that each of these 
monomials is in L(D'), hence can be written uniquely as a linear com­
bination of h 1 , ... , hr. So finally we end up with an equation that looks 
like 

r 

2..: <Pi (a, b, c)h i = 0, 
;=1 

where each <Pi is a homogeneous polynomial in the coordinates 

Now the maps C ---+ jp'2 from above which correspond to elements of E(K) 
are associated to the points of the variety 

VD ~ {[a, b, c] E jp'3f(D)-1 : <Pi(a, b, c) = 0 for all 1 :::; i :::; r}. 

Example 5.5.1. We briefly interrupt the proof of Proposition 5.5 to pre­
sent an example. If we take C = jp'1 and K = k(T), then E / K has a 
Weierstrass equation of the form 

y2 = x3 + A(T)x + B(T) with A, BE k[T]. 

We let D = n(=), which means that L(D) is the set of polynomials in k[T] 
of degree at most n. (Here £(D) = n + l.) The corresponding family of 
maps jp'1 ---+ jp'2 is parametrized by jp'3n+2 as described above, 

Map(jp'1, jp'2), 

[ao, ... , an, bo,·· ., bn , Co,···, cn ] [t aiTi , t biTi , t ciTi ]. 
;=0 i,=O i=O 

Writing A(T) = I: AiTi and B(T) = I: BiTi , this map jp'l ---+jp'2 will give 
an element of E(K) if it satisfies the equation 

(2..:biTif (2..:ciTi) = (2..: a;Ti f 

+ (2..: AiTi ) (2..:aiTi) (2..:ciTif + (2..: BiTi ) (2..:ciTif· 

Multiplying this out and writing it as a polynomial in T gives a formula 
that looks like 

r 

2..: <Pi (a, b, c)Ti = 0, 
,i=O 

and the system of homogeneous equations <Po = <PI = ... = <PI' = 0 defines 
the variety V D. 
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To illustrate how this procedure works in practice, we will consider the 
elliptic curve 

E : y2 = X 3 + T 2 x - 1. 

We will find all points of degree at most 1 by setting 

and substituting P into the (homogenized) equation for E. Multiplying 
everything out, we obtain the equation 

a1ciT5 + (2a1cOc1 + aoci)T4 + (ai + a1c~ - bic1 + 2aOCOC1 - cr)T3 

+ (3aoai - bico + aoc~ - 2bob1C1 - 3eocDT2 

+ (3a~a1 - 2bob1Co - b~C1 - 3c~cdT + (a~ - b~co - c~) = 0. 

Setting the coefficients equal to ° gives six homogeneous equations for the 
six variables ao, ... , C1' These six equations define the variety VD C ]P'5. 

After some work one finds that VD consists of the 3 lines 

{[O, 0, u, v, 0, OJ} U {[O, 0, iu, iv, u, vJ} U {[O, 0, -iu, -iv, u, vJ} 

and the 22 isolated points 

{[0,(b(2,0,1,OJ: a=(~=-1}u{[p2,0,0,p,1,OJ: p6=1} 

U{[-2p2,(,3(p3,2p,1,OJ: (2=_1, p6=1}. 

Note that although VD itself is not zero-dimensional, its image in E(K) 
consists of a finite set of points, namely 

where (, (1, (2, and p satisfy (2 = (f = (~ = -1 and p6 = 1. For 
example, all of the points on the line [0,0, iu, iv, u, vJ in VD are mapped 
to the single point [0, iu + ivT, u + vTJ = [0, i, 1] E E(K). We also observe 
that ofthese 24 points in E(K), only the 3 points [0,1, OJ and [1, ±T, 1] are 
in E(Q(T)). 

We now resume the (regularly scheduled) proof of Proposition 5.5. 
Recall that we have constructed a variety VD and a map VD ---- E(K). The 
following lemma shows that if deg(D) is sufficiently large, then the image 
of VD in E(K) will contain E(K, d). 

Lemma 5.5.2. Let g be the genus of the curve C. If 

5 1 
degD ~ g + "2d + "2 (deg A + degB), 
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then the image of VD in E(K) contains E(K, d). (For a more accurate 
estimate, see exercise 3.13') 

PROOF (of Lemma 5.5.2). This is an exercise using the Riemann-Roch 
theorem. Let P = (xp, yp) E E(K, d), so, by definition, deg(xp) = h(P) ::::: 
d. Using the Weierstrass equation for E, we can check that deg(yp) is also 
bounded, 

2deg(yp) = deg(x~ + Axp + B) ::::: 3deg(xp) + deg(A) + deg(B) , 
31' 

deg(yp)::::: "2d+ "2 (deg(A) +deg(B)). 

In order to prove the lemma, we need to find functions Fo, F l , F2 E L(D) 
such that (xp,yp) = (Fo/F2,FdF2)' 

Recall that any function f E K defines a map f : C ___ jp'l, and the 
divisor of f has the form 

div(f) = divo(f) - divoo(f) = 1*((0)) + 1*((00)), 

where divo (f) and div 00 (f) are the divisors of zeros and poles of f respec­
tively. (See [AEC 11.3.5].) We also note from [AEC, I1.3.6(a)] that 

deg(f) = deg(divo(f)) = deg(divoo(f)). 

We are going to apply the Riemann-Roch theorem to the divisor 

whose degree we estimate as 

deg(D") = deg(D) - deg(xp) - deg(yp) 

;::: deg(D) - d - (~d + ~(deg(A) + deg(B))) ;::: g. 

The Riemann-Roch theorem [AEC, 11.5.4] then tells us that 

£(D") ;::: deg(D") - 9 + 1 ;::: 1, 

so there exists a non-zero function F E L(D"). We claim that the three 
functions 

Fo = Fxp, 

are all in L(D), which will complete the proof of the lemma. 
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To check this last assertion, we use the fact that div(F) + D" ;::: 0 and 
compute 

div(Fxp) + D = div(Fxp) + D" + divoo(xp) + divoo(Yp) 

= div(F) + D" + divo(xp) + divoo(Yp) ;::: 0, 

div(Fyp) + D = div(Fyp) + D" + divoo(xp) + divoo(Yp) 

= div(F) + D" + divoo(xp) +divo(Yp) ;::: 0, 

div(F) + D = div(F) + D" + divoo(xp) + divoo(Yp) ;::: o. 

This completes the proof of Lemma 5.5.2. o 

Continuing with the proof of Proposition 5.5, we fix a divisor D ;::: 0 
whose degree is large enough so that we can apply (5.5.2). Then (5.5.2) 
and our assumption that E(K, d) is infinite tell us that the image of VD 
in E(K) is infinite. 

We now change perspective a bit and consider the associated elliptic 
surface e ----> C. We have assigned to each point 'Y E VD a point P"{ E E(K), 
and (3.10c) says that the point P"{ corresponds to a section u"{ : C ----> e. In 
this way we get a natural rational map 

¢ : VD x C -----> e, (,,(, t) ~ u"{(t). 

It is clear that ¢ is an algebraic map, since using notation from above, we 
see that ¢ can be written as 

If there exists an irreducible curve f C VD such that the map 

¢ : f x C -----> e, 

is dominant, then the proof of Proposition 5.5 will be complete. So we 
assume that ¢ : f x C ----> e is not dominant for every irreducible curve f c 
V D and derive a contradiction. 

Let f C VD be an irreducible curve. We are assuming that ¢ : f x C ----> 

e is not dominant, so the image ¢(f x C) has dimension at most one. 
However, we know that 7f(u"{(t)) = t, which shows that 7f maps ¢(f x C) 
onto C. It follows that the image ¢(f x C) must have dimension exactly 
one. Further, the product f x C is irreducible, so ¢(f x C) is also irreducible 
by (3.5a). Therefore ¢(f x C) must consist of a single irreducible curve. On 
the other hand, for any given 'Y E f the map u"{ is a section to 7f : e ----> C, 
so we have 
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is already an irreducible curve contained in ¢(r X C). Hence ¢( b} x C) 
must be equal to ¢(r x C) for every "Y E r. Equivalently, every "Y E r gives 
the same section a'Y' which means that the image of r in E(K) consists of 
a single point. 

We have now shown that every irreducible curve r c VD maps to a 
single point in E(K). But any two points in any connected component 
of VD can be linked by a connected chain of irreducible curves. (In fact, 
on any irreducible component of VD , any two points can be connected by 
a single irreducible curve; see exercise 3.14.) Since VD has only finitely 
many connected components, it follows that the image of VD in E(K) 
is finite. This contradicts the fact shown above that the image of VD 

contains E(K, d). Hence there exists an irreducible curve r c VD with 
the property that ¢ : r x C -> C is dominant. Replacing r with a non­
singular model for r (see Hartshorne [1, 1.6.11]) completes the proof of 
Proposition 5.5. 0 

The following proposition, taken together with (5.5), completes the 
proof of Theorem 5.4. 

Proposition 5.6. Let 7r: C -> C be an elliptic surface over k, let r/k be 
a non-singular projective curve, and suppose that there exists a dominant 
rational map ¢ : r x C -> C so that the following diagram commutes: 

rxc ¢ 

C 

Then c splits. 

PROOF. The fact that ¢ is a dominant map of varieties of the same di­
mension means that there is a non-empty Zariski open subset cO of cover 
which ¢ is a finite map, say of degree m. Let to E C be a point such that 
the fiber Cto is non-singular and such that ¢ is well-defined at every point 
of r x {to}. Note that the set of such to's is a non-empty Zariski open 
subset of C, since Ct is non-singular for all but finitely many t E C, and ¢ 
is well-defined except at finitely many points of r x C by (3.5b). To ease 
notation, we let Eo = Cto ' Note that Eo/ k is an elliptic curve. 

We define a map 

'lj;: Eo x C, 
m 

((x,y),t) f----+ (L¢("Yi,tO),t) 
i=l 

where the points "Yi are determined by the formula 
m 

¢* ((x, y), t) = L("Yi, t). 
i=l 
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In other words, 'ljJ takes a point on eO, pulls it back by ¢ to get a collection 
of m points on r x C (counted with multiplicity), changes the t-coordinate 
to to to get a collection of points on r x {to}, uses ¢ to push them forward 
to a collection of points on Eo, and finally uses the group law on Eo to add 
them up. 

Note that the map 'ljJ is a well-defined rational map on eO. This is 
true despite the fact that the definition of 'ljJ involves applying ¢-I, since 
ultimately we take a symmetric expression of the points in ¢-l((X,y),t), 
so the resulting point can be expressed as a rational combination of x, y, t. 
This is clearest for those points ((x,y),t) E eO for which ¢-l((x,y),t) 
consists of m distinct points, which suffices for our purposes since we only 
need to define 'ljJ on an open subset of eO. 

(Aside: An alternative description of 'ljJ is as follows. Let r(m) be 
the m-fold symmetric product of r. Then the map ¢ defines in a natural 
way a morphism from eO to r(m) x C which sends a point in eO to the 
collection of points in its inverse image. Next we use the map ¢( . ,to) : r --+ 

Eo to map r(m) xC --+ Egm ) x C. Finally, the summation map Egm ) --+ Eo 
using the group law on Eo gets us to Eo x C, and the composition of all 
these maps is 'ljJ : eO --+ Eo x C. For information about the symmetric 
product, see Harris [1, Lecture 10, especially 10.23].) 

Note that if 'ljJ were a (birational) isomorphism, we would be done. 
Unfortunately, there is no reason that this should be true. We begin our 
analysis of the map 'ljJ by computing it on the fiber over to. 

'ljJ((x,y),to) = ( L ¢(!"to),to) = (m(x,y),to). 
h,t')E.p* «x,y),to) 

Thus 'ljJ : eto --+ Eo x {to} is just the multiplication-by-m map on Eo. 
In particular, since the multiplication-by-m map is surjective, we see that 
'ljJ(eO) contains Eo x {to}. This implies that the rational map e --+ Eo x C 
is dominant, since otherwise the irreducibility of 'ljJ( eO) would imply that 
'ljJ(eO) = Eo x {to}, contradicting the fact that 'ljJ(eO) maps onto C (Le., 
'ljJ(eO) must contain at least one point on each fiber on r x C --+ C). 

We now consider the elliptic curve E / K associated to the elliptic sur­
face e. We also take the elliptic curve Eo/k and think of it as the el­
liptic curve Eo/ K associated to the split elliptic surface Eo x C. Then 
the dominant rational map 'ljJ : e --+ Eo x C defined above corresponds 
to a non-constant map E --+ Eo of elliptic curves over K (3.9). Any such 
map can be written as the composition of a translation followed by an 
isogeny [AEC, 11104.7], so we obtain a non-zero isogeny 

A : E -----+ Eo 

defined over K. Taking the dual isogeny [AEC, III §4] gives a map 5. : Eo --+ 

E defined over K, and this induces an isomorphism [AEC, 111.4.11,111.4.12] 

5. : Eo/ ker(5.) ~ E. 



230 III. Elliptic Surfaces 

Now ker('x) is a finite subgroup of Eo(k), so the fact that Eo is defined 
over k implies that ker('x) C Eo(k). To see why this is true, take a Weier­
strass equation for Eo with coefficients in k. Then the n-torsion points of E 
have coordinates which are roots of certain polynomials having coefficients 
in k, so E[n] C E(k). (For explicit formulas, see [AEC, exercise 3.7]. Note 
we are assuming that k is algebraically closed.) It follows that the elliptic 

def A 

curve El = Eo/ ker(>.) is defined over k. 
We have now produced an elliptic curve Ed k and an isomorphism of 

elliptic curves El ----t E defined over K. It follows from (5.1) that E/ K splits 
over k. This completes the proof of Proposition 5.6 and, in conjunction with 
Proposition 5.5, also completes the proof of Theorem 5.4. 0 

§6. The Mordell-Weil Theorem for Function Fields 

We have now assembled all of the tools needed to prove the following im­
portant result. 

Theorem 6.1. (Mordell-Weil Theorem for Function Fields) Let e ----t C 
be an elliptic surface defined over a field k, and let E / K be the correspond­
ing elliptic curve over the function field K = k(C). If e ----t C does not split, 
then E(K) is a finitely generated group. 

PROOF. Suppose first that k is algebraically closed. The weak Mordell­
Weil theorem (2.1) tells us that the quotient group E(K)/2E(K) is finite. 
Next let h : E(K) ----t Z be the height function defined in §4. This height 
function satisfies 

(i) h(P + Q) = 2h(P) + 2h(Q) - h(P - Q) + 0(1) 

~ 2h(P) + OQ(l) for all P, Q E E(K), 

(ii) h(2P) = 4h(P) + 0(1) for all P E E(K), 

(iii) {P E E(K) : h(P) ~ C} is finite. 

The first two statements are (4.2a,b), whereas the third statement is (5.4) 
and uses the assumption that e ----t C does not split. We now have all of the 
hypotheses needed to apply the Descent theorem [AEC, VIII.3.1], which 
completes the proof that E(K) is finitely generated under the assumption 
that k is algebraically closed. Finally, for arbitrary constant fields k, it suf­
fices to observe that E(K) = E(k(C)) is a subgroup of E(k(C)), so E(K) 
is finitely generated. 0 

Remark 6.2.1. If C ----t C splits over k, then the group E(K) need not be 
finitely generated. More precisely, if C ~ Eo x C, then each point Z E Eo(k) 
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is also a point in Eo(K) = E(K). Thus there is an inclusion Eo(k) '-+ 

E(K). So for example, if k = C, then Eo(k) will certainly not be finitely 
generated, and the same is then true of E(K). However, the quotient 
group E(K)j Eo(k) will be finitely generated. This relative version of the 
Mordell-Weil theorem is due to Lang and Neron; see exercise 3.15. 

Remark 6.2.2. If k is a number field, or more generally if k is a finitely 
generated extension of Q, then the Mordell-Weil theorem (6.1) is true re­
gardless of whether or not c -; C splits. This generalization of the original 
Mordell-Weil theorem for number fields is due to N eron; see exercise 3.4. 

§7. The Geometry of Algebraic Surfaces 

All of our previous work in this chapter has dealt with the birational ge­
ometry of elliptic surfaces. In order to investigate the finer structure of 
elliptic surfaces, we will need to study them up to isomorphism. This sec­
tion reviews the basic theory of non-singular algebraic surfaces, including 
especially intersection theory and minimal models. Our main reference will 
be Chapter 5 of Hartshorne [1], specifically §1 for intersection theory and 
section 5 for the theory of minimal models, although we will also need a 
few additional facts from other sources concerning minimal models. For 
more information about surfaces, the reader might consult Beauville [1] 
and Griffiths-Harris [1, Ch. 4]. 

Let Sjk be a non-singular surface defined over an algebraically closed 
field k of characteristic O. A divisor on S is a formal sum 

n 

D = Laifi, 
i=1 

where ai E Z and the fi C S are irreducible curves lying on the surface S. 
The f i 's that appear in the sum are called the components of the divisor D. 
The group of divisors on S is denoted Div(S). 

Recall that the local ring of S at a point PES is defined to be 

Os,P = {J E k(S) : f is defined at p}. 

Similarly, for any irreducible curve f C S, the local ring of S at f is 

Os,r = {J E k(S) : f is defined at some point PEr} = U Os,p. 
PEr 

Our assumption that S is non-singular implies that each Os,r is a discrete 
valuation ring. We denote its valuation by ordr, since intuitively ordr(J) 
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is the order of vanishing of f along f. We extend this as usual to a homo­
morphism 

ordr : k(S)* ----; Z, 

and then use this to define a homomorphism 

div : k(S)* ----; Div(S), 

f f---> L ordr(J)f. 
reS 

A divisor is principal if it is the divisor of a function dive!). Two divi­
sors D 1, D2 E Div(S) are linearly equivalent if their difference D1 - D2 is 
principal, in which case we write D1 ~ D2. Linear equivalence is an equiv­
alence relation on the divisor group Div(S), and the Picard group of S is 
the corresponding quotient group, 

Pic(S) = Div(S)/ ~. 

Example 7.1. Consider a divisor D = L aifi E Div(]P2) in the projective 
plane. To each irreducible curve fi C ]p2 we can associate its degree, and 
by extending linearly we obtain a homomorphism 

deg : Div(]P2) ----; Z, 

L aifi f---> L ai deg(fi). 

If D = div(J) is principal, then it is easy to check that deg(D) = 0, so the 
degree map induces a homomorphism 

deg: Pic(]P2) ----; Z. 

We will leave it to you (exercise 3.18) to verify that this last map is an 
isomorphism, so Pic(]P2) ~ Z. This is the analogue for surfaces of [AEC, 
II.3.1bj. It says that a rational function on ]p2 has the "same number" of 
zeros and poles. 

In order to study the geometry of a surface, we will look at the curves it 
contains and how those curves intersect. For example, a curve of degree m 
and a curve of degree n in ]p2 will "usually" intersect in mn distinct points, 
and they will always intersect in mn points if we count tangencies and 
singularities with the correct multiplicities. This famous result is known as 
Bezout's theorem; see (7.3) below. Our next step is to define an intersection 
index for curves and divisors on arbitrary non-singular surfaces. 

Let fl and f2 be irreducible curves on S, and let P E f1 n f 2. Fix 
local equations iI, 12 E k(S)* for f 1 , f2 around P; that is, choose li E Os,P 
so that ordri (Ji) = 1 and ordr(Ji) = 0 for every other irreducible curve f 
containing P. We say that f1 and f2 intersect transversally at P if iI 
and 12 generate the maximal ideal of the local ring Os,p. (See exercise 3.19 
for the intuition behind this definition.) 

If f 1 and f 2 are irreducible curves that meet everywhere transversally, 
then it is natural to define the intersection f1 . f2 to be the number of 
intersection points. The next theorem says that this definition can be 
extended in a natural way to all divisors. 
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Theorem 7.2. There is a unique symmetric bilinear pairing 

Div(X) x Div(X) --+ Z, 

with the following two properties: 
(i) If r 1 and r 2 are irreducible curves on S that meet everywhere transver­
sally, then r l . r 2 = #(r1 n r2)' 
(ii) If D, D I, D2 E Div(S) are divisors with DI '" D2, then D·D I = D·D2· 

PROOF. (Sketch) Given divisors D I , D2 E Div(S), one uses ampleness and 
a Bertini theorem to find divisors D~, D~ E Div( S) with D~ '" D I , D~ '" 
D2, and such that D~ and D~ are sums of irreducible curves that meet each 
other transversally. Then D~ . D~ is defined using linearity and (i). One 
then checks that the answer is independent of the choice of D~ and D~. 
For details, see Hartshorne [1, V.l.1]. 0 

Example 7.3. We have seen ((7.1) and exercise 3.18) that the degree 
map defines an isomorphism Pic(]P2) ~ Z. Let r l ,r2 C ]p2 be curves of 
degrees nl,n2 respectively, and let HI,H2 C]p2 be (distinct) lines. Then 

deg(r i ) = ni = deg(niHi)' which implies that r i '" niHi. 

Further, HI . H2 = 1, since distinct lines in ]p2 intersect transversally in a 
single point, so we can compute 

r l . r 2 = (nIHI ) . (n2H2) = nIn2(HI . H 2) = nIn2 = deg(rI) deg(r2)' 

The equality r l . r 2 = deg(rI) deg(r2) is called Bezout's theorem for the 
plane. 

Theorem 7.2 is a powerful existence theorem, but it does not give a 
very practical method for computing the intersection DI . D 2 . In principle, 
one can find divisors D~ '" DI and D~ '" D2 which intersect transversally 
and then count the number of points in D~ n D~, but in practice it is 
better to assign multiplicities to the points in DI n D 2 . This is done in the 
following way. 

Let D E Div(S) be a divisor, and let PES. A local equation for D 
at P is a function f E k(S)* with the property that 

P ~ D - div(f). 

Notice that if D = r is an irreducible curve, then this is equivalent to the 
condition that ordr (f) = 1 and that ordr , (f) = 0 for all other irreducible 
curves r' containing P. 

Now let D 1 , D2 E Div(S) be divisors, and let PES be a point which 
does not lie on a common component of Dl and D 2 . Choose local equa­
tions II, h E k(S)* for D I , D2 respectively. The (local) intersection index 
of Dl and D2 at P is defined to be the quantity 

(DI . D 2)p = dimk r:J s,P/(IIJ2)' 
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Notice that (D1 . D2)p = 0 if P ~ D1 n D 2, since if P ~ D i , then Ii = 1 
will be a local equation for Di at P. The next result explains how the 
local intersection indices can be used to calculate the global intersection 
number D1 . D 2. 

Proposition 7.4. 
components. Then 
all PES, and 

Let DI, D2 E Div(S) be divisors with no common 
the local intersection index (D1 . D 2)p is finite for 

D1 . D2 = L (D1 · D2)p. 
PED,nD 2 

PROOF. See Hartshorne [1, V.1.4l. D 

Example 7.5. The local intersection indices are comparatively easy to 
calculate. As illustration, we will compute the intersection index of 

f 1 :y2Z=X3 and f 2 :YZ=X2 

in ]p>2 at the point P = [0,0, ll. (See Figure 3.1.) We dehomogenize x = 
XjZ, Y = YjZ, so the local ring at Pis 

OIP'2,P = k[x,yl(o,o) = {i E k(x,y) : g(O,O) i= O}. 
Then 

where the middle equality follows from the fact that x -1 is a unit in k[xlo. 
Hence 

(f f) d· k[x,yl(o,o) d' (k k k 2 k 3) 4 
l' 2 P = Imk (2 3) = Imk + x + x + x = . y -x ,y 

Notice that f1 is singular at P, but it has a unique tangent line there which 
is the same as the tangent line to f2 at P. This explains why (fl' f2)P is 
so large. 

Remark 7.6. Proposition 7.4 gives a method for computing the inter­
section number D1 . D2 when the divisors D1 and D2 have no common 
components. However, one frequently wants to compute the intersection of 
divisors with components in common. An important example is the self­
intersection D2 = D . D of a divisor D. This cannot be calculated directly 
using (7.4). One approach to calculating D2 is to find a D' '" D such 
that D and D' have no common components, and then compute D . D'. 
For example, if f c ]p>2 is a curve of degree n, then the computation in (7.3) 
shows that r 2 = n 2 . The argument in (7.3) works for self-intersections be­
cause r '" nH for any line H C ]p>2. In general, it may be difficult to find 
an appropriate D'. Another approach to computing self-intersections is to 
use the adjunction formula; see Hartshorne [1, V.1.5l. 
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P = (0,0) 

The Curves r 1 : y2 = x 3 and r 2 : Y = x 2 Near P = (0,0) 

Figure 3.1 
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If C is a (possibly singular) curve, then there is a unique non-singular 
projective curve C' such that C is birationally equivalent to C'. (See 
[AEC, II.2.5] or Hartshorne [1, 1.6.11,1.6.12].) The situation for surfaces 
is more complicated. It is true that every surface is birationally equivalent 
to a non-singular projective surface. However, if 5 is a non-singular pro­
jective surface, we can always blow up a point P E 5 to produce a new 
non-singular surface 5' that is birationally equivalent to 5 but not isomor­
phic to 5. The blown-up surface has the property that there is a birational 
morphism 5' --> 5; that is, the map 5' --> 5 is a morphism, and it has an 
inverse 5 --> 5' that is a rational map. This leads us to make the following 
definition. 

Definition. A surface 5 is relatively minimal if it has the following two 
properties: 

(i) 5 is a non-singular projective surface. 
(ii) If 5' is another non-singular projective surface, and if ¢ : 5 --> 5' 

is a birational morphism, then ¢ is an isomorphism. 

Theorem 7.7. Every surface 50 is birationally equivalent to a relatively 
minimal surface 5. If the original surface 50 is non-singular, then there is 
a birational morphism So --> 5. 

PROOF. This theorem is really an amalgamation of two important results 
in the theory of algebraic surfaces. First, resolution of singularities tells 
us that every surface is birationally equivalent to a non-singular projective 
surface. See Hartshorne [1, V.3.8.1] for a discussion of resolution and a 
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history of its proof. Second, every non-singular projective surface is bira­
tionally equivalent to a relatively minimal surface (Hartshorne [1, V.5.S]). 

We will not prove either of these results but will content ourselves with 
a few brief remarks. In order to prove resolution of singularities, one starts 
with the surface So and continually blows up points and curves until all of 
the singularities disappear. Of course, the hard part is to show that after 
each blow-up, the singularities have become quantitatively better. 

A curve C C So is called exceptional if C ~ ]!Dl and C 2 = -1. Castel­
nuovo's criterion (Hartshorne [1, V.5.7]) says that if C is an exceptional 
curve on So, then there is a non-singular surface S\ and a birational mor­
phism ¢ : So ---7 SI with the property that ¢ is an isomorphism away from C 
and ¢ sends C to a point PI E S 1. We say that ¢ is the blow-rlown of the 
curve C, since ¢ is the blow-up of S1 at Pl' If 51 has any exceptional 
curves, we choose one and blow it down. Continuing in this fashion, we 
obtain a sequence of surfaces So, S 1, 52, .... The hard part is to show that 
this process terminates with a non-singular surface 5 which contains no ex­
ceptional curves. Then one shows that such a surface is relatively minimal. 
See Hartshorne [1, V.5.S] for details. This also proves the last part of (7.7), 
since the blow-down maps 50 ---7 51 ---7 5",2 ---7 •.. are all morphisms. 0 

§8. The Geometry of Fibered Surfaces 

An elliptic surface Jr : [ ---7 C is an example of a fibered surface: that is, a 
surface that is described as a collection of fibers [t = Jr-l(t) parametrized 
by the points t of a curve C. Other examples of fibered surfaces include 
ruled surfaces, which are surfaces whose fibers are all isomorphic to ]!D1 

(Hartshorne [1, V §2]), and products C1 x C2 , which can be made into 
fibered surfaces in two ways by using the projections onto either the first 
or second factor. In this section, we will prove some geometric properties 
that are true for all fibered surfaces. In subsequent sections, we will apply 
these results to our study of elliptic surfaces. 

Definition. A fiber'ed surface is a non-singular projective surface S, a 1l01l­

singular curve C, and a surjective morphism Jr : 5 ---7 C. For any t E C, 
the fiber of 5 lying over t is the curve St = Jr- 1 (t). Note that 5 t will be a 
non-singular curve for all but finitely many t E S. 

The irreducible divisors on a fibered surface naturally divide into two 
different sorts, those that lie in a single fiber and those that cover C. More 
precisely, let r c 5 be an irreducible curve lying on a fibered surface Jr : 

5 ---7 C. Then 1r induces a map of curves Jr : r --+ C that is either constant 
or surjective [AEC, II.2.3]. If it is constant, say Jr(f) = {t}, then r lies 
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c 
A Fibered Surface with Horizontal and Fibral Curves 

Figure 3.2 
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entirely in the fiber St, and we call r fibral. If not, then 7f : r --> C is a 
finite map of positive degree, and we call r horizontal. See Figure 3.2. 

Definition. A divisor D E Div(S) on a fibered surface S is called fibral if 
all of its components are fibral. D is called horizontal if all of its components 
are horizontal. Note that every divisor can be uniquely written as the sum 
of a horizontal divisor and a fibral divisor, since every irreducible curve is 
either horizontal or fibral. 

Let 7f : S --> C be a fibered surface. If t E C, then the components 
of 7f- 1 (t) are irreducible fibral divisors. We assign multiplicities to these 
components in the following way. Let Ut E k(C) be a uniformizer at t, that 
is, ordt(u) = 1. Then Ut 07f is a function on S, so we can take its divisor, 
or more precisely that part of its divisor lying in the fiber St. Extending 
linearly, this gives us a homomorphism from Div(C) to Div(S). 

Definition. Let 7f : S --> C be a fibered surface, and for each t E C, fix a 
uniformizer Ut E k( C) at t. We define a homomorphism 

7f* : Div(C) ---7 Div(S), 

L nt(t) t---> L nt L ordr(ut 07f)r, 

tEG tEG reS, 

where the inner sum on the right is over all irreducible curves r contained in 
the fiber St = 7f- 1 (t). It is easy to see that 7f* is independent of the choice 
of uniformizers Ut, since if u~ is another uniformizer, then (ut/u;)(t) =1= 0,00 
at t. Hence (ut/uD 07f is not identically 0 or 00 on any component of St, 
so ordr(ut 0 7f) = ordr(u; 07f). 



238 III. Elliptic Surfaces 

It is clear from the definition of Jr* that the divisors in Jr* (Div( C)) 
are fibral. We begin by showing that they have trivial intersection with all 
other fibral divisors. 

Lemma 8.1. Let Jr : S --+ C be a fibered surface, let 8 E Div(C), and 
let D E Div(S) be a fibral divisor. Then D . Jr*8 = O. 

PROOF. Using the linearity of the intersection pairing and the fact that Jr* 
is a homomorphism, we may assume that D is an irreducible fibral divisor 
and that 8 = (t) consists of a single point. Then Jr(D) consists of one point. 
If that one point is not t, then D and Jr* (t) have no points in common, so 
clearly D . Jr* 8 = O. 

We have reduced to the case that Jr(D) = {t}. To complete the 
proof, we will move 8 = (t) by a linear equivalence. We can choose a 
non-constant function f E k(C)* by applying the Riemann-Roch theorem 
for curves [AEC, II.5.5c] to the divisor (29 + l)(t) E Div(C), where 9 is 
the genus of C. Riemann-Roch then says that £ ( (29 + 1) (t») = 9 + 2, so in 
particular there exists a non-constant function f whose only poles are at t. 

Let ordt(f) = -n, and consider the divisor 

Jr* (n8 + div(f)) = nJr* 8 + div(f 0 Jr). 

The point t does not appear in the divisor n8 + div(f), so the left-hand 
side has no points in common with St, and hence it has trivial intersection 
with D. On the other hand, div(f 0 Jr) is linearly equivalent to 0, so it has 
trivial intersection with every divisor on S. Intersecting both sides with D, 
we find that 

o = D . Jr* (n8 + div(f)) = D . (nJr* 8 + div(f 0 Jr)) = nD . Jr* 8. 

Hence D . Jr*8 = O. o 

We now show that the intersection pairing is negative semi-definite 
when it is restricted to fibral divisors, and we calculate its null space. 

Proposition 8.2. Let Jr : S --+ C be a fibered surface, and let D E Div(S) 
be a fibral divisor on S. 
(a) D2 ::; O. 
(b) D2 = 0 if and only if D E Jr* (Div( C) @ Ql). In other words, D2 = 0 
if and only if there is a divisor 8 E Div( C) such that aD = bJr* 8 for some 
non-zero integers a, b E Z. 

PROOF. (a) Write D = Dl + ... + Dn , where each Di is contained in a 
different fiber. Then Di . D j = 0 for i of j, since they have no points in 
common, which implies that D2 = Dr + ... + D;. It thus suffices to prove 
the proposition for each D i , so we may assume that D is contained in a 
single fiber, say D cSt. 
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Write 
T 

F ~f ]f*(t) = L nifi 

i=() 

as a sum of irreducible divisors. It is clear from the definition of ]f" that 
the ni's are all positive. Our assumption that D c St means that D has 
the form 

T 

D = L aif i for some integers ai· 
i=() 

We rewrite D and define another divisor D' by the formulas 

r L ai 
D = -(n.if;), 

n 
i=O "t 

and 

Proposition 8.1 tells us that D' . F 
compute 

-2D2 = D' . F - 2D2 + F . D' 

r 2 

D' = L a; (nifd. 
i=O n, 

F·D' O. We use this to 

The terms with i = j in this last sum are zero, so we find that 

T ( )2 2 1 ai aj 
D = -2 L ~ - -;;: (nifi)' (njf j ). 

i.)=O L J 
ioJ) 

For i I j, the divisors fi and fj are distinct irreducible divisors, 
so fi . f J ~ O. Further, as noted above, the multiplicities no, ... ,nT are all 
positive, so 

for all i I j. 

This immediately implies that D2 So 0, which completes the proof of (a). 
(b) Suppose now that D2 = O. Then the formula for D2 shows that 

ai 

n 1. 

for all i,j such that fi . fj > O. 

In other words, the ratios ad ni and aj / n J will be the same if the divi­
sors fi and f j have a point in common. On the other hand, it is a general 
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fact that the fibers of a fibered surface are connected. This is a special 
case of Hartshorne [I, nI.l1.3j, or see exercise 3.21. So given any two 
components f i and f j, we can find a sequence of components 

with fik . f ik+1 > 0 for all k = 0, 1, ... , m - 1. Hence ai/ni = aj/nj for 
all i and j. Let a = ao/no E Q be this common ratio. Then 

r r r 

D = Laifi = L ~inifi = a Lnifi = aF E 7r*(Div(C) ® Q), 
i=O i=O' i=O 

which completes the proof of Proposition 8.2. D 

Remark 8.2.3. With notation as in the proof of (8.2), consider the inci­
dence matrix 

1= (fi . fj)O~i,j~r 

which describes how the components of the fiber St intersect one another. 
Then (8.2) may be restated as follows: The quadratic form 

is negative semi-definite, with one dimensional null space spanned by the 
vector (no, ... , nr)' In particular, det(I) = 0, but every det(1;;) i=- 0, 
where 1;; is the minor obtained by deleting the ith row and ith column of I. 

Next we show that for a large class of divisors it is possible to add on 
a fibral divisor so that the sum will have trivial intersection with all fibral 
divisors. We will use this construction in the next section to describe the 
canonical height in terms of intersection theory. 

Proposition 8.3. Let 7r : S -'> C be a fibered surface, and let D E Div(S) 
be a divisor on S with the property that 

D· 7r*(t) = 0 for some (every) t E C. 

(The quantity D· 7r*(t) is independent oft; see exercises 3.22 and 3.23 or 
Hartshorne [1, exercise V.1.7}.) Then there exists a fibral divisor 1> D E 

Div(S) ® Q such that 

(D + 1>D) . F = 0 for all fibral divisors F E Div(S). 

If 1>~ is another divisor with this property, then 



§8. The Geometry of Fibered Surfaces 241 

In other words, <P D is uniquely determined by D up to divisors that come 
from C. 

PROOF. We are going to try to write <PD in the form E arf and solve for 
the coefficients ar. More precisely, for every point t E C, write 

r, 

7r*(t) = L ntifti 

i=O 

as a sum of irreducible components. We set atO = 0 for all t. Further, 
when Tt ~ 1 we consider the following system of linear equations: 

r, 

L atifti . f tj = -D· f tj , 

i=l 

l:Sj:STt· 

Note we are discarding the oth-component ftO, so this is a system of Tt 

equations in the Tt variables ati. Proposition 8.2 says that the incidence 
matrix 

(f ti . f tj h::;i,j::;r, 

has non-zero determinant (see also (8.2.3)), so this system of equations has 
a unique solution in rational numbers ati E Q. 

We claim that the divisor 

r, 

<PD = LLatifti 

tEG i=O 

has the desired property. Note that this is a finite sum, since Tt = 0 for all 
but finitely many t, and atO = O. To check that <PD works, it suffices by 
linearity to show that (D+<p D)·F = 0 for every irreducible fibral divisor F. 
Each irreducible fibral divisor has the form F = f tj for some tEe and 
some 0 :s j :s Tt. We consider three cases. 

First, ifTt = 0, then F = ftO = 7r*(t). Using (8.1) and the assumption 
that D· 7r*(t) = 0, we find that 

(D + <PD) . F = D· 7r*(t) + <PD' 7r*(t) = O. 

Second, suppose that rt 2 1 and F = f tj with j 2 1. Then the fact 
that the ati's give a solution to the system of linear equations allows us to 
compute 

r, 

(D + <PD) • F = D· f tj + L L atifti . f tj = O. 
tEG i=l 
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• c 
t 

A Reducible Fiber on a Fibered Surface 

Figure 3.3 

Finally, we consider that case that rt 2: 1 and F = rIO. Then 

0= (D + if>D) . Jr*(t) from (8.1) 
T"t 

= Lnti(D+if>D)·fti since Jr*(t) =2:ntifti 
i=O 

= ntO (D + if> D) . f to from the previous case. 

This completes the proof that (D + if> D) . F = 0 for all tibral divisors F. 
It remains to show that if> D is unique up to addition of a divisor from C. 

Suppose if>~ is another divisor with the same property. Then for every tibral 
divisor F we have 

But 1>D -1>~ is itself fibraL so (1)D -1>~j2 = o. It follows from (8.2b) 
that if> D - 1>~ is in Jr* (Div( C) G-0 Q). 0 

Example 8.3.1. Let Jr : 5 ---> C be a fibered surface, and suppose that 
the fiber 5 t consists of four components arranged in the shape of a square 
with transversal intersections, as illustrated in Figure 3.3. In other words, 

Jr* (t) = r 0 + r 1 + r 2 + r :0 with r i · rj = { ~ if i - j := ± 1 (mod 4), 
if i - j := 2 (mod 4). 
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We can use (8.1) to compute the self-intersections of the components. 
For example, 

so f6 = -2, and similarly f; = -2 for the other i's. Thus the incidence 
matrix for this fiber is 

(
-2 

1= (fi · fJ')O<i J'<3 = 1 -,- 0 

1 

1 0 
-2 1 
1 -2 
o 1 

~ ). 
-2 

Suppose now that D E Div(8) is a (horizontal) divisor with 

D· fo = -1, D· r l = 1, D· r 2 = 0, D· f3 = O. 

For example, D might consist of two curves D = DI - Do each of which 
maps isomorphically 71' : Di --; C, with DI going through fl and Do going 
through fo. To find the part of <I> D lying over t, call it <I> D,t, we take 
<I> D,t = aIr l + a2r2 + a3r3, set (D + <I> D,t) . r i = 0 for i = 1,2,3, and solve 
for the ai's. Doing this gives 

311 
<I>D t = -rl + -f2 + -f3' , 4 2 4 

The reader can check that (D + <I>D,t)' r i = 0 for 0 :S i :S 4. Similarly, if D 
were to satisfy 

D· fo = -1, D· r l = 0, D· r 2 = 1, D· r3 = 0, 

then 

See exercise 3.24 for a generalization to the case that the fiber is an n-gon 
with transversal intersections. 

The final topic for this section is minimal models of fibered surfaces. 
These will be minimal models which respect the fact that the surface is 
fibered. More precisely, we might say that a fibered surface 8 --; C is 
relatively minimal if for every fibered surface 8' --; C, every birational 
map 8 --; 8' commuting with the maps to C is a morphism. In the case 
that the non-singular fibers of 8 --; C have genus at least 1, then it turns 
out that there is a unique relatively minimal model. Further, this model 
will have the stronger minimality property described in the next theorem. 
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Theorem 8.4. Let 8 ~ C be a fibered surface with the property that 
its non-singular fibers are curves of genus at least 1. Then there exists 
a fibered surface 8min ~ C and a birational morphism ¢ : 8 ~ 8m in 
commuting with the maps to C with the following property: 

Let 8' ~ C be a fibered surface, and let ¢' : 8' ~ 8 be a birational 
map commuting with the maps to C. Then the rational map ¢ 0 ¢' extends 
to a morphism. In other words, the top line of the commutative diagram 

extends to a morphism. 

q,' q, 
8' ---+ 8 --+ 8 min 

'\, 1 / 

C 

PROOF. The basic idea is as follows. For any given 8, let 8 min be obtained 
from 8 by blowing down all of the exceptional curves on the reducible 
fibers. Next, given an 8' birational to 8, take the resulting birational 
map 8,min ~ 8 min and factor it into the smallest number of quadratic 
transformations 

8,min 8 8 8 8 8 min = 0 --+ 1 --+ 2 --+ ... --+ n = . 

Then by studying the behavior of the exceptional curves on these quadratic 
transformations, one shows that it is possible eliminate one of the "blow­
up-blow-down pairs." In other words, if n ;:::: 1, then one shows that 8,min 
and 8 min are connected by a smaller chain of quadratic transformations. 
Hence 8,min and 8 min are isomorphic, which gives the desired result. 

Unfortunately, we do not have at our disposal the tools needed to turn 
this brief sketch into a rigorous proof. We refer the reader to Lichten­
baum [1, Thm. 4.4] or Shafarevich [2, p. 131] for the complete proof of 
Theorem 8.4. 0 

Definition. It is clear that the surface 8 min described in (8.4) is uniquely 
determined up to a unique isomorphism commuting with the maps to C. 
A fibered surface 8 ~ C is called a minimal fibered surface (over C) if it 
is equal to 8min . 

Corollary 8.4.1. Let 1[" : 8 ~ C be a minimal fibered surface over C, 
and let T : 8 ~ 8 be a birational map commuting with the map to C 
(i.e., 1[" 0 T = 1["). Then T is a morphism. 

PROOF. By assumption, 8 is minimal, so the map ¢ : 8 ~ 8 min in (8.4) is 
an isomorphism. Now applying (8.4) with 8 = 8' and ¢' = T, we deduce 
that the composition 

is a morphism. Hence the same is true of T = ¢-l 0 (¢ 0 T). o 



§9. The Geometry of Elliptic Surfaces 245 

§9. The Geometry of Elliptic Surfaces 

Let 7f : C ---+ C be a minimal elliptic surface, and let E j K be the associated 
elliptic curve over the function field K = k(C) of C (3.8). Recall (3.lOc) 
that each point P E E(K) corresponds to a section (J'p : C ---+ c. We define 
a translation-by-P map 

Tp: C ----+ C 

on c by using the translation-bY-(J'p(t) map on each non-singular fiber Ct. 
It is clear that Tp is a birational map, since it is certainly given by rational 
functions and it has the rational inverse Lp. The minimality of c then 
implies that Tp extends to a morphism. We record this important fact in 
the following proposition. 

Proposition 9.1. Let 7f : C ---+ C be a minimal elliptic surface with 
associated elliptic curve E j K. 
(a) For any point P E E(K), the translation-by-P map 

Tp: C ----+ C 

extends to an automorphism of c. 
(b) Let 

Aut( e j C) = {automorphisms 'I : C ---+ C satisfying 7f 0 'I = 7f}. 

Then the map 
E(K) ----+ Aut(cjC), P~Tp, 

is a homomorphism. 

PROOF. (a) This a special case of Corollary 8.4.1, which says that any bi­
rational map of a minimal fibered surface to itself extends to a morphism. 
(b) If the fiber Ct is non-singular, then Tp maps Ct to itself by definition. 
It follows that 7f 0 Tp = 7f on all non-singular fibers. But the non-singular 
fibers are Zariski dense in C, and a morphism is determined by its values 
on any Zariski dense set (Hartshorne [1, I.4.1]), so 7f 0 Tp = 7f on all of c. 
This proves that Tp E Aut(cjC). Similarly, the identity Tp+Q = TpOTQ is 
clearly true on all non-singular fibers, so it is true everywhere. Finally, TO 

is the identity map, which completes the proof that E(K) ---+ Aut(cjC) is 
a homomorphism. 0 

Let P E E(K) with corresponding section (J'p : C ---+ c. The im­
age (J'p(C) of (J'p is a curve on the surface C, which we can think of as a 
divisor on £. We will write 

(P) E Div(c) 
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for this divisor. It is important to note that the divisors 

(P) + (Q) and (P+Q) 

are very different. The former is the sum of the two divisors (P) and (Q) 
in Div(£), whereas the latter is the image of the section O"P+Q = O"p + O"Q 

which is defined using the group law on E. The following proposition shows 
how they are related. 

Proposition 9.2. With notation as above, let PI"'" Pr E E(K) be 
points, and let nl, ... ,nr E Z be integers such that 

Let n = nl + ... + n r . Then the divisor 

is linearly equivalent to a fibral divisor. 
In particular, for all P, Q E E(K), the divisor 

(P+Q) - (P) - (Q) + (0) 

is linearly equivalent to a fibral divisor. 

PROOF. If P E E(K), our notation (P) is potentially ambiguous, since we 
could mean either the divisor on the curve E/ K consisting of the point P, 
or the divisor on the surface £ consisting of the curve O"p(C). To resolve 
this difficulty, we will denote the former by (P)E and the latter by (P)e. 

Fix a Weierstrass equation for E / K, say 

E : y2 = x 3 + Ax + B, A,BEK, 

and consider the divisor 

By assumption, D has degree 0 and sums to the zero element of E(K). 
Applying [AEC, III.3.5] to the divisor D on the elliptic curve E / K, we find 
that D is linearly equivalent to O. Thus there is a function f E K(E) such 
that 

D = (div f)E E Div(E). 

The relationship (3.8) between E and £ says that K(E) ~ k(£), so 
we can consider f as an algebraic function on the surface £. When we 
compute its divisor on £, we find that 

(div f)E and 
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are almost the same. To see this, note that f E K(E) = k(C)(x,y) is a 
rational function in x and y with coefficients in k( C). Hence for all but 
finitely many t E C, we can evaluate those coefficients to get a function it E 

k(c.t) whose divisor will be precisely 

This proves that the difference 

is contained in finitely many fibers, hence it is fibral. o 

For any point P E E(K), the divisor (P) - (0) E Div(c.) satisfies 

((P) - (0)) . 7r*(t) = 0 for all t E C. 

This is true because the image of a section will intersect a fiber 7r*(t) 
exactly once. (See exercise 3.22.) This shows that we can apply (8.3) to 
the divisor (P) - (0), as in the following definition. 

Definition. For each point P E E(K), let <Pp E Div(c.) ® Ql be a fibral 
divisor so that the divisor 

Dp def (P) - (0) + <Pp 

satisfies 
for all fibral divisors F E Div(c.). 

Such a divisor exists by (8.3) and the remarks made above. Then we define 
a pairing on E(K) by the formula 

( " .) : E(K) x E(K) ---+ Ql, 
(F,Q) = -Dp· Dq . 

The next result shows that this geometrically defined pairing is equal 
to the canonical height pairing (4.3), which justifies our use of the same 
notation for the two pairings! This geometric construction of the canonical 
height is due to 11anin [1]. See also Shioda [2] for a more detailed analysis 
of the induced Euclidean structure on the lattice E(K)j E(K)tors. 

Theorem 9.3. (l\lanin [1]) Let 7r : C. -+ C be a minimal elliptic surface 
with associated elliptic curve E j K. The pairing 

(.,.): E(K) x E(K) ---+Ql, 

defined above has the following two properties: 
(a) (.,.) is bilinear. 
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(b) (P, P; = h(P) + 0(1) for all P E E(K), where we recall from §4 
that h(P) = h(xp) is the degree of the map Xp : C ~ pl. 

Hence this pairing agrees with the canonical height pairing defined 
in (4.3). In particular, h(P) = ~(P, P; E Q for all P E E(K). 

PROOF. (a) Let P, Q, R E E(K) be any three points. Applying (9.2), we 
choose a fibral divisor F such that 

(Q + R) - (Q) - (R) + (0) "-' F. 

Then using standard properties of the intersection pairing (7.2), we com­
pute 

(P,Q + R; - (P,Q; - (P,R; 

= -Dp' DQ+R + Dp' DQ + Dp' DR 

= -Dp . ((Q + R) - (0) + <PQ+R) + Dp· ((Q) - (0) + <PQ) 

+ Dp· ((R) - (0) + <PR) 

= -Dp . ((Q + R) - (Q) - (R) + (0) + <PQ+R - <PQ - <PR) 

= -Dp· (F + <PQ+R - <PQ - <PR) 
= o. 

The last line follows from the fact that D p has trivial intersection with all 
fibral divisors. Hence 

(P, Q + R; - (P, Q; - (P, R; = O. 

It is also easy to check that the pairing is symmetric, 

(P, Q; = -Dp . DQ = -DQ . Dp = (Q, Pl' 

This completes the proof that the pairing is bilinear. 
(b) Directly from the definition we find that 

(P,P; = -Dp· Dp 

= -((P) - (0) + <pp). Dp 

= -((P) - (0») . Dp since Dp· (fibral) = 0 

2 2 ( ) = 2(P) . (0) - (P) - (0) + (P) - (0) . <Pp. 

Our first claim is that (P)2 does not depend on P. To see this, consider 
the translation-by-P map 

7p: e --7 e. 
We know from (9.1a) that 7p extends to an automorphism of e. It follows 
that 7pDl . 7pD2 = Dl . D2 for any two divisors D 1 , D2 E Div(e). Hence 

(P) . (P) = 7p(P) . 7p(P) = (0) . (0) 
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is independent of Tp. Alternative approach: first show that the canoni­
cal divisor on c has the form 7[*8, and then use the adjunction formula 
(Hartshorne [1, V.l.5]) to compute 

(p)2 = 2g(C) - 2 - (P) ·7[*0 = 2g(C) - 2 - dego. 

Our second observation is that although <P p depends on P, there are 
essentially only finitely many choices for <P p. More precisely, for each t E C, 
write 

Tt 

7[*(t) = L ntifti 
i=O 

as a sum of irreducible components. Note that rt = 0 for all but finitely 
many t E C. Looking back at the proof of (8.3), we see that <pp can be 
written in the form 

Tt 

<Pp = LLatifti +7[*(0) 
tEG i=l 

for some 0 E Div(C), where the integers ati are uniquely determined by 
the finitely many intersection indices 

(P) - (0)) . ftj, t E C, 1 ~ j ~ rt. 

But every (P)· f tj is either 0 or 1, so as we take different points P E E(K), 
there will be only finitely many possibilities for the ati's. Further, 

(P) - (0)) . 7[*(0) = (P) ·7[*(0) - (0) ·7[*(0) = deg(o) - deg(o) = 0 

from exercise 3.22(b), so we find that 

Tt 

(P) - (0)) . <Pp = (P) - (0)) . (LLatifti) 
tEG i=l 

can take on only finitely many values as we vary P E E(K). 
Combining these two observations with the calculation from above 

yields 
(P,P) = 2(P)· (0) + 0(1) for P E E(K). 

It remains to calculate the intersection index (P)· (0). Adjusting the 0(1) 
if necessary, we may assume that [2]P i- O. Fix a Weierstrass equation 
forE, 

E : y2 = x3 + Ax + B, 

and write P = (xp, yp). Changing coordinates if necessary, we may as­
sume xp and yp have no poles in common with the poles of A and B. 
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Let t E C. We will compute the local intersection index of (P) 
and (0) at the point O'o(t). We denote this local intersection by (p. O)t. 
If ordt(xp) :2" 0, that is, if xp(t) -I 00, then (P) and (0) do not intersect 
on the fiber Et , so (P . O)t = 0. Suppose now that ordt(xp) < 0, so the 
equation for E tells us that 

We make a change of coordinates w = x/y, z = l/y, so E now has the 
equation 

and P = (wp, zp) = (xp/yp, l/yp). Also let u E k(C) c k(E) be a 
uniformizer at t, so we are looking at the intersection of (P) and (0) at 
the point (w,z,u) = (0,0,0). The local ring of E at this point is 

k[w, z, u](O,o.O) 

(z - w3 - Awz2 - B z3)' 

Further, in this ring, (P) has the local equation w - wp = ° and (0) has 
the local equation w = 0, so by definition the intersection index (P,O)t is 
equal to the dimension over k of the vector space 

k[w, z, n](o.o.O) "" k[z, u](O,O) ~ k[u]o 
(z-w3 -Awz2 -Bz3,w-wp,w) (Z_B z3,Wp) = (wp)' 

Note the last equality follows from the fact that z - Bz:l = z(l - Bz2) 
and 1 - Bz2 is a unit in k[z, uj(o.O)' If we write Wp = uew'p for some 
function w~, that is neither ° nor ex:; at t, then we have 

. k[u]o . k[u]o 
dank -( -) = dlmk ~( ~) = e, wp ue 

and also 
1 

e = ordt Wp = ordt(xp/yp) = -2 ordt(xp). 

This proves that 

(p·O) _ {o 
t - _~ ordt(xp) 

Adding over t E C gives 

if ordt(;Y;p) :2" 0, 
if ordt(xp) < 0. 
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Hence 
(P, P) = 2(P) . (0) + 0(1) = h(P) + 0(1), 

which completes the proof of (b). 
Let g(P) = ~ (P, P) be the quadratic form associated to our pairing. 

Then g(P) = ~h(P) + 0(1) from (b), whereas the bilinearity in (a) tells 
us that g(2P) = 4g(P). This shows that g satisfies properties (i) and (ii) 
of (4.3b), so by the uniqueness (4.3e) of the canonical height, we have g = h. 

o 

Theorem 9.3 shows that the canonical height on E(K) can be com­
puted using intersection theory. Our next goal is to define a natural pair­
ing on a certain subgroup E(K)o of E(K). This pairing takes its values 
in Pic(C), and the composition . 

E(K)o x E(K)o ---> Pic(C) ~ Z 

will be the canonical height pairing. We begin by describing E(K)o. 
Let P E E(K) be a point and Tp : C -> C the translation-by-P auto­

morphism. We know from (9.1b) that Tp gives an automorphism of each 
fiber Ct. In particular, it must permute each of the components of Ct. 

Definition. Define a subset E(K)o of E(K) by 

E(K)o = {p E E(K) : Tp(r) = r for all fibral curves r c £}. 

Lemma 9.4. E(K)o is a subgroup of finite index in E(K). 

PROOF. Let P, Q E E(K)o. From (9.1b) we know that TP+Q = Tp 0 TQ, 
so for any fibral curve r we have TP+Q(r) = Tp(TQ(r)) = Tp(r) = r. 
Therefore P + Q E E(K)o. Similarly, r = TO(r) = LP+P(r) = Lp(r), 
so -P E E(K)o. This proves that E(K)o is a subgroup of E(K). 

For the second part, we observe that if Ct is an irreducible fiber, then 
clearly Tp(Ct) = Ct. Let {r1 , ... , rr} be the set of all components of the 
reducible fibers of c. It is a finite set, since C has finitely many reducible 
fibers, and each reducible fiber has finitely many components. Then E(K) 
acts on this set by 

E(K) 
P 

---> Aut{r1 , ... ,rr} ~ Sr, 
I---> (ri f-+ TP(r i )). 

In other words, there is a homomorphism from E(K) into the symmet­
ric group Sr on r letters. From the definition of E(K)o, the quotient 
group E(K)j E(K)o injects into STl which proves that E(K)o is a sub­
group of finite index. 

o 



252 III. Elliptic Surfaces 

Remark 9.4.1. There is another way to characterize E(K)o in terms of 
the sections ap : C -+ E associated to points P E E(K). Let ao : C -+ E 
be the zero-section. Then a point P E E(K) is in E(K)o if and only if 
the curves ap(C) and ao(C) hit the same component of every fiber of E. 
We will study the group E(K)o and the quotient E(K)j E(K)o in greater 
generality and detail in the next chapter; see (IV.6.12), (IV.9.1), (IV.9.2) 
and exercise 4.25. 

For any two points P, Q E E(K), Proposition 9.2 tells us that there is 
a fibral divisor <P P,Q E Div( E) satisfying 

(P + Q) - (P) - (Q) + (0) '" <PP,Q. 

Clearly, <P P,Q is determined by P and Q up to principal divisors, so its 
class in Pic(E) is well-defined. This gives a pairing on E(K) with val­
ues in Pic(E). The next result shows that this pairing is quite nice when 
restricted to the subgroup E(K)o. 

Theorem 9.5. Let 7[" : E -+ C be a minimal elliptic surface with associ­
ated elliptic curve E j K. 
(a) Let P, Q E E(K)o. Then there exists a divisor [P, QJ E Div( C) such 
that 

(P + Q) - (P) - (Q) + (0) '" 7["* ([P, QJ). 

The divisor [P, QJ is determined by P and Q up to linear equivalence. 
(b) The pairing 

E(K)o x E(K)o ---+ Pic(C), (P, Q) f-----> class [P, Q], 

is a well-defined symmetric bilinear pairing. (See also exercise 3.26') 
(c) 

(P, Q) = deg[P, QJ for all P, Q E E(K)o. 

In particular, h(P) = ~ deg[P, PJ for all P E E(K)o. 

PROOF. (a) For any two points P, Q E E(K), let <PP,Q E Div(E) be a fibral 
divisor satisfying 

(P+ Q) - (P) - (Q) + (0) '" <PP,Q 

as described in (9.2). Then for any fibral divisor F E Div(E), 

<PP,Q . F = (P + Q) . F - (P) . F - (Q) . F + (0) . F 

= TQ(P) . F - (P) . F - TQ(O) . F + (0) . F 

= TQ(P) - (0)) . F - «P) - (0)) . F 

= (P) - (0)) . LQ(F) - (P) - (0)) . F 

= 0 since Q E E(K)o implies T_Q(F) = F. 
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But <I>P,Q itself is fibral, so we deduce that <I>~,Q = O. It follows from (8.2b) 
that there is a divisor [P, Q] E Div( C) ® Q such that <I> P,Q = 71'* ([p, QJ). 
This will suffice for our purposes in this chapter, so we will leave it for the 
reader (exercise 3.28c) to show that [P, Q] is actually in Div(C). 

The divisor <I> P,Q is clearly determined by P and Q up to linear equiv­
alence on E'... In order to show that [P, Q] is determined up to linear equiv­
alence on C, we will prove that if 8 E Div( C) satisfies 71'* 8 '" 0, then 8 '" O. 
Write 71'*8 = div(f) for some I E k(E'..). For all but finitely many t E C 
we can restrict I to the fiber E'..t to get a rational function It E k(E'..t). By 
assumption, the poles and zero of I lie on finitely many fibers, so for almost 
all t E C we see that It E k(E'..t} has no zeros or poles. It follows that It 
is constant. Let (J : C ----> E'.. be any section, for example the zero section. 
Then the fact that I is constant on almost all fibers means that the func­
tion I - I 0 (J 0 71' is identically 0 on those fibers. But a rational function 
is determined by its values on any non-empty open set, so I = f 0 (J 0 71'. 
Therefore 

71'* 8 = div(f) = div(f 0 (J 0 71') = 71'* (div(f 0 (J)), 

so 8 = div(f 0 (J) is a principal divisor on C. Notice that what this result 
really says is that the natural map 71'* : Pic( C) ----> Pic( E'..) is injective. 
(b) The pairing is well-defined from (a), and it is clearly symmetric. To 
see that it is bilinear, we let P, Q, R E E(K)o and compute 

<I>P,Q+R '" (P + Q + R) - (P) - (Q + R) + (0) 

= (P + Q + R) - (P + R) - (Q + R) + (R) 
+ (P + R) - (P) - (R) + (0) 

= TR((P + Q) - (P) - (Q) + (0)) + ((P + R) - (P) - (R) + (0)) 

'" TR (<I> P,Q) + <I> P,R 

= <I> P,Q + <I> P,R. 

Note that the last equality is true because R E E(K)o, so TR fixes the fibral 
divisor <I> P,Q' Now write each <I> X,Y as 71'* ([X, YJ) and use the fact proven 
above that 71'* : Pic( C) ----> Pic( E'..) is injective. This yields the desired result, 

[P,Q+R] '" [P,Q] + [P,R]. 

(c) Let P E E(K)o. Then for every fibral divisor FE Div(E'..) we have 

(P) . F = Tp(O) . F = (0) . Lp(F) = (0) . F. 

In other words, 

((P) - (0)) . F = 0 for all fibral divisors F E Div(E'..), 
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so in the notation of (9.2), Dp = (P) - (0). Note that this is only valid 
for points in E(K)o. Let P, Q E E(K)o. We compute 

-(P, Q) = Dp . DQ by definition of (', .) 

= (P) - (0)) . (Q) - (0)) from above 

= (P) . (Q) - (P) . (0) - (Q) . (0) + (0) . (0) 

= LP(P) . Lp(Q) - Lp(P) . Lp(O) - (Q). (0) + (0) . (0) 

= (0) . (-P + Q) - (0) . (-P) - (Q) . (0) + (0) . (0) 

= (-P + Q) - (-P) - (Q) + (0))· (0) 

= 7[* ([-p, Q]) . (0) by definition of [', .] in (a) 

= deg[-P, Q] from exercise 3.22(b) 

= - deg[P, Q] by linearity of [', .] from (b). 

This proves that (P, Q) = deg[P, Q] for all P, Q E E(K)o. Putting P = Q 
gives h(P) = ~ (P, P) = ~ deg[P, P], which completes the proof of Theo­
rem 9.5. 

o 

Remark 9.6. Theorem 9.5 says that the canonical height pairing (', .) en­
dows E(K)o with the structure of a Euclidean lattice whose inner product 
takes integer values. Similarly, the height pairing gives E(K) a Euclidean 
structure with an inner product taking rational values having severely lim­
ited denominators. It is an interesting problem to classify the possible lat­
tice structures on E(K)o and E(K). In a series of papers, T. Shioda [1,2,4-
7] has investigated these Mordell-Wei 1 lattices and proven many interesting 
results, including the construction of examples for which E(K)o is isomor­
phic to a root lattice of type E 6 , E 7 , and Es. 

Remark 9.7. Let c ----> C be a non-split minimal elliptic surface, and 
let E / K be the associated elliptic curve. The Neron-Severi group of C, de­
noted by NS(c), is the group of divisors modulo algebraic equivalence. (For 
the definition of algebraic equivalence, see Hartshorne [1, exercise V.1.7].) 
One can prove that NS(c) is a finitely generated group and that the inter­
section pairing on Div( c) gives a well-defined pairing on NS (c). It is thus 
an interesting question to relate NS(c) and its intersection pairing to E(K) 
and its height pairing. Shioda [3, Thm. 1.1] has shown how to find genera­
tors for NS(c) by using generators for E(K) and fibral components of C. In 
particular, he proves the fundamental rank relation (Shioda [3, Cor. 1.5]) 

rankNS(c) = rankE(K) + 2 + I)rt - 1), 
tEG 

where rt is the number of irreducible components in the fiber Ct. He also 
gives a formula relating the intersection regulator of NS( c) to the canonical 
height regulator of E(K). 
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§10. Heights and Divisors on Varieties 

Let C -+ C be an elliptic surface defined over a number field k. For each 
point t E CCk) such that Ct is non-singular, there is a canonical height 
function h : ctCk) -+ IR on the elliptic curve Ct. In the next section we 
will investigate how the canonical height varies from fiber to fiber, espe­
cially for points lying on the image of a section (J : C -+ C. To carry out 
this investigation, we will need to develop more fully the theory of height 
functions on varieties. 

For our purposes in this chapter, it would suffice to consider only 
curves and surfaces, but the theory is hardly more difficult for general 
varieties. We will, however, need to assume that the reader is familiar 
with standard properties of divisors on varieties, as covered for example 
in Hartshorne [1, II §§6,7]. Some of the proofs in this section are fairly 
technical, so some readers may want to read the definitions and statements 
of the main results (10.1, 10.2, 10.3) and then proceed directly to the next 
section. 

For this section, we set the following notation: 

k a number field, with algebraic closure k, 
V / k a non-singular projective variety defined over k, 

Div(V) the group of divisors on V, 

hp the (absolute logarithmic) height function hp : ]p>r (k) -+ IR on 
projective space as defined in [AEC, VIII §5]. 

A morphism ¢ : V -+ W between non-singular varieties induces a 
homomorphism of their divisor groups ¢* : Div(W) -+ Div(V) in the fol­
lowing way. Let r E Div(W) be an irreducible divisor and fix a function ur 
which vanishes to order 1 along r. Equivalently, ur is a generator for the 
maximal ideal in the discrete valuation ring ()w,r. Then 

¢*r = L ord,6.(ur 0 ¢)tJ., 
,6.EDiv(V) 

where the sum is over all irreducible divisors tJ. E Div(V) and we are writing 
ord,6. : k(V)* -+ Z for the normalized valuation on the local ring eJ v,,6.. Of 
course, we have cheated a little bit. The divisor ¢*r will only be defined if 
the image ¢(V) is not contained in r, since otherwise Ur 0 ¢ is identically 
zero. However, ¢* sends principal divisors to principal divisors, so it induces 
a map ¢* : Pic(W) -+ Pic (V) which is well-defined on all of Pic(W), since 
we can always move r by a linear equivalence so that it intersects ¢(V) 
properly. 



256 III. Elliptic Surfaces 

The following theorem is often called the "Height Machine." It is the 
main result of this section. The Height Machine associates a height function 
to each divisor on V, or, more precisely, it associates an equivalence class 
of height functions to each divisor class on V. The power of the height 
machine is that it takes geometric relations involving divisor classes on V 
and translates them into height relations between points on V. It is thus 
a tool for transforming geometric information into arithmetic information. 
We have already seen this machine in action in [AEC, VIII §6], where 
the geometric group law on an elliptic curve was transformed into the 
arithmetic statement h(P + Q) + h(P - Q) = 2h(P) + 2h(Q) + 0(1). 
The general formulation of the Height Machine is due to Andre Weil. For 
further details and additional properties of heights, see Lang [4], Hindry­
Silverman [1], and exercises 3.31 and 3.32. 

Theorem 10.1. (Weil's Height Machine, Weil [2]) Let V be a non­
singular projective variety defined over a number field k. There is a map 

h: Div(V) ---> {functions V(k) ----+ lR}, 

uniquely determined up to bounded functions on V(k), with the following 
two properties: 
(a) (Normalization) Let ¢ : V ----+ ]P'T be a morphism, and let H E Div(]P'T) 
be a hyperplane with the property that ¢(V) ct H. Then 

hq,*H(P) = hJf'(¢(P)) + 0(1) 

(b) (Additivity) Let D, D' E Div(V). Then 

hD+D,(P) = hD(P) + hD,(P) + 0(1) 

for all P E V(k). 

for all P E V(k). 

The height mapping has the following additional properties: 
(c) (Equivalence) Let D, D' E Div(V) be linearly equivalent divisors. Then 

hD(P) = hD,(P) + 0(1) for all P E V(k). 

(d) (Functoriality) Let 1j; : V ----+ W be a morphism of non-singular projec­
tive varieties over k, and let D E Div(W). Then 

hV,,p*D(P) = hW,D(1j;(P)) + 0(1) for all P E V(k). 

Remark 10.1.1. Another way to formulate Theorem 10.1 is as follows. 
For every V/Q there is a unique homomorphism 

. {functions V(Q) ----+ lR} 
hv : PIC(V) ---> ----='---------'-"-'-~,-:----,--

{bounded functions V(IQ) ----+ lR} 

such that hJf'r is the usual height on projective space [AEC, VIII §5] and 
such that hv,,p* D = hW,D 0 1j; for every morphism 1j; : V ----+ W. 
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Example 10.1.2. Let E / k be an elliptic curve. Consider the divisor re­
lation [2]*(0) '" 4(0), which follows from [AEC, I1L3.5] and the fact that 
the four points in E[2] sum to zero. Then (10.1) gives the height relation 

h(o) ([2]P) = h[2]*(O)(P) + 0(1) = h4(o) + 0(1) = 4h(o)(P) + 0(1). 

This is one of the properties of the height that was used in the proof of the 
Mordell-Weil theorem [AEC, VIIL6.7]. 

Example 10.1.3. Two divisors D, D' E Div(lP'l) on the projective line are 
linearly equivalent if and only if they have the same degree. It follows from 
the additivity and equivalence properties (1O.1b,c) that 

deg(D')hD(P) = deg(D)hD1(P) + 0(1) for all P E 1P'1(k). 

In particular, (1O.1a) implies that hD(P) = deg(D)hp(P) + 0(1). 

For curves of higher genus, the identity (10.1.3) will not be true, since 
divisors of the same degree need not be linearly equivalent. However, a 
slightly weaker result is valid, as described in the following result. For a 
generalization to varieties of arbitrary dimension, see exercise 3.32. 

Theorem 10.2. Let C be a curve, let D, D' E Div(C) be divisors 
with deg(D) ¥ 0, and let hD, hD' be associated height functions. Then 

1. hDI(P) deg(D') 
1m ( ). 

PEC(k), hD(P) ..... OO hD(P) deg D 

The last theorem that we will be proving in this section is a finiteness 
result. Recall [AEC, VIII. 5. 11] that in projective space IP'T(k), there are only 
finitely many points of bounded height. Of course, here height means hp, 
the standard height on projective space. It is clear that this result cannot 
be true for every height hD on every variety. For example, if V(k) is infinite, 
then it cannot be true for both hD and h-D, since h-D = -hD + 0(1). 
In order to give the correct statement, we need one definition. 

Definition. A divisor D E Div(V) is called very ample if there is an 
embedding 4> : V --+ IP'T and a hyperplane H E DiV(IP'T) not containing 4>(V) 
so that D = 4>* H. (To say that 4> : V --+ IP'T is an embedding means that 4> 
maps V isomorphically onto its image.) The divisor D is called ample if 
there is an integer n > ° so that nD is very ample. 

Theorem 10.3. Let DE Div(V) be an ample divisor on V, and let hD : 
V(k) --+ lR be an associated height function. Then for all a, b > 0, the set 

{p E V(k) : hD(P) ::; a and [k(P): k] ::; b} 

is finite. In particular, the set {p E V(k') : h(P) ::; a} is finite for any 
finite extension k' / k. 

Example 10.3.1. Let C be a non-singular curve of genus g, and let D E 

Div(C) be a divisor. Then D is ample if deg(D) > 0, and D is very 
ample if deg(D) 2: 2g + 1. See Hartshorne [1, IV.3.2, IV.3.3] or [AEC, 
exercise I1I.3.6]. 
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Example 10.3.2. Let S be a non-singular surface. The criterion of Nakai­
Moishezon (Hartshorne [1, V.1.lO]) says that a divisor DE Div(S) is ample 
if and only if D2 > 0 and D· r > 0 for all irreducible curves reS. 

As mentioned above, the reader may at this point wish to proceed 
directly to the next section, where we will apply the Height Machine to 
study the specialization map on elliptic surfaces. The remainder of this 
section is devoted to proving Theorems 1O.1~1O.3. 

Definition. Let ¢ : V ~ JPlr be a morphism of V into projective space. A 
divisor DE Div(V) is said to be associated to ¢ if there is a hyperplane HE 
Div(pr), not containing ¢(V), such that D = ¢* H. Note that the divisor 
class of D is uniquely determined by ¢, since any two hyperplanes in pr 
are linearly equivalent. 

The height on V associated to ¢ is the height function 

hq, : V(k) ---> JR, hq,(P) = hll'(¢(P)). 

Our ultimate goal is to associate to every divisor D on V a height 
function hD with the properties described in (10.1). In particular, we will 
want the heights attached to linearly equivalent divisors to be essentially 
the same. The following important proposition will be crucial for this 
construction. 

Lemma 10.4. Let ¢ : V ~ pr and 'l/J : V ~ JPlS be morphisms which are 
associated to the same divisor class. Then 

h",(P) = h",(P) + 0(1) for all P E V(k). 

Here the 0(1) depends on ¢ and 'l/J but is independent of P. 

PROOF. Let D be any positive divisor in the divisor class associated to ¢ 
and'l/J. This means that on the complement of D we can write ¢ and 'l/J in the 
form ¢ = [1o, ... , Ir] and'l/J = [go, ... , gs] with rational functions Ii, gj E 
k(V) satisfying 

div(fi) = Di - D and div(gj) = Dj - D for divisors Di, Dj 2 o. 

Further, the fact that ¢ is a morphism means that the D/s have no points in 
common, and similarly for the Dj's. (For general facts about the relation~ 
ship between morphisms ¢ : V ~ pr and divisors, see Hartshorne [1, II §7], 
especially the section on linear systems.) 

Now fix some j, let Vj = V '- Dj be the complement of Dj, and 
let Fi = Idgj for 0 ~ i ~ r. Notice that 
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SO Fi is a regular function on Vj. Taken together, the Fi's define a morphism 

We also observe that the Fi's have no common zeros on Vj, since any 
common zero would lie on all of the Di's. 

We need to recall how the maximal ideals in the ring 9t = k[Fo, ... , Frl 
correspond to the points of Vj. If 9J1 c 9t is a maximal ideal, then 9t/9J1 
is a finitely generated k-algebra which is also a field. It follows from 
the weak Nullstellensatz (Atiyah-MacDonald [1, 5.24, 7.10]' Lang [7, X §2 
Cor. 2.2]) that 9t/9J1 is isomorphic to k. More precisely, the natural in­
clusion k -t 9t/9J1 is an isomorphism. This means that there are unique 
elements ao, ... , a r E k so that Fi == ai (mod 9J1), and then there is a 
unique point P!Vl E Vj(k) with F(P!Vl) = (ao, ... , a r). Equivalently, the 
point P!Vl is determined by the congruences 

for 0 ::; i ::; r. 

Now consider the ideal J = (Fo, ... , Fr) C 9t generated by the Fi's. 
We claim that J must be the unit ideal. To prove this, we assume that J 
is not the unit ideal and derive a contradiction. Every non-unit ideal is 
contained in at least one maximal ideal, so we take a maximal ideal 9J1 
with J c 9J1. Then 9J1 corresponds to a point P!Vl E Vj as described above. 
On the other hand, we have Fi E J c 9J1 from the definition of J, so 

Hence Fi(P!Vl) E k n 9J1, so Fi(P!Vl) = O. In other words, P!Vl is a common 
zero of Fo, ... , Fr , which is a contradiction. This completes the proof that J 
is the unit ideal. 

We can rephrase this last argument in slightly fancier language. The 
scheme Spec(9t) is isomorphic to Vj, and by the weak Nullstellentsatz, 
maximal ideals in Spec(9t) correspond to k-valued points in Vj. But then 
any maximal ideal 9J1 containing J would correspond to a point P in the 
zero set of J, contradicting the fact that the F/s have no common zero. 

The fact that J = (Fo, ... , Fr) is the unit ideal in 9t means that we 
can find a polynomial Aj(To, ... , Tr) E k[To, ... , Trl with no constant term 
such that 

For any finite extension k' /k, any point P E Vj(k'), and any absolute 
value v on k', we evaluate this identity at P, take the v-adic absolute 
value, and use the triangle inequality to get an estimate of the form 
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Here CI = cI(v,¢,1/J,D,Aj ) > 0 is a constant that does not depend on P. 
Further, for all but finitely many absolute values on k', we can take CI = 1. 
(See the proof of [AEC, VIII.5.6J for a similar calculation.) 

Recall that Pi = fd gj, so if we multiply both sides by Igj (P) Iv we 
obtain the estimate 

Notice that this bound is still valid if gj (P) = 0, so it holds for all points at 
which the Ii's and gj'S are defined, that is, at all points on the complement 
of D. Taking the maximum for 0 :s: j :s: s gives 

where C2 = C2(V, ¢, 1/J, D) is again positive and is equal to 1 for all but 
finitely many v. Now we take the logarithm of both sides, multiply by the 
local degrees [k~ : QvJ/[k' : Q], and sum over all absolute values on k' to 
obtain 

h( [go(P), ... , gs(P)j) :s: h( [fo(P), ... , fr(p)]) + C3, 

where C3 = C3(¢, 1/J, D) is independent of P. In other words, we have shown 
that 

h(1/J(P)) :s: h((¢(P)) + C3 for all P E (V" D)(k). 

The divisor D was chosen to be any positive divisor in the divisor 
class associated to ¢ and 1/J. In other words, we can take D to be ¢* H 
for any hyperplane H c JlDr not containing ¢(V). Let HI"'" Hm C JlDr be 
hyperplanes not containing ¢(V) with the property that HI n ... n Hm = 
0. Then the corresponding divisors ¢* HI"'" ¢* Hm have no points in 
common, so their complements cover V. Applying the above estimate to 
each of these D's and letting C4 be the maximum of the C3'S gives 

h(1/J(P)) :s: h((¢(P)) + C4 for all P E V(k). 

This is one of the inequalities we are trying to prove, and the opposite 
inequality follows if we interchange the role of ¢ and 1/J. D 

If D E Div(V) is a very ample divisor, then we can choose an em­
bedding ¢ : V ---> JlDr associated to D and attach to D the height func­
tion hD = h¢. For arbitrary divisors D, we will write D = DI - D2 as a 
difference of very ample divisors and define hD linearly by hD = hDl - hD2 . 
The following lemma shows that every divisor can be decomposed in this 
way. 
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Lemma 10.5. Every divisor on V can be written as a difference of two 
very ample divisors. 

PROOF. This is a basic result from algebraic geometry. Before giving the 
general proof, we consider a special case. Suppose V is a curve of genus g. 
Then a divisor on V is very ample if it has degree at least 2g + 1 (10.3.1). 
So for an arbitrary divisor D E Div(V), say of degree d, we can write D as 
a difference of very ample divisors 

D = (D + n(P)) - n(P) 

by choosing n = 2g + 1 + Idl. Similarly, let V be a surface, D E Div(V) 
an arbitrary divisor, and H E Div(V) an ample divisor. Then one can use 
the Nakai-Moishezon criterion (10.2.2) to show that nH + D is ample for 
all sufficiently large n, after which it is easy to write D as a difference of 
very ample divisors. We will leave the details to the reader (exercise 3.30) 
and go on to the general case. 

Let D E Div(V) be an arbitrary divisor, and fix a very ample divi­
sor H E Div(V). Serre's theorem (Hartshorne [1, II.5.17, II.7.4.3]) says 
that there is an integer n 2': 1 so that D + nH is ample. (Note we have 
translated from the language of invertible sheaves into the language of divi­
sors, as explained in the last part of Hartshorne [1, II §6].) It follows from 
Hartshorne [1, II.7.6] that m(D+nH) is very ample for all sufficiently large 
integers m. Further, nH is very ample, so nH + m( D + nH) is very ample, 
since it is the sum of two very amples. Hence 

D = (m + l)(D + nH) - (nH + m(D + nH)) 

is a difference of very ample divisors. o 

Lemma 10.5 lets us decompose a divisor D into a difference Dl - D2 of 
very ample divisors. In particular, Dl and D2 are associated to morphisms 
from V into projective space. The next result gives some basic properties 
of height functions associated to such morphisms. 

Lemma 10.6. Let (Pl : V - IP'r and <P2 : V - IP'S be morphisms, and 
let Dl and D2 be divisors associated to <Pl and <P2 respectively. 
(a) There exists a morphism <P3 : V - IP'rs+r+s associated to Dl + D2 . 

(b) If <P : V - IP'n is any morphism associated to Dl + D2, then 

hq,(P) = hq,l (P) + hq,2 (P) + 0(1) for all P E V(k). 

PROOF. (a) The Segre embedding (Hartshorne [1, exercise I.2.14] or Har­
ris [1, 2.11-2.29]) is the map 

IP'r x IP's ------> IP'rs+r+s 

([xo, ... , Xr], [Yo, ... , Ys]) f------+ [xoYo, ... , XiYj,···, xrYs]. 
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It is clear from this definition that if we pull a hyperplane back by the Segre 
embedding, we will get H x IP's + IP',. x H, where the H's are hyperplanes 
in the appropriate projective spaces. Hence Dl + D2 is associated to the 
morphism 

(b) Write 

and 

with rational functions fo, ... , 9s E k(V). Lemma 10.4 says that it suffices 
to prove (b) for anyone morphism ¢ associated to Dl + D 2, so we will 
take ¢ to be the map using the Segre embedding described in (a). In other 
words, 

¢ = [f090, ... , fi9j, ... , f1'9s] : V --+ lP'1's+1'+s. 

Let P E V(k) be any point. Replacing k be a finite extension, we may 
assume that P E V(k). Then directly from the definition of the height on 
projective space we have 

hq,(P) = h(¢(P)) 

= h([fogo (P) , ... , J;gj(P), ... , f,.gs(P)]) 

= LM [~~ ~ ~l]lOg (0~i~~~~j~.I(fi9j)(P)I) 
vE k 

= L [~~: ~l]lOg (max Ifi(P)I· max 19j(P)I) : 0<,<,. O<)<s 
vEMk - - - -

= " [~~: ~l] (log (max IJ;(P)I) + log (max Igj(P)I)) ~: 0<,<1' O<J<S 
vEMk - - - -

= h([fo(P), ... , f1'(p)]) + h([90(P), ... ,gs(p)]). 
o 

After these lengthy preliminaries, we are finally ready to tackle the 
proof of the Height Machine. 

PROOF (of the Height Machine (10.1)). Take each divisor D E Div(V) 
and write it as a difference D = Dl - D2 of divisors with the property 
that there are morphisms ¢l : V --+ 1P'1' and ¢2 : V --+ IP'S associated to Dl 
and D2 respectively. Note that (10.5) assures us that this is possible; in 
fact, (10.5) says that we can even choose Dl and D2 so that ¢l and ¢2 are 
embeddings. In any case, having fixed D 1 , D 2 , ¢l, ¢2, we define h D to be 

for all P E V(k). 
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Our first observation is that if the Height Machine exists, then up to a 
bounded function, this is the only choice for hD . This follows from (1O.1a) 
and (10.lb), which let us compute 

This gives the uniqueness assertion in Theorem 10.1. 
Next we show that up to bounded functions, hD is independent of the 

choice of D 1 , D 2 , (PI, Ih. Once we have proven this independence, the rest 
of (10.1) will follow very easily. So suppose that D = Di - D; is another 
decomposition, and let ¢~ : V ---" ]p>r' and ¢; : V ---" ]p>" be morphisms asso­
ciated to Di and D; respectively. Then Di + D2 = Dl + D;. Lemma 10.6 
says that there exists a morphism ¢ : V ---" ]p>n associated to this divisor, 
and then two applications of (10.6b) yields 

Therefore 

which proves that up to bounded functions, the definition of hD is inde­
pendent of the choice of D 1 , D 2 , ¢l, ¢2. 
(a) The divisor D = ¢* H is already associated to a morphism, so we can 
write D as D = D - O. Note that the divisor 0 is associated to the trivial 
morphism 7/J : V ---" ]p>o which maps V to a point. Then 

hD = h¢ - h,p + 0(1) = h¢ + 0(1), 

since h,p(P) = hp (7/J(P)) is a constant. 
(b) We decompose each of the given divisors into a difference of divisors 
that are associated to morphisms, say D = Dl - D2 and D' = D~ - D;. 
Then Dl + Di and D2 + D; are also associated to morphisms (1O.6a), and 
their difference is D + D', so we can use (a) and (1O.6b) to compute 

hD+D, = hD +D' - hD +D' + 0(1) = hD + hD' - hD - hD' + 0(1) 
1 1 2 2 1 1 2 2 

= hD + hD' + 0(1). 

(c) Write D - D' as a difference of divisors associated to morphisms, 
say D - D' = Dl - D 2, with Dl associated to ¢l and D2 associated to ¢2' 
Note that Dl and D2 are linearly equivalent by assumption, so (10.4) tells 
us that hCPl = h¢2 + 0(1). Now using (b) we obtain the desired result, 

hD - hD' = hD- D, + 0(1) = hCPl - h¢2 + 0(1) = 0(1). 
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(d) By the linearity proven in (b), it suffices to prove (d) for a divisor D 
associated to a morphism ¢ : W ---4 IP'T. Then the divisor 'Ij;* D is associated 
to the morphism ¢ 0 'Ij; : V ---4 W ---4 IP'T. Using (a) twice, we find 

hv,,p* D = hv,q,o,p + 0(1) = hw,q, o'lj; + 0(1) = hW,D o'lj; + 0(1). 

Note that the middle equality is trivial, since hq,o,p = hpo¢o'lj; by definition. 
D 

PROOF (of Theorem 10.2). Let d = deg(D) and d' = deg(D'). Replacing D 
by - D if necessary, we may assume that d :2: 1. For any integer n we 
consider the divisor 

Hn = (2g + I)D + n(d'D - dD'). 

Notice that deg(Hn) = d(2g + 1), so (10.3.1) says that Hn is a very ample 
divisor on C. In particular, there is an embedding ¢n : C ---4 IP'T associated 
to H n , so (1O.la) gives 

for all P E C(k). 

Now using the definition of H n , the linearity property of height func­
tions (10.lb), and the fact that the height on projective space is non­
negative [AEC, VIII.5.4b], we obtain the estimate 

Note that the constant en depends on n, but it is independent of P. As­
suming hD(P) > 0, a little algebra then gives the inequality 

Taking the liminf as hD(P) ---400, we obtain 

hmmf n - - --- > ---. . . (d' hD1(P)) 2g+1 
PEC(k), hD(P)-+OO d hD(P) - d 

This is true for every value of n (positive and negative), which gives the 
desired result, 

D 

PROOF (of Theorem 10.3). Replacing D by nD and using the fact (1O.lb) 
that hnD = nhD + 0(1), we may assume that D is very ample. Let ¢ : 
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V ----t lP'r be an embedding and H E Div(lP'r) a hyperplane with ¢* H = D. 
Taking a finite extension of k if necessary, we may assume that ¢ is defined 
over k. Then (lO.la) implies that there is a constant c so that 

for all P E V(k). 

It follows that ¢ maps the set 

{p E V(k) : hD(P) :::; a and [k(P): k] :::; b} 

injectively into the set 

{Q E lP'r(k) : hJf'(Q) :::; a + c and [k(Q): k] :::; b}. 

This last set is finite from [AEC, VIII.5.n], which proves the first part 
of (10.3). The second part follows by setting b = 1. 0 

§11. Specialization Theorems for Elliptic Surfaces 

In this section we will prove a theorem of Tate which describes how the 
canonical height h(O"P(t)) varies as one moves along a section of an elliptic 
surface. As a corollary we obtain a theorem of Silverman, strengthening 
earlier results of Neron, Dem'janenko, and Manin, which says that the 
specialization homomorphism E(K) ----t Ct(k) is injective for all but finitely 
many t E C(k). 

Let 7r : C ----t C be a minimal elliptic surface with corresponding elliptic 
curve Ej K, and let P E E(K). To ease notation, we will write 

Pt = O"p(t) 

for the image of a point t E C by the section O"p : C ----t C associated to P. 

Theorem 11.1. (Tate [4]) Assume that the elliptic surface C ----t C is 
defined over a number field k. For each t E C(k) such that the fiber Ct is 
non-singular, let 

(', ·)t : ct(k) x ct(k) ----+ lR 

be the canonical height pairing on the elliptic curve Ct [AEC, VIII §9]. 
Fix two points P,Q E E(K)o, let [P,Q] E Div(C) be the divisor 

described in (9.5), and let h[p,Q] : C(k) ----t lR be an associated height 
function on C (10.1). Then 

(Pt , Qt)t = h[p,Q] (t) + 0(1) for all t E C(k) such that Ct is non-singular. 
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Note that the 0(1) bound depends on P and Q but is independent oft. 

Remark 11.1.1. Putting P = Q in (11.1) gives hE,(Pt ) = h(p,p](t)+O(l), 
where 

hE, : et(k) ----> ~ 

is the canonical height on e [AEC, III §9]. In other words, for any point P E 
E(K)o, the map 

C(k) ----- ~, 

is a height function on C(k) corresponding to the divisor [P, Pl. Silver­
man [6] shows that it is possible to choose the height h(p,p] in such a way 

that the difference hE,(Pt ) - h(p,p] (t) varies quite regularly as a function 
of t. For example, consider the elliptic surface and section 

Then there is a power series fez) E ~[zn with f(O) = 0 so that for all 
sufficiently large integers t E Z, 

For details, see Silverman [5,6]. 

Before beginning the proof of Tate's theorem (11.1), we need to de­
scribe how to use a height function on the surface G to compute canonical 
heights on the individual fibers. For any integer n and any non-singular 
fiber Gt, we will write 

[n]t : et ----> Gt 

for the multiplication-by-n map on et. These maps clearly fit together to 
give a rational map on the surface G, 

[n]: e ----> e, [n](x, y, t) = ([n]t(x, y), t). 

(N.B. Even if the surface G is minimal, the rational map [n] : e ----> 8- will 
generally not extend to amorphism.) With these preliminaries completed, 
we are ready for the following lemma. 

Lemma 11.2. Let 7r : e ----> C be an elliptic surface defined over a number 
field k, and let hE,(o) : e(k) ----> ~ be a heigh! function on 8- associated to the 
divisor (0) E Div(G). Then for all t E C(k) such that et is non-singular, 
and all points (x, y) E et(k), 

hE-,(x,y) = lim ~hE- (O)([n](x,y,t)). 
n-----)(X) n ' 
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PROOF. Fix a Weierstrass equation for C, 

C:y2=x3 +Ax+B, A,BEk(C). 

For the moment we will restrict attention to points t E C(k) such that A 
and B are defined at t and ~(t) i- O. Then et is obtained by evaluating A 
and B at t. 

For each such t we let Pt be the map 

Pt(X, y) = x. 

This x-coordinate function on Ct has a double pole at Ot, which means 
that 

We also write cPt : et --> e for the inclusion of the fiber et into the surface e. 
Now let (x, y) E et(li:) be any point on a non-singular fiber. We use 

standard properties of the Height Machine (10.1) to compute 

h£,(o)(x, y, t) 

= h£.(o)(cPt(x, y)) 

= h£"q,;(O)(x, y) + 0(1) 

= h£,,(o,)(x, y) + 0(1) 
1 

= "2h£,,2(O,J(X, y) + 0(1) 

1 
= "2h£"p;(oo)(x, y) + 0(1) 

definition of cPt 

functoriality of height (lO.ld) 

since cP;(O) = (Od 

additivity of height (10.lb) 

1 
= "2hIP1,(oo) (Pt(x,y)) +0(1) functoriality of height (10.ld) 

1 
= "2h(x) + 0(1) definition of Pt. 

It is important to note that in this computation the 0(1) bounds will 
depend on t. This dependence arises because we have used the mor­
phism cPt : et --> e, and the 0(1) in the functoriality property (lO.ld) 
depends on the morphism. However, for a given t, the O(l)'s are indepen­
dent of the point (x, y) E et(k). To make the dependence visible, we will 
write 

for all (x, y) E ct(k). 

For any point (x, y) E et(7;;) and integer n, write [nJt(x, y) = (xn' Yn). 
Then standard properties of the canonical height [AEC, VIII.9.3b,ej allow 
us to compute 

1 1 1 A 

-2 lim 2h(xn ) = lim 2{hc,([n]t(x,y)) +Ot(1)} 
n---+oo n n--oo n 

1 { 2 A = lim 2 n hc,(x, y) + Ot(l)} 
n---+oo n 

= hc,(x, y). 
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Now combining these two formulas gives the desired result, 

lim ~he (o)([n](x,y,t)) = lim ~he (O)(xn,Yn,t) 
n~CX) n ' n---+oo n ' 

1 (1 ) 1 1 ' = lim z -2 h (xn) + Ot(l) = - lim zh(xn) = hc,(x, y). 
n--<Xl n 2 n __ DC n 

It is instructive to note that the Ot(l) disappears in the limit because the 
"t-coordinate" of [n](x, y, t) is independent of n. 

This completes the proof of (11.2) for all points t E Gek) such that A 
and B are defined at t and ~(t) =I O. But by choosing different Weierstrass 
equations for e, we can cover {t E G(k) Ct is non-singular} by finitely 
many such sets. D 

PROOF (of Theorem 11.1). The divisor [P, Q] is determined up to linear 
equivalence by the relation (9.5a), 

(P + Q) - (P) - (Q) + (0) '" 7r* ([p, Q]). 

For any point Z E c(k) lying on a non-singular fiber et, we use standard 
properties of the Height Machine (10.1) to compute 

h[p,Q](t) = h[p,Q] (7r(z)) since Z E et 

= h.".* [P,Q] (z) + 0(1) functoriality of height (lO.ld) 

= h(p+Q)_(P)_(Q)+(O)(z) + 0(1) equivalence of heights (lO.lc) 

= h(p+Q)(z) - h(p)(z) - h(Q)(z) + h(o)(z) + 0(1) 

additivity of height (lO.lb) 

= hr:p_Q(O)(z) - hr:p(o)(z) - hr:Q(o)(z) + h(o)(z) + 0(1) 

where TR : e ....... c is translation-by-R 

= h(o) (LP_Q(Z)) - h(o) (LP(Z)) - h(o) (LQ(Z)) 

+ h(o)(z) + 0(1) functoriality of height (lO.ld) 

= h(o)( -Pt - Qt + z) - h(o)( -Pt + z) - h(o)( -Qt + z) 

+ h(o)(z) + 0(1) since Z E et(k), so TR(Z) = R t + z. 

Note that the 0(1) constants appearing in this calculation depend on P 
and Q, but they are independent of Z and t = 7r(z). To indicate this 
dependence, we will write Op,Q(l). For each pair of integers 1 :S i,j :S n, 
we evaluate at the point z = iPt + jQt E e(k) to obtain 

h[p,Q](t) = h(o)((i - l)Pt + (j -l)Qt) - h(Ol ((i -l)Pt + jQt) 

-h(o) (iPt + (j - l)Qt) + h(o) (iPt + jQt) + Op,Q(l). 
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Summing this identity over 1 ::; i, j ::; n, we find that most of the terms 
telescope, leaving 

n2h[p,Q](t) = h(o) (nPt + nQt) - h(o) (nPt ) - h(o)(nQt) 

+h(o)(Ot) + Op,Q(n2 ). 

Now dividing by n2 , letting n -+ 00, and using (11.2) yields 

. 1 . 1 
h[pQ](t) = hm zh(o)(nPt + nQd - hm zh(o)(nPt ) 

, n~O() n n--+O() n 

- lim ~h(o)(nQt) + Op,Q(l) 
n--+oo n 

= hc,(Pt + Qt) - hc,(Pt ) - hc,(Qt) + Op,Q(l) 

= (Pt, Qt)t + Op,Q(l). 

This completes the proof of Theorem 11.1. o 

Taking the limit of (11.1) as the height of t goes to infinity, we can re­
cover the following result of Silverman which will be used below to prove the 
injectivity of the specialization map. In the special case that the elliptic sur­
face e -+ G is split, this result had earlier been proven by Dem'janenko [1] 
and Manin [2]. 

Corollary 11.3.1. (Silverman [1], [7]) Let e -+ G be an elliptic surface 
defined over a number field k, fix two points P, Q E E(K), and let (P, Q) 
denote the canonical height pairing (4.3,9.3) of P and Q on E(K). Further, 
let ho : GCk) -+ ~ be a height function on G corresponding to a divisor 8 E 

Div(G) of degree 1, and for each t E G(k) such that et is non-singular 
let (', ')t be the canonical height pairing on et(k). Then 

Notice that (11.3.1) applies to all points in E(K), not just those in the 
subgroup E(K)o. It is possible to improve (11.3.1) as described in our next 
result, but we will only give the proof in the case that the base curve G 
is pl. 

Corollary 11.3.2. (Tate [4]) Let e -+ G, P, Q E E(K), ho, and (., ')t 
be as in (11.3.1). 
(a) Suppose that the base curve G is isomorphic to pl. Then 

(Pt , Qt)t = (P, Q)ho(t) + 0(1) for t E pI (k) with et non-singular. 

Notice that in this result we can take ho to be the usual height function 
on pl. 
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(b) For an arbitrary base curve C, we have 

(Pt, Qt)t = (P, Q)h6(t) + O( y'h6(t) ) for t E C(k) with Ct non-singular. 

(See exercise 3.34 for the case that C has genus 1.) 

We will prove (11.3.1) and (11.3.2) simultaneously. 

PROOF (of Corollaries 11.3.1 and 11.3.2). The subgroup E(K)o has finite 
index in E(K) from (9.4), so given any two points P, Q E E(K), we can 
find an integer N such that N P, NQ E E(K)o. Note that N depends only 
on P and Q. Further, the canonical height pairings on E(K) and Ct(k) are 
bilinear, so 

and (NP,NQ) = N 2 (P,Q). 

Replacing P, Q by N P, NQ and dividing each of the formulas in (11.3.1) 
and (11.3.2) by N 2 , we see that it suffices to prove the two corollaries for 
points P, Q E E(K)o. 

Assuming now that P and Q are in E(K)o, (9.5c) tells us that 

(P, Q) = deg[P, Q]. 

Hence the divisor 

(3 = [P, Q] - (P, Q)8 E Div(C) 

is a divisor of degree o. Using (11.1) and the additivity of heights (lO.lb) 
yields the estimate 

We consider three cases. 
First, to prove (11.3.1), we divide by h6(t) and take the limit 

Now (10.2) and the fact that deg((3) = 0 imply that 

which completes the proof of (11.3.1). 
Next, suppose that C = ]p>l. Then (3 ,....., 0, since two divisors in DiV(]P>l) 

are linearly equivalent if and only if they have the same degree [AEC, 11.3.2]. 
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The equivalence property of heights (lO.lc) implies that hf3(t) is bounded, 
so the above estimate becomes 

This finishes the proof of (l1.3.2a). 
We will not give the proof of (l1.3.2b), other than to say that one uses 

an estimate 

hf3(t) = O( y'hti(t) ) + 0(1), 

valid for divisors (3 of degree o. This in turn follows from properties of the 
canonical height on the Jacobian variety of the curve C. For the complete 
proof, see Lang [4, 12 corollary 5.4] or Tate [4]. The special case that C 
has genus 1 is discussed in exercises 3.33 and 3.34. 0 

Let e -+ C be an elliptic surface. Each point P E E(K) defines a 
morphism Up : C -+ e which we have been denoting by t ~ Pt. Turning 
this around, we can also say that each point t E C(k) determines a map 

called the specialization map of e at t. If the fiber et is non-singular, then 
it is clear that the specialization map is a homomorphism, 

This follows from the fact that on a non-singular fiber et, the section ap+Q 
is defined by the relation ap+Q(t) = ap(t) + aQ(t). We now show that for 
"most" values of t the specialization homomorphism is injective. 

Theorem 11.4. (Silverman [1], [7]) Let e -+ C be a non-split elliptic 
surface defined over a number field k, and let {) E Div( C) be a divisor of 
positive degree. Then there is a constant c > 0 so that 

at : E(K) -+ et(l~) is injective for all t E C(k) satisfying h6(t) ~ c. 

(One says that the set of points where at fails to be injective is a set of 
bounded height.) In particular, the specialization map at : E(K) -+ et(k) 
is injective for all but finitely many points t E C(k). 

Remark 11.4.1. In the case that the elliptic surface is split, there is a 
version of (11.4) due to Dem'janenko [1] and Manin [2]. Both Dem'janenko 
and Manin used their results to prove the Mordell conjecture (now Faltings' 
theorem) for certain curves. See exercise 3.16. 
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Remark 11.4.2. There is an earlier result, due to Neron [3] using a Hilbert 
irreducibility argument, which says that if C(k) is infinite, then there are in­
finitely many t E C(k) for which the specialization map at : E(K) ---> Gt(k) 
is injective. This is sufficient for one of the main applications of (11.4), 
namely the construction of elliptic curves of elevated rank over Q or over 
number fields k. The idea is to find an elliptic surface G ---> Cover k for 
which C(k) is infinite and such that E(K) has high rank. Then specializ­
ing t E C(k) gives elliptic curves over k of high rank. Neron [3] used this 
procedure to construct infinitely many elliptic curves over Q with rank at 
least 10. More recently, Mestre [2] constructed an elliptic surface G ---> ]P'l 

defined over Q so that E(Q(t)) has rank at least 12, and Nagao [2] extended 
this result to get rank at least 13. By taking particular values for t E Q, 
it is possible to find specific elliptic curves over Q with even higher ranks. 
See Fermigier [1], Nagao [1], and Nagao-Kouya [1] for examples with ranks 
at least 19, 20, and 21. And the quest continues! 

PROOF (of Theorem 11.4). Our assumption that G ---> C is non-split means 
that the Mordell-Weil theorem (6.1) is valid, so the group E(K) is finitely 
generated. In particular, the torsion subgroup E(K)tors is finite. 

Let P E E(K) be any non-zero point. Then there are only finitely 
many t E C(k) for which Pt = Ot, since the two divisors (P) and (0) 
intersect in only finitely many points. This holds for each of the finitely 
many points in E(K)tors, so we see that on torsion points, the specialization 
map 

at : E(Khors ---> Gt(k) 

is injective for all but finitely many t E C(k). (In fact, the specialization 
map is injective on torsion whenever Gt is non-singular, since the residue 
field k has characteristic O. This follows from the identification of the 
kernel of the specialization map with the formal group of the elliptic curve; 
see [AEC, IV.3.2b, VII.2.2].) 

Next let pl, ... ,pr E E(K) be generators for the free part of E(K); 
that is, pl, ... , pr give a basis for the free group E(K)/ E(Khors. Then 
the non-degeneracy of the canonical height pairing on E(K) described 
in (4.3cd) implies that 

(This is an elementary property of non-degenerate bilinear forms; see Lem­
ma 11.5 below.) 

Next we specialize the pi'S to the fiber Gt, take the height regulator 
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of the resulting pts, and use (11.3.1) to compute 

det ((pi pj) ) ((pi pj) ) 
1· t, ttl <i,j<r d t l' t, t t 1m = e 1m 

h6(t)->OO hlj(t)r h6(t)->OO hlj(t) .. 
l::;',J::;r 

Hence there is a constant c so that 

= det((pi,pj))l::;i,j::;r 

#0. 

for all t E C(k) with hlj(t) > c. 

273 

It follows from (11.5) and the non-degeneracy of the height pairing on Ct(k) 
[AEC, VIII.9.3 or VIII.9.6j that the points Pl, ... ,P; are linearly indepen­
dent provided that hlj (t) > c. 

Adjusting c if necessary to account for the finitely many points in 
the torsion subgroup E(K)tors, we have now proven that for all t E C(k) 
with hlj(t) > c, both of the specialization maps 

and 

are injective. Now a simple diagram chase using the commutative diagram 

o ---> E(K)tors ---> E(K) ---> E(K)jE(Khors ---> 0 

1 1 1 
---> 0 

shows that E(K) ---t Ct(k) is injective, which completes the proof of the 
first part of (11.4). 

The second part is then an immediate consequence of the first part and 
of (10.3) once we observe (10.3.1) that on a curve, any divisor of positive 
degree is ample. 0 

It remains to prove the elementary property of non-degenerate bilinear 
forms used in the proof of (11.4). 

Lemma 11.5. Let r be a free abelian group, let (', .) be a positive 
definite bilinear form on r with values in Q, and let Xl,"" Xr E r. Then 

Xl,' .. , Xr are linearly independent <==} det ((Xi, Xj)) l::;i,j::;r # O. 

PROOF. Suppose first that the determinant is O. This means that there 
are integers aI, ... , ar, not all zero, so that 

r 

Lai(Xi,Xj) = 0 for all 1 ::::: j ::::: r. 
i=l 
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Multiplying by aj, summing over j, and using the bilinearity gives 

r r r r 

0= 2..:aj 2..:ai(Xi,Xj) = (2..:aixi,2..:ajXj). 
j=1 i=1 i=1 j=1 

In other words, y = L: aiXi E r satisfies (y, y) = 0, so the positivity of the 
bilinear form implies that y = o. Hence the Xi'S are linearly dependent. 

Conversely, if the Xi'S are linearly dependent, say L: aixi = 0, then 
the linearity of the pairing implies that the rows of the matrix ((Xi, Xj)) 
are linearly dependent, so the determinant is zero. 0 

§12. Integral Points on Elliptic Curves over Function Fields 

There is a theory of S-integral points on elliptic curves over function fields 
which is completely analogous to the theory over number fields as described 
in [AEC, Ch. IX]. However, for function fields it is possible to prove much 
stronger results using relatively elementary techniques. In this section 
we will give a short and elegant proof of the analogue of Siegel's theo­
rem [AEC, IX.3.2.1] which asserts that an elliptic curve has only finitely 
many S-integral points. We will also state and briefly sketch the proof of 
an effective version of this result. 

The simplest function field analogue of integral points are "polynomial 
points." Thus let E / k(T) be an elliptic curve over a rational function field, 
say given by a Weierstrass equation 

E : y2 = X3 + A(T)x + B(T) with A(T), B(T) E k[T]. 

The the set of polynomial points of E is the set 

{P = (x, y) E E(k(T)) : x, y E k[TJ}. 

For example, if 

and P=(T,T), 

then (1.1.1) says that P and 2P are polynomial points, but 3P is not. 
One way to characterize the polynomial ring k[T] is to observe that it 

is the sub ring of k(T) consisting of functions with no (finite) poles. More 
generally, we define the ring of S-integers of an arbitrary function field in 
the following way. 
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Definition. Let K = k( C) be the function field of a curve, and let 8 c C 
be a non-empty finite set of points of C. The ring of 8-integers of K is the 
ring 

Rs = {J E K : ordt(J) ~ ° for all t tf. 8}. 

Here ordt(J) is the order of vanishing of f at t; see [AEC, II §1]. 

The following function field analogue of Siegel's theorem is a special 
case of a result of Lang [8], who proved a general finiteness theorem for 
integral points on curves of arbitrary genus over function fields. 

Theorem 12.1. Let K = k(C) be the function field of a curve, let 8 c C 
be a non-empty finite set of points of C, let E / K be an elliptic curve that 
does not split over k, and let F E K(E) be a non-constant function on E. 
Then 

{p E E(K) : F(P) E Rs} 

is a finite set. 

PROOF. Our first observation is that it suffices to prove (12.1) for the 
special case that F is taken to be the x-coordinate on some Weierstrass 
equation for E / K. The reduction from the general case to this special case 
is given for number fields in [AEC, IX.3.2.2]' but the proof is the same for 
function fields. So we are reduced to showing that 

{p E E(K) : x(P) E Rs} 

is a finite set. 
H P is a point in this set, then the height of P is a sum of local 

contributions coming from the points in 8. More precisely, we have 

h(P) = h(x(P)) 

= L max{ - ordt (x(P)), o} 
tEe 

= Lmax{ -ordt(x(P)),O} 
tES 

:s: #8· max{ - ord t (x(P))}. 
tES 

definition of h(P) 

from (4.1) 

since ord t (x(P)) ~ 0 for t tf. 8 

Further, our assumption that E does not split combined with (5.4) tells 
us that E(K) has only finitely many points of bounded height. Hence the 
following result (12.2) completes the proof of (12.1). 0 

Theorem 12.2. (Manin [3]) Let K = k( C) be the function field of a 
curve, let t E C be any point of C, and let E / K be an elliptic curve that 
does not split over k, say given by a Weierstrass equation 

E : y2 = x 3 + Ax + B. 
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Then the function ordt(x(P)) is bounded below as P ranges over E(K). 

Before giving the proof of (12.2), we want to observe just how strong 
a statement it is. For example, the number field analogue of (12.2) is 
certainly false. Thus, if we let p E Z be a prime and E /Q be an elliptic 
curve with a rational point 

P E E(Q) satisfying ordp{x(P)) < 0, 

then consideration of the formal group of E(Qp) shows immediately that 

ordp{x(pnp)) -+ -00 as n -+ 00. 

The following short proof of (12.2), which is due to Voloch [1], uses 
the formal group and depends crucially on the fact that the base field k 
has characteristic O. 

PROOF. (of Theorem 12.2, Voloch [1]) We may replace the constant field k 
by its algebraic closure, since this will only have the effect of making E(K) 
larger. Further, replacing x by u2 x for some u E K*, we may assume that 
the given Weierstrass equation is a minimal equation for the valuation ordt . 

For each integer n 2: 1, let 

En(K) = {p E E(K) : ordt{x(P)) ::; -2n}. 

This is the standard filtration on the formal group of E, see [AEC, Ch. IV]. 
The crucial facts to note here are that each En(K) is a subgroup of E(K), 
and each quotient group En(K)/ E n+l (K) is isomorphic to a subgroup of k. 
To see this, let K t be the completion of the field K for the valuation ordt , 

let Rt be the ring of integers of K t , let M t be the maximal ideal of Rt , and 
let E be the formal group of E/Kt . It follows from [AEC, IV.3.1.3] that 
En(Kt) ~ E(Mr), and then [AEC, IV.3.2(a)] tells us that 

En(Kd/En+I(Kt) ~ E(Jvq)/E(M~+1) ~ M~/M~+1 ~ k. 

(The last isomorphism uses Rt/Mt ~ k.) Now the fact that En(K) 
E(K) n En(Kt) immediately implies our two assertions that En(K) is a 
subgroup of E(K) and En(K)/En+1(K) is isomorphic to a subgroup of k. 
In particular, our assumption that k has characteristic zero means that the 
quotient groups En(K)/ En +1 (K) have no elements of finite order. 

Suppose now that ordt{x(P)) is not bounded below on E(K). Then 
we can choose a sequence of points PI, P2 , ... with 

and 

We claim that the points PI, P2 , ... are linearly independent, which will 
contradict the Mordell-Weil theorem (6.1) and thus complete the proof 
of (12.2). 
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Suppose to the contrary that Pl , P2 , ... are linearly dependent. Dis­
carding the first few Pi'S if necessary and relabeling, we may assume that 
there is a relation 

with mI =1= O. 

Using the fact that nI < n2 < ... < nr and that the En(K)'s are nested 
subgroups of E(K), we see that 

But as noted above, the quotient Enl (K) / Enl +1 (K) is isomorphic 
to a subgroup of k, and k is a field of characteristic zero. So the fact 
that mI PI is zero in this quotient implies that PI itself is zero in the 
quotient. In other words, PI E En1+I(K), which contradicts the fact that 
ordt{x(Pd) = -2nI. Hence the Pi'S are independent. 0 

The proofs of (12.1) and (12.2) are ineffective because they depend on 
the Mordell-Weil theorem (6.1). Notice that (12.2) is analogous to Siegel's 
theorem [AEC, IX.3.1]' although (12.2) is both stronger and considerably 
easier to prove. 

Similarly, one can prove effective bounds for S-integral points in the 
function field case which are analogous to the bounds provided by linear­
forms-in-Iogarithms methods for number fields [AEC, §5J. Again the func­
tion field estimates are stronger and much easier to prove. A number of 
people have given such bounds, including for example Schmidt [1], Ma­
son [1], and Hindry-Silverman [2]. We will briefly sketch the proof of the 
following version. The argument is the same for elliptic or hyperelliptic 
curves, so we give the more general case. 

Theorem 12.3. Let K = keG) be the function field of a curve G of 
genus g, let S c G be a non-empty finite set of points of G, let Rs be the 
ring of S-integers of K, and let f(x) E Rs[x] be a monic polynomial with 
discriminant ~ satisfying ~ E R'S. Suppose that x, y E Rs satisfy 

y2 = f(x). 

Then 
h{y4 /~) :s: 4n(n - 1) max{2g - 2 + #S, a}. 

(Recall from §4 that the height of an element f E K is defined to be the 
degree of the map f : G -t ]P'I. Also note that the set S has to be chosen 
large enough to contain all of the zeros and poles of ~.) 

Remark 12.3.1. The bound in (12.3) is stated for y4 / ~ because this 
quantity is invariant under linear change of variables. However, it is easy 
to use (12.3), the relation y2 = f(x), and elementary properties of height 
functions to give a bound for hex) in terms of the coefficients of f. See 
exercise 3.39 for the particular case of an elliptic curve. 
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PROOF. (Sketch of Theorem 12.3) The first step is to reduce the problem 
of S-integral points on elliptic curves to the problem of solving the S-unit 
equation 

u + v = 1, u,v E R~. 

This reduction procedure is due to Siegel and is described in [AEC, IX.4.3]. 
Next, one proves that if u, v E R~ satisfy u + v = 1, then 

h(u) ::; max{2g - 2 + #S, a}. 

This bound is the function field analogue of the abc-conjecture of Masser 
and Osterle. There are several elementary proofs available; see for exam­
ple Mason [1], Silverman [8], or Vojta [lJ. Tracing back through Siegel's 
argument gives the estimate described in (12.3). We leave the details to 
the reader, or see Hindry-Silverman [2, Prop. 8.2]. 0 

EXERCISES 

3.1. For any pair (a, b), let E a •b be the curve 

Ea,b : y2 + axy + by = x 3 + bx2 . 

Notice that the point (0,0) is on each of these curves. 

(a) Let Elk be an elliptic curve, let P E E(k) be a point, and assume that 
P, 2P, 3P =1= O. Prove that E has a Weierstrass equation of the form Ea,b 
with P corresponding to (0,0). (Hint. Move P to (0,0), rotate so that the 
tangent line at (0,0) is the x-axis, and make a dilation to get a2 = a3.) 

(b) Prove that 5P = 0 if and only if a = b + 1. Conclude that every 
elliptic curve Elk with a point P of exact order 5 is isomorphic to some 
fiber of the elliptic surface 

C : y2 + (t + 1 )xy + ty = x 3 + tx2 

by an isomorphism taking P to the point (0,0) on that fiber. 

(c) More precisely, if E is defined over k and if P E E(k) is a point 
of exact order 5, prove that there is a unique point to E ]Pl(k) and an 
isomorphism <p : E --> Cta defined over k such that <P(P) = (0,0). 

(d) Using a similar construction, find an elliptic surface C -t ]pI which 
classifies elliptic curves with a given point of order 7. 
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3.2. Let G IQ be the (elliptic) curve 

let EIQ(G) be the elliptic curve 

E: y2 + (st + t - S2)xy + s(s - l)(s - t)t2y = x3 + s(s -l)(s - t)tx2, 

and let P = (0,0) E E(Q(G))[ll] be the point of order 11 as described 
in (1.1.3). 
(a) Let A be an elliptic curve and Q E A a point of order 11. Prove that 
there is a unique point (so, to) E G such that if we substitute (s, t) = (so, to) 
into the equations for E and P, then we obtain an elliptic curve Eo and a 
point Po E Eo of order 11 such that there is an isomorphism ¢ : A --> Eo 
satisfying ¢(Q) = Po. 
(b) If A is defined over k and Q E E(k), prove that the point (so, to) 
obtained in (a) will lie in G(k). 

3.3. This exercise gives a function field analogue of [AEC, exercise 8.1]. Let Glk 
be a curve of genus 9 with function field K = k( G), and let ElK be an 
elliptic curve which does not split over K. 
(a) Suppose that ElK has a Weierstrass equation of the form 

Let 8 c G be the set of points where anyone of e1, e2, e3 has a pole together 
with the points where the product (e1 -e2) (e1 -e3)( e2 -e3) vanishes. Prove 
that 

rank E(K) s: 4g + 2#8 - 2. 

(b) Suppose that ElK has a Weierstrass equation of the form 

with A,B E K. 

Let 8 c G be the set of points where A or B has a pole together with the 
points where ~ = 4A3 + 27B2 vanishes. Find an explicit bound for the 
rank of E(K) in terms of 9 and #8. 

3.4. Let klQ be a finitely generated field extension, that is, k = Q( 01, ... ,Or) 
for some 01, ... ,Or E C. Let G Ik be a curve with function field K = keG), 
and let ElK be an elliptic curve. Prove that E(K) is a finitely generated 
group. In particular, this is true if k is a number field. (Hint. You may 
find exercise 3.15 below useful for doing this problem.) 

3.5. Let A be an abelian variety of dimension one, so in particular A is a non­
singular projective curve. (See §2 for the definition of abelian variety.) 
Prove that A has genus 1, so A is an elliptic curve. 

3.6. Let ¢ : V --> W be a rational map of projective varieties. 
(a) Prove that the image ¢(V) is an algebraic subset of W. 
(b) Suppose that V is non-singular. Prove that the set of points where ¢ 
is not defined has codimension at least two in V. 
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3.7. Recall that a topological space X is irreducible if it cannot be written as a 
union X = Xl U X 2 of non-empty closed subsets of X. 
(a) Let X be a topological space, and let Z C X be a subset taken with 
the induced topology. If Z is irreducible, prove that the closure of Z in X 
is also irreducible. 
(b) Let <p : X -; Y be a continuous map of topological spaces. If X is 
irreducible, prove that its image <b(X) is irreducible. 
(c) Use (a) and (b) to deduce the second part of Proposition 3.5(a). 

3.8. Let G -; C be an elliptic surface over k. Define a map 

More precisely, define jc(t) to be the j-invariant of the elliptic curve Gt 
provided that the fiber Gt is non-singular, and for the moment leave it 
undefined for the remaining points of C. Prove that j[ is an algebraic 
map, and conclude that it extends to a morphism from C to pl. 

3.9. Let G -; C be an elliptic surface over k, and let jc : C -; pI be the 
morphism defined in exercise 3.8. 
(a) If G -; C splits over k, prove that jE. is a constant map. 
(b) Give an example (with proof) of an elliptic surface G -; C that does 
not split over k for which j[ is a constant map. 

3.10. Let G -> C be an elliptic surface over k, and let ]r : C -> pI be the 
morphism defined in exercise 3.8. Choose a \Veierstrass equation 

G : y2 + alXY + a3Y = X3 + a2x2 + a4X + a6 

for G, where aI, ... ,a6 E k( C), and let C4, C6 be the usual associated quan­
tities [AEC III §1]. Prove that G -; C splits over k if and only if one of the 
following three conditions is true. 
(i) jl:(C) = {O} and C6 is a sixth power in k(C). 
(ii) jE(C) = {1728} and C4 is a fourth power in k(C). 
(iii) jdC) = {a} with a f= 0, 1728, and C6/C4 is a square in k(C). 
(Keep in mind we are assuming that char(k) = 0, although this exercise 
remains true if char(k) o?: 5.) 

3.11. Let E / K be an elliptic curve defined over a function field K = k( C) by an 
equation of the form 

E : y2 = x:; + A.x + B. 

Further define the "height of E" to be h(E) = h(A.3 ) + h(B2). 
(a) Prove that for all P E E(K), 

4h(P) - ::1h(E) ::; h(2P) ::; 4h(P) + h(E). 

(b) Prove that for all P,Q E E(K), 

4h(E) ::; h(P + Q) + h(P - Q) - 2h(P) - 2h(Q) ::; h(E). 

(c) Prove that for all P E E(K), 

liL(p) - ~h(p)1 ::; ~h(E). 
(In all three parts of this problem, the constants in front of the h( E)'s are 
far from best possible. See how much you can improve them.) 
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3.12. Let EjCCT) be the elliptic curve 

Find all points in E( CCT») of the form 

by substituting P into the equation for E and solving for ao, . .. ,C1. How 
many of these points are defined over Q(T)? 

3.13. With notation as in the statement of Lemma 5.5.2, prove that if 

then the image of Vv in E(K) contains E(K, d). This provides a strength­
ened version of (5.5.2). 

3.14. Let V be an irreducible projective variety defined over an algebraically 
closed field, and let ,/,1, '/'2 E V be distinct points. Prove that there exists 
an irreducible curve reV with ,/,1, '/'2 E r. 

3.15. This exercise describes the Mordell-Weil theorem (6.1) for split elliptic 
surfaces. Let Cjk be a curve, let Eojk be an elliptic curve, and let c = 
Eo x C be the corresponding split elliptic surface. Further, let Map k ( C, Eo) 
be the set of morphisms from C to Eo defined over k. We use the group 
structure on Eo to make MaPk(C, Eo) into a group in the usual way, (c/J + 
'IjJ)(t) = c/J(t) + 'IjJ(t). Notice that the constant maps in MaPk(C, Eo) form a 
subgroup isomorphic to Eo(k). 
(a) Prove that there is a natural isomorphism c(Cjk) ~ Mapk(C, Eo). In 
particular, the group of sections c(Cjk) contains a subgroup isomorphic 
to Eo(k). 
(b) Prove that the quotient group c(Cjk)jEo(k) is finitely generated. 
(c) If k is a number field, prove that c(Cjk) is finitely generated. 

3.16. Let k be a number field, and let Cjk, Eojk, c = Eo x C, and MaPk(C, Eo) 
be as in the previous exercise. 
(a) Let 0 E Div(C) be a divisor of degree 1, and fix a height function h6 : 
C(k) -+ IR associated to o. Prove that for any map c/J E MaPk(C, Eo), 

lim hEo(c/J(t») = deg(c/J). 
tEC(k). h6(t) ..... oo h6(t) 

(b) Fix a basepoint to E C(k). Prove that there is a constant c so that 
if t E C(k) satisfies h6(t) 2: c, then the map 

{c/J E MaPk(C,Eo) : c/J(to) = O} 
c/J 

is an injective homomorphism. 

---> Eo(k) 
---> c/J(t) 
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(c) Suppose that the quotient group MapdC, Eo)/Eo(k) has free rank r, 
say generated by the maps (PI, ... ,cPT: C ----> Eo. Suppose further that the 
group Eo(k) has rank strictly less than r. Prove that C(k) is finite. 
(d) Fix an element b E k*, and let C / k and E o/ k be the curves 

2 3 3 Eo : y z = x + bz . 

Prove that the group Map k (C, Eo) / Eo (k) has rank at least two by showing 
that the maps 

( ) 2 3 3 cPI [X, Y, Zl = [-X Z,Y ,Z], ( ) 2 3 3 cP2 [X, y, Zl = [-Y Z, X ,Z 1 

give independent elements. Use this to prove that if rank Eo(k) :S 1, then 
C(k) is finite. 

3.17. Let E be an elliptic curve defined over Q1(T) that does not split over C(T). 
(a) Suppose that kdQl and k2/Q1 are fields with the property that 

E(kl(T)) = E(C(T)) and 

Let k = kl n k2 . Prove that E(k(T)) = E(C(T)). Deduce that there is a 
smallest field with this property. We will call this field the field of definition 
for E(C(T)) and will denote it by kE . 

(b) Prove that kE is a finite extension of Q1. 
(c) More precisely, find an explicit bound for the degree [kE Q1l that 
depends only on the rank of E(C(T)). 
(d) *Fix a Weierstrass equation for E of the form 

E : y2 = x 3 + A(T)x + B(T) 

with A(T), B(T) E Z[T], and let .6..(T) = 4A(T)3 + 27 B(T)2. Prove that 
the extension kE /Q1 is unramified except possibly at 2, 3, and the primes 
dividing the discriminant of the polynomial .6..(T) E Z[T]. 

3.18. (a) Let f E k(JP'2). Prove that deg(div(f)) = 0, and deduce that the 
degree map deg : Pic(JP'2) ----> Z described in (7.1) is a well-defined homo­
morphism. 
(b) Prove that the degree map deg : Pic(JP'2) ----> Z is an isomorphism. 
(c) Generalize ( a) and (b) to JP'H. 

3.19. Let P = (0,0) E A 2, and let h, h E k(JP'2) be rational functions satisfying 
h(P) = h(P) = 0. Let f] and f2 be the curves h = ° and h = ° 
respectively. Prove that f 1 and f 2 intersect transversally at P if and only 
if the following three conditions are true: 

(i) f 1 is non-singular at P; 
(ii) f2 is non-singular at P: 

(iii) the tangent line to flat P is distinct from the tangent line to f2 at P. 

3.20. For each of the following curves f 1 , f2 C JP'2, calculate the local intersection 
index (fl' f2)P at the point P = [0,0,1]. (Hint. First de homogenize by 
setting Z = 1.) 
(a) f 1 :y2 Z=X3 +X 2 Z, f 2 :Y=0. 
(b) f 1 :y2 Z=X3 +X2 Z, f 2 :Y=X. 
(c) fl :y2 Z=X:l , f 2 :Y=X. 
(d) f l :y2 Z=X:l +X2 Z, f 2 :y2 Z=X3 . 
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3.21. *Let 7r : S -> C be a fibered surface. Prove that every fiber St is connected. 
(You may want to take k = IC.) 

3.22. Let 7r : S -> C be a fibered surface, let reS be a non-singular irreducible 
horizontal curve, and let ¢ : r -> C be the restriction of 7r to r. 
(a) Let PEr and t = ¢(P) E C. Prove that 

(r· 7r*(t»)p = ep(¢), 

where ep(¢) is the ramification index of ¢: r -> Cat P (see [AEC, II §2]). 
(b) Prove that r . 7r* (8) = deg( ¢) deg( 8) for all divisors 8 E Div( C). 
(c) 'Prove that r . 7r*(8) = deg(¢) deg(8) remains true even if the irre­
ducible horizontal curve r is allowed to be singular. 

3.23. Let 7r : S -> C be a fibered surface, and let 8 E Div( C) be a divisor of 
degree O. Prove that D . 7r*8 = 0 for every divisor D E Div(S). (Hint. 
Use (8.1) and the previous exercise.) 

3.24. Generalize (8.3.1) as follows. Let 7r : S -> C be a fibered surface, and 
suppose that the fiber St consists of n components arranged in the shape 
of an n-gon with transversal intersections. In other words, 

. { 1 ~f ~ == ~ ± 1 (mod n), 
7r*(t) = ro+r1 + .. ·+rn- 1 with ri·rj = -2 If l =), 

o otherwise. 

(a) Draw a picture illustrating this fiber, and show that the self-intersec­
tion values r; = -2 follow from the values of r i . r j for i i j. 
(b) Let I = (ri . rj)oS;i,jS;n-l be the incidence matrix of the fiber, and 
let 100 be the minor obtained by deleting the first row and column from I. 
Find the value of det(Ioo) in terms of n. 
(c) Let k be an integer between 0 and n - 1, and let D E Div(S) be a 
divisor satisfying 

D· ro = -1, D· r k = 1, D· r i = 0 for i i 0, k. 

Find a fibral divisor 

n-l 

<I>v = L airi such that (D + <I>v) . r i = 0 for all 0:::; i :::; n - 1; 
i=l 

that is, find an explicit formula for ai in terms of i, k, and n. 

3.25. Let 7r : S -> C be a fibered surface. 
(a) Let r E Div(S) be an irreducible fibral divisor. Prove that there exists 
an irreducible horizontal divisor D E Div(S) satisfying D· r > O. 
(b) Prove that there exists a horizontal divisor D E Div(S) with the prop­
erty that D . r > 0 for every irreducible fibral divisor r E Div(S). 
(c) Let DE Div(S) be a divisor as in (b), and let t E C. Use the Nakai­
Moishezon criterion (10.3.2) to prove that the divisor D + n7r*(t) is ample 
for all sufficiently large integers n. 
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3.26. Let 7r : £ -+ C be a minimal elliptic surface with associated elliptic curve 
ElK. Define an action of E(K) on Div(£) by having P E E(K) send a 
divisor D to the divisor TP(D). 
(a) Prove that the action of E(K) on Div(£) descends to give a well-defined 
action of E(K) on Pic(£). 
(b) For P, Q E E(K), let <1>P,Q E Div(£) be a fibral divisor with the 
property (P + Q) - (P) - (Q) + (0) '" <1>P,Q' (See (9.5).) Prove that for a 
fixed Q E E(K), the map 

E(K) --+ Pic(£), 

is a one-cocycle from E(K) to Pic(£), where Pic(£) is an E(K)-module as 
described in (a). (See (9.5) for a stronger result for E(K)o.) 

3.27. Let P E E(K). Prove that P E E(K)o if and only if (P) . F = (0) . F for 
every fibral divisor FE Div(£). 

3.28. Let 7r : S -+ C be a fibered surface. 
(a) Let reS be a curve with the property that 7r : r -+ C is an iso­
morphism. Prove that r . 7r*(t) = 1 for all t E C. Use this to deduce 
that 

r· 7r*(o) = deg(o) for all divisors 0 E Div(C). 

(b) Fix a point t E C. Prove that the image of a section (J" : C -+ S 
intersects exactly one component of the fiber St. 
(c) Let F c Div(S) be a fibral divisor, and suppose that F = 7r*o for 
some 0 E Div(C)0Q. Suppose further that there exists a section (J" : C -+ S. 
Prove that 0 E Div(C). 
(d) Let 0 E Div(C) be a divisor such that 7r*o is a principal divisor on £. 
Prove that 0 is a principal divisor on C. Deduce that 7r induces an injective 
homomorphism 7r* : Pic (C) -+ Pic(S). (This is easier if you assume that 
there exists a section (J" : C -+ S.) 

3.29. Let 7r : £ -+ C be an elliptic surface, let ElK be the associated elliptic 
curve over the function field K = k( C) of C, and let PI, .. . ,Pr E E(K). 
Prove that if 

is linearly equivalent to a fibral divisor, then 

This gives the converse to Proposition 9.2. 

3.30. Let S be a non-singular surface, let D E Div(S) be a divisor, and let H E 
Div(S) be an ample divisor. 
(a) Use the Nakai-Moishezon criterion (10.3.2) to prove that the divi­
sor nH + D is ample for all sufficiently large integers n. 
(b) Use (a) to prove (10.5) for surfaces; that is, prove that D can be written 
as the difference of two very ample divisors on the surface S. 
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3.31. Let Vjk be a non-singular projective variety defined over a number field, 
let D E Div(V) be a positive divisor, and let hD : V(k) ---> lR be an 
associated height function. (A divisor is positive if it can be written as a 
sum 2: niDi, where the Di'S are irreducible subvarieties of V and the ni's 
are positive.) 
(a) Prove that there is a constant c = c(V, D, hD) such that 

hD(P) ~ c for all P E V(k), P rt D. 

(Note that c need not be positive.) 
(b) Give an example to show that (a) need not true for all P E V(k). 
(Hint. Take D to be the exceptional curve on jp'2 blown up at one point. A 
harder example is to let D be the diagonal in C x C, where C is a curve of 
genus 9 ~ 2.) 

3.32. Let V j k be a non-singular projective variety defined over a number field, 
and let D, H E Div(V) be divisors with H ample and D algebraically 
equivalent to zero (see Hartshorne [1, exercise 1. 7]). Prove that 

(This generalization of (10.3) is due to Lang.) 

3.33. Let E j k be an elliptic curve defined over a number field k. For any divi­
sor f3 = 2: bi(Pi ) E Div(E), we define the canonical height h{3 associated 
to f3 by the formula 

Thus the usual canonical height h is the height associated to the divi­
sor (0). 
(a) If the divisor f3 is symmetric, that is, [-1]*f3 = f3, prove that 

(b) If the divisor f3 is anti-symmetric, that is, [-1]*f3 = -f3, prove that 

Also prove in this case that the map h{3 : E(K) ---> lR is a homomorphism. 
(c) Let f3 E Div(E) be a divisor of degree O. Prove that there is a con­
stant c = c(E, (3) so that 

for all P E E(k). 
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3.34. Let c ---> C be an elliptic surface defined over a number field k, and fix two 
points P, Q E E(K). Suppose that the base curve C is an elliptic curve, and 
let he be the canonical height on C. With notation as in (11.1) and (11.3), 
prove that 

(Pt,Qt)t = (P, Q)hc(t) + o( Vhc(t) ) 

for all t E C(k) with Ct non-singular. 

This is a special case of (11.3.2b). 

3.35. Let K = k(C) be the function field of a curve over an algebraically closed 
field k, let ElK be an elliptic curve, and choose a Weierstrass equation 
for ElK of the form 

for some A, BE K. 

Let ~ = 4A 3 + 27 B2, and for each point t E C let 

(Here [r] is the greatest integer in r.) Define the minimal discriminant 
divisor of ElK to be the divisor 

'D E/ K = L nt(t) E Div(C). 
tEC 

(This is the analogue of the minimal discriminant ideal for an elliptic curve 
defined over a number field [AEC, VIII §8].) 

(a) Prove that'D E / K is a positive divisor and that it is independent of the 
choice of the Weierstrass equation for ElK. 

(b) Let C ---> C be a minimal elliptic surface associated to E. Prove that 
the fiber et is non-singular if and only if ordt('DE / K ) = o. 
(c) Prove that if 'D E / K = 0, then the j-invariant j(cd is constant. 

(d) Prove that if 'D E / K = 0 and C = jp'l, then £ splits over C. 

(e) Let Clk and ElK be given by 

Prove that 'DE / K = 0 and that the associated elliptic surface e ---> C does 
not split. 

(f) For the example in (e), show that P = (u2 ,uv) E E(K) is a point of 
infinite order. 
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3.36. We continue with the notation from the previous exercise, with the addi­
tional assumption that E does not split over K. Let 9 be the genus of C. 
For each point t E C, we take a Weierstrass equation for E that is minimal 
for the valuation ordt and we let E t be curve obtained by evaluating the 
coefficients at t. We define integers it by 

{ 
0 if E t is non-singular (good reduction), 

it = 1 if Et has a node (multiplicative reduction), 
2 if E t has a cusp (additive reduction). 

Then the conductor divisor of E j K is defined to be the quantity 

fE/K = L ft(t) E Div(C). 
tEG 

(For another description of the conductor, see (IV §1O).) 
(a) Prove that ordt(fE/ K) ::; ordt CD E/ K) for all t E C, and deduce that 

deg(fE/K) ::; deg(DE/K). 

(b) Prove that 

deg(DE/K)::; 6deg(fE/K) + 12(g - 1). 

This inequality is a precise function field analogue of Szpiro's conjecture 
(IV.1O.6). It was originally discovered by Kodaira (see Shioda [3, Proposi­
tion 2.8]) long before Szpiro formulated his conjecture. 

3.37. -This exercise is the function field analogue of Lang's conjectural lower 
bound for the canonical height [AEC, VII1.9.9]. We continue with the 
notation from the previous two exercises. Let 9 be the genus of C, and 
let h: E(K) -> lR. be the canonical height on E (4.3, 9.3). 
(a) Prove that there is a constant Cl (g) > 0, depending only on g, such that 
if P E E(K) is a point of infinite order, then h(P) :2: Cl(g) degD E/ K . 
(b) Prove that there is an absolute constant C2 > 0 so that if degD E/ K :2: 
2g- 2 and if P E E( K) is a point of infinite order, then h( P) :2: C2 deg DE / K. 

3.38. Let C be a non-singular hyperelliptic curve of genus two given by an equa­
tion 

C : y2 = ax5 + bx4 + cx3 + dx3 + ex + f, 
let i : C -> C be the involution i(x, y) = (x, -y), and let Po E C be the 
point at infinity on C. (See [AEC, 11.2.5.1 and exercise 2.14] for basic facts 
about hyperelliptic curves.) 
(a) Prove that i(Po) = Po. Find all other points satisfying i(P) = P. 
(b) Let P, Q E C be any two points. Prove that the divisors (P) + (i(P)) 
and (Q) + (i(Q)) are linearly equivalent. 
(c) Let D E Divo (C). Prove that there exist points P, Q E C such that 
D ~ (P) + (Q) - 2(Po). 
(d) Prove that the points P and Q in (c) are uniquely determined by D 
unless P = i(Q). 
(e) Prove that Pic( C) [2] is finite. More precisely, prove that it is isomor­
phic to (Zj2Z)4. 
(f) Generalize (a)-(e) to the case of a hyperelliptic curve C: y2 = lex) of 
genus g, where lex) is a polynomial of degree 2g + 1 with distinct roots. 
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3.39. Let K = k(C) be the function field of a curve C of genus g, let SeC be a 
non-empty finite set of points of C, let Rs be the ring of S-integers of K, 
and let E / K be an elliptic curve given by a Weierstrass equation 

with A, BE Rs and 6. = 4A3 + 27B2 E Rs. 

Let P E E(K) be a point satisfying x(P), y(P) E Rs. Prove that 

h(P) = h(x(P)) ::; 4max{2g - 2 + #S,O} + ~(h(6.) + h(A3 ) + h(B2)). 

(Hint. Use (12.3) and elementary properties of height functions.) 

3.40. Let c --.> C be a minimal elliptic surface, let E / K be the associated elliptic 
curve, and let E(K)o be the subgroup of E(K) described in §9. 
(a) Suppose that c has non-constant j-invariant; that is, the function 
jc: : C --.> pI defined in exercise 3.8 is non-constant. Prove that E(K)o has 
no non-trivial torsion. 
(b) For each int.eger m E {2, 3, 6}, give an example of a non-split elliptic 
surface (necessarily with const.ant j-invariant) such that E(K)o contains a 
point of exact order m. Prove that these are the only orders possible. 



CHAPTER IV 

The N eron Model 

Let R be a discrete valuation ring with maximal ideal p and fraction field K, 
and let ElK be an elliptic curve given by a Weierstrass equation 

E : y2 + alxy + a3Y = X3 + a2x2 + a4X + a6, 

say with coefficients aI, a2, a3, a4, a6 E R. This equation can be used to 
define a closed subscheme W C Ph. An elementary property of closed 
subschemes of projective space says that every point of E(K) extends to 
give a point of W(R), that is, a section Spec(R) ....... W. 

An important property of the elliptic curve E is that it has the struc­
ture of a group variety, which means that there is a group law given by 
a morphism E x E ....... E. This group law will extend to a rational map 
W XR W ....... W, but in general it will not be a morphism, so W will not be 
a group scheme over R. However, if we discard all of the singular points on 
the special fiber of W (i.e., the singular points on the reduction of E mod­
ulo p) and call the resulting scheme WO, then we will prove that the group 
law on E does extend to a morphism WO x R WO ....... Wo. This makes WO 
into a group scheme over R, but, unfortunately, we may have lost the point 
extension property. In other words, not every point of E(K) will extend 
to give a point in WO(R). 

A Neron model for ElK is a scheme clR which has both of these 
desirable properties. Thus every point in E(K) extends to a point in c(R), 
and further the group law on E extends to a morphism c x R C ....... c which 
makes c into a group scheme over R. It is by no means clear that such 
a scheme exists. Our main goals in this chapter are to construct Neron 
models, describe what they look like, and give some applications. 

The material in this chapter is of a more technical nature than most of 
the rest of this book. We will assume that the reader has some familiarity 
with basic scheme theory, as described for example in Hartshorne [1, Ch. II] 
or Eisenbud-Harris [1]. When we need more advanced material, we will give 
at least a brief explanation together with a reference for further reading. 

We begin in §1 with a brief discussion of group varieties. This ma­
terial is not strictly necessary for the remainder of the chapter but may 
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prove helpful for those readers who have not studied group schemes pre­
viously. Section 2 contains some basic material on abstract schemes and 
schemes over a base S, including material on fiber products, special fibers, 
regularity, properness, and smoothness. In §3 we define group schemes 
and describe some of their elementary properties. Section 4 is devoted to 
the theory of arithmetic surfaces. An arithmetic surface e over a discrete 
valuation ring R is a "nice" scheme whose generic fiber is a non-singular 
curve C / K. We give several examples and prove that the smooth part eO 
of a regular proper arithmetic surface e has the point extension prop­
erty C(K) = eO(R). We also state the fundamental existence theorems 
concerning minimal regular models of arithmetic surfaces. 

In §5 we define Neron models and show that the smooth part WO 
of a Weierstrass equation is a group scheme. In some cases, for example 
when E/ K has good reduction, this will imply that WO is a Neron model 
for E / K. The general construction of Neron models is given in §6, where 
we prove that the smooth part c / R of a minimal proper regular model e / R 
for E / K is a Neron model. The proof is quite technical and may be omitted 
on first reading. This is especially true for those readers who are mainly 
interested in applications of the theory of Neron models. Frequently, it is 
enough to know that a Neron model for E / K is a group scheme cover R 
whose generic fiber is K and which has the property that c(R) = E(K). 

We next take up the question of what the special fibers E. (mod p) and 
e (mod p) look like. Section 7 contains a discussion of intersection theory 
on general arithmetic surfaces, and then in §8 we apply this theory to give 
the Kodaira-Neron classification of the special fibers of an elliptic fibration. 
Section 9 contains a description and verification of an algorithm of Tate 
which gives an efficient method of computing the special fiber e (mod p) 
from a given Weierstrass equation. In §10 we define the conductor of an 
elliptic curve and give some of its properties. Finally, in §11, we state 
and mostly verify an important formula of Ogg which gives a relation be­
tween the conductor, the minimal discriminant, and the special fiber of the 
minimal proper regular model of an elliptic curve. 

In order to simplify the discussion in this chapter, we will make the 
following convention: 

All Dedekind domains and all discrete 
valuation rings have perfect residue fields. 

Notice this includes Dedekind domains and discrete valuation rings whose 
residue fields are finite, which is the case that will mainly interest us. 

§1. Group Varieties 

A group variety is an algebraic variety that is also a group. In slightly 
fancier language, a group variety is a group in the category of algebraic 
varieties. This means that the group law is given by algebraic functions. 
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Definition. A group variety (or algebraic group) is an algebraic variety G 
and two morphisms 

/-1: GxG ---+ G and i:G---+G 

satisfying the following group axioms: 

(i) There is a point 0 E G such that /-1(P, 0) = /-1(0, P) = P 
for all PEG. 

(ii) /-1(p, i(P)) = /-1(i(P), P) = 0 for all PEG. 
(iii) /-1(p, /-1 ( Q, R)) = /-1 (/-1(P, Q), R) for all P, Q, REG. 

G is called a commutative group variety if it further satisfies 

(iv) /-1(P, Q) = /-1(Q, P) for all P, Q E G. 

The group variety G is defined over K if G is defined over K, the mor­
phisms /-1 and i are defined over K, and 0 E G(K). 

Example 1.1.1. An elliptic curve E / K is a commutative group variety 
defined over K. This follows from [AEC, 111.2.2] and [AEC, III.3.6]. 

Example 1.1.2. The additive group Ga and the multiplicative group Grn 
are the commutative group varieties 

and Grn ~ {x E A I : x -I- o}. 

The group laws on Ga and Grn are defined by the formulas 

/-1 : Ga x Ga ---+ Ga 

(x,y) f--+x+y 
and /-1 : Grn x Grn ---+ Grn 

(x, y) f--+ xy. 

The additive group is clearly an affine variety. The multiplicative group is 
also an affine variety, since there is an isomorphism 

Grn ---+ {(x, y) E A 2 : xy = I}, X f--+ (x, l/x). 

Example 1.1.3. The general linear group GLn is defined by 

{ (

Xll 

GLn = M= : 

Xnl 

It is a group variety with group law given by matrix multiplication. Note 
that the inverse map i(M) = M- 1 is a morphism on GLn , since the func­
tion 1/ det(M) is a regular function on GLn . Just as with the multiplica­
tive group, we observe that GLn is an affine variety, since it is the com­
plement of a hypersurface in A n 2

• (In general, the complement of f = 0 
in Am is affine, since it is isomorphic to {(x, y) E A",+l : yf(x) = 1 }.) We 
have GL1 = G rn , and GLn is non-commutative for n ::::: 2. 
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Definition. A homomorphism of group varieties ¢ : G ~ H is a mor­
phism of varieties that is also a homomorphism of groups; that is, ¢ is a 
morphism, ¢( Oc) = 0 H, and 

¢(JLG(P, Q)) = JLH(¢(P), ¢(Q)) for all P, Q E G. 

Example 1.2.1. An isogeny El ~ E2 of elliptic curves is a homomor­
phism of group varieties. This follows from [AEC, 1I1.4.8J, which says that 
any morphism ¢ : El ~ E2 satisfying ¢(OEJ = OE2 is automatically a 
homomorphism. 

Example 1.2.2. The determinant map defines a homomorphism of group 
varieties 

det : GLn ---+ Gm • 

The kernel of the determinant map is another affine group variety called 
the special linear group, 

SLn = {M E GLn : det(M) = I}. 

In general, an algebraic subgroup of GLn is called a linear group. It turns 
out that every connected affine group variety is a linear group (Water­
house [1, §3.4J). For some other examples of linear groups, see exercises 4.1 
and 4.2. 

Proposition 1.3. Let G be a group variety defined over a field K. Then 
the set of K-rational points G(K) is a subgroup ofG. 

PROOF. The identity element 0 of G is in G(K) by definition. Further, the 
morphisms JL : G x G ~ G and i : G ~ G are defined over K, so G(K) is 
closed under the group operations. Hence G(K) is a subgroup of G. 0 

Example 1.4.1. Let ElK be an elliptic curve. Then E(K) is the group 
of K-rational points of E. If K is a number field, then E(K) is a finitely 
generated group [AEC, VIII.6.7J. 

Example 1.4.2. For any field K we have Ga(K) = K and Gm(K) = K*. 
Similarly, GLn(K) is the group of n x n invertible matrices with coefficients 
in K. 

Proposition 1.5. Let G be a group variety. 
( a) G is a non-singular variety. 
(b) Every connected component of G is irreducible. 
(c) The connected component of G which contains the identity element is 
a normal subgroup of G of finite index. 

Definition. Let G be a group variety. The connnected component of G 
containing the identity element is denoted by GO and is called the identity 
component ofG. The quotient group GIGO called the group of components 
ofG. 
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PROOF (of Proposition 1.5). (a) There is a Zariski open subset U c G 
which is non-singular (Hartshorne [1, 1.5.3]). For any PEG, let Tp : G ----> 

G be the translation-by-P map, Tp(Q) = f-L(P, Q). Note that Tp is an 
isomorphism from G to itself. Now G is covered by the non-singular open 
sets Tp(U), PEG, so every point of G is non-singular. 
(b) Suppose that G has a connected component that consists of more 
than one irreducible component. Then that connected component would 
contain distinct irreducible components that have a point in common, and 
the common point would be singular. This contradicts (a). Hence every 
connected component of G is irreducible. 
(c) A variety has only finitely many connected components, since it actu­
ally has only finitely many irreducible components (Hartshorne [1, 1.1.6]). 
We label the connected components of G as GO, G1 , ... , Gn, where GO is the 
connected component of G containing the identity element. Let P E GO. 
The translation-by-P map Tp permutes the connected components of G, 
so Tp(GO) = Gj for some j. But 

° . P = Tp(O) E Tp(G ) = Gl, 

so the connected components GO and Gj have the common point P. Hence 
GO = Gj. This means that f-L(P,Q) = Tp(Q) E GO for all P,Q E GO. Sim­
ilarly, 0 E GO n i(GO), so i(GO) = GO. This proves that GO is a subgroup 
ofG. 

Next, fix a point Q E G and consider the conjugation-by-Q map 

¢: G ----t G, ¢(P) = f-L(i(Q), f-L(P, Q)). 

¢ is an automorphism of G, so it permutes the components of G. Fur­
ther, ¢(O) = 0, so as above we conclude that ¢(GO) = GO. Therefore GO 
is a normal subgroup of G. 

Finally, for each 0 ::::: j ::::: n we fix a point Pj E Gj. Then the maps 

¢j : G ----t G, 

permute the components of G and satisfy ¢j(Pj ) = 0, from which we 
conclude that ¢j (Gj) = GO. Hence Po, ... ,Pn includes a complete set of 
coset representatives for GIGO, so GO has finite index in G. 0 

We have seen above (1.1.1, 1.1.2) that the additive group, the multi­
plicative group, and elliptic curves are group varieties. We will now prove 
that these are the only connected group varieties of dimension one. 

Theorem 1.6. Let G be a connected group variety of dimension one de­
fined over an algebraically closed field. Then either G ~ eGa, G ~ eGm, or G 
is an elliptic curve. (For non-algebraically closed fields, see exercise 4.13') 

Before beginning the proof, we prove a lemma that gives conditions 
under which a curve has only finitely many automorphisms. 
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Lemma 1.7. Let C be a non-singular projective curve of genus g, let S c 
C be a finite set of points, and suppose that S satisfies one of the following 
conditions: 

(i) #S ~ 3 if 9 = O. (ii) #S ~ 1 if 9 = 1. (iii) S is arbitrary if 9 ~ 2. 

Then 
Aut(C; S) def {4> E Aut(C) 4>(S) c S} 

is a finite set. 

PROOF. Suppose first that 9 = 0, so we can take C = pl. Fix three 
distinct points PI, P2 , P3 E S. Every automorphism of pI is given by a 
linear fractional transformation (Hartshorne [1, II.7.1.1]) 

4> ([x, yJ) = [ax + by, cx + dyj. 

An automorphism 4> will thus be determined by the images of PI, P2 , P3 , 

which proves that the map (of sets) 

is injective. But S is finite by assumption, so Aut(C; S) is finite. 
Next suppose that 9 = 1. We make C into an elliptic curve by taking 

the origin 0 to be a point in S. Then every isomorphism C --+ C is a 
translation followed by an isomorphism fixing 0 [AEC, 111.4.7]. But there 
are only finitely many isomorphisms C --+ C that fix 0 [AEC, lIL10.1], so 
the map (of sets) 

Aut( C; S) --+ C, 

is finite-to-one. Since 4>(0) E Sand S is finite, this proves that Aut( C; S) 
is finite. 

Finally, we recall a theorem of Hurwitz which says that if a curve 
has genus 9 ~ 2, then it has at most 84(g - 1) automorphisms. (See 
Hartshorne [1, exercises IV.2.5, IV.5.2, V.1.l1j.) This completes the proof 
of Lemma 1.7. D 

PROOF (of Theorem 1.6). We know that the variety G is non-singular, irre­
ducible (1.5), and has dimension one, so we can embed it as a Zariski open 
subset of a non-singular projective curve, say G C C (Hartshorne [1, I §6]). 
Let S = C '-. G be the complement of Gin C. 

For every point PEG, the translation-by-P map Tp : G --+ G is an 
automorphism of G as a variety. Then Tp induces a rational map Tp : C --+ 

C which extends to an isomorphism since C is non-singular [AEC, II.2.1j. 
Clearly, we have Tp(S) C S, since TP(G) = G. In this way, we obtain an 
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inclusion G '----+ Aut(C; 5) given by P 1--7 Tp, where Aut(C; 5) is as in (1.7). 
But G is a variety of dimension one, so it has infinitely many points. It 
follows from (1.7) that C has genus less than 2, that 5 = 0 if C has genus 1, 
and #5 ::; 2 if C has genus O. There are thus four cases to consider. 

Suppose first that C has genus 0 and 5 = 0. Then G = C = pI, and 
the group law on G is a morphism 

Such a map has the form p,(x,y) = [f(x,y),g(x,y)], where f and g are 
bihomogeneous polynomials. The fact that p, is a morphism means that f 
and g can have no common roots in pI x pI, which implies that p, must 
look like either 

p,(x,y) = [f(x),g(x)] or p,(x,y) = [f(y),g(y)]. 

But then either p,( 0, P) or p,(P, 0) is constant, so p, cannot define a group 
law. This proves that it is not possible to have G = pl. 

Next suppose that C has genus 0 and that #5 = 1. Then we can 
identify C with pI in such a way that the point in 5 is the point at infinity 
and the identity element of G is the point O. In other words, we have C = 

pI, G = A I, and 0 E A I is the identity element of G. The group law on G 
is a morphism 

p,; Al X Al ----? AI, 

so p, is a polynomial map, p,(x, y) E K[x, yj. For every fixed value of x, 
we know that the map y 1--7 p,( x, y) is an automorphism of A!, so p,( x, y) 
must be linear in y. Similarly for x 1--7 p,(x, y), so p,(x, y) is also linear in x. 
Further, p,(x,O) = x and p,(0, y) = y, so we conclude that p, has the form 

p,(x, y) = x + y + cxy for some c E K. 

Finally, we observe that if c f. 0, then c- I would not have an inverse, 
since p,( -c- I , y) = _c- I is constant. Hence c = 0 and p,(x, y) = x + y, 
which proves that G ~ Ga. 

The next case to consider is a curve C of genus 0 and #5 = 2. This 
time we identify C with pI so that the two points in 5 are 0 and 00 and 
so that the identity element of G is the point 1. Then the group law 
on G = Al " {O} is a morphism 

so p, is a Laurent polynomial, p,(x, y) E K[x, X-I, y, y-Ij. As above, the 
map y 1--7 p,(x, y) is an automorphism for every fixed x, which means it 
must have the form 

p,(x, y) = a(x) + b(x)y or p,(x, y) = a(x) + b(X)y-I. 
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We further know that p,(1, y) = y, which rules out the second possibility 
and tells us that a(l) = 0 and b(l) = 1. In particular, b(x) i= o. 

If a(x) i= 0, then we can find an 0: E K* so that a(o:) i= 0 and {3(0:) i= O. 
Then 

M(o:,-~~:D =0, 

which contradicts the fact that p,( G x G) c G. Therefore a( x) = O. We 
have now shown that p,(x, y) = b(x)y. Reversing the roles of x and y 
and using the fact that p,(1, 1) = 1, we conclude that p,(x, y) = xy, which 
completes the proof that G ~ Gm . 

It remains to consider the case that C = G is a curve of genus 1. 
The group variety G has an identity element 0, and we use this point to 
give (C,O) the structure of an elliptic curve. It remains to show that the 
identification G and C as curves is also an isomorphism of groups. In other 
words, we need to prove that 

P,e(P, Q) = P + Q and ie(P) = -P, 

where P,e : G x G ----+ G is the given group law on G and + is the group law 
on the elliptic curve (C,O). Note that we do not assume, a priori, that G 
is commutative. 

Consider the map 

¢ : C x C -----> C, ¢(P, Q) = Me(P, Q) - P - Q. 

The point ° E C is the identity element for both group laws, so we find 
that ¢(P,O) = ° and ¢( 0, Q) = ° for all P, Q E C. It follows from 
an elementary rigidity lemma (1.8) which we will prove below that ¢ is 
constant. Hence 

¢(P, Q) = ¢(O, 0) = 0, and so P,e(P, Q) = P + Q for all P, Q E C. 

Finally, we observe that 

P+ie(P) =p,e(P,ie(P)) =0, 

which proves that ie(P) = -P. This completes the proof of (1.6), subject 
to our proving the following lemma. 0 

Lemma 1.8. (Rigidity Lemma) Let C1 , C2 , C3 be irreducible projective 
curves, and let 

¢ : C1 x C2 -----> C3 

be a morphism. Suppose that there are points PI E C1 and P2 E C2 with 
the property that each of ¢( PI x C2 ) and ¢( C 1 X P2 ) consists of a single 
point. Then ¢ is a constant map. 

PROOF. We are given that ¢(P1 x C2 ) consists of a single point, say 
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Choose a point R' E C3 , R' =1= R, and consider the set 

U1 = {Q E C1 : R' tJ. ¢(Q x C2 )}. 

Notice that the complement of U1 in C1 is the set 

C1 " U1 = proh (¢-l(R')), 

297 

where proh : C1 x C2 ---* C I is projection onto the first factor. The pro­
jection map sends closed sets to closed sets. This follows from the fact 
that C2 is projective, hence proper (Hartshorne [1, IIA.9]) , and the defi­
nition of properness implies that any projection V x C2 ---* V is a closed 
morphism. 

Now the set ¢-l(R') is closed, so the same is true of projl (¢-l(R')), 
which shows that U1 is an open subset of C I . Further, it is clear that 
that PI E UI , so UI is non-empty. For any Q E UI , we consider the 
morphism 

C2 -+ C3 , S ~ ¢(Q, S). 

The fact that Q E UI tells us that R' is not in the image of this map. 
In other words, this map is not surjective, so it follows from [AEC, 11.2.3] 
that it is constant. In other words, if Q E UI , then ¢(Q, S) is independent 
of S E C2 • Equivalently, ¢(Q x C2 ) consists of a single point. 

We now repeat the above argument using the fact that ¢(C1 x P2 ) 

consists of one point. Doing so yields a non-empty open set U2 C C2 with 
the property that for all S E U2, the set ¢(CI x S) consists of a single point. 

Combining these two facts, we find that ¢(UI x U2 ) consists of one 
point. But U I x U2 is Zariski dense in C1 x C2 , and a morphism is deter­
mined by its values on a Zariski dense set. Therefore ¢ is constant. 

o 

§2. Schemes and S-Schemes 

In this section we are going to review some basic notions about schemes, 
especially schemes over a fixed base scheme. We assume that the reader 
has some familiarity with this material, as covered for example in Hart­
shorne [1, II §§2,3] or Eisenbud-Harris [1]. 

Definition. Let S be a fixed scheme. An S -scheme is a scheme X equipped 
with a morphism X ---* S. A morphism of S-schemes (or S-morphism) is a 
morphism X ---* Y so that the diagram 

X Y 

'" / 
S 

is commutative. If S = Spec(R), we will often refer to R-schemes and R­
Tnorphisms instead of Spec(R)-schemes and Spec(R)-morphisms. 
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Intuitively, an 5-scheme X --+ 5 can be viewed as an algebraic family 
of schemes, namely the family of fibers Xs parametrized by the points 
s E 5. We have seen an example of this in Chapter III, where the elliptic 
surface E --+ C is a C-scheme whose fibers Et form a family of elliptic 
curves. 

Two other important examples are provided by affine and projective 
space over a ring R. These are defined to be 

and 1P'7{ = Proj R[.TO . ... ,:1'n]. 

See Hartshorne [1, II.2.5.1] for details. 
In Chapter III we studied the group of sections C --+ E to the elliptic 

surfacc. Similarly. we can look at the set of sections 5 --+ X of an 5-scheme. 
These are precisely the 5-morphisms from 5 to X. More generally, for 
any 5-scheme T, we can consider the set of 5-morphisms from T to X. 

Definition. Let X and T be 5-schemes. The set of T -valued points 01 X 
is the set 

X(T) = Homs(T. Xl = {5-morphisms T --+ X}. 

IfT = 5, we will sometimes call X(5) the set of sections of the 5-8cherne X. 
Similarly, if 5 = T = Spec(R), we will refer to the R-valued points 01 X 
and write X(R). 

Example 2.1.1. Let K be a field, let 5 = Spec(K), and let XI K be an 
affine scheme, say given by equat.ions 

h = h = ... = fT' = 0 wit.h fl,"" If' E K[XI,"" Xn]. 

Then 

X(5) = {K-morphisms Spec(K) --+ X} 

{ . K[XI,."'Xn] 
~ K-algebra homomorphIsms (h, ... , fr.) 

={PEKn : h(P)=···=f,.(P)=O}. 

Thus X(5) agrees with our intuition of what X(K) should be. l\Iore gen­
erally, if R is any ring and X c AR is an affine scheme given by equations 
h = ... = IT = 0 with fi E R[XI"'" xn], then X(R) is naturally identified 
with the set of n-tuples (Xl, ... ,Xn ) E R n satisfying the equations. 

Remark 2.1.2. Each 5-scherne X defines a functor Fx on the category 
of 5-schemes by assigning to an 5-scheme T the set of T-valued points 
of X. Thus 

Fx : (5-schernes) ---> (Sets), T f---> X(T). 
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If cp : T ~ T' is an S-morphism of S-schemes, the associated map Fx(cp) 
is given by composition, 

Fx(cp) : Fx(T') ---> Fx(T), a 1--+ a 0 cp. 

Notice that Fx is a contravariant (i.e., arrow reversing) functor. It is 
a basic categorical fact (called Yoneda's lemma, see Eisenbud-Harris [1, 
Lemma IV.ID that the functor Fx determines the scheme X. Similarly, 
morphisms of functors Fx ~ Fy correspond bijectively with S-morphisms 
X ~ Y. We will not make use of this functorial approach, but the reader 
should be aware that it is a convenient language which is in common usage. 

Next we describe One of the most important constructions of algebraic 
geometry. 

Definition. Let X and Y be S-schemes. The fiber product of X and Y 
over S is an S-scheme, denoted X x s Y, together with projection mor­
phisms 

Pi : X x S Y ---> X and P2 : X Xs Y ---> Y 

over S with the following universal property: 

Let Z be an S-scheme, and let f : Z ~ X and 9 : Z ~ Y 
be S-morphisms. Then there exists a unique S-mor­
phism Z ~ X x s Y so that the following diagram com­
mutes: 

X 

f 
./ 

Z 

1 
X xsY ~ Y 

The fiber product exists and is unique up to unique isomorphism; see Hart­
shorne [1, II.3.3] or Eisenbud-Harris [1, LC.i, IV.BD. If S = SpeeR, we will 
often write X XR Y. 

The fiber product is the smallest scheme that fits into the commutative 
diagram 

X xsY PI 
---> X 

1 
Y ---> S. 

In some sense, X x s Y should "look like" the set of ordered pairs (x, y) 
having the property that x and y have the same image in S. This is 
literally true in the category of sets, but care must be taken when applying 
this intuition in the category of schemes. In fact, X x s Y will generally 
be quite large, even when S consists of a single point; see for example 
Hartshorne [1, II, exercise 3.1]. 
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Example 2.2.1. Let s E 5, and let Y = {s} ~ 5 be the subscheme of 5 
consisting of the point s. l\,Jore precisely, if we write k(s) = Os,s/Ms.s for 
the residue field of the local ring at s, then Y is the scheme Spec k(s). The 
fiber of X over s is defined to be the scheme 

clef } X, = Xxs{s. 

It is a scheme over k(s). In this case the underlying topological space 
of X x s {s} actually equals the set of points x E X such that the image 
of x in 5 is s, see Hartshorne [1, II exercise 3.10]. Thus at the level of 
points, this definition of the fiber X, agrees with our intuition of what the 
fiber should be. 

Example 2.2.2. Let R be a ring, let p be a maximal ideal of R, and let X 
be an R-scheme. Then the fiber 

Xp=XXRP 

is the reduction of X modulo p. It is a scheme over the residue field Rip. 
This agrees with our intuition, since an (affine) scheme X over R is defined 
by a system of polynomial equations with coefficients in R, and Xp is the 
scheme defined by reducing the coefficients of the polynomials modulo p. 

Example 2.2.3. Let R be an integral domain, and let TJ = (0) E Spec R 
be the generic point of Spec R. If X is an R-scheme, then the fiber 

XY] = X XR TJ 

is called the generic fiber- of X. It is a scheme over the fraction field K 
of R. In particular, if R is a discrete valuation ring with maximal ideal p, 
then X has two fibers, its gener-ic fiber- XY]I K and its special (or closed) 

fiber Xplk, where k = Rip is the residue field of R. 
For example, suppose that X C lP'7t is given by a single homogeneous 

equation f(x, y, z) = ° with coefficients in R. Then the generic fiber XI) C 

lP'~ is the variety defined by the same equation f(x, y, z) = 0, and the 

special fiber Xp C lP'~ is the variety defined by the equation j(x, y, z) = 0, 
where j is obtained by reducing the coefficients of f modulo p. 

Example 2.3. Let 7r : X -+ S be an S-scheme. In the definition of the 
fiber product, if we take Z = X and f and 9 to be the identity map X -+ X, 
then we obtain the diagonal morphism 

Ox : X ---+ X Xs X: 

that is, Ox is the unique map to the fiber product with the property that P10 

Ox and P2 0 Ox are each the identity map on X. 
More generally, let ¢ : X -+ Y be an 5-morphism. Then the graph 

of ¢ is the unique morphism 

fir/>: X ---+ X X8 Y 

such that Pl 0 o¢ is the identity map on X and P2 0 o¢ = (p. Notice the 
diagonal morphism is the graph of the identity map X -+ X. 
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Example 2.4. Let '!r : £ ~ C be an elliptic surface, say defined over 
an algebraically closed field k. Then the fiber product £ Xc £, or more 
precisely, the set of k-valued points on the fiber product, is the set 

(£ Xc £)(k) = {(P,Q) : P,Q E £(k) and '!rep) = '!r(Q)}. 

Thus (e Xc e)(k) consists of pairs of points which lie on the same fiber. 
In particular, if P and Q lie on a non-singular fiber £t, then we can add 
them using the group law on et. In this way (most of) the fiber prod­
uct (e Xc e)(k) becomes a group. 

Example 2.5. Recall that every scheme S admits a unique morphism S ~ 
SpecZ (Hartshorne [1, exercise 11.2.4]). Affine and projective space over S 
are defined to be 

and 

Projection onto the second factor makes A~ and IFs into S-schemes. Notice 
that if S = Spec R is an affine scheme, then A~ ~ A'R and IFs ~ IPR, so 
these definitions are compatible with the definitions of affine and projective 
space over a ring. 

We are now faced with the task of discussing three important proper­
ties of schemes and morphisms, namely regularity, properness, and smooth­
ness. The definition of each of these properties is somewhat technical, and 
in truth we will make very little use of the formal definitions of properness 
and smoothness in subsequent sections. On the other hand, the intuitions 
underlying all of these properties are quite easy to understand, especially 
if one works in a "nice" setting. So we are going to begin with an informal 
discussion, including examples and basic material which we will give with­
out proof. This discussion should suffice for reading the remainder of this 
chapter, except possibly for parts of §6. Then, at the end of this section, 
we will give precise definitions and provide references for further reading. 

Intuitive "Definitions." A scheme X is regular if it is non-singular, by 
which we mean that every point of X has a tangent space of the correct 
dimension. 

A morphism of schemes X ~ S is proper if all of its fibers are complete 
and separated. (These are algebraic analogues of compact and Hausdorff.) 
Essentially, this means that the fibers of X ~ S are not missing any points 
and do not have too many points. We also say that X is a proper S -scheme. 

A morphism of schemes X ~ S is smooth if all of its fibers are non­
singular, or, to put it another way, if X is a family of regular schemes. We 
also say that X is a smooth S -scheme. 

In order to define regularity, we recall that the Kroll dimension of a 
ring A is the largest integer d such that there is a chain of distinct prime 
ideals of A, 
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A local ring A with maximal ideal 9)1 is called regular if the dimension 
of9)1/9)12 as an A/9)1-vector space is equal to the Krull dimension of A. (See 
Matsumura [1, Ch. 7] or Atiyah-MacDonald [1, Ch. 11] for basic material on 
regular local rings.) Intuitively, 9)1/9)12 is the cotangent space of Spec(A) 
at the point 9)1, and the regularity of A is an assertion that 9)1 is a non­
singular point of Spec(A). For arbitrary schemes one defines dimension 
and regularity in terms of the local rings as follows: 

Definition. The dimension of a point P of a scheme X is the Krull di­
mension of the local ring () p at P. If every closed point of X has the same 
dimension, we call this the dimension of X. 

Definition. A point P of a scheme X is said to be regular (or non­
singular) if the local ring (') p is a regular local ring. The scheme X is 
regular (or non-singular) if every point of X is regular. In fact, it suffices 
to check that every closed point is regular; see exercise 4.5. 

Example 2.6.1. Let R be a Dedekind domain. Then Spec(R) is a regular 
scheme of dimension one. To see this, note that in a Dedekind domain, 
every non-zero prime ideal is maximal by definition. Hence the longest 
chain of prime ideals is (0) C p, so R has dimension one. Further, each 
localization Rp is a discrete valuation ring, so its maximal ideal Mp is 
principal. It follows that Mp/M'i has dimension one as an Rp/Mp-vector 
space, so Rp is regular. 

Example 2.6.2. If R is a regular local ring, or more generally if Spec(R) 
is regular, then both A'R and IP''R are regular schemes. 

Example 2.6.3. Let R be a discrete valuation ring, let 7[ be a uniformizer 
for R, and assume that 2,3 E R*. Let a E R, and define a scheme X c IP'h 
by the equation 

X : y2 z = x 3 + az3 . 

Then X is a regular scheme if and only if a ¢ ° (mod 7[2). To see this, one 
first checks that the only possible singular point is the point "( = [0,0,1] 
on the special fiber Xp and that this can only occur if a == 0 (mod 7[). 
Dehomogenizing the equation by setting z = 1, we find that the maximal 
ideal M"( of the local ring (')"( is generated by x, y, and 7[, and that these 
quantities are related by the equation 

If a ¢ ° (mod 7[2), then a is itself a uniformizer for R. Hence 

so x and y generate M"(/M~, which shows that ()"( is regular. Conversely, 
if a == ° (mod 7[2), then M"( / M~ cannot be generated by fewer than three 
elements, so (')"( is not regular. 



§2. Schemes and S-Schemes 303 

Next we look at proper morphisms, which, recall, are supposed to be 
morphisms X -+ S whose fibers are separated and complete. For example, 
suppose that we are given a "curve" C, a point 'Y E C, and a commutative 
diagram of morphisms 

1 
F 

---> x 

1 
C ~ S. 

If X -+ S is a proper morphism, then the fiber of X over f ('Y) is separated 
and complete, so there should be a unique way to extend F to all of C. This 
statement is essentially the following valuative criterion for properness. 

Theorem 2.7. (Valuative Criterion of Properness) Let ¢ : X -+ S be 
a morphism of finite type of Noetherian schemes. The map ¢ is proper if 
and only if for every (discrete) valuation ring R with fraction field K and 
every commutative square of morphisms 

Spec(K) ---> X 

1 
Spec(R) ---> S, 

there is a unique morphism Spec(R) -+ X fitting into the diagram. (In 
other words, there is a unique morphism Spec(R) -+ X so that the compo­
sition Spec(R) -+ X -+ S agrees with the bottom line of the square.) 

PROOF. Hartshorne [I, II.4.7]. See also Hartshorne [I, exercise H.4.11] for 
the assertion that it suffices to consider only discrete valuation rings. D 

In order to better understand what the valuative criterion is saying, we 
note that if R is a discrete valuation ring with fraction field K, then Spec( R) 
is a regular one-dimensional scheme (2.6.1), and Spec(K) is Spec(R) with 
its closed point removed. Thus Spec(K) looks like a curve with one point 
removed. 

An important collection of proper S-schemes is the set of projective 
schemes over S, as described in the following result. 

Theorem 2.8. Let S be a Noetherian scheme, and let X c lP's be a 
closed subscheme of projective space over S. Then X is proper over S. In 
particular, lP's itself is proper over S. 

PROOF. See Hartshorne [1, II.4.9]. D 

We continue our informal discussion by looking at smooth morphisms. 
For our purposes, the most important examples of smooth morphisms will 
be schemes which are smooth over a discrete valuation ring or Dedekind 
domain R. In this situation, the condition that X be smooth over R is 
essentially equivalent to the assertion that all of its fibers are non-singular 
and have the same dimension. 
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Proposition 2.9. Let R be a discrete valuation ring with fraction field K, 
residue field k, and maximal ideal p. Let X be an integral (i.e., reduced 
and irreducible) R-scheme of finite type over R whose generic fiber XTJ/ K is 
non-empty. Then X is a smooth R-scheme if and only if XTJ(K) and Xp(k) 
contain no singular points. 

PROOF. The scheme X is irreducible, so it has a unique generic point. Our 
assumption that the generic fiber XTJ is non-empty shows that the generic 
point of X maps to the generic point of Spec R, so X is flat over Spec R from 
Hartshorne [1, III.9.7j. If R contains its residue field k (the so-called func­
tion field case), the desired result then follows from Hartshorne [1, III.lO.2j. 
The general case is Milne [4, I Prop. 3.24]' see also Bosch-Liitkebohmert­
Raynaud [1, §2.4, Prop. 8j. 

o 

There are many theorems in algebraic geometry which say that some 
property of morphisms, such as properness, smoothness, separability, finite­
ness, etc., is preserved under composition, base extension, and products. 
The only result of this sort that we will need is the following assertion that 
the composition of smooth morphisms is again smooth. 

Proposition 2.10. If ¢ : X ---> Y and 'ljJ : Y ---> Z are smooth morphisms, 
then the composition 'ljJ 0 ¢ : X ---> Z is a smooth morphism. 

PROOF. See Hartshorne [1, III.lO.1c] or Altman-Kleiman [1, VII.1.7iij. 
o 

We now look at some examples of regular schemes and proper and 
smooth morphisms. 

Example 2.11.1. Let R be a discrete valuation ring with uniformizer 1r. 

We assume that 2 E R*. Let X C IP'~ be the scheme given by the equation 

X : x2 + 7fy2 = Z2. 

Then X is proper over R from (2.8), since it is a closed subscheme of IP'~. It 
is also easy to check that the scheme X is irreducible and regular. However, 
the special fiber of X is given by the equation x 2 = z2, so the special fiber 
is reducible and singular. Hence X is not smooth over R. 

Example 2.11.2. We continue analyzing example (2.6.3), so R is a dis­
crete valuation ring with uniformizer 7f and 2,3 E R*, and X C IP'~ is the 
scheme defined by the equation 

for some a E R. 

We also let K be the fraction field of R, k the residue field of R, and p the 
maximal ideal of R. Notice that X is proper over R by (2.8), since it is a 
closed subscheme of IP'~. 
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Suppose first that a E R*. Then the special fiber Xp/ k is a non­
singular curve, so X is smooth over R from (2.9). 

Next, suppose that a == 0 (mod p). Then the special fiber Xp/k is 
given by the equation y2 z = x 3 , so the special fiber is singular and X 
is not smooth over R. Let 'Y E Xp C X be the singular point on the 
special fiber, and let XO = X " 'Y be the scheme obtained by removing 'Y 
from X. This makes the special fiber xg / k non-singular, so X D is smooth 
over R. However, removing the point 'Y has destroyed the completeness of 
the special fiber, so XO is not proper over R. 

Finally, we observe that if a is a uniformizer for R, then (2.6.3) says 
that X is regular. This is true despite the fact that its special fiber Xp 
is singular and so X is not smooth over R. We will prove later (4.4) that 
since X is regular, every R-valued point of X lies in the smooth part XO. 
In other words, the natural inclusion XO(R) C X(R) is an equality, so in 
this situation XO retains a sort of properness property over R. 

This last example (2.11.2) illustrates an important general phenome­
non. Let X be a (nice) scheme which is proper over a discrete valuation 
ring R and which has a smooth generic fiber. Then X need not be smooth 
over R, since its special fiber Xp may have singularities. We can create 
a smooth R-scheme XO by removing from X the singular points on its 
special fiber, but then XO will not be proper over R. Thus the attributes 
of properness and smoothness are somewhat antithetical to one another. 

However, if the original scheme X is regular, then it turns out that 
every R-valued point in X(R) actually lies in XO(R). So for regular 
schemes, XO still behaves to some extent as if it were proper over R. We 
will prove this later (4.4) when X has relative dimension one over R. The 
general case we leave as an exercise. 

We are now ready to define properness and smoothness, but we want to 
stress that the most important thing is for the reader to understand the un­
derlying intuitions and the examples described above. For further reading 
on this material, see Hartshorne [1, III §§9,10], Altman-Kleiman [1, V,VI], 
and Bosch-Liitkebohmert-Raynaud [1, 2.1-2.4]. 

Definition. Let ¢ : X --- S be a morphism of finite type. The map ¢ 
is separated if the diagonal morphism Ox : X --- X Xs X (2.3) is a closed 
immersion. The map ¢ is universally closed if for any base extension S' --­
S, the map X Xs S' --- S' sends closed set to closed sets. The map ¢ is 
proper if it is separated and universally closed. We also say that X is 
proper over S, or that X is a proper S -scheme. 

Definition. Let ¢ : X --- S be a morphism of finite type, let x EX, and 
let s = ¢(x) E S. The map ¢ is smooth (of relative dimension r) at a 
point x E X if there are affine open neighborhoods 

s E Spec ReS and x E Spec A C X 

with 
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A = R[t1 , ... , tn+r]/(h, ... , In) for some h,···, In E R[tl, ... , tn+r] 

so that the n x n minors of the Jacobian matrix (aId atj) generate the unit 
ideal in A. 

We say that <p is smooth (or that X is smooth over S) if <p is smooth 
at all points of X. A morphism that is smooth of relative dimension zero 
is called an elale morphism. 

Remark 2.12. The Jacobian condition in the definition of smoothness is 
similar to the criterion we used to define non-singular points on varieties 
in [AEC, I §1]. In particular, it is clear that if X --> SpecR is a smooth 
morphism and p E Spec R is a maximal ideal, then the fiber Xp is a non­
singular variety over the residue field Rip, which is a special case of (2.9). 
There are many other ways to define smoothness. One of the most useful 
is in terms of the sheaf of relative differentials of XIS, see for example 
Hartshorne [1, II §8, III §1O], Altman-Kleiman [1, VI,VII], Milne [4, 1§3] 
or Bosch-Ltitkebohmert-Raynaud [1, §2.1,2.2]. For a fancy functorial defi­
nition, see Milne [4, 1.3.22]. 

§3. Group Schemes 

A group scheme over S is an S-scheme G whose fibers form an algebraic 
family of groups, similar to the example described in (2.4). This means we 
should be able to multiply two points provided they lie on the same fiber, 
and the multiplications should fit together to give a group law on the fiber 
product G Xs G. More formally, a group scheme over S is a group in the 
category of S-schemes. This leads to the following definition. Note that we 
must be careful to define everything in terms of maps, rather than in terms 
of points. (An alternative approach is to define a group scheme in terms of 
its associated functor of points; see (2.1.2) or Eisenbud-Harris [1, IV.A.v].) 

Definition. Let S be a scheme. A group scheme over S is an S-scheme 
7r : G --> Sand S-morphisms 

ao : S ---+ G, i : G ---+ G, 

such that the following diagrams commute: 
(i) (identity element) 

G xsG 
0"0 X 1 

/ 

M : G Xs G ---+ G, 

G xsG 
1 x 0"0 

/ 

S Xs G G G Xs S G 
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(ii) (inverse) 

lxi 
G xsG GxsG G xsG 

loa 1p 
G 

7r 
S 

0'0 G ~ ~ G 

(Here G ~ G xs G is the diagonal map (2.3).) 
(iii) (associativity) 

7r 
~ 

GxsGxsG 

11xP 

GxsG 

pxl 
~ GxsG 

G 

307 

ixl 
G xsG 

s ~ G 

Example 3.1.1. Let G be a group variety defined over a field K as dis­
cussed in §l. Then G is a group scheme over the one point scheme S = 
Spec(K). This is clear from the definitions. Note that the identity mor­
phism 0'0 : S --; G sends the one point in S to the identity element of G. 

Example 3.1.2. The additive group scheme Ga over Z is the scheme Ga = 
SpecZ[T]. The group law on Ga is given by 

~ SpecZ[T], 

where the morphism Spec Z[Tl' T2 ] --; Spec Z[T] is induced by the ring 
homomorphism 

For any ring R, we have Ga(R) = R with group law given by addition 
on R. The additive group scheme Gals over an arbitrary scheme S is the 
group scheme Ga Xz S obtained by base extension. In particular, GalR = 
SpecR[T]. 
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Example 3.1.3. The multiplicative group scheme Gm over Z is the scheme 
Gm = SpecZ[T, T-1j. The group law on Gm is given by 

--> SpecZ[T, T- 1], 

where the morphism Spec Z[Tb T1- 1, T2 , T2- 1j --+ Spec Z[T, T-1j is induced 
by the ring homomorphism 

For any ring R, we have Gm(R) = R* with group law given by multi­
plication on R*. The multiplicative group scheme Gm / s over an arbitrary 
scheme S is the group scheme Gm Xz S obtained by base extension. In 
particular, GmlR = Spec R[T, T-1j. 

Example 3.1.4. Let R be a discrete valuation ring with maximal ideal p 
and fraction field K, and let ElK be an elliptic curve with good reduction 
at p. Fix a minimal Weierstrass equation for E, 

The coefficients of this equation are in R, so we can use the equation to 
define an R-scheme c c IP'~. (Of course, we need to homogenize the equa­
tion first.) The fact that E has good reduction implies that the scheme c 
is smooth over R, since good reduction is equivalent to the fact that the 
special fiber cp of c --+ Spec R is a smooth elliptic curve over the residue 
field Rip. 

The addition law on E is given by rational functions with coefficients 
in R, so it induces a rational map 

We know from [AEC, III.3.6j that the addition law E x E --+ E on the 
generic fiber is a morphism. We will later give two proofs that M itself is 
an R-morphism. The first proof (5.3) uses explicit equations and is similar 
to the argument in [AEC, III.3.6, III.3.6.1j. The second proof (6.1) uses 
fancier machinery to prove a much stronger result. 

The next proposition shows that the set of T-valued points of a group 
scheme form a group. 
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Proposition 3.2. Let G be a group scheme over S, let T be an arbi­
trary S-scheme, and let G(T) be the set of T-valued points of G, which 
recall is the set of S-morphisms T ~ G. For any two elements ¢>, 'l/J E G(T), 
define a new element ¢> * 'l/J E G(T) by the commutativity of the diagram 

TXsT GxsG 

T G, 

where bT is the diagonal map (2.3). In other words, 

¢> * 'l/J = J-lO (¢> x 'l/J) 0 bT E G(T). 

This operation gives G(T) the structure of a group. The identity element 
is 0"0 o 7fT, where 7fT : T ~ S is the map making T into an S-scheme. The 
inverse of ¢> is i 0 ¢>. 

More precisely, the association T ~ G(T) is a contravariant functor 
from the category of S-schemes to the category of groups. 

PROOF. All of this follows from the definitions and elementary diagram 
chases. For example, to verify that 0"0 o 7fT is the identity element of G(T), 
we observe that the following diagram is commutative: 

G xsT 

T xsT 

T 

G XsS 

11 XC70 

GxsG 

G 

But the definition of 0"0 tells us that the map J-lO (1 x 0"0) : G Xs S ~ G 
down the right-hand side of this diagram is projection onto the first factor. 
Hence tracing around the boundary of the diagram yields 

We will leave it to the reader to perform the similar computations 
needed to check that i 0 ¢> is the inverse of ¢> and that the associative law 
holds, which completes the proof that G(T) is a group. 

Finally, the functoriality statement means that if j : T' ~ T is an S­
morphism of S-schemes, then the map 

G(T) ---> G(T'), ¢> f---> ¢> 0 j, 
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is a homomorphism of groups. It is clear that the identity element is 
mapped to the identity element, so we must verify that 

(4; * 'ljJ) 0 f = (4; 0 f) * ('ljJ 0 f) for all 4;, 'ljJ E G(T). 

The definition of 4; * 'ljJ says that the right-hand square of the following 
diagram is commutative, and the left-hand square is clearly commutative: 

T' x s T' ~ T x s T ~ G x G 

T' T G 

The map (4; x 'ljJ) 0 (f x f) along the top row of this diagram is equal to 
(4; 0 f) x ('ljJ 0 f), so by definition the map along the bottom row equals 
(4; 0 f) * ('ljJ 0 f). This is the desired result, which completes the proof of 
Proposition 3.2. 0 

Remark 3.3. In our study of elliptic curves and group varieties, the 
translation-by-P maps provided an important tool. A group scheme GIS 
is not a group, so we cannot translate G by a point of the scheme G. In­
stead, G is a family of groups parametrized by the points of S. So in order 
to translate G, we need to start with a family of points on G parametrized 
by S. Then we can translate each group in the family by the appropriate 
point. We formalize this idea in the following manner. 

Let GIS be a group scheme, and let 0" E G(S) be an S-valued point 
of G. Then the (right) translation-by-O" morphism is the S-morphism 
Tu : G -> G defined by the composition 

Tu : G C:;! G Xs S GxsG G. 

To understand Tu further, we note that the S-valued point 0" is a map 
0" : S -> G. In particular, for each point 8 E S, we get a point 0"(8) on 
the fiber G., where G s is a group variety over the residue field at s. The 
restriction of T u to the fiber G s is precisely translation by the point 0"( s) E 
Gs . Thus Tu can be viewed as a family of translations of the fibers of G. 

Remark 3.4. Another important tool in our study of elliptic curves was 
the collection of multiplication-by-m maps. These maps can be defined 
inductively on every group scheme in the following way. Let 7r : G -> S be 
a group group scheme over S with identity element 0"0 : S -> G, inverse map 
i : G -> G, and group multiplication f.L : G x s G -> G. Also let ide: G -> G 
be the identity map on G. For each integer m, the multiplication-by-m map 
on G is the morphism 

[mJ: G --> G 

defined inductively by the rules 

[IJ = ide, [m+ 1] = f.L0 ([m] x [1]), [m - 1] = f.L 0 ([m] x i). 
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§4. Arithmetic Surfaces 

Let R be a Dedekind domain. An arithmetic surface over Spec(R) is the 
arithmetic analogue of the fibered surfaces studied in III §8. Here Spec(R) 
plays the role of the base curve, and an arithmetic surface is an R-scheme 
e ~ Spec(R) whose fibers are curves. For example, if R is a discrete valu­
ation ring, then there will be two fibers. The generic fiber will be a curve 
over the fraction field of R and the special fiber will be a curve over the 
residue field of R. Just as in the case of fibered surfaces, an arithmetic 
surface e may be regular (non-singular) even if it has singular fibers. 

Definition. Let R be a Dedekind domain with fraction field K. For exam­
ple, R could be a discrete valuation ring. Intuitively, an arithmetic surface 
(over R) is a "nice" R-scheme e whose generic fiber is a non-singular con­
nected projective curve C / K and whose special fibers are unions of curves 
over the appropriate residue fields. Note that the special fibers may be 
reducible or singular or even non-reduced. This intuitive definition will 
suffice for our purposes, but for the technically inclined, we indicate that 
the word "nice" is an abbreviation which means that e is an integral, nor­
mal, excellent scheme which is flat and of finite type over R. t 

Remark 4.1.1. An arithmetic surface e is a one-dimensional family of 
one-dimensional varieties, so it is a scheme of dimension two. One might 
instead call e a curve over R, since it has relative dimension one over R 
(i.e., the fibers are one-dimensional). We will frequently be interested in 
arithmetic surfaces which are regular, or proper over R, or smooth over R. 
We recall the intuitions from section 2. An arithmetic surface e is regular if 
it is non-singular as a surface, e is proper over R if its fibers are complete, 
and e is smooth over R if its fibers are non-singular. If e is smooth over R, 
then it is automatically regular, but in general the converse is not true. 

Remark 4.1.2. The definition of an arithmetic surface e ensures that even 
if e is not regular, its set of singular points is a finite set of closed points. 
In other words, an arithmetic surface is regular in codimension one. This 
means that there is a theory of Wei I divisors on e. In particular, for any 
irreducible curve Fee (equivalently, any point FEe of codimension 
one), the local ring () F of e at F is a discrete valuation ring. We denote 
the corresponding normalized valuation by 

ordF: K(e)* -----+ Z, 

Integral is equivalent to reduced and irreducible (Hartshorne [1, I1.3.1]), 
normal means that all local rings are integrally closed (Hartshorne [1, II ex­
ercise 3.8]), flat means that the fibers vary "nicely" (Hartshorne [1, III §9]), 
finite type means the extensions of local rings are finitely generated algebras 
(Hartshorne [1, II §3]), and excellent is a somewhat technical condition which 
won't concern us, but see for example Matsumura [1, Ch. 13]. 
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The Arithmetic Surface e : y2 = x 3 + 2x2 + 6 over Spec(Z) 

Figure 4.1 

where K(e) is the function field of e. For the basic thoery of Weil divisors, 
principal divisors, and the divisor class group, see Hartshorne [1, II §6]. We 
will continue our discussion of divisors on arithmetic surfaces in section 7. 

Example 4.2.1. The projective line lP'k over R is an arithmetic surface 
over R. For any maximal ideal p of R, the fiber over p is lP'~., the projective 
line over the residue field k = R/p. Notice that lP'k is both proper and 
smooth over R. 

Example 4.2.2. Let e C lP'i be the closed subscheme of lP'i given by the 
equation 

e: y2 = x 3 + 2X2 + 6. 

The generic fiber of e is an elliptic curve E /Q with discriminant ~ = 
-26 ·3· 97, so for all primes p i= 2,3,97, the fiber ep is a (non-singular) 
elliptic curve over lFp . The fibers over the "bad" primes are 

2 2 e97 : Y = (x + 66) (x + 64). 

The arithmetic surface e/z is illustrated in Figure 4.l. 
The arithmetic surface e is proper over Z, since it is a closed subscheme 

of lP'~ (2.8). It is clear that e is not smooth over Z. since it has singular 
fibers. \Ve claim that e is a regular scheme. To see this, it suffices to 
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check that e is regular at the singular points on the fibers. We will check 
that the point PEe corresponding to the cusp x = y = 2 = 0 on the 
fiber e2 is non-singular. The maximal ideal Mp of the local ring (') p at P 
is generated by x, y, and 2, and the residue field at P is (')p/Mp ~ IF2 • By 
definition, e is regular at P if 

This dimension cannot be less than two, so we must show that Mp /M~ 
can be generated by two of x, y, 2. Using the equation for e, we see that 

so x and yare generators. This proves that e is regular at P. We will 
leave for the reader the analogous calculations at x = y = 3 = 0 and 
x + 66 = y = 97 = 0 (exercise 4.14). 

The scheme e is thus regular and proper over Z. If we discard the 
three singular points on the three singular fibers, we obtain an open sub­
scheme eO c e with the property that eO is smooth over Z. Of course, eO 
will not be proper over Z, since some of its fibers are missing points. 

Example 4.2.3. Let e c IP~ be the closed subscheme of IP~ given by the 
equation 

e : y2 = x 3 + 2X2 + 4. 

The singular fibers of e are e2, e5, and e7. The scheme e is not regular, 
since one easily checks that the point x = y = 2 = 0 is a singular point 
of e. 

Let 7r : e -> Spec(R) be an arithmetic surface and let p E Spec(R) be 
a point with residue field kp = Rip. The fiber 

ep = e XR p = e xSpec(R) Spec(kp) 

is a curve, but it may be reducible or singular or even non-reduced. More 
precisely, we can write the fiber as a union 

r 

ep = 2: n i Fi 

i=l 

for certain irreducible curves Fl, ... ,Frj kp and multiplicities nl, ... ,nr 2: 1 
in the following manner. Fix a uniformizer U E R for p, that is, ordp(u) = 1. 
Then 7r*(u) = U 0 7r is a rational function on e, and the fiber of e over p is 
given by 

ep = 2: ordF(7r*u)F. 
FC7r-'(p) 
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The Special Fiber e5 : (y2 - x 3 - 3x2)(y - 2f(2y - x - 3) = a 
Figure 4.2 

Here the sum is over the irreducible components of the fiber over p, and 
ordF is the normalized valuation on K(e) corresponding to F (4.1.2). 

There are several ways in which a point x E ep can be a singular point 
of the fiber ep . It may lie on a component F with multiplicity n ~ 2, it 
may be a point where two or more components intersect, or it may be a 
singular point of a particular component. The following example illustrates 
these ideas. 

Example 4.2.4. Consider the arithmetic surface e c A~ defined by the 
equation 

e : 2y5 - (x + 1)y4 - (2 x 3 + x 2 + X)y3 

+ (x4 - x 3 + 3x2 + X - 2)y2 + (x4 + 3x3)y - x4 - x 3 + x 2 = 5. 

We are going to look at the special fiber e5 of e over the point (5) E Spec Z. 
This special fiber is the curve in A~5 defined by reducing the equation of e 
modulo 5, so after some algebra we find 

Thus e5 consists of three irreducible components, which we label as 

We have illustrated the special fiber e5 in Figure 4.2. Such illus­
trations can be very useful for visualizing components, multiplicities, and 
intersections, as long as one keeps in mind that one is looking at a drawing 
in ]R2 which purports to represent a curve in characteristic p! In particu­
lar, there may be intersection points which are "hidden" because]R is not 
algebraically closed. 

The component F2 of e5 appears with multiplicity 2, and each of the 
other components has multiplicity 1, so as a scheme the special fiber has 
the form 
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In particular, the scheme e 5 is neither irreducible nor reduced. Every point 
on F2 is a singular point of e 5 , since F2 itself appears with multiplicity 
greater than 1. The other singular points on the special fiber are the 
node (0,0) on Fl and the points where the various F/s intersect, such as 
the point (3,2) on Fl n F2 and the points (2,0) and (3,3) on Fl n F3· 
(Remember that the fiber e 5 lives in characteristic 5.) 

The next proposition says that if an arithmetic surface e is regular 
and if a point x E e p on its special fiber lies in the image of an R-valued 
point P E e(R) (Le., if x = P(p)), then x is automatically a non-singular 
point of ep. 

Proposition 4.3. Let n : e -> Spec(R) be a regular arithmetic surface 
over a Dedekind domain R, and let p E Spec(R). 
(a) Let x E e p c e be a closed point on the fiber ofe over p. Then 

ep is non-singular at x ~ n*(p) ct. M~ x' 

Here n* is the natural map n* : R -> Oe,x induced by n, and Me,x is the 
maximal ideal of the local ring Oe,x of e at x. 
(b) Let P E e(R). Then ep is non-singular at P(p). 

PROOF. To ease notation, we will write 

for the fiber of e over p, and we will let llJ = n* (p )(')e,x' Notice that llJ C 
Me,x, since x lies on the special fiber over p. 
(a) We first assume that llJ ct. M~,x and prove that x is a non-singular point 

of e. We are given that e is regular, so, by definition, Oe,x is a regular local 
ring of dimension two. This means that we can find elements II, hEMe ,x 

so that 
Me,x = II (')e,x + h(')e,x + M~,x' 

If we write p = tR, then n*(t) E llJ c Me,x, so 

Our assumption is that n*(t)(')e,x = llJ ct. M~,x' which means that at least 
one of al and a2 is not in Me,x, and hence at least one of them is a unit 
in (')e,x' Switching II and h if necessary, this means that 

Me,x = n*(t)Oe,x + h(')e,x + M~,x = llJ + h(')e,x + M~,x' 

The fiber e (as a scheme, which includes multiplicities associated to 
non-reduced components) is e = e x R (Rip), so its local ring at x is ob­
tained from the local ring of e by reduction modulo p. In other words, 

and Me,x = Me,xlllJ· 
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Therefore 

Hence Me jM~ is generated by the single element 12, which shows 
,x L.!X 

that C) e,x is a regular local ring of dimension one, and so x is a non-singular 

point of e. 
This proves the implication that we will need for part (b). We will 

leave the proof of the opposite implication as an exercise for the reader 
(exercise 4.17). 
(b) We assume that 7r*(p) C M~ x and derive a contradiction. Using the 
fact that 7r 0 P is the identity map on Spec(R), we compute 

p = (7r 0 P)*(p) = P* 0 7r*(p) c P*(M~,x) = (P*Me,x)2 = p2. 

The last equality follows from the fact that P : Spec(R) -> e is a mor­
phism of schemes, so by definition (Hartshorne [1, II §2]) the induced map 
P* : C)e,x -> Rp is a local homomorphism of local rings. This means in 
particular that P*Me,x = p. 

But P is a maximal ideal of the Dedekind domain R, so the inclu­
sion p C p2 is impossible. Therefore 7r*(p) 1:. M~ x. Applying (a), we 
conclude that x is a non-singular point of the fiber e~, which concludes the 
proof of (b). 0 

The following important corollary says that the smooth part of a 
proper regular arithmetic surface is large enough to contain all of the ra­
tional points on the generic fiber. For an example which shows that the 
regularity condition is necessary, see (5.4.4) in the next section. 

Corollary 4.4. Let R be a Dedekind domain with fraction field K, 
let ej R be an arithmetic surface, and let C j K be the generic fiber of e. 
(a) If e is proper over R, then 

C(K) = e(R). 

(b) Suppose that the scheme e is regular, and let eO c e be the largest 
subscheme of e such that the map eo -> Spec(R) is a smooth morphism. 
Then 

(c) In particular, if e is regular and proper over R, then 

C(K) = e(R) = eO(R). 
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PROOF. (a) This is really just a special case of the valuative criterion of 
properness. Any point in e(R) can be specialized to the generic fiber to 
give a point in C(K), so there is a natural map e(R) ~ C(K). This 
map is clearly one-to-one, since two morphisms Spec(R) ~ e which agree 
generically (i.e., on a dense open set) are the same. Thus e(R) '--+ C(K). 

Let P E C(K) be a point. We are given that e is proper over R, so the 
valuative criterion (2.7) says that there is a morphism O'p : Spec(R) ~ e 
making the following diagram commute: 

Spec(K) ----> Spec(R). 

This proves that every point in C(K) comes from a point in e(R), so 
e(R) = C(K). 
(b) Proposition 4.3 says that every point in e(R) intersects each fiber 
at a non-singular point of the fiber. But, by definition, eO is the com­
plement in e of the singular points on the fibers. Therefore the natural 
inclusion eO(R) '--+ e(R) is a bijection. 
(c) This is immediate from (a) and (b). D 

The previous corollary (4.4) says that if e is a regular arithmetic sur­
face that is proper over R, then the smooth part eO of e is large enough 
so that all of the K-valued points on the generic fiber extend to R-valued 
points of eo. This raises two questions. First, given a (non-singular projec­
tive) curve C defined over K, does there exist a regular arithmetic surface e 
proper over R whose generic fiber is C I K? Second, assuming such proper 
regular models exist, to what extent is there a minimal such model? The 
following theorem gives the answer to these questions. It is the arithmetic 
analogue of the geometric results described in (nI. 7. 7) and (nI.8.4). We 
will discuss the construction of these minimal models further in §7. 

Theorem 4.5. Let R be a Dedekind domain with fraction field K, and 
let CIK be a non-singular projective curve of genus g. 
(a) (Resolution of Singularities for Arithmetic Surfaces, Abhyankar [1,2]' 
Lipman [1,2]) There exists a regular arithmetic surface el R, proper over R, 
whose generic fiber is isomorphic to C I K. We call e/ R a proper regular 
model for C I K. 
(b) (Minimal Models Theorem, Lichtenbaum [1], Shafarevich [2]) Assume 
that 9 ::::: 1. Then there exists a proper regular model emin I R for C I K 
with the following minimality property: 

Let e I R be any other proper regular model for C I K. Fix an isomor­
phism from the generic fiber of e to the generic fiber of emin . Then the 
induced R-birational map 

e -_+ emin 
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is an R-isomorphism. We call emin / R the minimal proper r'egular model 
for C / K. It is unique up to unique R-isomorphism. 

PROOF. (a) See Abhyankar [1,2] and Lipman [1,2]. There is also a nice 
exposition of Lipman's proof in Artin [2]. In the case that C has genus 1, 
we will explicitly construct a proper regular model for C / K in §9. 
(b) See Lichtenbaum [1, Thm. 4.4] and Shafarevich [2, lectures 6,7,8]. 
There is a nice summary of the main results with sketches of the proofs in 
Chinburg [1]. See also §7 for a further discussion. D 

Just as in (1II.8.4.1), the importance of the minimal regular model 
lies in the fact that every automorphism of its generic fiber extends to a 
morphism of the entire scheme. 

Proposition 4.6. Let R be a Dedekind domain with fraction field K, 
and let C / K be a non-singular projective curve of genus 9 :::: 1. Let e/ R 
be a minimal proper regular model for C / K, and let eO c e be the largest 
subscheme of e which is smooth over R. Then every K -automorphism 
7 : C / K --) C / K of the generic fiber of e extends to give R-automorphisms 

and 

PROOF. The fact that 7 extends to an R-automorphism e --) e is exactly 
the definition of minimality given in (4.5b). Next take any point .1: E eO 
and choose some neighborhood U c eO of 1:. Then U is smooth over R. 
Further, U is an open subset of e, since eO is open in e. We know that 
7: e --) e is an R-isomorphism, so 7(U) is an open neighborhood of 7(X) 
and is smooth over R. Therefore 7(X) E eO, which proves that 7(eO) Ceo. 
Applying the same argument to 7-1 gives 7-1(eO) c eO, which completes 
the proof that 7 gives an R-automorphism of eO. D 

§5. Neron Models 

Let K be the fraction field of a discrete valuation ring R. The Neron model 
of an elliptic curve E / K is an arithmetic surface G / R whose generic fiber is 
the given elliptic curve. The scheme G / R is characterized by the fact that 
it is large enough so that every point of E gives a point of G, but small 
enough so that the group law on E extends to make G into a group scheme 
over R. Of course, when we talk of "points of E," we mean more than just 
the points of the underlying scheme. This leads to the following definition. 
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Definition. Let R be a Dedekind domain with fraction field K, and let 
ElK be an elliptic curve. A Neron model for ElK is a (smooth) group 
scheme £1 R whose generic fiber is ElK and which satisfies the following 
universal property: 

Let XI R be a smooth R-scheme (i.e., X is 
smooth over R) with generic fiber XI K, and 
let 1>K : X IK -+ ElK be a rational map de­
fined over K. Then there exists a unique R­
morphism 1> R : X I R -+ £ I R extending 1> K . 

( 
Neron ) 

Mapping 
Property 

Remark 5.1.1. A Neron model £1 R is a smooth R-scheme. This means 
that for every point P E Spec(R), the fiber £p of £ -+ Spec(R) is a non­
singular variety defined over the residue field k(p); see (2.9). However, 
as we will soon see, the fiber £p over a closed point p may have several 
components and may not be complete, so in general £ will not be proper 
over R. 

Remark 5.1.2. In the Neron mapping property we have only required 
that the map 1>K : XIK -+ ElK on the generic fiber be a rational map. It 
turns out that any rational map from a non-singular variety to an elliptic 
curve is a morphism. See (6.2b) below for an even more general statement. 

Remark 5.1.3. The most important instance of the Neron mapping prop­
erty is the case that X = Spec(R) and X = Spec(K). Then the set of K­
maps X IK -+ ElK is precisely the group of K-rational points E(K), and 
the set of R-morphisms X I R -+ £ IRis the group of sections £ (R). So in 
this situation the Neron mapping property says that the natural inclusion 

£(R) <---4 E(K) 

is a bijection. If R is a complete discrete valuation ring with algebraically 
closed residue field, then one can show that the equality £(R) = E(K) 
suffices to ensure that the group scheme £IR is a Neron model for ElK. 
See exercise 4.30. 

We begin our study of Neron models by proving that they are unique 
and behave well under unramified base extension. 

Proposition 5.2. Let R be a Dedekind domain with fraction field K, 
and let ElK be an elliptic curve. 
(a) Suppose that cdR and c21R are Neron models for ElK. Then there 
exists a unique R-isomorphism 'IjJ : £d R -+ £2/ R whose restriction to the 
generic fiber is the identity map on ElK. In other words, the Neron model 
of ElK is unique up to unique isomorphism. 
(b) Let K' / K be a finite unramified extension, and let R' be the integral 
closure of R in K'. Let £ I R be a Neron model for E / K. Then £ x R R' is a 
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Neron model for ElK'. (N.B. If K' I K is ramified, this result will generally 
not be true.) 

PROOF. (a) The identity map ElK -> ElK is a rational map from the 
generic fiber of £1 to the generic fiber of £2, and £1 is smooth over R, 
so the Neron mapping property for £2 says that the identity map extends 
uniquely to an R-morphism 'lj; : £1/ R -> £21 R. In a similar fashion we 
obtain a unique R-morphism cP : £21 R -> £1/ R which is the identity map 
on the generic fiber. But then cP 0 'lj; : £1/ R -> £1/ R and the identity map 
£1/ R -> £1/ Rare R-morphisms which are the same on the generic fiber, so 
the uniqueness part of the N eron mapping property says that cP 0 'lj; equals 
the identity map. This proves that cP and 'lj; are isomorphisms. 
(b) Let X' I R' be a smooth R' -scheme with generic fiber X' I K', and let 
cPK' : X/ K, -> ElK' be a rational map. The composition 

X' -----> Spec(R') -----> Spec(R) 

makes X' into an R-scheme. Further, our assumptions on K' imply that 
the map 

Spec(R') -----> Spec(R) 

is a smooth morphism. (See exercise 4.19.) Hence the composition is a 
smooth morphism (2.10), so X' is a smooth R-scheme. 

Now the Neron mapping property for £1 R tells us that there is an R­
morphism 

X'.!!.!!... £ 

whose restriction to the generic fiber is the composition 

X'~ExKK'~E. 

The two R-morphisms cPR : X' -> £ and X' -> Spec(R') determine an R­
morphism (and thus an R'-morphism) to the fiber product, 

cPR' : X' -----> £ xR R'. 

Further, the restriction of cPR' to the generic fiber is cPK'. This gives the 
existence part of the N eron mapping property. We will leave it to the reader 
to prove the uniqueness part, which completes the proof that £ x R R' is a 
Neron model for ElK'. 0 

Let R be a discrete valuation ring with fraction field K. We are going 
to use the Weierstrass equation of an elliptic curve ElK directly to con­
struct an R-group scheme WO c IP'~ whose generic fiber is ElK. If the clo­
sure W ofWo in IP'~ is regular, then we will also prove that WO(R) = E(K), 
so WO satisfies the most important instance of the Neron mapping prop­
erty (5.1.3). In particular, if E has good reduction, then we will see (6.3) 
that a minimal Weierstrass equation for ElK already defines a Neron 
model. 
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Theorem 5.3. Let R be a discrete valuation ring with fraction field K, 
let E / K be an elliptic curve, and choose a Weierstrass equation for E / K 
with coefficients in R, 

This Weierstrass equation defines a scheme W c IP'~. Let WO c W be the 
largest subscheme of W which is smooth over R. 
(a) Both W / Rand WO / R have generic fiber E / K. 
(b) The natural map W(R) ---+ E(K) is a bijection. lfW is regular, then 
the natural map WO(R) ---+ W(R) is also a bijection, so in this case there is 
a natural identification WO(R) = E(K). 
(c) The addition and negation maps on E extend to R-morphisms 

and 

which make WO into a group scheme over R. The addition map further 
extends to an R-morphism 

WO xRW --+ W 

giving a group scheme action ofWo on W. 

Remark 5.4.1. If E / K has good reduction and if we take a minimal 
Weierstrass equation for E/ K, then W itself is smooth over R. So in this 
case (5.3) says that W = WO is a group scheme over R. 

Remark 5.4.2. If E / K has bad reduction, then there is exactly one sin­

gular point on the reduction E (mod p). In other words, the special fiber W 
of W contains exactly one singular point, say r EWe W, and then WO is 
obtained by discarding that point, 

WO = W" {r}. 

Remark 5.4.3. The scheme W / R in (5.3) is proper over R, since it is a 
closed subscheme of IP'~ (2.8). It follows from the valuative criterion (4.4a) 
that W(R) = E(K). However, in general, the scheme W will not be regular, 
since a singular point on the special fiber will often be a singular point 
of W. So, in general, we cannot use (4.4b) to deduce that WO(R) = E(K). 
Intuitively, if W is singular, then there will be points P E E(K) = W(R) 
which go through the singular point of W. Thus, in general, WO will not 
be large enough to be a Neron model, because WO(R) =F E(K), whereas W 
itself will be too large to be a Neron model, because the group law on E 
will not extend to all of W. 
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Example 5.4.4. We illustrate the previous remark by looking at the curve 

If a6 E R*, then W is smooth over R (exercise 4.20(b)), so W is a Neron 
model for E. If v(a6) 2 1, then the special fiber 

has the singular point (0,0), so 

We consider two cases. 
First, if v(a6) = 1 (i.e., a6 is a uniformizer in R), then W is a regular 

scheme from exercise 4.20(a). It follows from (4.4c) that WO(R) = W(R) = 
E(K). We can also see this directly as follows. If P E W(R) were to 
go through the singular point on the special fiber, then we would have 
p = (x,y) == (O,O)(modp), which means that x,y E p. But then the 
equation for E would give 

contradicting the assumption that v(a6) = 1. Hence WO(R) = E(K). 
Second, if v(a6) 2 2, then W is not a regular scheme and WO will 

not be a Neron model for E, despite the fact that WO is a group scheme 
with generic fiber E. For example, suppose that a6 = a 2 with v(a) 2 1. 
Then the point P = (0, a) E E(K) = W(R) is not in WO(R), since P == 
(0, O)(mod p). 

PROOF (of Theorem 5.3). (a) W is projective over R, since it is the closed 
subscheme of IP'~ = Proj R[X, Y, Zl defined by the single homogeneous 
equation 

Its generic fiber is the variety in IP'k defined by this same equation. Thus 
the generic fiber of W is precisely E / K. 

IfWo is not equal to W, then as described above in (5.4.2), WO consists 
of W with one point on the special fiber removed. In particular, WO and W 
have the same generic fiber, so the generic fiber of WO is also E / K. 
(b) The scheme W is a closed subscheme of IP'~, so it is proper over R (2.8). 
Further, its generic fiber is E / K from (a), so (4.4a) tells us that E(K) = 
W(R). This proves the first part of (b). If in addition W is regular, 
then (4.4b) says that W(R) = WO(R), which gives the second equal­
ity E(K) = WO(R). 
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(c) Let 
J-l : W xR W ----t W and i: W ----t W 

be the rational maps on W induced by the addition and negation laws on 
the generic fiber E / K of W. The fact that the generic fiber is a group 
variety means that J-l and i satisfy all of the group axioms on a non-empty 
open subscheme of W, so they will satisfy the group axioms on the largest 
open subscheme on which they are defined. In other words, if we can show 
that J-l is a morphism on WO XR Wand that i is a morphism on W, then 
the group axioms are automatically true. 

If W is smooth over R, we are going to prove that J-l is a morphism on 
all of W XR W. If W is not smooth over R, then as explained above (5.4.2), 
the special fiber W cont(l,ins a unique singular point 'Y and WO = W " b}. 
In this situation we will show that J-l is a morphism except at the single 
point 

In particular, it is a morphism on WO x R W. 
In order to simplify our calculations, we will assume that the residue 

field k does not have characteristic 2 or 3 (equivalently, 2 and 3 are units 
in R). The general case is similar, but the formulas are considerably longer. 
This assumption allows us to make a change of variables in IP'~ and put our 
Weierstrass equation in the form 

W : y2 Z = X 3 + AX Z2 + BZ3. 

In other words, W is the closed subscheme of IP'~ defined by this homoge­
neous equation. 

Let Waft be the affine open subscheme of W defined by 

Waft = {Z I- O} c W, 

and let x = X/Z and Y = Y/Z be affine coordinates on Waft. The addition 
map J-l is then given by the usual formula [AEC, III.2.3] 

J-l = [(X2 - Xd((Y2 - yd2 - (X2 - xd2(X2 + xd), 

(Y2 - yd3 + (X2 - XI)2(XIYI - X2Y2 + 2X2YI - 2XIY2), (X2 - XI)3]. 

More precisely, this formula gives the restriction of J-l to Waft XR Waft, 
and on this affine scheme J-l will be a morphism except possibly along the 
closed subscheme where its three coordinate functions vanish. Looking 
at the third coordinate and then at the second coordinate, we see that J-l 
is a morphism on Waft XR Waft except possibly on the closed subscheme 
defined by the equations 

X2 - Xl = Y2 - YI = O. 
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In other words, /-L is a morphism off of the diagonal. 
To deal with points on the diagonal, we use the relations 

and Y§ = x~ + AX2 + B 

which hold identically on Waif XR Waif to rewrite the addition map /-L as 

/-L = [(YI + Y2)((XI + X2)(YI + Y2)2 + (xi + XIX2 + x~ + An, 

(xi + XIX2 + x~ + A)3 

- (YI + Y2)2 ((Xl + X2)3 + A(XI + X2) + B - YIY2), (YI + Y2)3]. 

(See [AEC, III.3.6.1] for a similar calculation.) Just as above, we see that /-L 
is a morphism on Waif XR Waif except possibly on the closed subscheme 
defined by the equations 

YI + Y2 = xi + XIX2 + x~ + A = 0. 

We have now proven that /-L is a morphism on Waif XR Waif except on 
the sub scheme defined by the four equations 

X2 - Xl = Y2 - YI = YI + Y2 = xi + XIX2 + x§ + A = 0. 

A little algebra and the fact that 2 E R* shows that this subscheme is 
defined by the equations 

YI = Y2 = 0, 3xi + A = 0. 

In particular, it is contained in the diagonal of Waif X R Waif, so if we iden­
tify Waif with this diagonal, then /-L is a morphism except on the subscheme 

Y = 3x2 + A = 0. 

Using the relation y2 = x3 + Ax + B and the fact that 3 E R*, we see that 
the discriminant 4A 3 + 27 B2 is contained in the ideal generated by Y and 
3x2 + A. Hence if W is smooth over R, which implies that its discriminant 
is a unit in R, then /-L is a morphism on all of Waif X R Waif. Similarly, if W 
is not smooth over R, then /-L will be a morphism on Waif X R Waif away 
from the subscheme 

YI = Y2 = 0, 3xi + A = 0, 

which is precisely the singular point on the special fiber of the diagonal. 
Next let W~1f be the affine open subscheme of W defined by 

W~1f = {Y t O} C W. 
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Notice that W XR W is covered by the four affine subschemes 

Waff XR Waff, 

since W does not intersect the scheme Y = Z = O. We have already 
dealt with the restriction of J.1 to the first set, so it remains to show that J.1 
is a morphism on each of the last three. We will leave this task for the 
reader (exercise 4.22), since the proof is similar to the argument given 
above. 

Finally, we observe that the negation map 

i : W XR W ---> W, [X, Y, Z] f---+ [X, - Y, Z], 

is a morphism on W, since it is actually the restriction of a morphism on 
1P''k XR 1P''k. This completes the proof of Theorem 5.3. 0 

§6. Existence of Neron Models 

In this section we are going to prove the existence of Neron models for ellip­
tic curves. The proof, which closely follows the exposition of Artin [1, §1]' 
is largely scheme-theoretic and is at a more advanced level than the other 
material in this chapter. The reader who is willing to accept the statement 
of Theorem 6.1 should read Remarks 6.1.1-6.1.3 and can then proceed to 
the next section with no loss of continuity. 

Theorem 6.1. Let R be a Dedekind domain with fraction field K, 
let ElK be an elliptic curve, let el R be a minimal proper regular model 
for ElK (4.5), and let £/R be the largest subscheme of elR which is 
smooth over R. Then £ / R is a Neron model for E / K. 

Remark 6.1.1. The generic fiber of e is the non-singular curve E, so e 
has only finitely many singular fibers. Each fiber of e consists of one or 
more irreducible components, possibly with multiplicities (see §4), say 

Tp 

ep = l:.: npiFpi. 

i=1 

Then £ is formed by discarding from e all Fp;'s with npi 2': 2, all singular 
points on each F pi , and all points where the FPi'S intersect one another. 
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Remark 6.1.2. Continuing with the notation from (6.1.1), the group 
scheme el R comes equipped with an identity element, which is an R-valued 
point 0'0 E e(R). The image O'o(R) of the identity element is a curve on e 
which will intersect the fiber ep at the point O'o(p). Proposition 4.3 tells us 
that 0'0 (p) will be a non-singular point of ep , so it will lie on an FPi hav­
ing multiplicity npi = 1. The component of ep containing O'o(p) is called 
the identity component of ep . The scheme obtained by removing all non­
identity components from the fibers of e is called the connected component 
(of the identity) ofe. The image O'o(R) of the identity element lies in e, so 
we can define the identity component of ep and the connected component 
(of the identity) of e in an analogous manner. The connected component 
of e is a subgroup scheme of e; see exercise 4.25. We will see later (9.1) 
that it is isomorphic to the smooth part of the scheme defined by a minimal 
Weierstrass equation for E. 

Remark 6.1.3. With notation as in (6.1), one can prove that the group 
law e x R e ---+ e extends to give a group scheme action 

See exercise 4.23. We proved a special case of this in (5.3c). 

Before beginning the proof of (6.1), we want to say a few words explain­
ing why the smooth part of a minimal proper regular model for ElK turns 
out to be a Neron model. In other words, how will we use the four proper­
ties "smooth," "minimal," "proper," and "regular"? First, the properness 
of e over R ensures that E(K) = e(R) (4.4a). Next, the regularity of e tells 
us that every R-point lies in the smooth part of e (4.4b), so e(R) = e(R). 
This gives E(K) = C(R), which is an important case of the Neron mapping 
property (5.1.3). Thus the properness and regularity of e are mainly used 
to obtain the Neron mapping property. On the other hand, the smoothness 
and minimality of e are used to prove that e is a group scheme over R. 
In particular, the minimality implies that any K-automorphism of E, such 
as a translation-by-P map for some point P E E(K), will extend to give 
an R-automorphism of e. These translation maps on e will be essential for 
showing that the group law on ElK extends to give e the structure of a 
group scheme over R. 

With these preliminary comments completed, we begin the proof of 
Theorem 6.1. The first step in the proof is the following generalization of 
a theorem of Weil [3]. Weil's theorem asserts that a rational map from a 
smooth variety to a complete group variety is automatically a morphism, 
and Artin [1, Prop. 1.3] has extended Weil's theorem to a scheme-theoretic 
setting. 

Proposition 6.2. (Weil [3], Artin [1]) Let R be a Dedekind domain, 
let G I R be a group scheme over R, let XI R be a smooth R-scheme, and 
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let ¢ : X --.. G be a rational map over R. Write Dom(¢) for the domain 
of ¢, and suppose that Dom( ¢) is dense in every fiber of XI R. 
(a) The complement X" Dom(¢) is a subscheme of X of pure codimension 
one. 
(b) If G is proper over R, then Dom(¢) = X. In other words, ¢ is a 
morphism. 

PROOF. We will write }L(g,h) = gh and i(g) = g-l. Further, to simplify 
our exposition and help reveal the underlying ideas, we will phrase our 
argument in terms of points. But the reader should be aware that in 
order to be completely rigorous, our "points" should be T-valued points for 
arbitrary R-schemes T. As an alternative, the proof can be given purely 
scheme-theoretically, a task which we will leave for the reader. 

Having made this disclaimer, we begin by considering the rational map 

F: X XR X --- .. G, F(x, y) = ¢(x)¢(y)-l. 

We claim that there is a natural identification 

Dom(¢) ......::..-. .6. n Dom(F), X f---+ (x,x), 

where .6. is the diagonal in X XR X. To see this, take a point x E Dom(¢). 
Then F(x, x) = ¢(x)¢(X)-l is defined, so (x, x) E Dom(F). Conversely, 
if (x, x) E Dom(F), we can use the fact that Dom(F) is open to find a non­
empty open set U C X so that x xR U c Dom(F). Next, since Dom(¢) is 
open, we can find a point y E Un Dom(¢). It then follows from 

¢(x) = F(x, y)¢(y) 

that ¢ is defined at x, so x E Dom(¢). This completes the proof of the 
claim. 

Let K(X x X) be the function field of the scheme X x R X, and let (')c,o 
be the local ring of G along the identity section; that is, (')c,o is the ring of 
rational functions on G which are well-defined at some point on the image 
of the map 0"0: Spec(R) ---+ G, where 0"0 is the identity element of the group 
scheme G. 

The rational map F defines a ring homomorphism 

F* : (')c,o ----> K(X x X), 

Let f E (')c,o. If x E Dom(¢), then (x, x) E Dom(F) from the claim 
proven above, and further F(x,x) = ¢(x)¢(X)-l is the identity element 
of G, so F*(f) is defined at (x, x). Conversely, if F*(f) = f 0 F is defined 
at (x,x) for all functions f E (')c,o, then F must be defined at (x,x). This 
proves that 

x E Dom(¢) <¢=> (x, x) E Dom(F* f) for all f E (')c,o 

<¢=> F*((')c,o) C (')xxX,(x,x), 
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where tJxxx.(x,x) C K(X x X) is the local ring of X XR X at (x, x). 
The scheme X x R X is smooth over R, so in particular it is normal. 

This implies that a function f E K(X x X) will be defined at (x, x) unless 
its polar divisor divoo(f) goes through (x,x). (This is a standard property 
of normal schemes. It follows, for example, from Hartshorne [1, II.6.3A].) 
In other words, the local ring tJXxX,(x,x) can be characterized as 

tJXXX,(x,x) = {g E K(X x X)* ; (x, x) tJ- divoo(g) }U{O}. 

Combining this with our description of the domain of ¢ from above yields 

X" Dom(¢) = {x EX; F*(tJe,o) rt tJXXX,(x,x)} 

= {x EX; (x,x) E divoo(F* f) for some f E tJe,o} 

~ ~ n U divoo(F* f) 
!Er:Jc.o 

U (~n divoo(F* f)). 
!Er:Jc,o 

The diagonal ~ is a complete intersection in X x R X, and each divisor 
divoo(F* f) has pure co dimension one in X XR X, so each of the intersec­
tions ~ n divoo(F* f) has pure co dimension one in ~. It follows that the 
union over f E tJe,o also has pure co dimension one in ~, since we know 
a priori that it is a proper closed subset of~. This completes the proof 
of (a). 
(b) The following lemma (6.2.1) says that a rational map from a smooth 
scheme to a proper scheme is defined off of a subset of codimension at least 
two. Then (6.2.1) and (a) imply (b). 

Lemma 6.2.1. Let R be a Dedekind domain, let XI R be a smooth R­
scheme, let 11 I R be a proper R-scheme, and let ¢ ; X - - + ~ be a dominant 
rational map defined over R. Then every component of X " Dom( ¢) has 
codimension at least two in X. 

PROOF. Let Z C X be an irreducible subscheme of codimension one in X. 
We need to show that ¢ is defined at the generic point of Z (i.e., ¢ is defined 
on a non-empty open subset of Z). Consider the local ring tJx,z of X at Z. 
It is a local ring of dimension one, and it is regular since XI R is smooth, 
so it is a discrete valuation ring. 

The dominant rational map ¢ ; X --+ ~ induces a morphism 

Spec K(X) ----> Spec K(~) 

from the generic point of X to the generic point of~. In other words, 
composition with ¢ induces an inclusion of function fields K(~) ~ K(X). 
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This gives us the commutative diagram 

x 
T 

Spec (')x,z 

T 
Spec K(X) -+ SpecK(13). 

329 

The discrete valuation ring (')x.z has fraction field K(X), and we are given 
that 13 is proper over R, so the valuative criterion of properness (2.7) implies 
that the rational map 

l' 
Spec (')x.z -+ X ---~ 13 

extends to a morphism Spec (') x, z ----+ 13. This says precisely that cP is defined 
at the generic point of Z, which completes the proof of (6.2.1), and with it 
also the proof of (6.2b). 0 

We can use (6.2) to find the Nerem model of an elliptic curve with 
good reduction. 

Corollary 6.3. Let R be a Dedekind domain with fraction field K, 
let ElK be an elliptic curve given by a Weierstrass equation 

having coefficients in R, and let W C lP'k be the closed subscheme of lP'k 
defined by this VVeierstrass equation. Suppose that W is smooth over R 
or, equivalently, that the Weierstrass equation has good reduction at every 
prime of R. Then WI R is a Neron model for ElK. 

PROOF. Theorem 5.3 says that the addition law on ElK extends to make 
W into a group scheme over the localization of R at each of its prime ideals. 
These group laws are given by the same equations, so they fit together to 
make W into a group scheme over R. It remains to verify that W has the 
Neron mapping property. 

Let XI R be a smooth R-scheme with generic fiber XI K, take any 
rational map cPK : X IK --~ ElK defined over K, and let cP : X --~ W be 
the associated rational map over R. The fact that W is a closed subscheme 
of lP'~ implies that it is proper over R (2.8), so we can use (6.2b) to deduce 
that the rational map c/J extends to a morphism. This proves that WI R 
has the Neron mapping property, so it is a Neron model for ElK. 0 

Our next step is to prove that if the scheme £ in (6.1) is a group 
scheme, then it will be a Neron model for E, at least provided that the 
ring R is large enough. The precise property we will require R to have is 
described in the following definition. 
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Definition. A discrete valuation ring R is called Henselian if it satisfies 
Hensel's lemma; that is, R is Henselian if for any monic polynomial f(x) E 

R[x] and any element a E R satisfying 

f(a) == 0 (mod p) and f'(a) =I'- 0 (mod p), 

there exists a unique element 0: E R satisfying 

0: == a (mod p) and f(o:) = o. 

The ring R is called strictly Henselian if it is Henselian and if its residue 
field k = Rip is algebraically closed. (Remember our residue fields are 
perfect. The usual definition of strictly Henselian requires k to be separably 
closed.) 

For example, if R is a discrete valuation ring, then the completion of R 
with respect to its maximal ideal p is Henselian. We have seen many in­
stances in which it is helpful to work with complete discrete valuation rings, 
for example in our study of formal groups [AEC, IV §6] and the reduction 
theory of elliptic curves [AEC, VII §2]. In particular, we used Hensel's 
lemma for complete discrete valuation rings to prove the surjectivity of the 
reduction map Eo(K) --4 Ens(k) in [AEC, VII.2.1]. 

However, for many purposes the completion is too large, since the 
completion of R will generally not be flat over R. The following general­
ization of [AEC, VII.2.1] says that the reduction map is surjective for any 
Henselian ring. 

Proposition 6.4. Let R be a discrete valuation ring with maximal ideal p 
and residue field k, let XI R be a smooth R-scheme, and let ilk be its 
special fiber. Consider the reduction map 

X(R) ---+ i(k). 

(a) If R is Henselian, then the reduction map is surjective. 
(b) If R is strictly Henselian, then the image of the reduction map is dense 
in 5::. 

PROOF. (a) Replacing X by an affine neighborhood, we can assume that 

X = Spec A with A = R[iI, ... , tn+rl/(h,···, fn) 

for certain polynomials h, ... , fn E R[h, ... , tn+r]' Further, the assump­
tion that X is smooth over R means that the n x n minors of the Jacobian 
matrix 
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generate the unit ideal in A. 
Choose any point b = (b1 , ... , bn) E X(k); that is, let b E p".n(R) satisfy 

h(b) == ... == fn(b) == 0 (mod p). 

We need to construct a point (3 E p". n (R) with the property that 

(3 == b(mod p) and h((3) = ... = fn((3) = o. 

For example, suppose that X is locally a hypersurface (i.e., m = I), 
given by the single equation f(t1' ... ,tn+r ) = O. Then the Jacobian con­
dition says that the partial derivatives a f / Oti generate A, so in particular 
one of the values (af /ati)(b) must be a unit in A, say (at /atd(b) E A*. 
Thus the polynomial F(t) = j(t,b2 , .•• ,bn+r ) satisfies the hypotheses of 
Hensel's lemma, so it has a root (31 E R with (31 == b1 (mod p). The 
point (3 = ((31, b2 , ... ,bn ) E X(R) reduces modulo p to the original point b 
in X(k), which completes the proof in this case. We will leave the general 
case, which is somewhat more difficult, for the reader to complete, or see 
the references for exercise 4.27. 
(b) The residue field k is algebraically closed, so it is clear that Xp (k) is 
dense in Xp. Now (b) follows from (a). 0 

As the next proposition explains, every discrete valuation ring R can 
be embedded in a minimal (strictly) Henselian ring. 

Proposition 6.5. Let R be a discrete valuation ring with maximal 
ideal p, residue field k, and fraction field K. Let K S be a separable closure 
for K, let RS be the integral closure of R in KS, and choose an ideal pS 
of KS lying above p. Let 

D = {O" E G K' I K : 0" ( pS) = ps}, 

1= {O" ED: O"(x) - x E pS for all x E RS} 

be the associated decomposition and inertia groups. 
(a) Let RS(D) denote the subring of R S fixed by D, and define Rh to be 
the localization of RS(D) at the maximal ideal pS n RS(D). Then Rh is 
Henselian. It is called the Henselization of R. 
(b) Let RS(I) denote the subring of R S fixed by I, and define R sh to be the 
localization of RS (I) at the maximal ideal pS n RS (I). Then R sh is strictly 
Henselian. It is called the strict Henselization of R. 
(c) With the obvious notation, we have 

ph = pRh , kh = k, psh = pRsh , k sh = k. 

Further the natural map 
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of Galois groups is an isomorphism. 

PROOF. (a) We are going to verify that Rh has the Henselian property. 
Let f(x) E Rh[x] be a monic polynomial, which we may assume to be 
irreducible and separable over Kh. (If f is inseparable, then f' (x) is iden­
tically 0, so the Henselian property is vacuously true!) Factor f over K S 

as 
f(x) = (x - al)(x - (2)··· (x - ad). 

Suppose that a E Rh satisfies f(a) E ph and f'(a) t/: ph. This implies that 
there is exactly one root, say a = ai, with the property that a - a E pS. 
Further, if a E D is any element of the decomposition group of pS, then we 
have 

a - a(a) = a(a - a) E a(pS) = pS. 

But there is exactly one root of f which is congruent to a, so a(a) must 
equal a. This shows that a is fixed by D, and hence a E Rh. 
(b) The proof that R sh is Henselian is similar to the proof of (a), and it 
is a standard fact that the residue field is an algebraic closure of k; see for 
example Serre [4, I §7]. (Remember we are assuming that k is perfect.) 
(c) Again these are standard properties of Galois extensions of local fields. 

o 

Remark 6.6.1. It is clear from the construction (6.5) that the fraction 
fields Kh and K sh are separable algebraic extensions of K. Note that in 
general the fraction field of the completion of R will be transcendental 
over K, in fact, of infinite transcendence degree. This is one reason why it 
is often better to work with the Henselization. The moral is that one should 
work with Henselizations if one only needs to solve polynomial equations, 
but one has to go to the completion in order to use convergent power series. 
We also mention that strictly Henselian rings play the same role for the 
etale topology that local rings play for the Zariski topology. 

Remark 6.6.2. The Henselization can also be described in terms of a 
universal mapping property, which essentially says that it is the smallest 
Henselian extension of R, and similarly for the strict Henselization. See 
exercise 6.28. 

Proposition 6.7. Let R be a strictly Henselian discrete valuation ring 
with fraction field K, let ElK be an elliptic curve, let e I R be a minimal 
proper regular model for ElK (4.5), and let c I R be the largest su bscheme 
ofel R which is smooth over R (6.1.1). If the group law on ElK extends to 
make c into a group scheme over R, then c IRis a Neron model for ElK. 

PROOF. Let XI R be a smooth R-scheme with generic fiber XI K, and 
let cPK : X ---t E be a rational map. In order to verify the Neron mapping 
property, we must show that cPK extends to a morphism X --+ c. 



§6. Existence of Neron Models 333 

The elliptic curve E is a proper group scheme over K, and X is smooth 
over K, so applying (6.2b) with R = K to the map cPK : X --~ E, we see 
that cPK extends to a morphism. This means that the rational map 

cP: 1: ---~ E 

induced by cPK is a morphism on the generic fiber. 
We suppose that cP is not a morphism and derive a contradiction. 

By assumption, E is a group scheme, so (6.2a) tells us that the set of 
points where cP is not defined is a set of pure co dimension one in 1:. Hence 
there is an irreducible closed subscheme Z c 1: such that cP is not defined 
at the generic point 'f/z of Z. Note that the generic point of Z is given 
by 'f/z = Spec Ox,z, and that the local ring Ox,z is a discrete valuation 
ring because 1: is regular and Z has co dimension one. We now have the 
following picture: 

x q, 
E e ---~ c 

l' 

1 1 'f/z = Spec Ox,Z 

l' 

Spec K(1:) 
q,K 

Spec K(e) SpecK(e). ----7 

The scheme e is proper over R, and Ox,z is a discrete valuation ring, 
so the valuative criterion of properness (2.7) says that cP extends to a mor­
phism cP : 'f/z ----+ e. In other words, if we map to e rather than to the smaller 
scheme e, then cP is defined generically on Z. 

We are assuming that cP : 1: --~ E does not extend generically to Z, 
or equivalently that cP('f/z) E e is not contained in E. In particular, if 
we let k be the residue field of R and take any point Xo E Z(k) so that 
cP: 1: --~ e is defined at xo, then cP(xo) ~ E. (This is another way of saying 
that cP : 1: - - ~ E is not defined generically on Z.) 

The set of R-valued points 1:(R) maps to a dense set of points in the 
special fiber of 1: by (6.4b). Note that this is where we use our assumption 
that R is strictly Henselian. In particular we can find a point x E 1:(R) 
which intersects Z at a point, call it Xo E Z(k), at which the map cP : 1: --~ e 
is defined. Composing x with cP gives a rational map 

which by the valuative criterion of properness (2.7) extends to a morphism 
Spec(R) ----+ e. In other words cP 0 x E e(R), and by our construction it 
is clear that cP 0 x ~ e(R). However, (4.4b) says that e(R) = e(R). This 
contradiction completes the proof that cP extends to a morphism 1: --+ E, 
and hence that E has the Neron mapping property. 0 
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In order to complete the proof of Theorem 6.1 for strictly Henselian 
rings, it remains to show that the scheme c. is a group scheme over R. This 
is done in two steps. First, we prove that there exists some group scheme A 
over R such that c. and A have isomorphic dense open subsets. Second, 
using the group operation on A, we show that c. and A must be isomorphic. 
The proof of the first part uses an argument of Weil to construct a group 
variety (or scheme) by pasting together group chunks. We will not give 
the full proof of Weil's result but will be content to give a brief sketch and 
refer the reader to Artin [1, §2] for the details. 

Definition. Let R be a Dedekind domain, let V / R be a smooth R-scheme 
with non-empty fibers, and let 

be a rational map defined over R. The map p, is called a normal law on V 
if it satisfies the following two conditions: 

(i) The map p, is associative; that is, 

p,(p,(x,y),z) = p,(x,p,(y,z)) whenver both sides are defined. 

(ii) Define rational maps 

4> :V XR V---+ V XR V 

(x,y) f---+ (x,p,(x,y)), 
'ljJ :V XR V---+ V XR V 

(x,y) f---+ (y,p,(x,y)). 

Then the domains of definition of 4> and 'ljJ contain a dense subset of 
each fiber of V XR V, and the restriction of 4> and 'ljJ to each fiber is a 
birational isomorphism. 

Remark 6.8. If G is a group scheme over a Dedekind domain R, then its 
group law is a normal law. Condition (i) is true because the group law 
on G is associative by definition, and condition (ii) is immediate since 4> 
and 'ljJ are isomorphisms. For example, the inverse of 'ljJ is the map 

(x,y) f---+ ((p,(y,i(x)),x). 

For a general normal law p" the requirement that the rational maps 4> 
and 'ljJ satisfy condition (ii) provides a sort of inverse for the hidden group 
law that p, is trying to emulate. 

The following theorem says that a normal group law on V makes a 
large chunk of V into a large chunk of a group scheme. 

Theorem 6.9. (Weil [3]) Let R be a Dedekind domain, and let V / R be 
a smooth R-scheme of finite type over R. Suppose that every fiber of V is 
non-empty and that VCR) is dense in each fiber. 
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Let J-l be a normal law on V. Then there exists a group scheme G / R 
of finite type over R, an open subscheme U / ReV / R, and an open sub­
scheme U' / ReG / R with the following two properties: 
(i) U and U' are dense in every fiber. 
(ii) There is an R-isomorphism U ~ U' so that the normal law J-l restricted 
to U coincides with the group law of G restricted to U'. 

PROOF. (Sketch) The underlying idea is to start with a good open sub­
scheme U of V and construct G as a union of translates of U. More pre­
cisely, for each x E U(R), let Ux be a copy of U. Then one treats Ux as if 
it were "U translated by x" and uses J-l to provide gluing data to attach Ux 

to U. For further details, see Artin [I, Thm. 1.12]. 0 

The next result, combined with (6.7), will complete the proof that c / R 
is a N eron model for E / K, at least over strictly Henselian rings. 

Proposition 6.10. Let R be a strictly Henselian discrete valuation ring 
with fraction field K, let E / K be an elliptic curve, let e / R be a minimal 
proper regular model for E/ K (4.5), and let E/ R be the largest subscheme 
of e / R which is smooth over R (6.1.1). Then the group law on E extends 
to make E into a group scheme over R. 

PROOF. The proof consists of two steps. First, we verify that the group 
law on E defines a normal law on E. This allows us to apply (6.9), which 
yields a group scheme G / R that is birational to E. The second step is to 
show that the resulting birational map E -> G is actually an isomorphism. 
Notice that the proof is somewhat indirect. Rather than proving that the 
group law on E extends to E, we instead construct an auxiliary group 
scheme G which extends the group law on E, and then we show that G 
must equal E. 

We begin with the assertion that the group law on E defines a normal 
law 

J-l: E XR E ---~ E. 

The associativity of J-l is clear, since {1 is associative on the generic fiber 
of E, and a rational map is determined by its restriction to any dense open 
subset. So it remains to verify that the maps 

¢:EXRE---~ EXRE 1jJ:£XR£---~ EXRE 

(x,y) I---> (x,{1(x,y)), (x,y) I---> (Y,J-l(x,y)). 

are defined on a dense subset of the special fiber and that their restrictions 
to the special fiber are birational isomorphisms. 

Suppose that R' is any discrete valuation ring which is the localization 
of a smooth R-scheme, and let K' be the fraction field of R'. Then the 



336 IV. The Neron Model 

minimal proper regular model of E over the field K' is e XR Spec(R'). We 
apply this fact, taking R' to be the ring 

R' = () = (the local ring of £ at a gen~ric ) 
E,~ point ~ of its special fiber £ . 

Note that the special fiber £ need not be irreducible, so it may have several 
generic points, one for each component. We can take R' to be the local 
ring at anyone of these generic points. Note also that here is where we 
use the fact that e is smooth over R, since this fact implies that R' is the 
localization of a smooth R-scheme. 

There is a natural map Spec(R') = ~ ---> e, in other words an R'-valued 
point of e. We let T be the corresponding translation map, 

T : Spec(R') XR e --+ Spec(R') XR e. 

This translation map is an automorphism on the generic fiber, so it fol­
lows from (4.6) and the minimality of e x R Spec(R') that T is actually a 
morphism. 

The map T on Spec(R') XR £ is translation on the second factor by 
the generic point of the first factor, so we obtain a commutative diagram 

Spec(R') XR e ~ Spec(R') XR e 

1 1 
This proves that 1> is defined at every generic point of the special fiber 
of £ XR e lying over~. But ~ is an arbitrary generic point of the special 
fiber £, which implies that 1> is defined at every generic point of the special 
fiber of £ x R e. A similar argument can be applied to 1/;, which proves that 
the domains of definition of 1> and 1/; contain a dense subset of the special 
fiber of e XR e. This verifies the first part of property (ii) in the definition 
of a normal law. 

Now take any point P E e(R), and let Tp : £ ---> £ be the automor­
phism of e extending the translation-by-P morphism on the generic fiber 
of E (4.6). Then the map 

Spec(R) XR e Pxl 
--+ 

is precisely the map P x Tp, so it is one-to-one. It follows that the fibers of 1> 
are not all positive dimensional. Therefore 1> must be generically surjective, 
and hence a birational isomorphism on the closed fiber of e x R e. Similarly 
for 1/;, which completes the verification that J.L is a normal law on e. 

We can now apply (6.9) to deduce the existence of a group scheme 
G / R, open subschemes U / R c £ and U' / ReG / R which are dense in 
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every fiber, and an R-isomorphism U ~ U' so that the restriction of tL to U 
coincides with the group law of G restricted to U'. The isomorphism U ~ 
U' extends to give an R-birational map A : G -+ G, and the proof of (6.10) 
will be complete if we can show that A is an isomorphism. 

As described in (3.3), any point P E G(R) defines a translation mor­
phism Tp : G -+ G. The generic fiber of G is ElK, so P gives a point 
in E(K). Translation-by-P on ElK is an automorphism of the generic 
fiber of G. It follows from (4.6) and the minimality of G that this induces 
a translation map on G, which we will also denote by Tp : G -+ G. Now 
if 9 EGis any point, then we can find aPE G(R) so that Tp(g) E U'. 
(Note R is strictly Henselian, so G(R) maps to a dense subset of the spe­
cial fiber of G from (6.4b).) Then we can extend the definition of A to a 
neighborhood of 9 by using the fact that A = Lp 0 A 0 Tp at every point 
where it is defined, since the right-hand side is dearly defined at g. This 
proves that A is a morphism. 

On the other hand, the map A-I : G -+ G in the opposite direction is 
a rational map from a scheme smooth over R to a group scheme over R. 
Suppose that A-I is not a morphism. Then Weil's theorem (6.2) tells us 
that there is an irreducible curve Z C G such that A-I is undefined at the 
generic point Tf z of Z. But we know that A -1 is defined on U, and U is 
dense in the special fiber, so Z cannot be a component of the special fiber. 
It follows that Tfz is contained in the generic fiber E of G. In other words, 
there is a point of E at which A-I is not defined. But on the generic fiber, A 
is the identity map E -+ E. This contradiction shows that A-I is defined 
everywhere on G. Therefore A is an isomorphism. and hence G is a group 
scheme over R. 0 

\iVe now have all of the tools needed to prove the existence of Neron 
models for elliptic curves over Dedekind domains. 

PROOF (of Theorem 6.1). If the ring R is strictly Henselian, then combin­
ing (6.7) and (6.10) shows that G is a N eron model for ElK. There are 
two more steps needed to complete the proof of (6.1). First, we have to 
descend from the strict Henselization of a discrete valuation ring down to 
the ring itself. Second, we have to glue together Neron models over discrete 
valuation rings to create a Neron model over a Dedekind domain. 

So suppose first that R is a discrete valuation ring, and let R sh be the 
strict Henselization of R (6.5). Then esh = e XR R sh will be a minimal 
proper regular model for E I Rsh. To see this, we note first that proper 
morphisms are stable under base extension (Hartshorne [1, II.4.8c]), so esh 

is proper over R sh . Next, the regularity of esh follows, since e is regular 
and R sh is fiat and unramified over R. Finally, the minimality of esh is 
a consequence of the construction of the minimal proper regular model 
in terms of a regular model with all exceptional curves blown down. See 
Lichtenbaum [1], Shafarevich [1], Chinburg [1], and the discussion in §7 of 
this chapter. 
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Letting Esh = E x R Rsh , it is clear that Esh is the largest open sub­
scheme of esh which is smooth over Rsh , so our previous work implies 
that Esh I Rsh is a Neron model for E I Ksh. We are going to use this fact 
to verify that E has the Neron mapping property over R. 

Let XI R be a smooth R-scheme with generic fiber XI K, and let ¢K : 
X jK --> EjK be a rational map defined over K. Consider the extension 
of X and ¢K to Rsh , say xsh = X XR Rsh and ¢"J( : X/~Sh --> EjKsh. The 

scheme xsh is smooth over Rsh from Hartshorne [1, III.10.1b] or Altman­
Kleiman [1, VII. I. 7], so the Neron mapping property for Esh tells us that ¢"J( 
extends to a unique morphism ¢W : X/~Sh --> E/~Sh. This gives us the 
commutative diagram 

xsh 

1 1 
X 

<PK 
---~ E, 

where the top row is obtained from the bottom row using the base extension 
Spec Rsh --> Spec R. The strict Henselization Rsh is faithfully flat over R 
(Bosch-Liitkebohmert-Raynaud [1, 2.4, corollary 9]), so this is exactly the 
situation in which we can apply faithfully flat descent (see, e.g., Bosch­
Liitkebohmert-Raynaud [1, Chap. 6] or Milne [4, I §2]) to conclude that 
the rational map on the bottom row is a morphism. Therefore E I R has the 
Neron mapping property, which concludes the proof that EI R is a Neron 
model for ElK in the case that R is a discrete valuation ring. 

Finally, suppose that R is a Dedekind domain. From what we have 
already done, we know that for each prime P E Spec R, the localization 
E XR Rp is a Neron model for E over Kp. Further, (6.3) tells us that if we 
fix a Weierstrass equation WI R for ElK, and if we let S c Spec R be the 
set of primes for which W has bad reduction, then W XR Rs (i.e., the part 
of W lying over Rs) is a Neron model for E over Rs. This gives the Neron 
model over a dense open subset of Spec R, and gluing this large piece to 
the finitely many bad fibers produces a Neron model over all of Spec R. 
This completes the proof of (6.1). 0 

§7. Intersection Theory, Minimal Models, and Blowing-Up 

In Chapter III we saw amply demonstrated the power of intersection theory 
as a tool for studying the geometry of surfaces. In this section we will 
describe, without proof, the analogous theory on arithmetic surfaces due 
to Lichtenbaum [1] and Shafarevich [1]. Unfortunately, the fact that an 
arithmetic surface is not complete means that it is not possible to define 
an intersection theory on the full divisor group, but we will be able to 
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compute intersections with divisors which lie on the special fiber. In the 
next section we will use intersection theory to completely describe all of 
the possible special fibers for a minimal proper regular model of an elliptic 
curve. We will work over a discrete valuation ring, rather than a Dedekind 
domain, since everything we do in this section can be done fiber-by-fiber. 

Let R be a discrete valuation ring with maximal ideal p and residue 
field k = RIp, and let el R be an arithmetic surface over R. The scheme e 
is normal by definition, so there is a good theory of Wei! divisors on e 
as described in Hartshorne [1, II §6]. An irreducible divisor r on e is a 
closed integral subscheme of dimension one, in other words a curve, and 
the divisor group Div(e) of e is the free abelian group generated by the 
irreducible divisors. Further, each non-zero function J E K(e) defines a 
principal divisor 

div(f) = L ordr(f)r E Div(e), 
r 

and as usual we say that two divisors are linearly equivalent if the differ­
ence is principal. Here ordr is the normalized valuation associated to the 
irreducible divisor r; see (4.1.2). 

Let r E Div(e) be an irreducible divisor and let x E e p be a point on 
the special fiber of e. Informally, a uniJormizer Jar r at x is a function 
which vanishes to order 1 along r and has no other zeros or poles in a 
neighborhood of x. More precisely, a uniformizer for r at x is a function J E 
(')e,x in the local ring of e at x with the property that 

ordr(f) = 1, and ordr,(f) = 0 for all irreducible r l -=1= r with x E r/. 

To see that such a function exists, we need merely note that if x E r, 
then (')e,r is a discrete valuation ring containing'the integrally closed local 
ring (')e,x. 

Definition. Let r 1, r 2 E Div( e) be distinct irreducible divisors and let 
x E e be a closed point on the special fiber e p of e. Choose uniformiz­
ers It, h E (')e,x for r 1, r 2 respectively. The (local) intersection index 
oj r 1 and r 2 at x is the quantity 

Notice that this is the same definition that we gave in (III §7) for 
the local intersection index on geometric surfaces. Just as in Chapter III, 
we would like to add up these local intersection indices to get a global 
theory. Further, we would like our intersection theory to have the important 
functorial properties described in (III.7.2). In particular, linearly equivalent 
divisors should give the same intersection index. Unfortunately, it is not 
possible to define an intersection theory on Div(e) with this property. The 
problem is that e is not complete. This is true even if e is proper over R, 
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which will ensure that the fibers are complete, because the base Spec(R) 
itself is not complete. This non-completeness means that it is possible to 
use a linear equivalence to move an intersection point "out to infinity," 
where it then disappears. The following simple example illustrates this 
difficulty. 

Example 7.1. Let e = IP'k = Proj R[X, Y], and consider the two divisors 

r 1 = {X = O} and 

Here 7r E R is a uniformizer for the maximal ideal p of R, and n ::::: 1 is an 
integer. These two divisors intersect at the point 

x = {X = 7r = O} E ep = lP'i 
on the special fiber. To compute the local intersection index we dehomog­
enize by setting Y = 1 and then compute 

The divisor r2 is linearly equivalent to the divisor r3 defined by 

. (X +7rn y) r3 = r2 + dlv Y = {Y = O}. 

Notice that r1 and r3 have no points in common. So the linear equiva­
lence r 2 '" r 3 has caused the intersection point of r 1 and r 2 to disappear. 

The preceding example gives us two options. Either we can drop the 
requirement that intersections be invariant under linear equivalence, or we 
can restrict the allowable divisors. As we will see in the next section, it 
is extremely important to be able to compute the intersection of a divisor 
with itself, and to do this we need to be able to move the divisor in some 
way while not changing total the intersection index. So we will adopt the 
second alternative and restrict the set of divisors. 

The irreducible divisors on an arithmetic surface e/ R come in two 
flavors. First, there are the components of the special fiber, as described 
in §4. Second, if r c e is an irreducible divisor which does not lie in the 
special fiber, then the map r ~ Spec(R) will be surjective. An irreducible 
divisor which is a component of the special fiber is called a fibml divisor, 
and an irreducible divisor which maps onto Spec(R) is called a horizontal 
divisor. For example, the image <T(Spec R) of a section <T E e(R) is a 
horizontal divisor. 

Definition. A divisor D = L: niri is called fibml if every component r i 

of D is a fibral divisor. The group of fibml divisors on e is denoted 

Divp(e) = {D E Div(e) : Dis fibral}. 

Notice that Divp(e) is a subgroup of Div(e). 
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Definition. A divisor D = E nir i is called positive if every ni 2: 1. The 
set of positive divisors clearly does not form a group. 

The fibral divisors are fairly rigid, at least in the sense that their 
intersections generally cannot be moved off of the special fiber by a linear 
equivalence. This makes them suitable for intersection theory as described 
in the following result. 

Theorem 7.2. Let R be a discrete valuation ring, and let e/ R be a 
regular arithmetic surface which is proper over R. There is a unique bilinear 
pairing 

(D,F) ~D·F, 

with the following properties. 
(i) Ifr E Div(e) and F E Divp(e) are distinct irreducible divisors, then 

r·F= L (r·F)x. 

(ii) If D I , D2 E Div(e) and F E Divp(e) are divisors with DI linearly 
equivalent to D 2 , then DI . F = D2 . F. In particular, 

div(f)· F = 0 for all f E K(e)* and all F E Divp(e). 

The intersection pairing also has the following symmetry property. 
(iii) If FI, F2 E Divp(e) are fibra1 divisors, then FI . F2 = F2 · Fl. 

PROOF. Just as in the geometric case (III.7.2), the main idea is to use 
linearity and the linear equivalence property (ii) to reduce the computation 
of D . F to the case of distinct irreducible divisors, and then apply (i). The 
principal difficulty, as always, is to show that the result is independent of 
the various choices made. For details, see Lichtenbaum [1], Shafarevich [1], 
Lang [6, III §§2,3], or Chinburg [2, §4]. 0 

Remark 7.2.1. Let e = IPk = Proj R[X, Y], let a E R be an element 
which is not a square in R, and consider the two irreducible divisors 

and 

Then r n F consists of either one or two points, depending on whether or 
not a is a square in the residue field k. If Va r:J. k, then rand F intersect 
at the one point 

x = {7r = X2 - ay2 = O} E e p, 

where 7r is a uniformizer for R. We compute the intersection index at x by 
dehomogenizing Y = 1, 

(r· F)x = dimk R[X]ex2-a)/(7r, X2 - a) = dimk k[X]/(X2 - a) = 2. 

Similarly, if Va E k, then rand F intersect at the two points 

and 

We will leave it to the reader to check that (r· F)y = (r . F)z = 1. 
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We proved (III.8.2) that the intersection pairing on a fibered surface 
is negative semi-definite on fibral divisors, with kernel the entire fiber. The 
argument given in Chapter III carries over almost verbatim to give the 
same result for arithmetic surfaces. 

Proposition 7.3. Let R be a discrete valuation ring with maximal 
ideal 13, and let e/ R be a regular arithmetic surface proper over R. 
(a) The special fiber ep is connected. 
(b) Let F E Divp(e) be a fibral divisor. Then F2 ~ 0, and the following 
three conditions are equivalent: 

(i) F2 = O. 
(ii) F· F' = 0 for every F' E Divp(e). 

(iii) F = aep for some a E Q, where e p = e XR 13 is the special fiber 
of e with appropriate multiplicities; see §4. 

PROOF. (a) This is a special case of Hartshorne [1, III.l1.3J. 
(b) Clearly, (ii) implies (i). Further, the divisor e p is principal, since 
it is equal to div(7r) for a uniformizer 7r E R, so (7.2ii) shows that (iii) 
implies (ii). The fact that F2 ~ 0 and the remaining implication (i) =? 

(iii) are proven in exactly the same way as the geometric case (III.8.2). 
For further details, see Lichtenbaum [1], Shafarevich [1], or Lang [6, III 
Prop.3.5J. 0 

To simplify our discussion for the remainder of this section, we are 
going to assume that our discrete valuation ring R has an algebraically 
closed residue field k. In practice, most of what we say will remain true 
with some slight modifications. 

With this assumption, an irreducible fibral divisor F on e is an irre­
ducible curve defined over k. If we further assume that e is proper over R, 
then F will be proper (hence projective) over k. Recall that the arithmetic 
genus of such a curve F / k is defined to be 

More generally, if we write the special fiber as e p = 2:. niFi, then any 
positive fibral divisor F = 2:. aiFi is a one-dimensional scheme over k. 
If F is connected, the arithmetic genus of F is defined by exactly the 
same formula. See Hartshorne [1, exercise III.5.3J for a discussion of the 
arithmetic genus. The next proposition describes the few facts that we will 
need to know about the arithmetic genus. 

Proposition 7.4. Let R be a discrete valuation ring with maximal 
ideal 13, fraction field K, and algebraically closed residue field k. Let e/ R 
be a regular arithmetic surface proper over R. 
(a) (Adjunction Formula) There is a divisor Ke E Div(e) with the property 
that 

F2 + Ke' F = 2Pa(F) - 2 for every FE Divp(e). 
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The divisor Ke is called a canonical divisor on e. (N.B. The adjunction 
formula is only valid for fibml divisors.) 
(b) Let G / K be the generic fiber of e. Then 

where g(G) is the usual genus ofG/K [AEC, II.5.4]. 
(c) Let F E Divp(e) be an irreducible fibral divisor. Then Pa(F) > 0, 
and Pa (F) = 0 if and only if F is isomorphic to lP'~. 

PROOF. (a) The classical adjunction formula for a non-singular curve on 
a non-singular surface is proven in Hartshorne [1, V.L5], and the case of 
singular curves is described in Hartshorne [1, exercise V.L3]. The adjunc­
tion formula for arithmetic surfaces is due to Lichtenbaum [1, Thm. 3.2]. 
For further information, see also the discussion in Lang [6, remark 1 on 
p.117]. 
(b) The first equality follows from the general fact that in a flat family, the 
arithmetic genus of the fibers remains constant (Hartshorne [1, III.9.10]). 
The second equality is Hartshorne [1, IV.L1], since G is non-singular. 
(c) The inequality Pa(F) 2: 0 is clear, since by definition the arithmetic 
genus is the dimension of a certain cohomology group. For the second 
assertion, see Hartshorne [1, IV exercise LS(b)]. 0 

Remark 7.4.1. The description of the canonical divisor Ke in (7.4a) is 
not, of course, the usual definition. A canonical divisor is normally defined 
to be the divisor of a differential form of top dimension, so in the case of 
an arithmetic surface e, the divisor of a differential 2-form on e. But for 
our main application (S.l) in the next section, we will only need to know 
that there exists some divisor satisfying the adjunction formula (7.4a). In 
fact, it would suffice to know that the map 

is a homomorphism; see Lichtenbaum [1, Thm. 3.2]. 

Earlier (4.5) we stated the existence of a minimal proper regular model 
for a curve G / K. We now want to briefly describe how such models are 
constructed and give Castelnuovo's criterion for minimality. If e/ R is any 
regular model for G / K, and if x E ep is a point on the special fiber of e, 
then we can blow up x to get another regular model e' / R and a birational 
morphism 

¢:e'~e. 

(See Hartshorne [1, I §4, II §7, V §3] and the discussion (7.7, 7.7.1) at the 
end of this section.) The map ¢ is an isomorphism away from x, and the 
inverse image of x is a divisor D = ¢-l(x) with the property that 

and 
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Thus blowing up x has the effect of replacing x by a projective line whose 
self-intersection is -1. 

In general, an irreducible fibral divisor D E Divp(e) which satis­
fies D ~ lP'1 and D2 = -1 is called an exceptional divisor or an exceptional 
curve. Castelnuovo showed (in the geometric setting) that such curves can 
always be blown back down. 

Proposition 7.5. (Castelnuovo's criterion) Let R be a discrete valua­
tion ring with fraction field K and algebraically closed residue field k, and 
let C / K be a non-singular projective curve of genus 9 2'> 1. 
(a) Let e' / R be a proper regular model for C / K {4.5a), and let D E 
Divp(e') be an exceptional divisor on e'. Then there exists a proper regular 
model e/ R for C / K and a birational morphism ¢ : e' -> e so that x = ¢(D) 
is a single point and ¢ is the blow-up of e at x. 
(b) Let e be a minimal proper regular model for C / K. Then e contains 
no exceptional divisors. 

PROOF. (a) See Hartshorne [1, V.5.7] for a proof in the geometric situation. 
The arithmetic version is due to Lichtenbaum [1, Thm. 3.9] and Shafare­
vich [1, p. 102], see also Chinburg [2, Thm. 3.1]. 
(b) If e contains an exceptional curve, then (a) says that we can blow 
it down to get a smaller regular model for C / K. But a blow-down map 
is clearly not an isomorphism, which contradicts the assumed minimality 
of e. 0 

Remark 7.5.1. Continuing with the notation from (7.5b), it can be shown 
that a proper regular model e/ R for C / K is minimal if and only if it con­
tains no exceptional divisors. Further, starting with any proper regular 
model for e/ R, one can produce a minimal model by blowing down ex­
ceptional curves until none are left. The geometric case is described in 
Hartshorne [1, V §§3,5]. The arithmetic case is due to Lichtenbaum [1, 
Thm. 4.4] and Shafarevich [1, p. 126]; see also Chinburg [2, Thm. 1.2]. 

Remark 7.6. Let R be a Dedekind domain, say the ring of integers of a 
number field K, and let e/ R be an arithmetic surface. Then we can define 
an intersection pairing 

where Divfib(e) denotes the group of divisors generated by the components 
of the special fibers and the pairing is defined linearly using (7.2). Unfor­
tunately, if we want to retain the linear equivalence property (7.2ii), then 
it still is not possible to extend this pairing to all of Div(e). As before, 
the underlying problem is that Spec(R) is not complete, so intersection 
points can move out to infinity and disappear. Arakelov [1] had the bril­
liant idea of adding in some extra fibers "at infinity." More precisely, he 
adds one fiber for each archimedean absolute value of K, and then uses 



§7. Intersection Theory, Minimal Models, and Blowing-Up 345 

tools from differential geometry to define real-valued local intersection in­
dices on these archimedean fibers. Arakelov's intersection theory extends 
to the full divisor group while retaining the linear equivalence property, 
and many of the most important theorems from the classical geometry of 
surfaces, such as the Riemann-Roch and adjunction formulas, extend to 
the Arakelov setting. For more information about Arakelov intersection 
theory on arithmetic surfaces, see for example Chinburg [1], Faltings [1], 
or Lang [6]. 

The final topic we want to discuss in this section is the blowing-up 
process. This is described with varying degrees of generality in Hart­
shorne [1, I §4, II §7, V §3]. With an eye towards the explicit computations 
we will be doing in §9, we offer the following brief primer on blowing-up 
surface singularities. 

Remark 7.7. (Blowing-Up Singularities on Arithmetic Surfaces) Let R be 
a discrete valuation ring with uniformizing element 7r and residue field k. 
Let e c A~ be an arithmetic surface defined by a single equation 

f(x,y) =0 for some polynomial f(x, y) E R[x, y]. 

In other words, e = Spec R[ x, y] / (f). In order to ensure that e is a two­
dimensional scheme whose special fiber has dimension one, we will assume 
that f is not a constant polynomial and that at least one coefficient of f 
is a unit in R. In fancier terminology, this means that e is flat over R. 

Keep in mind that e is a "surface" (i.e., a two-dimensional scheme) 
sitting inside the three-dimensional scheme A~. Intuitively, the three "co­
ordinate functions" on A~ are 7r, x, and y, and in order to calculate the 
special fiber we always set 7r = O. 

We are going to assume that e has a singularity at the point 7r = x = 
y = 0 on the special fiber. In other words, we assume that 

of of 
f(O,O) = ox (0, 0) = oy (0, 0) = 0 (mod 7r). 

Let m = (7r, x, y) E e be the singular point on the special tiber of e. 
Then the blow-up of e at m is formed by taking the following three schemes 
and gluing them together as explained below. 

Chart 1. Define new variables 

and y = 7rYl, 

and let v be the largest integer so that 

In other words, factor out a power of 7r so that the coefficients of hare 
in R and at least one coefficient is a unit. Then the first coordinate chart 
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for the blow-up of eat m is the scheme e l C A'h = SpecR[xl,YI] defined 
by 

Chart 2. The second chart is formed using new variables 7f', x' ,Y' defined 
by 

7f = 7f'y', x = x'y', y = y'. 

We substitute these into the polynomial f(x, y). This means we do two 
things. First, we replace x and y by x'y' and y'. Second, we take each 
coefficient a of f(x, y) and replace the largest power of 7f dividing a by that 
power of 7f'y'. For example, if 7f21a and 7f3 f a, then we would replace a 
by (1f'y')27f-2a. We factor out the largest possible power of y' to get 

f(x'y',y') = (y't'J'(x',y') with f'(x', y') E R[7f', x', y']' 

and then the second coordinate chart of the blow-up is the scheme 

e' : Spec R[7f', x', y'l/ (7f - 7f' y', J' (x', y')). 

Note that 7f' is a new variable, just like the variables x' and y'. The 
scheme e' is the closed subscheme of A~ = Spec R[7f', x',y'] defined by the 
two equations 7f = 7f'y' and J'(x',y') = o. 
Chart 3. The third chart is formed similarly to the second chart using the 
variables 7f", x", y" defined by 

7f = 7f" x", x=x", y = y"x". 

Substituting these into f(x, y) as explained above and pulling out the 
largest power of x" gives 

f(x", y"x") = (x")V" f"(x", y") with f"(x",y") E R[x",y"]. 

Then the third coordinate chart of the blow-up is the scheme 

e" : SpecR[7f", x", y"]/(7f - 7f"X", f" (x" , y")). 

It is easy to see how to glue the three coordinate charts together. For 
example, in order to map e l to e', we just need to solve for (7f', x', y') in 
terms of (7f, Xl, yd. Thus 

, 7f 7f 1 
7f =-=-=-

y' Y YI' 

, x 
X=­

y' 

x 
y' = y = 7fYI· 

y YI 

These equations define a birational map e l -+ e' which is defined every­
where except at the points of e l with YI = O. Similarly, we get a birational 
map e l -> e" by using the equations 

7f 
x" 

7f 

X 

1 
x" = x = 7fXl, " y 

y = x" 
y 

x 
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and a birational map e' -+ e" using 

linn n' 
n = x" = ;; = x" x" = x = x' y', 

These maps are used to glue the three coordinate charts together, and the 
resulting scheme is the blow-up of e at m. 

In order to find the special fiber of the blow-up, we take the special 
fibers of each of the coordinate charts and then glue them together. The 
special fiber of a coordinate chart is calculated by setting n = 0 and looking 
at the resulting curve defined over k. The first coordinate chart is easiest, 
and we find that 

e1 = Spec k[Xl' Yl]/(il(Xl, yd)· 

In other words, e1 is the curve in A% defined by the single equation A = o. 
Similarly, the special fiber of e' is obtained by setting n = 0, which 

means that 
e' = Spec k[n', x', y']/(n'y', l' (x', y')). 

Here n' is to be treated as a variable, so e' consists of two pieces, one 
obtained by setting n' = 0 and the other obtained by setting y' = o. Of 
course, each piece may consist of several components, or a piece could be 
empty. Finally, e" is given by 

e" = Spec k[n", x", y"] / (nil x", j" (x", y")), 

so e" also consists of two pieces, one with nil = 0 and the other with x" = o. 
Example 7.7.1. We are going to illustrate (7.7) by blowing-up the arith­
metic surface 

e : x 2 + y5 = n 4 

at its singular point n = x = y = O. For simplicity, we will assume that 
the residue field does not have characteristic 2, 3, or 5. 

To find the first coordinate chart of the blow-up, we substitute x = nXl 

and y = nYl into the equation for e and cancel n 2 , which yields 

The second coordinate chart is obtained by substituting n = n' y', x = x' y', 
and y = y', and then canceling y,2 to obtain 

r.J' ,2 +,3 ,4,2 
L.:X y =ny, n = n'y'. 

Finally, to get the third chart we substitute n = nil x", x = x", and y = 
y" x" and cancel X" 2 to get 

r.J II 1 + 11 3 115 114 112 L.: x y =n x , n = nil x" . 
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Next we compute the special fibers by setting 1r = o. The special fiber 
of e1 is 

- 2 e1 : Xl = 0, 

so e1 is a non-singular rational curve appearing with multiplicity 2. 
To find the special fiber of e', we must set 1r = 1r'y' = O. This gives us 

two pieces, one with 1r' = 0 and one with y' = O. In this way we find two 
fibral components, which we will denote by F{ and F~: 

e'= 1· -, -, { 
F'· 1r' - 0 x,2 + y,3 - 0 

2F~ : y' = 0, X,2 = o. 

Keep in mind that F{ and F~ are curves in A~ = Spec k[1r', x', y']. Thus F{ 
is a rational curve with a cusp, whereas F~ is a non-singular rational curve 
which appears with multiplicity 2 in the fiber. In other words, as a divisor 
we have e' = F{ + 2F~. 

Similarly, the special fiber of elf is obtained by setting 1r = 1r"X" = o. 
However, when we set x" = 0 we obtain the equation 1 = 0, so x" = 0 does 
not give any components of e". Hence elf consists of the single rational 
curve 

e" : 1r" = 0, 1 = x,,3 y1l5. 

We claim that when we glue e1 , e', and elf together, the special 
fiber e" is identified with F{, and the special fiber e1 is identified with 2F~. 
To verify the first statement, we observe that the special fiber elf is defined 
by the equations 1r" = 0 and 1 = X,,3 y,,5. According to (7.7), the gluing 
map e' -+ e" is given by the substitutions 

1r" = 1r'lx', x" = x'y', y" = l/x'. 

Substituting these into the equations for elf yields 

1r'lx' = 0 and 

which are exactly the equations of F{. We leave it to the reader to verify 
the assertion that e1 is glued to 2F~. 

Thus the special fiber of e' contains all of the components of the special 
fiber of the blow-up. If e' were regular, we would have completed our 
construction of a regular model, but unfortunately it is not regular. In 
fact, every point on the component F~ of the special fiber is a singular 
point, so next we want to blow up e' along the entire curve y' = o. We 
didn't discuss blowing up a surface along a curve in (7.7), but the procedure 
is very similar. 

Recall that e' c 1\1 = Spec R[1r', x', y'] is given by the equations 

e' ,2 + ,3 ,4,2 :x y =1r Y , 1r = 1r'y'. 
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The Special Fiber S of the Scheme S : X 2 + Y = T 4 , 7r = TY 

Figure 4.3 

To blow up e' along the curve y' = 0, we make the substitutions 

x' = XY, y' = Y, 7r' = T, 
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and cancel y2 from the first equation. This yields the arithmetic sur­
face S c A'k = Spec R[T, X, YJ given by the equations 

S : X2 + Y = T 4 , 7r = TY. 

Note that S is regular at X = Y = T = 7r = 0, since the equations 
for S show that the maximal ideal at that point is generated by the two 
variables X and T. One can similarly verify that S is regular at all other 
points, so it is a regular model for e. 

To compute the special fiber S of S, we set 7r = TY = 0. The part 
with T = ° is the non-singular rational curve X 2 + Y = 0, whereas the 
part with Y = 0 factors as 

so it consists of two non-singular rational curves which intersect tangen­
tially. All three of the components of S intersect at the point X = Y = 
T = 0, so the special fiber S looks ~ illustrated in Figure 4.3. 

Label the three components of S as indicated in Figure 4.3, 

Fl : Y = X - T2 = 0, F2 : Y = X + T2 = 0, F3: T = X2 + Y = o. 

Looking at Figure 4.3 or directly from the equations for the components, 
we can compute the pairwise intersections 

Next, using the fact (7.3) that the intersection of a component with the 
entire fiber S = Fl + F2 + F3 is zero, we compute the self-intersections, 

F'f = -(Fl' F2 + Fl . F3) = -3, 

Fi = -(F2 . Fl + F2 . F3) = -3, 

F~ = -(F3 . Fl + F3 . F2) = -2. 
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This shows that FI , F2 , and F3 are not exceptional curves, so S is a minimal 
regular model. 

We have now computed the incidence matrix of the special fiber, 

The incidence matrix of the special fiber of a minimal proper regular model 
of a curve can be used to compute the group of components of the Neron 
model of its Jacobian variety, see Raynaud [1] and exercises 4.32 and 4.33. 
In this example, the 2 x 2 minors of the incidence matrix have determi­
nant 5. Raynaud's theorem then implies that the group of components of 
the Neron model of the Jacobian variety is a cyclic group of order 5. 

§8. The Special Fiber of a Neron Model 

In this section we are going to describe the Kodaira-Neron classification 
of special fibers on minimal proper regular models of elliptic curves. Our 
main tool will be the intersection theory described in the previous section. 
We will work over a discrete valuation ring with algebraically closed residue 
field. In the next section we will give an algorithm of Tate which computes 
the special fiber and also provides some additional information, including 
a description of what happens when the residue field is not algebraically 
closed. 

We begin with a proposition which describes the intersection properties 
of the components of the special fiber. The most important part of this 
proposition is the last formula in (d), since it is this formula which puts 
severe constraints on the possible configurations of the components. 

Proposition 8.1. Let R be a discrete valuation ring with maximal 
ideal p, fraction field K, and algebraically closed residue field k. Let ElK 
be an elliptic curve, and let el R be a minimal proper regular model 
for ElK. Suppose that the special fiber of e contains r irreducible compo­
nents, say F I , ... , Fr , and write the special fiber as 

r 

ep = LniFi' 
i=I 

(a) At least one of the ni 's is equal to 1. 
(b) Let Ke be a canonical divisor on e (7.4a). Then 

Ke . F = 0 for all fibral divisors F E Divp(e). 
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(c) Ifr = 1, then F'.f = 0 and Pa(FI ) = l. 
( d) Suppose that r :::: 2. Then for each 1 ::; i ::; r, 

Fl = -2, Fi ~ lP'~, and L njFj · Fi = 2ni. 
l:5,j:5,r,#i 
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PROOF. The scheme e is proper over R, so e(R) ~ E(K) from (4.4a). By 
definition, an elliptic curve E / K has at least one K-rational point, namely 
its identity element, so we can find a point P E e(R). Let P(p) E ep be 
the image of P on the special fiber of e, and let Fi be a component of ep 

containing P(p). The scheme e is regular, so (4.3b) says that P(p) is a 
non-singular point of ep . It follows that ni = 1, since if ni :::: 2, then every 
point of Fi would be a singular point of ep• This completes the proof of (a). 

Next we consider the special fiber ep as a divisor on e. It has the 
following three properties: 

e~ = 0 from (7.3b) 

Pa(ep) = g(E) = 1 from (7.4b) 

e~ + Ke· ep = 2Pa(ep) - 2 adjunction formula (7.4a). 

Substituting the first two equations into the third gives 

Ke· ep = o. 

We next apply the adjunction formula (7.4a) to an irreducible fibral 
component Fi to get 

The arithmetic genus of an irreducible divisor is non-negative (7.4c), since 
by definition it is the dimension of a certain cohomology group. Thus the 
right-hand side of the adjunction formula is at least -2. On the other hand, 
we know that Fl ::; 0 from (7.3b). This leads to the following possibilities: 

(i) Fl = 0 for some 1 ::; i ::; r. 

(ii) Fl < 0 and Ke· Fi < 0 for some 1 ::; i ::; r. 

(iii) Fl < 0 and Ke· Fi :::: 0 for all 1 ::; i ::; r. 

In case (i) we know from (7.3b) that Fi must be a multiple of the entire 
special fiber. More precisely, we must have r = 1 and ep = nIFI . Then (a) 
tells us that nl = 1, so FI = ep . Now the equality Ke· ep = 0 proven 
above gives us (b), and the facts e~ = 0 and Pa(ep ) = 1 noted above give 
us (c). This completes the proof of Proposition 8.1 in case (i). 
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Next consider case (ii). Each term in the left-hand side of the adjunc­
tion formula is negative, whereas the right-hand side is at least -2. The 
only way for this to happen is if 

and 

Now (7.4c) says that Fi ~ lP'L and hence Fi is an exceptional divisor. But 
Castelnuovo's criterion (7.5b) says that a minimal proper regular model 
contains no exceptional divisors, so case (ii) cannot occur. 

It remains to consider case (iii). The strict inequality F? < 0 implies 
in particular that r ?: 2. We take the equality Ke' ep = 0 proven above 
and write it out in terms of the fibral components as 

r 

LniKe' Fi = O. 
i=l 

Each ni ?: 1, and since we are in case (iii), each Ke' Fi ?: 0, so the only 
way that this can be true is if we have 

Ke' Fi = 0 for all 1 ::::; i ::::; r. 

This proves (b). 
Next we substitute Ke . Fi = 0 into the adjunction formula for Fi , 

which yields 
F? = 2Pa(Fi ) - 2. 

We are in case (iii), so F? < 0, whereas Pa(Fi) ?: 0 from (7.4c). It follows 
that 

and 

and then (7.4c) tells us that Fi ~ lP'l;,. Finally, we note that ep . Fi 
Fi . ep = 0 from (7.3b), which allows us to compute 

r 

o = ep . Fi = L njFj . Fi = -2ni + L njFj . Fi · 
j=l l<::;j<::;r,#i 

This completes the proof of (d). o 

We are now going to use (8.1) and a combinatorial argument to give 
the Kodaira-Neron classification of the fibers of minimal proper regular 
model of elliptic curves. 

Theorem 8.2. (Kodaira [1], Neron [1]) Let R be a discrete valuation 
ring with maximal ideal p, fraction field K, and algebraically closed residue 
field k. Let ElK be an elliptic curve, and let el R be a minimal proper 
regular model for ElK. Then the special fiber ep of e has one of the 
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following forms. (See Figure 4.4. Note that the small numbers in Figure 4.4 
indicate the multiplicities of the components.) 
Type 10. 
Type Ii. 
Type In. 

Type II. 
Type III. 

Type IV. 

Type 10. 

Type I~. 

Type IV*. 

Type III*. 

Type II*. 

ep is a non-singular curve of genus l. 
ep is a rational curve with a node. 
ep consists of n non-singular rational curves arranged in the 
shape of an n-gon, where n 2: 2. 
ep is a rational curve with a cusp. 
ep consists of two non-singular rational curves which intersect 
tangentially at a single point. 
ep consists of three non-singular rational curves intersecting at 
a single point. 
Cp is a non-singular rational curve of multiplicity 2 with four 
non-singular rational curves of multiplicity 1 attached. 
Cp consists of a chain of n + 1 non-singular rational curves of 
multiplicity 2, with two non-singular rational curves of multi­
plicity 1 attached at either end. 
Cp consists of seven non-singular rational curves arranged as 
pictured in Figure 4.4. 
Cp consists of eight non-singular rational curves arranged as 
pictured in Figure 4.4. 
Cp consists of nine non-singular rational curves arranged as 
pictured in Figure 4.4. 

Remark 8.2.1. If the residue field k of R is not algebraically closed, 
then Cp may have some components which are irreducible over k but be­
come reducible over a finite extension of k. In other words, the Galois 
group Gk/ k may act non-trivially on the k-irreducible components of Cp , 

and then the k-irreducible components of Cp are the orbits. We will discuss 
this situation further in the next section when we describe Tate's algorithm. 

Remark 8.2.2. The dual graphs of the pictures in Figure 4.4 turn out 
to be extended Dynkin diagrams. There is a discussion of this in Mi­
randa [1, I §6]' as well as a proof of (8.2) based on the negative semi-definite 
quadratic forms attached to the extended Dynkin diagrams. The proof re­
lies only on the facts proven in (7.3), namely that Cp is connected and that 
the intersection pairing on Cp is negative semi-definite with kernel equal to 
the entire fiber. 

Remark 8.2.3. \Ve will use Kodaira's [1] notation In, II, ... , III*, II* 
to describe the various types of special fibers (8.1). There is a second 
notational system, due to Neron [1], which is also in common use. For the 
convenience of the reader, we briefly list the equivalences. 

Kodaira 10 In II III IV 1* a 1* n IV* III * II* 

Neron a bn c1 c2 c3 c4 c5n c6 c7 c8 
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Reduction Number of Configuration 
Type Components (with multiplicity) 

10 1 C :=:>1 
II 1 0<1 
In n 0 1 I 

I 1 
II 1 -< 
III 2 K 
IV 3 

* 10 5 1 11 I 1 11 I 
2 

1* n+5 lU----U n 

2 2 

21 21' 21 IV* 7 1 1 
3 

4 

111* 8 
1 I 31 21 13 11 

2 2 
4 2 

II* 9 
1 I 31 51 31 41 

2 6 

The Kodaira-Neron Classification of Special Fibers 

Figure 4.4 
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Remark 8.2.4. Ogg [3J and Namikawa and Ueno [IJ have given a classi­
fication, similar to (8.2), for the special fibers of proper regular minimal 
models of curves of genus 2. It turns out that there are more than 100 
configurations! 

PROOF (of Theorem 8.2). We will write the special fiber of ep as usual as 

r 

ep = LniFi. 
i=1 

We are going to consider a number of cases, which we will box for clarity. 

I ep has r = 1 component I 
Proposition 8.1(a,c) tells us that nl = 1 and Pa(ep ) = 1, so ep = Fl is an 
irreducible curve of arithmetic genus 1. If ep is non-singular, then it is a 
non-singular curve of genus 1 (Hartshorne [1, IV.l.l]), so we have Type 10 . 

If ep is singular, then Hartshorne [1, V.3.7] and the fact that Pa(ep ) = 1 
means that a single blow-up of a singular point on ep will produce a non­
singular rational curve. Hence ep is a rational curve with exactly one 
singular point of multiplicity 2, from which it is not hard to show that the 
singular point is either an ordinary node or an ordinary cusp. This gives 
Types II and II. 

(Alternative proof for r = 1. We will see in the next section that 
if r = 1, then the scheme W / R defined by a minimal Weierstrass equation 
for E is already a regular scheme. It will follow that e = w, so the 
special fiber ep is obtained by reducing the minimal Weierstrass equation 
modulo p. But we already know from [AEC, VII §5] that the reduction Wp 
is either a non-singular curve of genus 1, a rational curve with a node, or 
a rational curve with a cusp.) 

We assume henceforth that r ~ 2, which means that we can apply the 
formula given in (8.1d), 

L njFj . Fi = 2ni· 
l~j~r,j#i 

Note that each nj ~ 1, so every term in the sum is non-negative. We 
will be making frequent use of this important formula (*). We also note 
from (8.1d) that every component is a non-singular rational curve; that is, 
Fi ~ Pi, for every 1 :::; i :::; r. 

Proposition 8.1(a) says that one of the ni's equals 1, so relabeling 
the Fi'S if necessary, we may assume that nl = 1. We further know that ep 

is connected (7.3a), and r ~ 2 by assumption, so after further relabeling 
we may also assume that Fl . F2 ~ 1. 

I ep has r = 2 components I 
This means that ep = Fl + n2F2, so applying (*) for i = 1 and i = 2 gives 

and 



356 IV. The Neron Model 

Further. FI . F2 = F2 . FI from (7.2iii), so we deduce that 

and 

This means either that FI and F2 intersect tangentially in a single point, 
which gives Type III, or else they intersect transversally at two distinct 
points, which gives Type 12 . This completes the analysis of the special 
fiber in the case that ep has exactly two components. 

I ep has I' 2 3 components I 
vVe claim in this case that intersecting components always intersect trans­
versally; that is, we claim that 

Fi ·Fi,:::; 1 for all 1 :::; i,i':::; T, i i= i'. 

To see this, we use the fact that ep is connected and contains at least three 
components to find a third component, say Fk, so that Fk intersects at 
least one of Fi or Fi" say Fk . Fi 2 1. Applying (*) to Fi and to Fi' gives 
the inequalities 

vVe now multiply these two estimates to obtain the strict inequality 

Therefore Fi . Fi' < 2, and since the intersection index is an integer, we 
find that Fi . Fi' :::; 1 as desired. 

In particular, we have FI . F2 = 1. Using this and the fact that n I = 1, 
we can apply (*) to FI to obtain the bound 

Thus n2 equals either 1 or 2, which leads to two further subcases. 

IT 23, n2 = 11 
Applying (*) to F2 gives 

r 

n l F1 . F2 + L njFj · F2 = 2n2, 
j=3 

r 

and hence L njFj . F2 = 1, 
j=3 

since FI ·F2 = 1 and nl = n2 = 1. This means that there is exactly one more 
component intersecting F2 , call it F3 , and n;, = 1. If F3 also intersects FI , 
then we get two possible configurations depending on whether or not F1 nF3 
is the same point as F2 n Fc,. If they are the same point, then we get a fiber 
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of Type IV, and if they are not, then we get three rational curves arranged 
in a triangle, which is Type 13 . 

Suppose now that F3 does not intersect Fl. Then applying (*) to F3 
gives 

T 

n2 F2 . F3 + L njFj . F3 = 2n3, 
j=4 

T 

and hence L njFj . F3 = 1, 
j=4 

since F2 . F3 = 1 and n2 = n3 = 1. Therefore there is exactly one more 
component intersecting F3, call it F4, and n4 = 1. If F4 also intersects Fl , 
then we have four rational curves arranged in a square, which is Type I 4 . 

If F4 does not intersect H, then applying (*) to F4 gives in the same way 
one more component F5 intersecting F4, and n5 = 1. The fiber ep has only 
finitely many components, so this process must eventually terminate. More 
precisely, since ep has r components, the process will terminate with FT 
intersecting Fl. At this point we will have r rational curves, each of multi­
plicity 1, arranged in the shape of a polygon, which means that the fiber ep 

is of Type IT' 

Ir:::: 3, n2 = 21 
Applying (*) to Fl gives 

T T 

n2 F2' Fl + L njFj . Fl = 2nl, and hence L njFj . Fl = 0, 
j=3 j=3 

since Fl . F2 = 1, nl = 1, and n2 = 2. This means that there are no more 
components intersecting Fl. Next applying (*) to F2 gives 

T T 

nlFl . F2 + L njFj . F2 = 2n2, 
j=3 

and hence L njFj · F2 = 3. 
j=3 

Thus F2 intersects either one, two, or three additional components. 
Suppose first that F2 intersects three additional components, which 

we label F3, F4, and F5. Then n3 = n4 = n5 = 1, which gives a fiber of 
Type I~, and applying (*) to F3, F4, and F5 shows that ep contains no 
other components. 

Next suppose that F2 intersects exactly two other components, say F3 
and F4 . Switching these two components if necessary, we have n3 = 1 
and n4 = 2. Thus ep contains the configuration illustrated in Figure 4.5(a), 
where the small 2's next to F2 and F4 indicate that they are components 
of multiplicity 2. Of course, ep may contain some additional components. 
Let s :::: 4 be the largest integer so that ep contains the configuration 
illustrated in Figure 4.5(b). Applying (*) to Fi for any 4 :S i < s gives 

T 

ni-1Fi-l·Fi+nH1Fi+l·Fi+ L njFj"Fi = 2ni, 
j=8+l 

T 

so L njFj"Fi = 0, 
j=8+l 
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(b) 

Building a Fiber of Type I;, 

Figure 4.5 
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since Fi- 1 . Pi = P i+1 . Fi = 1 and ni-1 = ni = nH1 = 2. Thus there are 
no more components intersecting any of F41 ... ,P,-l. On the other hand, 
applying (*) to p, gives 

T 

n 8-1P,-1 . p, + L nJFj · p, = 2n,,, and hence 
j=-,+l 

T 

L nj FJ . F8 = 2. 
j=8+1 

If Fs intersects exactly one additional component, then that compo­
nent will have multiplicity 2, which means that Cp contains the config­
uration in Figure 4.5(b) with one more multiplicity-2 component. This 
contradicts our choice of s, so F2 must intersect two additional compo­
ncnts, each of which has multiplicity 1. This gives us a fiber of Type I~ 
(with n = s - 3), and it is thcn easy to check using (*) that there are no 
more components. This completes the proof in the case that F2 intersects 
exactly two components in addition to Fl. 

Finally we suppose that F2 intersects exactly one additional compo­
nent, say F';J, with multiplicity n3 = 3. This means that Cp contains the 
configuration illustrated in Figure 4.6(a). Let t ~ 3 be the largest integer 
so that Cp contains the configuration illustrated in Figure 4.6(h). Apply­
ing (*) to Fi for any 3 ::; i < t gives 

T 

ni-1Fi-1·Fi+nH1Fi+1·Fi+ L njFj"Pi = 2ni, so L njFj·Fi = 0, 
j=t+1 j=t+1 

since 

Fi - 1 . Fi = FH1 . Fi = 1, ni-1 = i-I, ni = i, and nH1 = i + 1. 

Thus there are no more components intersecting any of F3 , ... ,Ft - 1 . On 
the other hand, applying (*) to F t gives 

nt-1Ft-1 . Ft + L njFj · FL =:= 2nt, and hence L njFj · Ft = t + 1. 
J=t+1 j=t+1 
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(b) 

~ .... " F F t F 1+1 F 1+1 
Fi I F3 3 ' .... , t-l t-l t+I2 t+22 
2' -+ __ _ ... -
F2 Ft+3 Ft+4 

(C) 

(d) 

F 1+2 
t+22 

Building Fibers of Type IV*, III*, II* 

Figure 4.6 

If Ft were to intersect exactly one more component, then that component 
would have multiplicity t + 1, contradicting the fact that we chose the 
largest t so that Cp contains the configuration in Figure 4.6(b). Thus F t 

intersects at least two additional components, say Ft +1 and Ft +2 . 

Let Fi be any component intersecting Ft. Applying (*) to F; gives 

ntFt . Fi :s: 2ni, and hence ni:2: t/2. 

It follows that F t intersects only the two additional components F t+1 

and Ft+2' and we have the estimates 

nt+l + nH2 = t + 1, nt+2 :2: t/2. 

Switching Ft+l and Ft+2 if necessary, we may assume that nHl :s: nt+2. 
Then there are only two possibilities, depending on the parity of t. 

It == 1 (mod 2)1 
In this case we must have 

t+l 
nt+l = nt+2 = -2-' 
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Applying (*) to Ft+l then gives 

r r 

ntFt ·FH1 + 2..: njFj ·FH1 = 2nHl, and hence 2..: njFj ·Ft+1 = 1, 
j=t+3 j=t+3 

since Ft . Ft+l = 1, nt = t, and nHl = (t + 1)/2. Therefore Ft+l intersects 
exactly one more component, say Ft+3, with multiplicity nH3 = 1. Ap­
plying the exact same argument to FH2 gives the same conclusion, so ep 

contains the configuration illustrated in Figure 4.6(c). 
Finally, applying (*) to F t+3 gives 

r 

nt+l Ft+l· Ft+3+ 2..: n j Fj"Ft+3 = 2nt+3, 
j=t+5 

so 

since Ft+l . FH3 = 1, nt+l = (t + 1)/2, and nt+3 = 1. The sum is non­
negative, and t :::: 3 by assumption, so we must have t = 3. Therefore ep 

looks like Figure 4.6( c) with t = 3, which is precisely Type IV*. This 
completes the proof when t is odd. 

It == 0 (mod 2) I 
In this case we must have 

and 
t+2 

nt+2 = -2-' 

Applying (*) to Ft+l gives 

r r 

ntFt ·Ft+l + 2..: njFj ·FH1 = 2nt+l, and hence 2..: njFj ·Ft+l = 0, 
j=t+3 j=H3 

since Ft . Ft+l = 1, nt = t, and nt+l = t/2. Thus there are no additional 
components intersecting Ft+ 1. 

Next we apply (*) to F t+2 . This gives 

r r 

ntFt· FH2+ 2..: njFj·Ft+2=2nt+2, and hence 2..: n j F j ·FH2 =2, 
j=t+3 j=H3 

since Ft . Ft+2 = 1, nt = t, and nt+2 = (t + 2)/2. Hence Ft+2 intersects 
at least one additional component, say Ft+3, whose multiplicity nt+3 is 
either 1 or 2. So we now know that ep contains the configuration illustrated 
in Figure 4.6(d). 

Don't despair, we're almost done! Applying (*) to FH3 gives 

and hence 

r 

nt+2 Ft+2 . Ft+3 + 2..: njFj · FH3 = 2nt+3, 
j=t+4 
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r t+2 {(2-t)/2 .L njFj · Ft+3 = 2nt+3 - -2- = (6 - t)/2 
]=t+4 

if nt+3 = 1, 
if nt+3 = 2, 

since Ft+2 . Ft+3 = 1 and nt+2 = (t + 2)/2. But the sum is non-negative, 
and t is even and 2': 3 by assumption, so we must have 

t = 4 or 6 and nt+3 = 2. 

If t = 6, then there are no additional components, and Figure 4.6(d) is 
exactly Type II*. Finally, if t = 4, then there is one more component FtH 
hitting Ft+3 , and its multiplicity is ntH = 1. This gives Type III*, which 
completes the proof of Theorem 8.2. 0 

§9. Tate's Algorithm to Compute the Special Fiber 

In this section we are going to describe an algorithm of Tate which com­
putes, among other things, the reduction type of an elliptic curve given by 
a Weierstrass equation. We set the following notation, which will be used 
throughout this section. 

R a discrete valuation ring with maximal ideal p, uniformizing 
element Jr, fraction field K, perfect residue field k of character­
istic p, and normalized valuation v. 

ElK an elliptic curve given by a Weierstrass equation 

elR 
clR 

E : y2 + alxy + a3Y = X3 + a2x2 + a4X + a6. 

a minimal proper regular model of E over R (4.5b). 

the largest subscheme of e I R which is smooth over R (6.1.1). 
Note that clR is a Neron model for ElK (6.1). 
= e XR k, the special fiber of e. 
= c x R k, the special fiber of c. It is a group variety over k. 

the identity component of c (6.1.2); that is, cO is the open 
subset of c obtained by discarding the non-identity components 
of the special fiber. It is a subgroup scheme of G (exercise 4.25). 

the identity component of the group variety elk (1.5c). 

Tate's algorithm is essentially a set of instructions for computing e 
and c from a given Weierstrass equation. For this reason its statement 
as a formal theorem has the unsatisfying form: "The following 11 step 
procedure leads to the stated results." So before we describe the algorithm 
itself, we want to give two corollaries. This will serve to explain (if not 
to excuse) why the following results are called "corollaries," when in fact 
they are really conclusions which can be deduced from the description and 
validity of Tate's algorithm. 
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Corollary 9.1. Take a minimal Weierstrass equation for E j K, and 
let W C lP'h be the closed subscheme defined by this equation. Fur­
ther, let WO j R be the largest subscheme of W which is smooth over R. 
Then WO ~ co; that is, WO is the identity component of a Neron model 
for Ej K. 

Corollary 9.2. Take a minimal Weierstrass equation for E j K. We recall 
from [AEC, VII §2] the following notation: 

Ejk the reduction of the given Weierstrass equation modulo p. 

Ens(k) the set of non-singular points of E(k). 

Eo(K) = {p E E(K) : P E E(k)ns}, the set of points of E(K) with 
non-singular reduction. 

El(K) = {p E E(K) : P = 6}, the set of points of E(K) which 
reduce to the identity element. 

Further, let 

c1(R) = {a E c(R) : a(p) = 6 E £(k)}. 
The isomorphism E(K) ~ c(R) described in (5.1.3) induces the following 
identifications: 

(a) 
E(K) ::) Eo(K) ::) El(K) 

II 
c(R) ::) cO(R) ::) c1(R). 

(b) 
E(K)jEo(K) ~ c(R)jcO(R) '---+ £(k)j£O(k) 

r r r 
E(K)j El(K) ~ c(R)jc1(R) '---+ £(k). 

If K is complete, or even merely Henselian, then both inclusions in (b) are 
isomorphisms. 

(c) Ens(k) = £O(k). 
(d) The group E(K)jEo(K) is finite. More precisely, if E has split multi­
plicative reduction, then E(K)j Eo(K) is a cyclic group of order -v(j(E)); 
otherwise, E(K)j Eo(K) has order 1, 2, 3, or 4. 

Remark 9.2.1. Note that Corollary 9.2(d) is exactly [AEC, VII.5.1], a 
result which was left unproven in [AEC]. The fact that E(K)j Eo(K) is 
finite, even if the residue field k is infinite, played an important role in the 
proof of the criterion of Neron-Ogg-Shafarevich [AEC, VII.7.1], and we will 
use it again in the next section (10.2) when we prove a generalization of 
this criterion. 
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Remark 9.2.2. Corollary 9.2 can be used to bound the torsion subgroup 
of an elliptic curve defined over a local field or a number field. Con­
tinuing with the notation set at the beginning of this section, we recall 
from [AEC, VII.3.1(a)] that the subgroup EI(K) contains no prime-to-p 
torsion, since it is isomorphic to the formal group of E. Suppose now 
that E has additive reduction. Then £O(k) = Ens(k) = k+ is a p-group 
from (9.2c), whereas the quotient E(K)jEo(K) ~ £(k)j£O(k) is a group of 
order 1, 2, 3, or 4 from (9.2d). Using these facts and the exact sequences 

o ~ EI (K) ~ Eo(K) ~ £O(k), 

o ~ Eo(K) ~ E(K) ~ E(K)jEo(K) ~ 0, 

we conclude that if E j K has additive reduction, then E(K)tors has or­
der ape for some a E {I, 2,3, 4} and some e ?: O. 

Now consider an elliptic curve E defined over a number field K. The 
torsion subgroup of E(K) injects into the torsion subgroup of E(Kp) for 
each completion of K, so the local estimate we just proved can often be used 
to obtain strong global estimates. For example, suppose that E has additive 
reduction at primes PI, P2 of K with distinct residue characteristics PI, P2· 
Then E(K)tors has order dividing 12, and if PI ?: 5, then E(Khors has 
order at most 4. 

Tate's algorithm, which we are now going to describe, computes the 
following quantities associated to the elliptic curve E j K: 

Type the reduction type of the special fiber e over the algebraic clo­
sure k of k. We will use the Kodaira symbols (8.2) to describe 
the reduction type. 

m( E j K) the number of components, defin,=:d over k and counted without 
multiplicity, on the special fiber e. 

v('D E/ K) the valuation of the minimal discriminant of E j K. 

f(E j K) the exponent of the conductor of E j K. This quantity will be 
defined in §1O, but for now we note that it can be computed 
using Ogg's formula (11.1), 

f(EjK) = V('D E/ K ) - m(EjK) + 1. 

c(EjK) the order of the group of components £(k)j£O(k). Equiva­
lently, c( E j K) is the number of components of the special 
fiber e which have multiplicity 1 and are defined over k. 

To ease notation, we will sometimes write 

m = m(EjK), f = f(EjK), c = c(EjK), 

when the curve E and field K are clear from the context. 
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Remark 9.3. If K is a complete local field, then (9.2b) says that c(E/ K) 
equals the order of E(K)/ Eo(K). This quantity is the so-called Birch­
Swinnerton-Dyer "fudge factor." It is a sort of p-adic period and appears 
in the conjectural formula for the leading coefficient of L( E, s) around 
s = 1 [AEC, C.16.5]. See Tate [2, §5] for details. 

Tate's Algorithm 9.4. (Tate [2]) The following algorithm computes the 
reduction type, the values ofm(E/K), v('DE / X ), !(E/K), and c(E/K), 
and the various other quantities described during the course of the algo­
rithm. 

Remark 9.4.1. At the conclusion of Tate's algorithm, one obtains a min­
imal Weierstrass equation for the given elliptic curve. In practice, however, 
it is considerably easier to implement Tate's algorithm if one knows, a pri­
ori, that the initial Weierstrass equation is minimal. Further, if one only 
wants a minimal equation and is not interested in computing other quan­
tities, such as the reduction type, then there are easier methods available. 
For example, if the characteristic p of k satisfies p 2': 5, then a given Weier­
strass equation is minimal if and only if either V(C4) < 4 or V(C6) < 6. 
In general, one can use a short algorithm of Laska [1] to find a minimal 
Weierstrass equation. See also exercise 4.36 for another method. 

Remark 9.4.2. In the case that the residue field k is algebraically closed, 
we have assembled information about the various reduction types in Ta­
ble 4.1. This table is taken, with minor modifications, from Tate [2, §6]. 
Notice that if char(k) i= 2,3, then everything about E (reduction type, 
exponent of conductor, group of components E(K)/Eo(K)) can be read 
off from Table 4.1 once one has a minimal Weierstrass equation for E / K. 

Our description of Tate's algorithm follows very closely Tate's exposi­
tion [2]. The idea is to begin with an arbitrary Weierstrass equation 

for E / K and manipulate it to produce a minimal proper regular model e. 
Once we have this model, we will be able to read off all of the information 
we want. As we go along we will be making various assumptions. These 
assumptions are cumulative, and will be I boxed I for clarity. We will 
delay the proofs of the various steps until after describing the complete 
algorithm. 

Making a change of variables, we may assume that the Weierstrass 
equation has coefficients lal,a2,a3,a4,a6 E RI. We let 

b2 = ai + 4a2, b4 = ala3 + 2a4, b6 = a~ + 4a6, 

bs = aia6 + 4a2a6 - ala3a4 + a2a~ - a~ = (b2 b6 - b~)/4, 
A = -b~b8 - 8b~ - 27b~ + 9b2 b4b6 
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be the usual quantities [AEC, III §1] associated to the given Weierstrass 
equation. 

It is not necessary to assume that the original Weierstrass equation is 
minimal. When the algorithm terminates, the resulting Weierstrass equa­
tion will be minimal, so its discriminant will equal V('D E/ K). Further, we 
will see that the smooth part of the final Weierstrass equation, considered 
as a scheme over R, is the identity component of e, which will prove (9.1). 

Step 1. If Jr f 6., then the special fiber E / k is an elliptic curve, and we 
have 

Type la, v(6.) = 0, m = 1, f = 0, c = 1. 

Step 2. Assume iJr/6.i. This means that f;; has a singular point. 
Make a change of variables to move the singular point to (0,0). Then 
iJr/a3, a4 and aGIo If Jr f b2, then we have Type In with n = v(6.). More pre­
cisely, let k' be the splitting field over k of the polynomial T2 + a1T - a2. 
Then we have 

Type In' v(6.) = n ~ 1, m = n, f = 1. 

Further, if k' = k, then E has split multiplicative reduction, 

EO(k)~k* and c=n; 

whereas if k' 1= k, then E has non-split multiplicative reduction, 

and c = {~ if n is odd, 
if n is even. 

From now on, f;; has a cusp and 1 EO (k) ~ k+ I. We are going transform 
the Weierstrass equation so as to make the ai's more and more divisible 
by Jr. To keep track, we introduce the convenient notation 

-1' 
a':.T = Jr ai. 

Step 3. Assume now that iJr/b2i. If Jr2 faG, then 

Type II, m = 1, f = v(6.), c = 1. 

Step 4. Assume that iJr2/a6i (which implies that Jr2/b6 and Jr2/bs ). If 
Jr3 f bs , then 

Type III, m = 2, f = v(6.) - 1, c = 2. 

Step 5. Assume that iJr3/bs i (which implies that Jr2/b4). If Jr3 f b6, then 

Type IV. Let k' be the splitting field over k of T2 + a3,lT - a6.2 = 0. Then 

Type IV, m=3, f = v(6.) - 2, c = {~ if k' = k, 
if k' 1= k. 
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Step 6. Assume that 17r3 1 b6 1. Then we can change coordinates to get 

More precisely, the boxed assumptions up to this point show that we can 
factor 

y2 + a1Y - a2 == (Y - a)2 (mod 7r), 

y2 + a3,lY - a6,2 == (Y - (3)2 (mod 7r), 

and then the substitution y' = y + ax + (37r will have the desired effect. 
Having done this, we consider the factorization over k of the polynomial 

To assist in explicit computations, we note that P has discriminant 

If P(T) has distinct roots in k (i.e., if 7r f Disc( P)), then 

Type 1(;, m = 5, f = v(.6.) - 4, c = 1 + #{a E k : P(a) = a}. 

Step 7. If P(T) has one simple root and one double root in k, then 

Type I~, m = n + 5, f = v(.6.) - 4 - n, C = 2 or 4. 

If p oJ 2, then n = v(.6.) - 6, so m = v(.6.) - 1 and f = 2. For arbitrary p, 
one can calculate the values of nand c using the following subprocedure 
to Step 7. 

Step 7. (Subprocedure) Translate x so that the double root of P(T) is T = 

o. Then 7r2 f a2, 7r3Ia4, and 7r4Ia6' If the polynomial y2 + a3,2Y - a6,4 has 
distinct roots in k, let k' be its splitting field. Then 

Type Ii, m=6, f = v(.6.) - 5, c = {~ if k' = k, 
if k' oJ k. 

If y2 + a3,2Y - a6,4 has a double root in k, translate y so that the root 
is Y = O. Then 7r31a3 and 7r5Ia6' If the polynomial a2,lX2 + a4,3X + a6,5 
has distinct roots in k, let k' be its splitting field. Then 

{ 4 if k' = k, 
Type!:}, m=7, f=v(.6.)-6, c= 2 ifk'oJk. 
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If a2.1X2 + a4,3X + aG.5 haH a double root in k, translate x HO that the 
root iH X = 0. Then 7r41a4 and 7r6Ia6. If the polynomial y2 + a3.3Y - aG.G 
has diHtinct roots in k, let k' be itH Hplitting field. Then 

Type I;, m=8, f = v(6.) - 7, c = {i if k' = k, 
if k' =1= k. 

If y2 + a3.3Y - a6.G has a double root in k, etc. Continue this proce­
dure until the quadratic polynomial which appears has distinct roOtH in k. 
The proceHH will terminate because after each two steps we have will have 
forced a3, a4, and a6 to each be diviHible by at leaHt one additional power 
of 7r. This meanH that b4 , bu, and bs are also divisible by at least one addi­
tional power of 7r, and hence the Harne is true of 6.. But the discriminant 6. 
is invariant under all of the translations involved, HO the procesH will stop. 

Step 8. Suppose now that P(T) has a triple root in k. l\Iaking a trans­
lation on x, we rna' assume that the root is T = 0, which means that 
7r2Ia2, 7r:3Ia4, and 7r41a6 . If the polynomial y2 + a3,2 Y - a6,4 has distinct 

roots in k, let k' be its splitting field. Then 

Type IV*, m,=7, f=v(6.)-6, c = {i if k' = k, 
if k' =1= k. 

Step 9. Suppose now that y2+a:;.2Y -a6.4 has a double root in k. Making 
a translation on we may aSHume that the root is Y = 0, which means 
that 7r3 1 a3 and 7r5 1 a6 . If 7r4 t a4, then 

Type 111*, m = 8, f = v(6.) -7, c = 2. 

Step 10. SuppoHe that 17r4Ia41. If 7r6 t a6, then 

Type 11*, Tn = 9, f = v(6.) - 8, c = l. 

Step 11. Finally, suppose that I7rDla6i. Then the original Weierstrass 

equation was not minimal. The substitution (x, y) = (7r2:r', 7r3 y') leads to 
the equation 

with coefficients in R and discriminant 6.' = 7r- 12 6.. Go back to Step 1 
and begin the algorithm again with this new equation. Note that we can 
only get to Step 11 a finite number of times, since each time we get here, 
the discriminant of the original \VeierstraHs equation must be divisible by 
an additional factor of 7r 12 . Therefore the algorithm will terminate. 
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This concludes our description of Tate's algorithm. We are now going 
to give some indication of why the various steps in Tate's algorithm yield 
the stated conclusions. The idea is to start with the given Weierstrass 
equation and perform a sequence of blow-ups to produce a minimal regular 
model for E. In practice, we will really only need to carry out the blowing­
up process until we are able to recognize which type of fiber is emerging. 

Let W C lP'k be the scheme defined by the given Weierstrass equation, 
and let WO j R be the largest subscheme of W that is smooth over R. In 
other words, WO is formed by removing from W all singular points (if any) 
on its special fiber W. Just as in the description of Tate's algorithm, we 
will put a box around cumulative assumptions as we make them. 

Proof of Step 1. The condition n f b.. means that the special fiber W is 
non-singular, so W itself is smooth over R. Hence e = e = W, which shows 
that the special fiber is of Type 10. 

We assume now that lnlb..l, which means that the reduction E has a 

singular point. (Equivalently, the special fiber W is singular.) Making a 
linear change of variables, we may assume that the singular point is (0,0) E 

E. This means that if we write 

then /(0, 0) == 0 (mod n), and further both partial derivatives (8f j8x)(0, 0) 
and (8fj8y)(0,0) vanish modulo n. Hence Ha3,a4,a61. 

Proof of Step 2. This is the case that E has multiplicative reduction. 
We are going to leave it to the reader (exercise 4.37) to perform the blow­
ups necessary to resolve the singularity in this case. At the end of this 
section (9.6) we will briefly explain another approach to analyzing mul­
tiplicative reduction using Tate's analytic models for elliptic curves over 
complete local fields. We will also prove the following lemma which covers 
Types II and II. 

Lemma 9.5. Let R be a discrete valuation ring with fraction field K, 
let E j K be an elliptic curve given by a Weierstrass equation 

with coefficients in R, let W C lP'k be the R-scheme defined by this equation, 
and let WO j R be the largest subscheme of W that is smooth over R. 
(a) Ifv(b..) = 1, then W is regular, e = W, and £ = Woo The curve E has 
Type h reduction. 
(b) Ifnla3, a4, a6 and n 2 f a6, then W is regular, e = W, and e = Woo The 
curve E has Type h reduction if n f b2 , and Type II reduction if nlb2 • 

PROOF. (a) As described above, the fact that nib.. means that we can make 
a linear change of variables to get nla3, a4, a6. This implies that nlb4' b6, bs . 
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If we make the assumption that v(D.) = 1, then we must have v(b8) = 1, 
since all of the other terms in the formula for D. are divisible by at least 7r2 . 

Writing bs in the form 

we find that if v(D.) = 1, then v(a6) = 1 and 7r f h 
We now drop the assumption that v(D.) = 1 and prove that W is 

regular assuming only that 7ria3, a4, a6 and 7r2 f a6. This will verify the 
first statements in both (a) and (b). We need to prove that W is regular 

at the singular point (0,0) E W on its special fiber. In other words, if we 
let m = (7r, x, y) be the maximal ideal corresponding to the singular point 
on the special fiber, then we must show that the local ring of W at m, 

is a regular local ring. By assumption, v(a6) = 1, so a6 is a uniformizer 
for R. On the other hand, a6 is in the ideal of (')W,m generated by x and y, 
since 

Therefore the maximal ideal (7r, x, y) of (')W,m is generated by the two el­
ements x and y, so (')W,m is a regular local ring. This proves that W is 
regular, and since it is clearly also proper over R, we find that e = W 
and c = Woo This pro~es t~e first part of (a) and (b). 

The special fiber e = W is the curve 

in A~. It will have a node (respectively cusp) at (0,0) if the quadratic 
form y2 + iilxy - ii2X2 has distinct roots (respectively a double root) in k. 
The discriminant of this quadratic form is iii + 4ii2 = b2, so W has a node 
if 7r f b2 and a cusp if 7rib2. By definition, the special fiber is of Type 11 
if it has a node, and of Type II if it has a cusp, and we saw above that 
if v(D.) = 1, then 7r f b2. This completes the proof of (9.5). 0 

Continuing on past Step 2, we now assume that l7rib21. Notice that 
b2 is the discriminant of the quadratic form y2 + al xy - a2x2, so this form 
has a double root in k, say 

2 + 2 _ ( )2 Y alxy - a2x = Y - ax (mod 7r). 

The substitution y ~ y + ax allows us to assume that l7rial, a21. Notice 
that this substitution leaves the other ai's and all of the bi's unchanged. 



§9. Tate's Algorithm to Compute the Special Fiber 371 

Proof of Step 3. We are given that 7rla3, a4, a6, b2 and that 7r2 t a6' This 
is exactly the situation in (9.5b), which shows that the special fiber is of 
Type II. 

Proof of Steps 4 and 5. We now add the assumption that 17r2Ia61, and 
recall that our model satisfies 7rlal, a2, a3, a4. We are going to blow up the 
singular point 7r = x = y = 0 of W using the procedure described in (7.7). 
Thus the blow-up consists of the following three coordinate charts glued 
together in an appropriate fashion: 

7r'y' = 7r, 

7r" x" = 7r. 

Note that we are using the notation ai,r = 7r- r ai introduced earlier. 
Looking at the special fibers of each of WI, W', and W", it is easy to 

verify that the special fiber of W" contains all of the components and all of 
the singular points of the special fiber of the blow-up. Thus all of the action 
will be happening on W". Further, it is not hard to see that the projec­
tion A ~ -+ Ah induced by the natural inclusion R[y", 7r"l '--+ R[x", y", 7r"l 
maps W" isomorphically to the subscheme of Ah = Spec R[y", 7r"l given 
by the single equation 

(The map in the other direction is x" -+ y,,2 + alY" + a3.17r"y" - a2 -
" ,,2 ) a4 17r - a6 27r . 

, We ne;t take the closure of this scheme in lP'h. This means we homog-
enize 

y" = YjX and 7r" = Zj X, 

which yields the scheme V c lP'h = Proj R[X, Y, Zl given by the equation 

Notice that V is a model for E j K, since its generic fiber is isomorphic 
over K to the original Weierstrass equation defining E. 

To find the special fiber of V, we set 7r = 0, so V is the curve in A% 
given by the equation 

Thus the special fiber consists of the line Z = 0 and the (possibly degen­
erate) conic 
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This line and conic intersect at the point Y = Z = 0 with multiplicity 2. 
Suppose first that 71"3 f bs, which is the condition for Step 4. The 

formula defining bs is 

and our cumulative assumptions imply that every term except the last one 
is divisible by 71"3. Hence 71"3 f bs if and only if 71"2 f a4, and this in turn 
is equivalent to the assertion that (*) is a non-singular conic (as opposed 
to being two lines). So 71"3 f bs implies that V consists of two non-singular 
rational curves intersecting at a single point with multiplicity 2, which is 
exactly Type III. 

Next assume that 17I"31bs l, or equivalently that 7I"2Ia4' This means that 

the special fiber V is given by the equation 

(**) 

so over k it consists of three lines. These lines will be distinct if and only 
if the quadratic form y2 + a3,l y Z - a6,2Z2 has distinct roots, which is 
equivalent to the condition that its discriminant a~,l + 4a6,2 = b6,2 does 
not vanish. So if we assume that 71"3 f b6 , which is exactly the condition for 
Step 5, then V consists of three non-singular lines intersecting transversally 
at a single point, which is a fiber of Type IV. Further, the number c of 
components defined over k will be 3 if y2+ a3,l y Z -a6,2Z2 splits into linear 
factors over k and will be 1 otherwise. This completes our consideration of 
Steps 4 and 5 of Tate's algorithm. 

We now assume that 17I"31b61. This means that the quadratic form 
in (**) has a double root in k. Making a translation Y ---> Y + (3Z moves 
the double root to y = O. We now have 17I"Ial,a2, 7I"2Ia3,a4, and 7I"3Ia61. 
The equation for V can be written as 

and its special fiber y2 Z = 0 consists of the line Y = 0 with multiplicity 2 
and the line Z = 0 with multiplicity 1. 

The next step is to blow-up the double line 71" = Y = O. To ease 
notation, we are going to dehomogenize at the same time, so we set 

and divide the equation for V by 71". (The reason for the subscripts on Xl 
and Y2 is that they are related to our original Weierstrass coordinates by 
the formulas X = 7I"Xl and Y = 7I"2 y2 . For the rest of this proof we will use 
the notation x = 7I"TXT and Y = 7I"TYT') 
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We now have the scheme 

and the total blow-up consists of V and Vo glued together in the natural 
way. The special fiber of the total blow-up is thus formed by gluing together 
the two pieces 

V: y 2 Z = 0, 

170 : 0 = xf + a2,lxi + a4,2xl + a6,3' 

There are now three cases to consider, depending on the number of distinct 
roots (in k) of the polynomial 

Proof of Step 6. For Step 6 we assume that P(T) has distinct roots 
in k. Then 170 consists of three distinct lines, so the blow-up is composed 
of the double line y2 = 0 together with four lines of multiplicity 1 in­
tersecting it. This means we have a fiber of Type 10, Further, there is 
always one component Z = 0 of multiplicity 1 defined over k, and the 
other multiplicity-l components correspond to the roots of P(T). Hence 
the number c of multiplicity-l components is one more than the number of 
roots of P(T) in k. 

Proof of Step 7. For Step 7 we assume that P(T) has one simple root and 
one double root. Making a translation of the form Xl --> Xl + '"Y, we may 
assume that the double root is T = 0, which implies that 7r2 f a2, 7r3!a4, 

and 7r4 !a6. The special fiber of Vo is now 

so we need to blow-up Vo along the double line 7r = Xl = O. To do this, we 
make the substitution Xl = 7rX2 and divide by 7r to obtain the scheme 

Our total special fiber is now composed of the following components: the 
simple lines Z = 0 and Xl + a2,1 = 0, the double lines Y = 0 and Xl = 0, 
and the special fiber of VI' Notice how a fiber of Type I~ is emerging. 

The special fiber of VI is 

V- 2 - - 0 
1 : Y2 + a3,2Y2 - a6,4 = . 

If this quadratic equation has distinct roots in k, then VI consists of two 
distinct lines, and we have a fiber of Type Ii. Further, there are already 
two multiplicity-l components defined over k, namely the lines Z = 0 
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and Xl + a2,1 = 0, so c = 4 if the polynomial Y§ + a3,2Y2 - a6,4 has its roots 
in k, and c = 2 otherwise. 

If the polynomial Y§ + a3,2Y2 - a6,4 has a double root, then making 
a translation on Y2 allows us to take the double root to be Y2 = O. This 
means that 7l'3ta3 and 7l'5ta6, and the special fiber of Vl is Y§ = O. We 
blow-up Vl along this double line by making the substitution Y2 = 7l'Y3 and 
dividing by 7l', which gives the scheme 

The special fiber of V2 is 

If this quadratic equation has distinct roots in k, then V2 consists of two 
distinct lines, we have a fiber of Type 12, and we're done. Otherwise the 
quadratic equation has a double root and V2 is a double line, so we translate 
to make the double line x~ = 0, blow it up using X2 = 7l'X3, and continue 
on our merry way. 

As explained during the description of the Step 7 subprocedure, this 
process will eventually terminate. The point is that the special fiber at 
each stage looks like 

if n = 2v - 3 is odd, 
if n = 2v - 2 is even. 

So each two steps of the algorithm force a3, a4, and a6 to be divisible by 
an additional power of 7l'. This implies the same for b4 , b6 , and bs , and 
hence also for ~. But ~ is invariant under the various translations we are 
using, which shows that eventually we must get a quadratic polynomial 
with distinct roots. We will leave for the reader the easy verification that 
if the residue characteristic p i= 2, then the fiber V n consists of two distinct 
lines precisely when n = v(~) - 6. This concludes our discussion of Step 7 
of Tate's algorithm. 

Proof of Step 8. We now assume that the polynomial P(T) has a triple root 
in k, which after a translation we can take to be T = O. This means that 
17l'2ta2, 7l'3ta4, and 7l'4ta61, so the special fiber Vo is the triple line x~ = O. 
Our total special fiber now consists of the simple line Z = 0, the double 
line y2 = 0, and the triple line xr = O. The scheme Vo is regular except at 
the points on the special fiber satisfying 

Making a translation Y2 ~ Y2 + 'Y allows us to assume that the polynomial 
y§ + a3,2Y2 - a6,4 has Y2 = 0 as a root in k. This may require making 
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a quadratic extension of k, in which case the components of the special 
fiber corresponding to the two roots of the quadratic polynomial will not 
be defined over k. 

We now have 17r5Ia61, and we blow-up Vo at the point 7r = Xl = Y2 = 0 
by making the change of variables 

7r = 7r'y', 
, , 

Xl = X y, y =y'. 

(This is chart 2 of the blow-up as described in (7.7).) This yields the 
scheme 11' C A1. = Spec R[7r', x', y'] given by the equations 

7r = 7r'y'. 

The special fiber of 11' consists of three components, which we label as 

F{ : 7r' = x' = 0, F~: 7r' = y' = 0, F~: y' = ib,2 - a4,3x' - a6,57r' = o. 

Notice that when we glue 11' to Vo, F{ is identified with the mul­
tiplicity-3 component x~ = 0 of 170 . Our next step is to compute the 
multiplicities of the new components F~ and F~. To do this, we rewrite the 
equation for 11' as 

'{ , , , ,2 , , ,},3 , 
7r Y + al,lx Y + a3,2 - a2,2x Y - a4,3x - a6,57r = X y. 

The function x' does not vanish identically on F~, so it is a unit in the local 
ring (') F~. Similarly, since we are making the Step 8 assumption that 7r3 f a3, 
the quantity in braces is also a unit in (') pl. It follows that both 7r' and y' 

2 

are uniformizers for (') F~; that is, they each vanish to order 1 on F~, so 

ordFJU') = ordF~(7r) = ordF~(7r'Y') = 2. 

We leave for the reader the analogous verification that ordF~ (11') = l. 
But we're not done with Step 8, because we have to perform an iden­

tical blow-up of Vo at the singular point 7r = Xl = Y2 + a3,2 = o. This gives 
another pair of components, one of multiplicity 2 and one of multiplicity l. 
The resulting configuration is of Type IV· , which completes the verification 
of Step 8 of Tate's algorithm. 

Proof of Step 9. For this step we have 1~3Ia31, so the scheme 11' given 
above is singular at the point 7r' = x' = y = o. We blow it up at that 
point by making the substitution 

7r' = 7r" x", X' = x", y' = y"x". 

This gives the scheme 11" C A 1. = Spec R[7r", x", y"] defined by the equa­
tions 

11" : y" 7r" + a x"y" 7r" + a x"y"7r,,2 1,1 3,3 
,,2 " ,,2 " " " ,,2 = X Y + a2,2x Y 7r + a4,37r + a6,57r , 

7r = X,,2 y" 7r". 
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Under our Step 9 assumption that 11.4 f a4, we find that U" consists of the 
following four components: 

F{' : x" = 1':" = 0, F~' : y" = 1':" = 0, 

F~' : x" = y" - a4,3 - a6,51':" = 0, 

F~' : y" = a4,3 + a6,51':" = O. 

We compute the multiplicity of F{' in the fiber by writing 

II { II II " II II II 112 II "} 112 II 1': Y + aI,Ix Y + a3,3x Y 1': - a2,2x Y - a4,3 - a6,51': = x y. 

The function in braces does not vanish identically on F{" so it is a unit 
in C) F". This means that x" is a uniformizer for F{' and ordF" (1':") = 

1 1 

2 ordF " (x") = 2. Hence 
1 

So we now have a chain of components of multiplicities 1, 2, 3, and 4. 
Notice how the fibers of Type III* and II* are emerging. 

A similar calculation shows that ordp " (U") = 2. Further, our Step 9 
2 

assumption that 1':4 f a4 implies that U" is regular at the point 1':" = 

x" = y" = 0 where F{' and F~' intersect. Hence there is a multiplicity-2 
component attached to the multiplicity-4 component of the regular minimal 
model. This means that the fiber is of Type III*, which completes our 
analysis of Step 9. For those who wish to recover the full Type III* fiber, 
we mention that U" is singular at the intersection of FI and F3 , that is, at 
the point 1':" = x" = y" - a4,3 = O. 

Proof of Step 10. We now assume that 11':4Ia41. Then U" is singular at 
the point 1':" = x" = y" = 0, so we blow it up using the substitution 

x" = x"' y"', y" = y"'. 

This gives the scheme 

U'" ", + ", "' ", + ", ",2 ",2 : 1': aI,Ix Y 1': a3,3x Y 1': 

,"2 ", + ",2 ",2 ", + ",2 ",3 ",2 + a ",2 = X Y a2,2x Y 1': a4,4x Y 1': 6,51':, 

1': = X",2 y",4 1':"'. 

The special fiber U'" consists of four components, 

F{" : x'" = 1':'" = 0, F~" : y'" = 1':'" = 0, 

F~" : x", = 1 - a6,51':'" = 0, F~" : y"' = 1 - a6,51':"' = O. 
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We compute the multiplicity of Ft in the special fiber by writing 

", {I + ", ", + ",y",2", a X",2 y ",2 71" a1,lx Y a3,3 x 71" - 2,2 

",2 ",3 ", "'} x",2y'" 
-a4,4x Y 71" - a6,571" = . 

Both x'" and the quantity in braces are units in (') Fill, which shows that 71"'" 
2 

and y'" each vanish to order 1 on F~". This allows us to compute 

d (U- III) d () d (",2",4",) 5 or Fill = or Fill 71" = or Fill x Y 71" =. 
2 2 2 

Further, the Step 10 assumption that 71"6 t a6 implies that U'" is regular 
at the intersection point 71"'" = x'" = y'" = 0 of F{" and F~". Hence the 
appearance of the multiplicity-5 component F~" tells us that the fiber is of 
Type II*. As usual, we leave for the reader the enthralling task of perform­
ing the additional blow-ups necessary to find the other II* components. 

Proof of Step 11. Finally, suppose that i71"6Ia6i. Our cumulative assump­
tions to this point are that 71"la1, 71"2Ia2, 7r3Ia3, 7r4Ia4, and 7r6Ia6' In U'" we 
make the substitutions 

7r'" = 1 j 7ry~ , x'" = xV 7ry~ 

which leads to the R-scheme 

defined by a Weierstrass equation whose discriminant is 7r~ 12~. We can 
now begin again at Step 1 using this "smaller" Weierstrass equation. Note 
that each time we pass through Step 11, we will have shown that the original 
discriminant is divisible by an additional 7r12 . Therefore the algorithm will 
terminate. This concludes the proof of Tate's algorithm (9.4). 0 

Remark 9.6. During our verification of Tate's algorithm (9.4), we left 
the case of multiplicative reduction (Type In) for the reader to analyze. 
There is another approach to multiplicative reduction using Tate's p-adic 
analytic uniformization. We will describe Tate's uniformization in the next 
chapter (V.3.1, V.5.3), but briefly, if E has split multiplicative reduction 
and K is a complete local field, then there is a q E K* with v(q) = v(~) > 0 
and an isomorphism of groups 

K* jqZ ~ E(K). 

This isomorphism is given by v-adically convergent power series. Further, 
the isomorphism identifies the subgroups R* 2;! Eo(K), so we get isomor­
phisms 
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Here the second map is induced by the valuation v : K* -+ Z, and 

n = v(q) = v(~). 

We know that E(K) = C(R), and it is clear from the definitions 
that Eo(K) = WO(R). Further, one can show that WO(R) = £O(R), ei­
ther by a direct calculation or using the argument in (V §4). It follows 
that £(R)/£O(R) ~ Z/nZ, and then (9.2b) gives c = n. 

Similarly, if E has non-split reduction, then (V.5.4) says that we can 
find an unramified quadratic extension K' / K with residue field k' such 
that E has split reduction over K'. Then 

E(K') ~ K'* /l', 
E(K)~{UEK'*/q'll.: Nf(u) Eq'll./q27!.}, 

() { 1* K' } { 1* k' } Eo K ~ u E R : NK (u) = 1 ~ u E k : Nk (u) = 1 . 

Note the last isomorphism depends on the fact that K' / K is unramified. 
Finally, we have 

The fact that K' / K is unramified means that the norm map is surjective on 
units, Nk : R'* ---» R*, from which one easily deduces that this last group 
is trivial if n is odd, and has order 2 if n is even. 

PROOF (of Corollary 9.1). If we start with a minimal Weierstrass equation 
for E / K, then we never get to Step 11 of Tate's algorithm, so the original 
equation defining W never changes. Tracing through the various stages 
of Tate's algorithm, we see that the non-singular part WO of the Weier­
strass equation ends up as an open subset of the minimal regular model e. 
Since WO £learly contains the image of 0Ie zero section, and since the spe­
cial fiber W is irreducible, we see that W is the identity component of the 
special fiber of e. Equivalently, WO = £0. (For an alternative proof of (9.1) 
which uses a bit more algebro-geometric machinery and does not rely on a 
case-by-case analysis, see Liu [1].) 0 

PROOF (of Corollary 9.2). (a) First, the equality E(K) C(R) follows 
from the definition of the Neron model (5.1.3). Next we observe that the 
definitions of Eo and WO are both given in terms of the reduction of the 
given Weierstrass equation, so Eo(K) = WO(R) is automatic. Now (9.1) 
says that WO = £0, so we get the middle equality Eo(K) = £O(R). Fi­
nally, El (K) and £ 1 (R) each consists of the points which reduce to the 
identity on the special fiber, and these reductions are compatible since 
we already know that Eo(K) = £O(R). This proves the third equal­
ity El(K) = £l(R). 
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(b) The isomorphisms E(K)jEo(K) ~ £(R)j£O(R) and E(K)jEl(K) ~ 
£(R)j£l(R) are immediate from the identifications proven in (a). Further, 
the reduction map £(R) ---> £(k) has kernel £l(R), and the inverse image 
of £O(k) is £O(R) by definition, which gives the injectivity of the right-hand 
maps. Finally, if R is complete (or merely Henselian), then the reduction 
map £(R) ---> £(k) is surjective (6.4a), so in this case the right-hand maps 
are isomorphisms. 
(c) We have Ens(k) = \\JO(k) directly from the definitions. Now (9.1) 
implies that \\JO(k) = £O(k), which gives the desired result. 
(d) From (b) we have an injection E(K)jEo(K) '-' £(k)j£O(k). The 
group £(k)j£O(k) is formed by looking at the special fiber e of the minimal 
proper regular model and taking the components that have multiplicity 1 
and are defined over k. A quick perusal of the list of reduction types shows 
that only Type In has more than four multiplicity-1 components. Further, 
Tate's algorithm (Step 2, see also (9.6)) says that if a fiber of Type In has 
non-split reduction, then it has at most two components defined over k. 
This proves that E(K)jEo(K) has order at most 4 unless EjK has split 
multiplicative reduction. Finally, if E j K has split multiplicative reduction, 
say with a Type In fiber, then Step 2 of Tate's algorithm says that n equals 
the valuation of the minimal discriminant, which is also equal to -v (j (E)). 

D 

§10. The Conductor of an Elliptic Curve 

The conductor of an elliptic curve E j K is a quantity which measures the 
arithmetic complexity of E j K, similar in some ways to the minimal dis­
criminant. Just like the discriminant, the conductor is a product over the 
primes p at which E has bad reduction, but the exponent of p is defined 
in terms of the representation of the inertia group on the torsion subgroup 
of E. The conductor is an important quantity which appears in the func­
tional equation of the L-series of E, in the modular parametrization of 
elliptic curves over Q, and in various questions concerning the cohomology 
of E. 

Before defining the conductor, we briefly recall some standard facts 
about local fields. For more details, see Serre [4J. Let K be a local field of 
residue characteristic p, let Lj K be a finite Galois extension with normal­
ized valuation VL and ring of integers RL, and let G(Lj K) be the Galois 
group of Lj K. Then for each integer i ::::: -1, the ith-higher ramification 
group of Lj K is the subgroup of G(Lj K) defined by 

Gi(LjK) = {a E G(LjK) : vLCaII - a) ::::: i + 1 for all a E RL}. 
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We write 
gi(L/ K) = #Gi(L/ K) 

for the order of the ith-ramification group. One should think of the higher 
ramification groups as measuring the extent to which the extension L/ K 
is wildly ramified. The following lemma records some basic facts about the 
higher ramification groups. 

Lemma 10.1. Let L/ K be a finite Galois extension of local fields. 
(a) The higher ramification groups Gi(L/ K) are normal subgroups of 
G(L/K). 
(b) G_1(L/K) = G(L/K). 
(c) Go(L/K) is the inertia group of L/K. 
(c) [Go(L/K): G1(L/K)] is relatively prime to p. 
(d) G1(L/K) is a p-group. Thus L/ K is wildly ramified if and only 
if G1 (L/ K) i- 1. 

PROOF. See Serre [4], especially Chapter IV, Proposition 1 and Corollar­
ies 1 and 3 to Proposition 7. 0 

The conductor of an elliptic curve consists of two pieces, a tame part 
and a wild part. It turns out that if the residue characteristic p is at 
least 5, then the wild part will be zero. So if one is willing to ignore residue 
characteristics 2 and 3, then 8(E/ K) can just be set equal to 0 in the 
following definition. 

Definition. Let E / K be an elliptic curve defined over a local field of 
residue characteristic p, and let I(K / K) be the absolute inertia group 
of K. Fix a prime £ different from p, let Vi(E) = T£(E) Q9Zt Q£ be the £­
adic Tate module of E, and write Ve(E)ICK/K) for the subspace of Ve(E) 
that is fixed by I(K/K). The tame part of the conductor of E/K is the 
quantity 

Next let L = K(E[£]). Then the wild part of the conductor of E/K is the 
quantity 

8(E/K) = ~ gi(L/K) dim (E[£j/E[£jGiCL/K)) 
~ go(L/ K) 1Ft • 

The exponent of the conductor of E / K is the sum of the tame and wild 
parts, 

f(E/K) = c(E/K)+8(E/K). 

The conductor is a representation-theoretic quantity, since it is defined 
in terms of the action of the Galois group G(K / K) on the torsion subgroup 
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of E. The following generalization of the criterion of Neron-Ogg-Shafare­
vich [AEC, VII.7.1] provides a geometric interpretation for the tame part 
of the conductor. We note that in many books (including [AEC, C §16]) 
one finds this geometric description (1O.2b) used as the "definition" of the 
conductor. 

Theorem 10.2. Let K be a local field of residue characteristic p, and 
let E / K be an elliptic curve. 
(a) The tame part of the conductor of E/ K is given by 

{ 
0 if E has good reduction, 

c( E / K) = 1 if E has multiplicative reduction, 
2 if E has additive reduction. 

(b) If E / K has good or multiplicative reduction, or if p ::::: 5, then 

{ 
0 if E has good reduction, 

8(E/K) = 0 and f(E/K) = 1 if E has multiplicative reduction, 
2 if E has additive reduction. 

(c) In all cases, the exponent of the conductor f (E / K) is an integer which 
is independent of the choice of C. 

PROOF. (a) Notice that 

c(E/K) = 0 ~ Ve(E)I(KIK) = Ve(E) 

So the assertion that 

~ I (k / K) acts trivially on T£ (E) 

~ Tc(E) is unramified. 

c( E / K) = 0 ~ E / K has good reduction 

is precisely the criterion of Neron-Ogg-Shafarevich [AEC, VIL7.1]. We are 
going to mimic the proof of [AEC, VIL7.1] to obtain a somewhat stronger 
result. This proof is taken from Serre-Tate [1]. 

Let K nr be the maximal unramified extension of K, and consider the 
two exact sequences 

o -- Eo (Knr) __ E(Knr) __ E(Knr)/ Eo(Knr) __ 0, 

o -- E1(Knr) -- Eo (Knr) -- EnsCk) -- o. 

Here k, the residue field of Knr, is the algebraic closure of the residue field 
of K. We note that E(Knr)/Eo(Knr) is a finite group from (9.2d), and 
that El(Knr) has no £-torsion from [AEC, VII.3.1]' since it is isomorphic 
to the formal group of E. 
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For any abelian group A, we let Te(A) denote the Tate module of A, 

and we set 

We observe that Vc(A) will be 0 if A has no f-torsion, or if A is a finite 
group. In particular, -

and 

Hence the two exact sequences given above yield isomorphisms 

On the other hand, we clearly have 

which proves the fundamental isomorphism 

Now we compute 

c(EjK) = 2 - dimIQf (Vc(E)I(k/K)) 

= 2 - dimIQf (Vc (Ens (k) ) ) 

{ 
dimIQ, (Vc(E)) if E has good reduction, 

= 2 - dimIQ£ (Ve. (§*)) if E has multiplicative reduction, 
dimIQ,(Vc(k+)) if E has additive reduction, 

where the last line follows from the standard description of the various 
reduction types [AEC, VII.5.1]. Using the fact that f i p, we find that 

which completes the proof of (1O.2a). 
(b) Fix a prime f i p, and let L = K (E[f]). If E / K has good reduction, 
then Lj K is unramified from [AEC, VII.4.1], so the inertia group Go(L/ K) 
is trivial. It is then clear from the definition that 8(E / K) = O. 

Next suppose that E / K has non-integral j-invariant, that is, VK(jE) < 
O. Let f i p be a prime. We will prove later (see (V.5.3) and exercise 5.11) 
that there is an extension K' / K with the following properties: 
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(1) [K': K] = 1 or 2. 
(2) K'/ K is unramified (respectively ramified) if E/ K has multiplica­

tive (respectively additive) reduction. 
(3) There is a q E K' such that K'(E[l]) = K'(J.t£,ql/£). 

Here J.tl denotes the group of fth_roots of unity. 
Thus the extension K'(E[lJ)/K' is composed of an unramified cyclo­

tomic extension K'(J.tl)/K' and a Kummer extension K'(J.t£,ql/£)/K'(J.te) 
whose order divides f. This shows that the extension K'(E[lJ)/K' is 
at worst tamely ramified. It follows from properties (1) and (2) that 
K (E[l]) / K is tamely ramified if either E / K has multiplicative reduction 
or if p ~ 3, which completes the proof of (1O.2b) in the case that jE is 
non-integral. 

Finally we consider the case that E / K has integral j-invariant, or 
equivalently from [AEC, VII.5.5], E has potential good reduction. A key 
tool in proving (10.2) in this case is the following strengthening of the 
criterion of Neron-Ogg-Shafarevich. 

Proposition 10.3. Let K be a local field of residue characteristic p, and 
let E / K be an elliptic curve with integral j-invariant. 
(a) The following are equivalent. 

(i) E has good reduction over K. 
(ii) E[m] is unramified for every integer m ~ 1 relatively prime to p. 

(iii) E[m] is unramified for at least one integer m ~ 3 relatively prime 
to p. 

(b) Let m ~ 3 be an integer relatively prime to p. Then E has good 
reduction over K(E[mJ). 

PROOF. (a) The equivalence of (i) and (ii) is [AEC, VII.7.1], and the im­
plication (ii) =? (iii) is trivial. So it suffices to prove that (iii) implies (i). 

We are given that E / K has potential good reduction, so we can find 
a finite Galois extension L / K such that E has good reduction over L. We 
are also given an integer m ~ 3 such that E[m] is unramified over K. Let f 
be the largest prime dividing m, and let 

£' = f if f -1= 2 and f' = 4 if f = 2. 

Notice that f'lm since m ~ 3, so E[f'] C E[m]. Thus E[t"] is unramified 
over K. 

The fact that E has good reduction over L means that the inertia 
group !t/L acts trivially on the Tate module Te(E) [AEC, VII.4.1b], so 
the inertia group h/K of L/K acts on Te(E). This action gives us a 
homomorphism 

p: h/K --> Aut(Te(E»). 

Further, we are given that E[f'] is unramified over K, so h/K acts trivially 
on E[f']. In other words, the image P(h/K) is contained in the kernel of 
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the natural map 
Aut(Tt(E)) ---> Aut(E[£']). 

If we choose bases Tc(E) ~ Z; and E[l"] ~ (Z/£'Z)2, then this last 
map becomes 

It is an elementary exercise to verify that the kernel of this map, namely 

{M E GL2(Zc) : M == 1 (mod £')}, 

has no elements of finite order. (See exercise 4.38. This is the point at which 

we need £' = 4 if £ = 2, since if we took £' = 2, then the matrix (-6 _~) 
would be in the kernel.) 

vVe saw above that the image p( h / K) is contained in this kernel. But 
the group h/K is finite, so it follows that its image P(h/K) is trivial. In 
other words, the inertia group h/K acts trivially on T£(E), which proves 
that Tc(E) is unramified over K. Now [AEC, VII.7.1] tells us that E has 
good reduction over K, which completes the proof that (iii) implies (i). 
(b) This follows immediately from (a), since E[m] is clearly unramified 
over the field K(E[m]). D 

We now resume the proof of Theorem 10.2(b), where, recall, we are 
assuming that E has integral j-invariant and that p 2: 5, and we are trying 
to verify that 6(E / K) = O. Without loss of generality, we may replace K 
by its maximal unramified extension. 

For each integer m 2: 3 relatively prime to p, let Lm = K(E[m]). Now 
Proposition 10.3(a) tells us that E has good reduction over L m , and then 
another application of (10.3a) says that for any other m', the set E[m'] is 
unramified over L m, which means that the cornpositurn Lrn' Lm is an un­
ramified extemlion of Lm. But we took K = Knr, so Lm has no unramified 
extensions, and hence L m , eLm. Reversing the role of m and m' gives 
the opposite inclusion, which proves that all of the Lrn's are the same. We 
write L for this common field. 

Now let £ 2: 3 be a prime with £ =I p. (We will deal with the case £ = 2 
later.) The action of the Galois group G(Ld K) on E[£] gives an injection 

It follows that 
#G(Ld K) 1# GL2(Z/£Z), 

But we showed above that the field Lc = L is independent of £, so we find 
that #G(L/ K) divides # GL2(Z/£Z) for all £ =l2,p. The group GL2 (Z/£Z) 
has order £(£ - 1)2(£ + 1), and it is easy to see using Dirichlet's theorem 
on primes in arithmetic progressions that 

gcd {£(£ - 1?(£ + 1)} = 48. 
£#2.p 
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Hence G(L/ K) has order dividing 48. 
In particular, [L : K] is not divisible by p, since p :::: 5 by assumption. 

This proves that the extension L / K is at worst tamely ramified, so the 
higher ramification groups Gi(L/K) are trivial for i:::: 1 (lO.ld). It follows 
directly from the definition of 8(E/K) that 8(E/K) = O. This completes 
the proof of (lO.2b) for C :::: 3. 

Finally, if C = 2, we use the fact that L = L4 and that E has good 
reduction over L to conclude that 

G(L/K) '----> Aut (E[4]) ~ GL2(Z/4Z). 

This last group has order # GL2(Z/4Z) = 96 = 25 .3, so L/ K is not wildly 
ramified at p, since P:::: 5. Hence 8(E/K) = O. 
(c) If P::::: 5, then (b) says that f(E/K) is an integer which depends only 
on the reduction type of E/ K, hence is independent of C. The general case, 
which is due to Ogg [2], uses more machinery than we want to develop 
here. We have sketched the proof in exercise 4.46. For further details, see 
Ogg [2], Serre [7, chapter 19], and Serre-Tate [1, §3]. 0 

If the residue characteristic of K is not equal to 2 or 3, then we 
have seen that 8(E/K) = 0, and so the exponent of the conductor sat­
isfies f(E/K) :::; 2 from (10.2b). When the residue characteristic is 2 or 3, 
the exponent of the conductor is still bounded as described in the following 
result. 

Theorem lOA. (Lockhart-Rosen-Silverman [1], Brumer-Kramer [1]) Let 
K /Qp be a local field with normalized valuation v K, and let E / K be an 
elliptic curve. Then the exponent of the conductor of E / K is bounded by 

(Here VK(p) is the ramification index of K/Qp.) Further, this bound is 
best possible in the sense that for every finite extension K/Qp there is an 
elliptic curve ElK whose conductor attains this bound. 

PROOF. We are going to prove the slightly weaker bound 

since the proof is easier and the weaker estimate suffices for most appli­
cations. For an elementary, but involved, proof of the stronger inequality 
in certain cases, see Lockhart-Rosen-Silverman [1]. The proof for gen­
eral K requires heavier machinery from representation theory; see Brumer­
Kramer [1]. 

We begin with the observation that if p :::: 5, then 8(E/K) = 0 
from (10.2b) and c(E/K) :::; 2 directly from its definition, so f(E/K) :::; 2. 
It remains to deal with the cases p = 2 and p = 3. 
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Let £ be any prime other than p, let L = K(E[£]), let 'IJ L1K be the 
different of L/ K, and let r be the smallest integer such that Gr(L/ K) = l. 
We will need the following elementary properties of local fields: 

00 

(i) vd'IJLIK) = 'L)gi(L/K) -1), 

(ii) 

(iii) 

i=O 

vd'IJ LI K) :S go(L/ K) - 1 + vL(go(L/ K)), 

r < vdp) + l. 
- p-l 

See Serre [4, IV, §1, Prop. 4J for (i), Serre [4, III, § 7, remark following 
Prop. 13J for (ii), and Serre [4, IV, §2, exercise 3(c)J or Lockhart-Rosen­
Silverman [1, Lemma l.2(b)] for (iii). 

We are now ready to compute. 

f(E/K) = c(E/K)+8(E/K) 

:S 2+8(E/K) since clearly c(E/K):S 2 

= 2+ ~ gi(L/K) dim (E[£]/E[£]C,(LIK)) 
~ go(L/ K) IFe 

since Gi(L/ K) = 1 for i 2': r 
2 r-l 

:S 2 + go(L/ K) ~ gi(L/ K) since dimIFe (E[£]) = 2 

2 r-l 

= go(L/ K) ~ gi(L/ K) 

2 00 

= go(L/ K) (r + ~(9i(L/ K) - 1)) 

2 
= go(L/K) (r + vd'IJLIK)) from property (i) 

:S go(:/K) (;L~p1 + 1 + go(L/K) -1 + VL(go(L/K))) 

from properties (ii) and (iii) 

= 2VK(P) +2+2vK(go(L/K)) sincego(L/K) is the 
P - 1 ramification index of L / K. 

Now suppose that p = 3, and take (say) £ = 5. Then 

G(L/K) "-----> Aut (E[5]) ~ GL2 (Z/5Z), 

so in particular go(L/ K) divides # GL2 (Z/5Z) = 480 = 25 . 3 . 5. Hence 

vK(go(L/K)) :S vK(480) = vK(3), 
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and substituting this in above with p = 3 gives the desired estimate, 

Similarly, if P = 2, then we can take (say) f = 3 and use the injection 

G(L/ K) '-------+ Aut (E[3]) ~ GL2 (Z/3Z) 

to conclude that 9o(L/ K) divides # GL 2 (Z/3Z) = 48 = 24 . 3. However, 
we can easily save a little bit. We are allowed to make an unramified 
extension of K, so we may adjoin to K a primitive cube root of unity. 
Then basic properties of the Weil pairing [AEC, III.8.1] imply that the 
image of G(L/ K) lies in 8L2(Z/3Z). (We sketch the proof below.) Hence 
the ramification index 90(L/ K) divides # 8L2 (Z/3Z) = 24 = 23 ·3. It 
follows that 

VK(9o(To/K)) ::; 1!K(24) = vK(2:l ), 

and then substituting this in above with p = 2 yields 

Let 'if be a uniformizer for K. If p ?: 5, then (1O.2b) says that any 
elliptic curve E / K with additive reduction will hit the maximum conductor 
exponent f(E / K) = 2. If p = 3, then we claim that the elliptic curve 

E: y2 = x3 + 'if 

satisfies f (E / K) = 2 + 3v K (3). 8imilarly, if p = 2, we claim that the elliptic 
curve 

E :1/ + 2xy = .];:3 - x 2 + 'if X 

satisfies f(E/K) = 2 + 6VK(2). We could verify these claims by a lengthy 
direct calculation, but instead we will leave them for the reader to check 
(exercises 4.52 and 4.53) using Tate's algorithm (9.4) and a formula of 
Ogg (11.1) to be proven in the next section. 

It remains to prove thf' assertion from above that the image of G(L/ K) 
lies in 8L2 (Z/3Z). Fix a basis S, T E E[3]. Then e3(S, T) is a primitivf' 

cube root of unity, so it is in K. Let cr E G(L/ K), and let p( cr) = (~ ~) E 

GL2 (Z/3Z) be the matrix giving the action of cr on E[3] relative to the 
chosen basis. Using [AEC, III.8.1(a,b,c,d)], we compute 

e3(S, T) = e3(S, T)" = e3(S", T cr ) = e3(aS + cT, bS + dT) 
= e;; (S, T)(ui-bc = C;; (S, T)dct p(u). 

Therefore det p(cr) = 1, so the image of G(L/ K) lies in 8L2(Z/3Z). 0 

The conductor of an elliptic curve over a number field is defined by 
combining all of the local conductor exponents, just as the minimal dis­
criminant was defined as a product of the local discriminants. 
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Definition. Let ElK be an elliptic curve defined over a number field K, 
and for each prime 13 of K, let f (E I K p) be the exponent of the conductor 
of E consider as an elliptic curve over the local field Kp. The conductor 
of ElK is the ideal 

f(EIK) = IIp!(E/Kp ). 

p 

Example 10.5. Let ElK be an elliptic curve defined over a number field, 
and suppose that E has everywhere semi-stable reduction, by which we 
mean that E has either good or multiplicative reduction at every prime. 
Then the conductor of E / K is the product of the primes of bad reduction, 

f(EIK) = II 13, 
P!"D E / K 

where TJ E / K is the minimal discriminant of ElK [AEC, VII §8]. Con­
versely, if the conductor f(E I K) is square-free, then ElK has everywhere 
semi-stable reduction. This follows from (10.2), which says that the con­
ductor exponent satisfies f(EIKp) ;::: 2 if and only if EIKp has additive 
reduction. 

Both the minimal discriminant and the conductor measure the extent 
to which an elliptic curve has bad reduction. We will see in the next 
section (11.2) that the exponent of the minimal discriminant is always 
greater than the exponent of the conductor, so we always have an inequality 
of the form 

N{f(fE/K):=:; N{f(TJE/K). 

Szpiro has conjectured that there should be an inequality in the other 
direction. 

Szpiro's Conjecture 10.6. Fix a number field K and an c > O. There 
is a constant c( K, c) so that for every elliptic curve ElK, 

N{f(TJ E/K ):=:; c(K,c)N{f(fE/K)6+E • 

This conjecture, if true, lies very deep. Its validity would imply the 
solution to many other Diophantine problems, including for example the 
assertion that if a, b E IQ* are fixed, if n ;::: 2, and if m is sufficiently large, 
then the equation axn + bym = 1 has no non-trivial solutions x, y E IQ. 

Surprisingly, it is quite easy to prove a function field analogue of 
Szpiro's conjecture; see exercise 3.36. One can even prove such a result 
with c = 0 and with an explicit constant c. The function field version 
of Szpiro's conjecture was originally discovered by Kodaira (see Shioda [3, 
Prop. 2.8]) long before Szpiro formulated his conjecture, and it has been 
frequently rediscovered since that time; see for example Hindry-Silverman 
[2, Thm. 5.1] and Szpiro [1]. 
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§11. Ogg's Formula 

Let ElK be an elliptic curve defined over a local field. Ogg's formula relates 
the minimal discriminant of ElK, the exponent of the conductor of ElK, 
and the number of components on the special fiber of the minimal model 
of E over the ring of integers of K. This formula was originally proven 
by Ogg [2] in all cases except when K is a field of characteristic ° with 
residue field of characteristic 2. Ogg's proof relies on a lengthy case-by­
case analysis. A more conceptual proof using scheme-theoretic techniques 
and working in all residue characteristics has been given by Saito [1], who 
proves Ogg's formula as a special case of a general result for curves of 
arbitrary positive genus. An expanded exposition of Saito's proof just in 
the case of elliptic curves can be found in Liu [1]. 

Ogg's Formula 11.1. (Ogg [2], Saito [1]) Let KIQp be a local field, 
let ElK be an elliptic curve, and let 

v K ('D E j K) = the valuation of the minimal discriminant of ElK, 

f(EIK) = the exponent of the conductor of ElK, 

m(EIK) = the number of components on the special fiber of ElK. 

Then 
VK('D EjK ) = f(EI K) + m(EI K) - 1. 

Remark 11.1.1. The number m(EIK) in (10.1) is the number of irre­
ducible components defined over k on the special fiber of the minimal proper 
regular model of ElK. This includes all of the components, not just the 
multiplicity-l components which make up the special fiber of the Neron 
model. Further, each component is counted once, regardless of its multi­
plicity. For example, if ElK has Type In reduction, then m( ElK) = n, and 
if ElK has Type 111* reduction, then m( ElK) = 8. The value of m( ElK) 
for these and the other reduction types can be found in Table 4.1. 

Remark 11.1.2. The minimal discriminant and special fiber of ElK can 
be computed in a straightforward manner using Tate's algorithm (9.4). For 
this reason, Ogg's formula (11.1) is frequently used to compute the expo­
nent of the conductor of ElK for residue characteristics 2 and 3. See for 
example exercises 4.52 and 4.53, as well as the conductor tables contained 
in Birch-Kuyk [1] and Cremona [1]. 

PROOF (of Ogg's Formula 11.1). If ElK has good reduction, then 

VK('D EjK ) = 0, f(EIK) = 0, and m(EIK) = 1. 

These three equalities follow from [AEC, VII.5.1a], (1O.2b), and (6.3) re­
spectively. (Notice that (6.3) says that the minimal Weierstrass equation 
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for ElK is already the Neron model, so its special fiber is irreducible.) 
This verifies Ogg's formula when ElK has good reduction. 

Next suppose that ElK has multiplicative reduction. Then f(EI K) = 
1 from (1O.2b). Further, Step 2 of Tate's algorithm (9.4) tells us that the 
special fiber of the minimal model of ElK is an m( E I K)-sided polygon, 
with m(EIK) = VK('D E / K ). This verifies Ogg's formula when ElK has 
multiplicative reduction. 

Finally, suppose that ElK has additive reduction. Consider first the 
case that p 25. Then (10.2b) tells us that f(EI K) = 2, so Ogg's formula 
becomes 

VK('D E / K ) = m(EIK) + l. 
It is now a simple matter using Table 4.1 to verify Ogg's formula case-by­
case, checking each of the reduction types II, III, ... , II*. 

It remains to consider p = 3 and p = 2 when ElK has additive 
reduction. We will give a direct case-by-case verification for p = 3, since 
it only takes a few pages. A similar proof for p = 2 would be extremely 
lengthy, so for this last case we refer the reader to Saito's proof [1] which 
works in all residue characteristics and does not rely on a case-by-case 
analysis. (See also Liu [1].) Unfortunately, the papers of Saito [1] and 
Liu [1] use techniques which are beyond the scope of this book. 

So we now assume that p = 3 and that ElK has additive reduc­
tion. In particular, (9.2a) tells us that the tame part of the conductor 
is c(E I K) = 2. Further, the fact that p = 3 means that we can find a 
minimal Weierstrass equation for ElK of the form 

E : y2 = x 3 + a2x2 + a4X + a6. 

The discriminant of this equation is 

b. = -16(4a~a6 - a~a~ + 4a~ + 27a~ - 18a2a4a6). 

Using this simplified form for E will make all of our calculations easier. 
Let L = K(E[2]) be the field generated by the 2-torsion points of E, 

so L is the splitting field over K of the cubic polynomial 

f(x) = x 3 + a2x2 + a4x + a6· 

Further, let M = K ( VK ). Notice that the discriminant of the polyno­
mial f(x) satisfies b. = -16 Disc(f). Thus we see that K c MeL and 
that 

[M' K] = {2 if [L: K] = 2 or 6, 
. 1 if [L : K] = 1 or 3. 

Suppose first that ElK has Type III reduction, so m(E I K) = 2. 
A quick perusal of Step 4 of Tate's algorithm (9.4) shows that E has a 
Weierstrass equation satisfying 
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We claim that L/ K is at worst tamely ramified. To see this, we let 7rK 

be a uniformizer for K and use the fact that v K (~) = 3 to observe that 
7rM = 7rJ/v'X is a uniformizer for M. Notice in particular that M/K is a 
ramified extension of degree 2. Now consider the polynomial 

The coefficients of 9 are in the ring of integers of M, and the discriminant 
of 9 has valuation 

Hence the splitting field of 9 over M, which is L, is unramified over M. 
This proves that L/ K is not wildly ramified, so b(E I K) = O. We have now 
computed all of the pieces in 

VK('D E/K ) - f(EIK) - m(EIK) + 1 = 3 - (2 + 0) - 2 + 1 = 0, 

which completes the proof of Ogg's formula for p = 3 and Type III reduc­
tion. 

If ElK has Type III* reduction, then a similar calculation shows 
that VK(~) = 9 and that K(E[2]) is tamely ramified over K. So again we 
find that 

VK('D E/K ) - f(E/K) - m(EIK) + 1 = 9 - (2 + 0) - 8 + 1 = O. 

We leave the details to the reader (exercise 4.54a). 
For the remaining reduction types (II, III, IV, I;" IV*, III*, II*), we 

are first going to show that if Ogg's formula is true for ElM, then it is also 
true for E/ K. More precisely, if we write Ogg(EI K) for the quantity 

Ogg(E/K) = VK('D E/ K) - f(E/K) - m(EIK) + 1, 

then we will show that 

Ogg(EIM) = e(MI K) Ogg(E/ K), 

where e( M / K) is the ramification index of M / K. It is clear that this equal­
ity holds if M / K is unramified, since none of the quantities in Ogg( E / K) 
will change, so we only need to consider the case that M I K is ramified. 

Assuming now that M/K is ramified, we have e(M/K) = 2, so the 
ramification is tame. It follows that the higher ramification groups for LI K 
and LIM are the same, 

for all i 2: 1. 
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Further, M/ K is a ramified extension of degree 2, so go(L/ K) = 2go(L/M). 
Using these two facts and the definition of wild part of the conductor, we 
compute 

6(E / K) = f= gi(L/ K) dimlF (E[2j/ E[2jGi(L/ K») 
i=l go(L/ K) 2 

= ~ gi(L/M) dim (E[2j/E[2jGi(L/M») 8 2go(L/M) 1F2 

= ~6(E/M). 

Notice that the full conductor does not satisfy such a simple relation, 
since E(E/K) = 2, and we will see that E(E/M) may be any of 0, 1, 
or 2. 

The next step in our proof that Ogg( L / M) = 2 Ogg( L / K) is to verify 
the following table describing how various quantities change when we make 
the ramified quadratic extension M/ K. (For more extensive tables, see 
exercises 4.48, 4.49, and 4.50.) 

Type(E/K) II IV 1* 0 1* IV* 11* n 
(n> 1) 

Type(E/M) IV IV* 10 I2n IV IV* 
2VK('DE / K ) -VM('DE / M) 0 0 12 12 12 12 

2f(E/K) - f(E/M) 2 2 4 3 2 2 
2m( E / K) - m( E / M) -1 -1 9 10 11 11 

Notice that the value of 2m(E/K) - m(E/M) in the last line is easy to 
compute by using the first two lines and reading off the number of com­
ponents for each reduction type from Table 4.1. Similarly, the identity 
6(E/K) = 6(E/M)/2 that we proved above implies that 

2f(E/K) - f(E/M) = 2E(E/K) - E(E/M), 

so the penultimate line of the table follows immediately from the first two 
lines and the fact (9.2a) that E = 0 for good reduction, E = 1 for multi­
plicative reduction, and E = 2 for additive reduction. The verification of 
the remainder of the table is now simply a matter of tracing the various 
reduction types through Tate's algorithm. We will do Type IV* reduction 
to illustrate the idea, and leave the other cases for the reader. 

So suppose that E / K has Type IV* reduction. Then Step 8 of Tate's 
algorithm gives a minimal Weierstrass for E / K satisfying 
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(Remember we can assume that a1 = a3 = 0.) Fix a uniformizer 7rM 
for M and make the change of variables x = 7rXrx', y = 7r'ity'. This gives 
a Weierstrass equation for ElM of the form 

VM(a;) = 2vK(a2) - 2 ~ 2, 

vM(a~) = 2vK(a6) - 6 = 2, 

VM(a~) = 2vK(a4) - 4 ~ 2, 

VM(~') = 2VK(~) - 12. 

Now a quick check of Step 5 of Tate's algorithm shows that this is a minimal 
equation for ElM and that ElM has Type IV reduction. Further, ~' = 
7r- 12 ~ so M , 

Finally, a fiber of Type IV* has seven components, and a fiber of Type IV 
has three components, so 2m( ElK) - m( ElM) = 11. This completes the 
verification of the Type IV* column in the above table. The other columns 
may be verified similarly. 

We now use this table to compute 

20gg(EIK) - Ogg(EIM) 

= {2VKCD E / K ) - vMCD E / M)} - {2f(EIK) - f(EIM)} 

- {2m(EIK) - m(EIM)} + {2 -I} 

{ 
0 - 2 - (-1) + 1 = 0 if Type(EIK)=II or IV, 

_ 12-4-9+1=0 if Type(EIK)=I(j, 
- 12 - 3 -10 + 1 = 0 if Type(EIK)=I~, n ~ 1, 

12 - 2 - 11 + 1 = 0 if Type(EIK)=IV* or II*. 

This completes the proof that Ogg(EIM) = 20gg(EIK), so it now suffices 
to prove Ogg's formula for ElM. We note from the table that ElM is of 
Type IV, IV*, 10, or In, so it suffices to consider these four cases. 

If ElM has Type 10 reduction, which is to say ElM has good reduc­
tion, or if ElM has Type In reduction with n ~ 1, which means ElM has 
multiplicative reduction, then we are done, since we have already verified 
Ogg's formula for good and multiplicative reduction. 

Suppose now that ElM has Type IV reduction. Using Step 5 of Tate's 
algorithm, we see that our Weierstrass equation satisfies 

Let a E L be a root of the polynomial f(x) = x 3 + a2x2 + a4X + a6. Note 
that the degree of LIM is either 1 or 3, and L is the splitting field of f, so 
we have L = M(a). We want to use the fact that a satisfies the equation 

f(a) = a 3 + a2a2 + a4a + a6 = 0 
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to compute its valuation. First we observe that 

3VM(a) = vM(a2a2 + a4a + ac) :::: min{ vM(a2a2), vM(a4a), vAI(ac)} 

:::: min {I + 2v AI (a). 2 + V 111 (n), 2} , 

so vM(a) :::: 2/3. Similarly, 

which gives the opposite inequality 2/3 :::: vA[(a). Hence vA[(a) = 2/3. In 
particular, this proves that L /!vI is totally ramified of degree 3, so L / A1 is 
wildly ramified. Further, if we choose a uniformizer 7rA{ for AI, then 

def / 7rL = 7rA[ n E L 

will be a uniformizer for L, since VA[(7rL) = 1/3. 
We can use 7rL to determine the higher ramification groups for L/!vI. 

The Galois group G(L/M) is a cyclic group of order 3, so there is an 
integer r :::: 1 such that 

G(L/M) = G1 (L/M) = ... = Gr- 1 (L/M), 
and 

Gr(L/M) = Gr+1 (L/M) = ... = 1. 

We want to compute this integer r. Writing G(L/M) 
definition of the higher ramification groups says that 

We substitute 7rL = 7rM /0' and use the fact that 7rA{ E AI to get 

The extension L / 111 is totally ramified, so v L = 3v A{. This means that 
vL(7rl\1) = 3 and vL(a) = vL(aO") = 2, and hence 

r=vda- n O")-1. 

2 
Further, the exact same calculation gives r = vL(a - n a ) - 1, and since 

2 

the valuation is Galois invariant, we also find that r = udna - nO" ) - 1. 
Adding these three expressions for r yields 

3r = vda - na) + vL(a - 00"2) + vdaa - 0',,2) - 3 

= VL ((a - n")(a - 0,0-2)(0'0" - aCT2)) - 3. 
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Notice that a, a lT , and 0:',.2 are the three roots of f (x), so the discrim­
inant of f(x) is 

( 
2 2 ) 2 Disc(f) = - (a - aO")(a - alT )(aIT - aO" ) 

We observed above that 6. = -16 Disc(f), which gives us the formula 

111 
r = -vdDisc(f)) - 1 = -vd6.) -1 = -VM(6.) - 1. 

6 6 2 

This relation is the key to proving Ogg's formula, since it relates the conduc­
tor, via the higher ramification groups, to the discriminant of the minimal 
Weierstrass equation. 

The non-trivial elements of G (L / AI) ad on the non-zero elements 
of E[2] via a permutation of order 3, so the only element of E[2] fixed 
by G(L/M) is O. This means that E[2]G i (L/AI) equals E[2] for i :::: rand 
is trivial for i < r, and hence 

dimIF2 (E[2]/ E[2f,(L/AJ)) = { ~ if i < r, 
if i :::: T". 

Using this and the value for T" computed above, we can determine the wild 
part of the conductor directly from the definition: 

6(E/M) = f 9i(L/M) dimF2 (E[2]/ E[2]G,(L/M)) 
. 9o(L(M) 
1=1 

=2(r-1) 

= VM(6.) - 4 

= vM('D E / M ) - 4. 

Adding this to the tame part c(E / Ai) = 2 of the conductor gives the 
relation 

f(E/M) = c(E/M) + 6(E/M) = VM('D E/ M) - 2. 

It only remains to recall that we are working with a curve E / AI having 
Type IV reduction. This means that m( E / A1) = 3, so the last relation can 
be rewritten as 

VM('D E/IV!) = f(E/Ai) + 2 = f(E/Ai) +;) - 1 = f(E/1vf) + m(E/M) - 1. 

This completes the proof of Ogg's formula when E /!vi has Type IV reduc­
tion. The proof for Type IV' reduction is similar, so we leave it for the 
reader. 0 
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Corollary 11.2. Let KIQp be a local field, let ElK be an elliptic curve, 
let VK('D E/ K) be the valuation of the minimal discriminant of ElK, and 
let f (E I K) be the exponent of the conductor of ElK. Then 

with equality if and only if ElK has reduction type la, h, or II. 
PROOF. When p 2: 5, the stated inequality is quite easy to verify by a 
direct calculation, since it essentially comes down to showing that if the 
discriminant satisfies VK('D E/ K ) = 1, then ElK has multiplicative reduc­
tion. We proved this fact earlier (9.5a). In general, Ogg's formula (11.1) 
tells us that 

VK('D E/ K ) - f(EIK) = m(EIK) -12: 0, 

since the number of components certainly satisfies m( ElK) 2: 1. Further, 
there is equality if and only if m(EI K) = 1, which occurs exactly for 
reduction types la, h, and II. 0 

EXERCISES 

4.1. (a) The special orthogonal group SOn is defined to be 

SOn = {M E SLn : t M M = I}, 

where t M denotes the transpose of the matrix M. Prove that SOn is an 
affine group variety. 
(b) The orthogonal group On is defined to be 

Prove that there is an isomorphism On ~ SOn xZ/2Z of group varieties. 

4.2. Let A be the matrix A = (-~n 10), where In is the n x n identity matrix. 

The symplectic group SP2n is defined to be 

SP2n = {M E SL2n : tMAM = A}. 

Prove that SP2n is an affine group variety. 

4.3. Let E be an elliptic curve, and let 4> : E -> E be a morphism satisfy­
ing 4>(0) = O. Use the Rigidity Lemma 1.8 to prove that 4> is a group 
homomorphism. (This provides an alternative proof of [AEC, III.4.8] not 
requiring the theory of Picard groups. This proof readily generalizes to 
abelian varieties of arbitrary dimension.) 
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4.4. Let E be an elliptic curve, and let /1 : E x E ---> E be a morphism satisfying 

/1(P,O) = /1(O,P) = P for all PEE. 

Prove that /1(P, Q) = P + Q for all P, Q E E. 

4.5. (a) Let A be a regular local ring, and let ~ be a prime ideal of A. Prove 
that the localization of A at ~ is a regular local ring. 
(b) Let X be a scheme, let x, y E X be points, and suppose that x is in 
the closure of y. (N.B. Points of a scheme need not be closed.) If x is a 
regular point of X, prove that y is also a regular point. Hence X is regular 
if and only if all of its closed points are regular. 
(c) With notation as in (b), give an example to show that it is possible to 
have x singular and y non-singular. 

4.6. Let R be a discrete valuation ring with fraction field K, residue field k, 
and maximal ideal p, and let 7r be a uniformizer for R. Let XI R be the R­
scheme defined by X = SpecR[t]/(7rt). 
(a) Prove that the generic and special fibers of X are given by X'1 ~ Spec K 
and Xp ~ Al. Note that X'1 is smooth over K and that Xp is smooth 
over k. 
(b) Prove that X is not smooth over R. This shows that something like 
the irreducibility condition in (2.9) is necessary. 

4.7. *Let cP : X ---> S be a morphism of finite type of Noetherian schemes, 
let x EX, and let s = cP( x). Prove that cP is smooth at x if and only if cP is 
flat at x and the fiber X. is smooth over the residue field of S at s. (This 
shows that what is really going wrong in the previous exercise is the fact 
that X is not flat over R, since its fibers have different dimensions.) 

4.8. Complete the proof that G(T) is a group by verifying the following two 
facts, where we use the notation from (3.2). 
(a) (i 0 cP) * cP = lTD 07rT for all cP E G(T). 
(b) cP * ('1j; d.) = (cP * '1j;) d. for all cP, '1j;,). E G(T). 

4.9. Let S be a scheme, and let Ga and Gm be the additive and multiplicative 
group schemes respectively (3.1.2, 3.1.3). 
(a) Prove that Ga(S) = r(S,C9s). 
(b) Prove that Gm(S) = r(S, (98). 
Here C9s is the structure sheaf on S, and r(S,:f) denotes the global sections 
of the sheaf :f. 

4.10. (a) For each integer r ;::: 1, let I-'r be the scheme 

I-'r = SpecZ[T]/(Tr - 1). 

Prove that there is a natural inclusion I-'r '--> Gm so that I-'r is a (closed) 
subgroup scheme of Gm . The group scheme I-'r is called the scheme of 
rth_roots of unity. 
(b) Let R be a ring of characteristic p > 0, and for each integer r ;::: 1 
let Up' be the R-scheme 

up" = SpecR[TJ/(TP'). 

Prove that there is a natural inclusion up" '--> Gal R so that up' is a (closed) 
subgroup scheme of GaI R ' 

(c) Let R be as in (b). Prove that up" and I-'p'l R are isomorphic as schemes 
over R, but that they are not isomorphic as group schemes over R. 
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4.11. Let G be a group scheme over S. 
(a) Prove that for each integer m, the multiplication-by-m map [m] : G -> 

G described in (3.4) is a morphism. 
(b) Prove that [-m] = [-1] 0 [m]. 
(c) More generally, prove that [mn] = [m] 0 [n]. 
(d) Prove that [m + n] = /l 0 ([m] x [n]). 
(e) With notation as in (3.4), prove that [0] = 0'0 07r and that [-1] = i. 

4.12. Let R be a ring, let dE R, and let Gd C A~ be the affine scheme given by 
the equation 

(a) Prove that the composition law 

Gd X R Gd ---+ Gd, 

(Xl,yI), (X2,Y2») I----> (XIX2 + dYIY2,XIY2 + X2Yl) 

gives Gd the structure of a group scheme over R. 
(b) Prove that Go fits into the following exact sequence of group schemes 
over R: 

o ----> G a / R ----> Go ----> 1'2/ R ----> 1. 

(Here 1J.2jR = SpecR[T]/(T2 - 1) is the scheme of square roots of unity; 
see exercise 4.1O(a).) 
(c) Prove that Go is isomorphic to Ga / R x Rp,2/R as group schemes over R. 
(d) Let d1 , d2 E R. Prove that Gdl is isomorphic to Gd2 as group schemes 
over R if and only if there is a unit U E R* such that d1 = u 2d2' 
(e) If 2 E R*, prove that G 1 and GmjR are isomorphic as group schemes 
over R. 

4.13. Let K be a field of characteristic 0, and for each d E K, let Gd/ K C Ak 
be the group variety 

described in the previous exercise. Prove that every connected group va­
riety of dimension one defined over K is isomorphic over K to one of the 
other following group varieties: 
(i) The additive group GajK . 

(H) The group Gd for some d E K*. (Note that G 1 is isomorphic to the 
multiplicative group Gm / K .) 

(Hi) An elliptic curve defined over K. 

4.14. Let e C 1P'~ be the arithmetic surface given by the equation 

Complete the proof (4.2.2) that e is a regular scheme by verifying that e 
is regular at the points x = Y = 3 = 0 and x + 66 = Y = 97 = O. 
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4.15. Let R be a discrete valuation ring with normalized valuation v, and let W c 
lP'~ be the arithmetic surface given by the Weierstrass equation 

W : y2 + alxy + a3Y = X3 + a2x2 + a4X + a6. 

Let ~ and j be the associated discriminant and j-invariant. 
(a) If v(~) = 1, prove that W is a regular scheme. 
(b) If v(~) = 2 and v(j) ?: 0, prove that W is a regular scheme. 
(The computations are simpler if you assume that 2 and 3 are units in R, 
but the results are true in general.) 

4.16. Let elz be the arithmetic surface in A~ defined by the equation 

e: (x3 + 4X2 + 3x - 1)y3 - (2X4 + x 3 - x 2 - 2x)l 

_ (x6 _ 3x5 + 3x4 _ x 3)y + 2X7 + x6 - x 5 - 2X4 = 7. 

Describe the special fiber e7 of e over the point (7) E Spec Z; that is, 
describe the components of e7 , their multiplicities, and their intersection 
points. Draw a sketch (in ]R2) illustrating e7 . (See (4.2.4) and Figure 4.2 
for a similar calculation.) 

4.17. Let 7r : e -+ Spec(R) be a regular arithmetic surface over a Dedekind 
domain R, let p E Spec(R), and let x E ep c e be a non-singular closed 
point on the fiber of e over p. Complete the proof of Proposition 4.3 by 
proving that 7r*(p) rt M~,x' 

4.18. This exercise generalizes (4.4). Let R be a Dedekind domain with fraction 
field K, and let X be a "nice" scheme over R whose generic fiber XI K is 
a smooth, projective variety. (Here "nice" has the same meaning as in the 
definition of arithmetic surface; see §4.) 
(a) If X is proper over R, prove that X(K) = X(R). 
(b) Suppose that X is a regular scheme, and let XO c X be the largest 
subscheme of X with the property that XO is smooth over R. Prove 
that X(R) = XO(R). 

4.19. Let R' I R be an extension of discrete valuation rings with maximal ide­
als p, p', fraction fields K, K', and residue fields k, k' respectively. Sup­
pose that K' I K is a finite extension. Prove that R' is the localization of a 
smooth R-scheme if and only if p' = pR' (Le., R' IRis unramified). 

4.20. Let R be a discrete valuation ring with fraction field K, and let ElK be 
an elliptic curve given by a Weierstrass equation 

E: y2 + ajxy = x 3 + a6 with al E R* and a6 E R. 

Let W c lP'~ be the R-scheme defined by this Weierstrass equation. 
(a) Prove that W is a regular scheme if and only if v(a6) ::::: 1. 
(b) Prove that W is smooth over R if and only if v(a6) = O. 

4.21. Let ElK, WIR and WOIR be as in the statement of Theorem 5.3, where 
we assume that we start with a minimal Weierstrass equation for ElK. 
(a) If ElK has split multiplicative reduction, prove that the special fibers 
of WO and G m / R are isomorphic as group schemes over the residue field 
of R. 
(b) If ElK has additive reduction, prove that the special fibers of WO 
and Ga / R are isomorphic as group schemes over the residue field of R. 
(c) Give a similar description of the special fiber of WO in the case that 
the curve ElK has non-split multiplicative reduction. 
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4.22. Let R be a discrete valuation ring with fraction field K, let ElK be an 
elliptic curve, and choose a Weierstrass equation for ElK with coefficients 
in R, 

Let W c lP'h be the R-scheme defined by this Weierstrass equation, and let 

f1 : W x W --- .. W 

be the rational map induced by the addition law on the generic fiber. Define 
affine subsets of W by 

Waif = {Z 1= O} and W~1f = {Y 1= O}. 

Prove that f1 is a morphism when restricted to each of the following sets: 
(a) Waif XR W~If. 
(b) W~1f XR Waif. 
(c) W~1f XR W~If. 
(The formulas will be easier if you assume that 2 and 3 are units in Rand 
take a Weierstrass equation of the form y2 Z = X 3 + AX Z2 + B Z3. We 
described the behavior of f1 on Waif XR Waif during the proof of (5.3). This 
exercise is asking you to complete the proof of (5.3).) 

4.23. Let R be a Dedekind domain with fraction field K, let ElK be an elliptic 
curve, let e I R be a minimal proper regular model for ElK, and let c I R be 
the largest subscheme of el R which is smooth over R. Note that cl R is a 
Neron model for ElK, so in particular c is a group scheme over R (6.1). 
(a) Let P E E(K) ~ c(R), and let Tp : C --t C be translation-by-P (3.3). 
Prove that Tp extends to an R-morphism e --t e. 
(b) Prove that every automorphism a: : ElK --t ElK extends to an R­
morphism e --t e. 
(c) 'Prove that the group law c XR C --t c extends to give a group scheme 
action c x R e --t e. 
(d) Prove that in general the group law C XR C --t C does not extend to 
give an R-morphism e XR e --t e. 

4.24. Let R be a discrete valuation ring with fraction field K, residue field k, and 
residue characteristic p. Let ElK and E' I K be elliptic curves, and let c I R 
and C'IR be Neron models for ElK and E'IK respectively. Let CPK: E--t 
E' be an isogeny of degree m 2 1 defined over K. Assume that either p 
does not divide m, or else that ElK does not have additive reduction. 
(a) 'Prove that CPK extends to an R-morphism CPR : C --t c'. 
(b) Prove that CPR is a homomorphism of R-group schemes. 
(c) Prove that the restriction of CPR to the special fiber is a finite mor­
phism CPk : elk --t e'lk which maps the identity component of e to the 
identity component of e'. 
(d) Prove that there is an R-morphism ¢R : C' --t C with the property that 
the composition ¢ROCPR : C --t C is the multiplication-by-m map on C (3.4). 
This generalizes the construction of the dual isogeny for elliptic curves over 
fields [AEC, III §6J. 
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4.25. Let R be a Dedekind domain with fraction field K, let E / K be an elliptic 
curve, and let £ / R be a N eron model for E / K. Prove that the connected 
component of £/ R as described in (6.1.2) is a subgroup scheme of £/ R. 

4.26. Let R be a Henselian discrete valuation ring with valuation v. Let I(x) E 
R[x) be a monic polynomial, and let a E R be an element with the property 
that 

v(f(a)) > 2v(f'(a)). 

Prove that there is a unique element a E R satisfying 

v(a - a) > v(J'(a)) and I(a) = O. 

(Note the strict inequalities.) 

4.27. Let R be a discrete valuation ring with maximal ideal p and residue field k, 
let 11, ... , 1m E R[Xl, ... , Xn], let 

x = Spec R[Xl, ... , x n)/(/1, ... , 1m) 

be the scheme defined by the Ii'S, and let 

J = J(Xl, ... ,xn ) = (81;/oXjh$.i$.m,1$.j$.n 

be the associated Jacobian matrix. 
(a) Prove that the generic fiber of X is empty if and only if some power 
of p is contained in the ideal (/1, ... , 1m). 
(b) Let a = (al, ... , an) E :X(k) be a point on the special fiber of X. Prove 
that Xp is smooth over k at a if and only if the matrix J(a) satisfies 

rankJ(a) = n - dimXp. 

(c) Assume that X is irreducible, reduced, and has non-empty generic fiber. 
Suppose further that the ring R is Henselian, and let a = (al, ... , an) E 
An(R) be a point satisfying 

/1 ( a) == ... == 1m ( a) == 0 (mod p) and rank J(a) = n - dimXp. 

Prove that there exists a (unique) point a E An(R) such that 

/1 (a) = ... = Im(a) = 0 and a == a (mod p). 

This result is a multi-variable version of Hensel's lemma. It implies the 
surjectivity of the reduction map for smooth schemes over Henselian rings. 
(Hint. First prove (c) under the assumption that R is complete.) 

4.28. Let R be a discrete valuation ring with residue field k, and let Rh and Rsh 

be the Henselization and strict Henselization of R respectively (6.5). 
(a) Let R' be a Henselian discrete valuation ring, and let i : R -> R' 
be a local homomorphism. Prove that there is a unique local homomor­
phism Rh --+ R' extending i. 
(b) Let Rlf be a strictly Henselian discrete valuation ring with residue 
field kif, let i : R --+ Rlf be a local homomorphism, and let u : kif --+ k 
be a k-homomorphism. Prove that there exists a unique local homomor­
phism Rsh -> Rlf which extends i and which induces the map u on the 
residue fields. 
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4.29. 'Let K be an algebraically closed field, let CIK be a curve of genus 9 ~ 1, 
and let V be the g-fold symmetric product of C. Note that the points of V 
can be naturally identified with the positive divisors of degree 9 on C. 
( a) Fix a basepoint Po E C. Prove that there is a rational map J-t : V x V -+ 

V determined by the property 

J-t(x, y) ~ x + y - g(Po). 

(Here ~ denotes linear equivalence of divisors.) 
(b) Prove that J-t is a normal law, and hence from (6.9) that there is a 
group variety J I K associated to J-t. 
(c) Prove that the map V -+ J is a morphism, and deduce that J is proper 
over K. 
(d) Prove that the map of sets 

X f---+ class[x - g(Po)], 

induces an isomorphism of groups J(K) -+ Pic°(C). 
The group variety J is an abelian variety called the Jacobian variety 

of C. This construction of the Jacobian variety is due to Weil [3]. For a 
further discussion, see the proof sketch of Proposition III.2.6(b). 

4.30. Let R be a strictly Henselian discrete valuation ring with fraction field K. 
Let e I R be a group scheme over R whose generic fiber ElK is an ellip­
tic curve. Prove that el R is a Neron model for ElK if and only if the 
inclusion e(R) -+ E(K) is a bijection. 

4.31. Let R be a discrete valuation ring with uniformizing element 1[" and alge­
braically closed residue field k. Assume that char(k) i- 2,3,5. Let e c A~ 
be the affine scheme defined by 

that is, e = SpecR[x,yl/(y2 - x 5 - 1["2). 

(a) Show that e is regular except at the one point 1[" = x = y = 0 on the 
special fiber. 
(b) Compute the blow-up of e at the singular point 1[" = x = y = 0 as 
explained in (7.7). Show that the resulting scheme is still not regular. 
(c) Continue blowing up until you get a regular scheme. Draw a picture 
of the special fiber similar to the diagrams in Figures 4.3 and 4.4. 
( d) Repeat ( a), (b), and (c) for the arithmetic surface y2 = x 5 + 1["7 • 

4.32. (a) For each of the Kodaira-Neron reduction types (8.2), compute the 
intersection incidence matrix of the special fiber. 
(b) Show that each of the incidence matrices in (a) has determinant o. 
(c) Let !vI be the matrix obtained by taking anyone of the incidence matri­
ces in (a) and deleting a row and column corresponding to a multiplicity-l 
component. Show that det(M) is equal to plus or minus the number of 
multiplicity-l components on the special fiber. Equivalently, I det(M)I is 
the order of the group of components of the Neron model. 
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4.33. Let R be a discrete valuation ring, and let e/ R be a proper regular model 
of a curve of positive genus. Generalize part (b) of the previous exercise 
by showing that the incidence matrix of its special fiber has determinant O. 
(For a generalization of part (c), see Raynaud [1].) 

4.34. Let R be a discrete valuation ring with maximal ideal p, fraction field K, 
and algebraically closed residue field k. Let C / K be a non-singular projec­
tive curve of genus 9 2: 1, and let e/ R be a minimal proper regular model 
for C / K. Suppose that the special fiber ep of e contains a configuration 
with t components of the form shown in Figure 4.6(b), where each of the 
illustrated components satisfies Pa(F;) = 0 and F? = -2. 
(a) Prove that t :s: 4g + 2. 
(b) If t = 4g + 2, complete the picture of ep• In particular, show that ep 

has exactly 4g + 5 components. (For 9 = 1, you'll get a fiber of Type 11*.) 

4.35. Let R be a complete discrete valuation ring with fraction field K and al­
gebraically closed residue field k of characteristic P of- 2,3. Let E / K be 
an elliptic curve with additive reduction, and let Eo(K) be the subgroup 
of E(K) consisting of points with non-singular reduction (9.2). 
(a) Prove that Eo(K) is uniquely divisible by 2 and 3. 
(b) Prove that E(K)/ Eo(K) is killed by 12. 
(c) Prove that the natural map E(K)[12] -> E(K)/Eo(K) is an isomor­
phism. 

4.36. (a) Let C4 , C6 E Z be integers with C] - cl of- O. Prove that there exists 
a Weierstrass equation 

with coefficients al, a2, a3, a4, a6 E Z satisfying C4 = C4 and C6 = C6 if and 
only if one of the following two conditions is true: 

(i) ord3 (C6) of- 2 and C6 == -1 (mod 4). 
(ii) ord3 (C6) of- 2, ord2(C4) 2: 4, and C6 == 0 or 8 (mod 32). 

(b) Use the criteria in (a) to devise a quick algorithm to check whether a 
given Weierstrass equation with integer coefficients is a minimal Weierstrass 
equation. 
(c) Generalize the criteria in (a) to an arbitrary field K/Q. 

4.37. Let R be a discrete valuation ring with fraction field K, let ElK be an 
elliptic curve given by a Weierstrass equation 

with coefficients in R, and assume that 7r!a3, a4, 7r2!a6, and 7r f b2. Resolve 
the singularity on the special fiber by a sequence of blow-ups and show that 
the special fiber is of Type In with n = v(.6.). 

4.38. Let £ be a prime, let £' = £ if £ i- 2, and let £' = 4 if C = 2. Prove that the 
group 

{M E GL2(Ztl : M == 1 (mod £')} 

contains no elements of finite order. 



404 IV. The Neron Model 

4.39. This exercise generalizes the previous exercise. Let K/Qp be a p-adic field 
with ring of integers R, maximal ideal p, and normalized valuation VK. 
(a) Suppose that there is a matrix M E GLn(R) of exact order m ~ 2 
satisfying 

Prove that 

and 

(b) If r > VK(p)/(p - 1), prove that the group 

{M E GLn(R) : M == 1 (mod pr)} 

contains no elements of finite order other than the identity element. 

4.40. Let E/ K and E' / K be elliptic curves defined over a local field, and let 
cp : E --> E' be a non-constant isogeny defined over K. Prove that 

e(E/K) =e(E'/K), 6(E/K) = 6(E'/K), f(E/K) = f(E'/K). 

Notice that this generalizes the assertion [AEC, VII.7.2) that E and E' 
either both have good reduction or both have bad reduction, since (10.1) 
says that good reduction is equivalent to e = O. 

4.41. Let K/Q3 be a 3-adic field, let E/K be an elliptic curve, let l =I 2 be a 
prime, and let L = K(E[l]). 
(a) Prove that the first higher ramification group G 1 (L/ K) is either trivial 
or a cyclic group of order 3. (Hint. Show that GI(L/ K) is independent of l, 
and then take l = 2.) 
(b) Prove that G1(L/ K) is a cyclic group of order 3 if and only if E/ K 
has reduction type II, IV, IV·, or n·. 

4.42. Let K /Q2 be a 2-adic field, let E / K be an elliptic curve with potential 
good reduction, let l ~ 3 be a prime, let L = K(E[lJ) , and let G1(L/K) 
be the first higher ramification group of L/ K. Prove that 

G1(L/K) e! {1} or Z/2Z or Z/4Z or Hs, 

where Hs is the quaternion group of order 8. (Hint. Show that GI(L/K) 
is independent of l, and then take l = 3.) 

4.43. For each of the following elliptic curves E/Q2' let L = Q2(E[3]) and 
compute the first higher ramification group G1 (L/Q2). 
(a) E: y2 + 2y = x 3 . 

(b) E: y2 + 2xy + 8y = x 3 • 

(c) E: y2 + 2y = x 3 + 2x. 

4.44. Let K be a number field. Prove that for any constant B there are only 
finitely many elliptic curves E/ K whose conductor fE/K satisfies 
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4.45. Let Lj K be a finite extension of local fields as described at the beginning 
of §1O, let 1[L be a uniformizer for L, and define an index function 

iL/K : G(LjK) --+ Z U {oo}, i L/ K(17) = vL(7rL - 7rL). 

(a) Prove that i L/K(17) ~ i + 1 if and only if 17 E Gi(LjK). 
(b) Prove that iL/ K (7177- 1) = iL/ K (17) for all 17,T E G(LjK). 
(c) Prove that iL/K(177) ~ min{iL/ K(17),iL/K(T)} for all 17,7 E G(LjK). 

4.46. We continue with the notation from the previous exercise, with the addi­
tional assumption that the extension Lj K is totally ramified. For basic 
material on the representation theory used in this exercise, see for example 
Serre [7]. The Arlin character ArL/K and the Swan character SWL/K are 
defined to be the functions 

SWL/K : G L/ K --+ Z, ArL/K : G L/ K --+ Z, 

ArL/K(17) = -iL/ K (17) if 17 oF 1, SWL/K(17) = 1 - iL/K (17) if 17 oF 1, 

ArL/K(l) = L iL/ K (17), SWL/K(l) = L(iL/K(17) - 1). 
u#1 u#1 

(a) A function 'I/J on G(L j K) is called a class function if 'I/J( T17T- 1) = 'I/J( (7) 
for all 17,7 E G(Lj K). Prove that ArL/K and SWL/K are class functions. 
(b) *For any pair of functions 'l/J1,'l/J2 on G(LjK), define 

('l/J1,'l/J2) = go(LK) L 'l/Jl(17)'l/J2(17- 1). 
uEG(L/K) 

If X is the character of an irreducible representation of G(Lj K), prove that 
(X, ArL/K) and (X,SWL/K) are non-negative integers. 
(c) Replace K by its maximal unramified extension, and let E j K be an 
elliptic curve with integral j-invariant. Let Lj K be a finite Galois extension 
such that E has good reduction over L. Further let XE be the character of 
the representation of G(Lj K) on Te(E). Prove that XE takes values in ;;Z 

and is independent of R. 
(d) *Continuing with the assumptions from (c), prove that 

6(EjK) = (SWL/K,XE) and f(EjK) = (ArL/K,XE). 

Deduce that 6(EjK) and f(EjK) are integers that are independent of R. 
This proves (1O.2c) in the case that E has potential good reduction. 
(e) If EjK has non-integral j-invariant, prove that 6(EjK) and f(EjK) 
are integers and are independent of.e, thus completing the proof of (1O.2c). 
(Hint. For (e), use the isomorphism E(K) ~ K* jqZ described in (V.5.3) 
and exercise 5.11.) 

4.47. Let KjQp be a p-adic field with p ~ 5, let VK be the normalized valuation 
on K, and let E j K be an elliptic curve. Prove that there exists a minimal 
Weierstrass equation for Ej K with at = a2 = a3 = 0, and with a4, a6, 
and ~ as described in the following table: 

Type 10 In II III IV 10 1* n IV* III* II' 

vK(a4) =0 >1 =1 >2 =2 =2 >3 =3 >4 
vK(a6) =0 =1 >2 =2 =3 =3 =4 >5 =5 
VK(~) =0 =n =2 =3 =4 =6 =n+6 =8 =9 =10 
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4.48. Let KIQ3 be a 3-adic field with normalized valuation VK, and let ElK be 
an elliptic curve. Prove that there exists a minimal Weierstrass equation 
for ElK with al = a3 = 0, and with az, a4, a6, and .6. as described in the 
following table: 

Type 10 In II III IY 1(; 1* n IY' III' II' 

vK(a2) =0 >1 >1 >1 >1 =1 >2 >2 >2 

vK(a4) 21 21 =1 22 22 2 [nt5] 23 =3 24 

vK(a6) >1 =1 >2 =2 >3 >n+3 =4 >5 =5 
VK(.6.) =0 =n >3 =3 >5 =6 =n+6 >9 =9 >11 

4.49. Let KIQp be a p-adic field with p 2 3, let VK be the normalized valuation 
on K, and let ElK be an elliptic curve with Type I~ reduction. 
(a) If n = 0, prove that vdj(E)) 2 0 and VK('])EjK) = 6. 
(b) If n 21, prove that vK(j(E)) = -n and VK('])EjK) = n + 6. 
(c) Let LI K be a tamely ramified extension with ramification degree e = 
e(LI K). Prove that E / L has Type Ine reduction if e == 0 (mod 2), and ElL 
has Type I~e reduction if e == 1 (mod 2). 
(d) Give an example of an elliptic curve EIQ2 with Type I~ reduction 
satisfying n 21 and v2(j(E)) 2 O. This shows that (b) is not true for p = 2. 
What is the largest possible value of n in this situation? 

4.50. Let KIQ3 be a 3-adic field with normalized valuation VK, and let LIK be 
a tamely ramified extension with normalized valuation VL. Let e = e(LIK) 
be the relative ramification degree, so v L = ev K. Let E / K be an elliptic 
curve whose reduction type is one of II, IY, IY', or II'. 
(a) Prove that the reduction type of ElL is given by the following table: 

Type(EIK) e == 1 (6) e == 2 (6) e == 4 (6) e == 5 (6) 
II II IY IY' II' 
IY IY IY' IY IY' 
IY' IY' IY IY' IY 
II' II' IY' IY II 

(b) Let ']) E j K and ']) E j L be the minimal discriminants of ElK and ElL 
respectively. Prove that the value of the difference 

is given by the following table: 

Type(EIK) e == 1 (6) e == 2 (6) e == 4 (6) e == 5 (6) 
II 2e - 2 2e - 4 2e - 8 2e -10 
IY 4e -4 4e- 8 4e -4 4e- 8 
IY' 8e - 8 8e-4 8e - 8 8e - 4 
II' 10e - 10 10e - 8 lOe-4 lOe - 2 
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4.51. This exercise illustrates how wild ramification can cause the reduction type 
of an elliptic curve to change in an irregular fashion. It may be compared 
with the previous exercise, which dealt with the tamely ramified case. 

Let KIQ3 be a 3-adic field with normalized valuation VK, and let ElK 
be an elliptic curve given by a Weierstrass equation 

Let LI K be a ramified extension of degree 3, so LI K is wildly ramified. 
(a) Prove that ElK has Type II reduction. 
(b) If vK(3) = 1 (i.e., if KIQ3 is unramified), prove that ElL has Type III­
reduction. 
(c) If VK (3) = 2, prove that ElL has Type 10 (i.e., good) reduction. 
(d) IfvK(3) = 3, prove that ElL has Type III reduction. 
(e) Try to find a general formula for the reduction type of ElL. Does the 
reduction type of ElL depend only on vK(3)? 

4.52. We continue with the notation from the previous exercise, so KIQ3 is a 
3-adic field and ElK is an elliptic curve 

Prove that the conductor exponent of ElK is f(EI K) = 2+3vK(3). Notice 
that (10.4) says that this is the largest allowable conductor exponent for 
an elliptic curve defined over a 3-adic field. 

4.53. Let KIQ2 be a 2-adic field with normalized valuation VK, and let ElK be 
an elliptic curve given by a Weierstrass equation 

(a) Prove that the equation given for E is a minimal Weierstrass equation 
and that VK('D ElK) = 6VK(2) + 3. 
(b) Prove that E has Type III reduction and that the special fiber of E 
has two components. 
(c) Prove that the conductor exponent of ElK is f(EIK) = 2 + 6VK(2). 
Notice that (10.4) says that this is the largest allowable conductor exponent 
for an elliptic curve defined over a 2-adic field. 

4.54. This exercise asks you to verify two cases of Ogg's formula (11.1) that were 
not completed in §11. Let KIQ3 be a 3-adic field, let ElK be an elliptic 
curve, and let L = K(E[2]). 
(a) If ElK has Type III- reduction, prove directly that LIK is a tamely 
ramified extension. Use this to verify Ogg's formula for ElK. 
(b) Let M = K(VK), and suppose that ElM has Type IV- reduction. 
Give a direct proof of Ogg's formula in this situation. (Hint. Mimic the 
proof for Type IV reduction given in §11.) 



CHAPTER V 

Elliptic Curves over Complete Fields 

Every elliptic curve E IC admits an isomorphism C* I qZ ~ E( q by complex 
analytic functions, and we have seen amply demonstrated in Chapters I 
and II the importance of such uniformizations. In this chapter we are 
going to study uniformizations over other complete fields such as lR and 
finite extensions KIQp. We begin in §1 with a brief review of the relevant 
formulas over C, and then in §2 we use the complex uniformization to 
investigate elliptic curves over R 

We next turn to elliptic curves defined over p-adic fields KIQp. Tate [9] 
has shown that for every q E K* with Iql < 1 there is an elliptic curve Eql K 
and a p-adic analytic isomorphism K* IqZ ~ Eq(K). In §3 we will describe 
the Tate curve Eq and prove all of its main properties except for the sur­
jectivity of the map K* ---> Eq(K), which we reserve for §4. Tate has also 
shown that every elliptic curve ElK with non-integral j-invariant is iso­
morphic, possibly over a quadratic extension of K, to some E q . We will 
prove this result and describe the necessary twisting in §5, and then in §6 
we will give some applications, including Serre's proof that an elliptic curve 
with complex multiplication has integral j-invariant. 

§1. Elliptic Curves over C 

We have already discussed elliptic curves and elliptic functions over C in 
some detail; see [AEC VI] and (I §§5~8). The purpose of this section is to 
gather and rewrite in a convenient form the formulas we will use later in 
this chapter when we study elliptic curves over lR and over p-adic fields. 

Let EIC be the elliptic curve corresponding to the normalized lattice 

AT = ZT + Z for some T E H. 

We know that E(C) ~ CI AT) the isomorphism being given in terms of the 
Weierstrass gJ-function and its derivative. As in (I §6), it is convenient to 
let 
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Note that since Im(T) > 0, we have iqi < 1. There is a complex analytic 
isomorphism 

Z t-----+ U = e27riz , 

and we can use the q-expansions from (I §§6,7) to explicitly describe the 
isomorphism E(C) ~ C* fl--. 

The elliptic curve E has the Weierstrass equation 

From (1.7.3.2) we have 

1 1 
(271"i)492(T) = 12 [1 + 240S3(q)] , 

1 1 
(271"i)693(T) = 216 [-1 + 504s5 (q)] , 

where in general 

(For the second equality, see exercise 5.1. Here O"k (n) = :Ldln dk as usual.) 
We've collected the powers of 271"i as indicated to make it easier to eliminate 
them. 

Next, the isomorphism 

C* fl' ---+ E(C) 
U t-----+ (p(u, q), S:/(u, q)) 

is given by the power series described in (1.6.2) and (1.6.2.1): 

(Note that p' is the derivative of p with respect to z, where u = e27riz .) 

Jacobi's formula (1.8.1) says that the discriminant of the Weierstrass 
equation for E has the product expansion 

6.(T) = 92(T)3 - 2793(T)2 = (271"i)12q II (1- qn)24, 
n~l 
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and the j-invariant of E is given by the series (1.7.4) 

1 1 
j(q) = - + 744 + 196884q + ... = - + L c(n)qn with c(n) E Z. 

q q n?-O 

It is convenient to make a change of variables, partially to remove the 
powers of 27ri and partially to eliminate the powers of 2 and 3 appearing 
in the denominators of the series for g2, g3, and 8J. Thus we let 

1 ,1 
(27ri)2X = X + 12' 

1 " 
(27ri)3 Y = 2y + x , 

which gives the new Weierstrass equation 

with 
1 1 1 

a4 = -4: . (27ri)4 g2 (T) + 48' 

1 1 1 1 1 
a6 = -4: . (27ri)6 g3 (T) - 48 . (27ri)4 g2 (T) + 1728' 

Now using the seriefl for g2, g3, 8J, 8J' and doing a little algebra, we find we 
have proven virtually all of the following result. 

Theorem 1.1. For U, q E C with Iql < 1, define quantities 

2 3 Eq : y + xy = x + a4(q)x + ao(q). 

(a) Eq is an elliptic curve, and X and Y define a complex analytic isomor­
phism 

u 
if U tf. q'L, 
if U E q'L. 
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(b) Written as power series in q, both a4(q) and a6(q) have integer coeffi­
cients; that is, a4(q), a6(q) E Z[q]' 
(c) The discriminant and j-invariant of Eq are given by the formulas 

6.(q) = -a6 + a~ + 72a4a6 - 64a~ - 432a~ 

= q II (1 - qn)24 E Z[q], 
n;:,l 

. 1 
J(q) = - + 744 + 196884q + ... 

q 

1 1 
= - + L c(n)ql1 E - + Z[q]. 

q n;:,O q 

(d) For every elliptic curve EIC there is a q E C* with Iql < 1 such that E 
is isomorphic to E q • 

PROOF. The discussion given above has proven all of (a), (b), and (c) 
except for the minor point that the power series for a6(q) has integer coef­
ficients. Since 

it suffices to observe that 

5da + 7d5 == 0 (mod 12) for all d E Z. 

(Notice that we used this same fact in the proof of (1.7.4a).) This completes 
the proof of (c). 

Finally, to prove (d), we note that the uniformization theorem (1.4.4) 
says that every elliptic curve E IC is isomorphic to CI A for some lattice A. 
Then the change of variables used above transforms the \;Veierstrass equa­
tion for E into an E q . 

o 

Remark 1.2. It is sometimes convenient to rewrite 81 (q) in the alternative 
form 

To check that these two expressions for 81 (q) are the same, we substi­
tute T = qn into 

T d(l) d m m 
(1 - T)2 = T dT 1 _ T = T dT L T = L mT 

m;:,O m;:,l 
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and sum over n ?: 1, which yields 

For later reference, it will be helpful to rewrite the formulas 

( ) _ () __ (]'(z + a)(]'(z - a) 
f9 z f9 a - (]'(z)2(]'(a)2 

I (]'(2z) 
and f9 (z) = - (],(z)4 

from (1.5.6) in terms of X(u, q) and Y(u, q). For this purpose, we introduce 
a normalized theta function. 

Proposition 1.3. Define a normalized theta function 8(u, q) by the for­
mula 

8( ) = (1 _ ) II (1 - qnu)(l - qnu- l ) 
U, q U (1 _ n)2 . 

n~l q 

(a) 8(u,q) converges for all u,q E C* with Iql < 1 and satisfies the func­
tional equation 

1 
8(qu,q) = --8(u,q). 

u 

(b) 8 is related to the Weierstrass (]' function by the formula 

1 1 (1) 2 . 
(]'(u,q) = --2 .e 2 '7 z e-7nz8(u,q), 

'In 

where u = e271'iz, q = e271'iT, and 1](1) is the quasi-period associated to the 
period 1 in the lattice ZT + Z. 
(c) 8 is related to the functions X(u,q) and Y(u,q) described in (1.1) by 
the formulas 

(i) 

(ii) 

PROOF. (a) Since Iqnul < 1 and Iqnu-ll < 1 for all sufficiently large n, it 
is clear that the product defining 8 converges. Then replacing u by qu and 
renumbering the factors in the product gives 
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(b) This is immediate from the definition of () and the product formula 
for a given in (1.6.4). 
( c) From above, X and Yare related to g;J and g;J' by the formulas 

and 

Hence writing Ul = e27fizl and U2 = e27fiz2, we find (dropping the q from 
our notation) 

1 
X(ud - X(U2) = (27ri)2 (g;J(Ul) - g;J(U2)) 

1 a(ulu2)a(ului 1) 
- (27ri)2 a(ul)2a(u2)2 

from (1.5.6a) 

= _e!1/(l)«(Zl +Z2)2+(Zl-Z2)2_2z~ -2z~) 

. e-7fi((Zl+Z2)+(Zl-Z2)-2z1-2z2). 8(UIU2)e(UIUi 1 ) 

()( ud2()( U2)2 

This proves (i), and (ii) is proven by the similar calculation 

2Y(u) + X(u) = (2:i)3 g;J'(u) 

1 a(u2 ) 

- (27ri)3 a(u)4 
from (1.5.6b) 

= _e!1/(1)«(2z)2-4z2) . e-7ri(2z-4z) ()(u2) 
()( U)4 

8(u2) 
= -u 8(u)4' 

§2. Elliptic Curves over ffi. 

from (b) 

from (b) 

o 

The uniformization theorem (1.4.4) says that every elliptic curve defined 
over C is analytically isomorphic to C* / qZ for some q = e 27fir • Since an 
elliptic curve defined over ffi. is automatically defined over C, it has such a 
model. We begin by describing a set of r's which classifies elliptic curves 
over ffi. up to C-isomorphism. 
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Proposition 2.1. Let E/'&. be an elliptic curve. Then there exists a 
unique T in the set 

e = {it : t :::: 1 } U { eiO IT IT} {I v'3} - < B < - u - + it : t > -3- -2 2 - 2 

such that 
j(T) = j(E). 

(The set e is illustrated in Figure 5.1.) 

PROOF. First we check that j(e) c RIfT = it or T = ~ + it with t E '&., 
then q E '&., so the q-expansion (1. 7.4b) 

shows that j(T) E R Next, for any 7 we have 

so in general 

Hence for T = eiO we have 

This proves that j (e) c R 
Next we observe that 

-:--( ) _ . ( 1712) J T -J -- . 
T 

c(n) E Z, 

lim j(it) = lim q-l + L c(n)qn = +00, 
t-->oo q-->O+ 

lim j (-21 + it) = lim q-l + L c(n)qn = -00. 
t-->oo q-->O-

By continuity, we conclude that j(e) = R (Note that j : e -+ '&. is 
continuous, since j : H -+ C is holomorphic.) Finally, (1.1.5b) and (1.4.1) 
imply that j : e -+ '&. is injective, which concludes the proof that the 
map j : e -+ '&. is a bijection. 0 

Proposition 2.1 completely describes all C-isomorphism classes of ellip­
tic curves defined over R However, since'&. is not algebraically closed, it is 
possible to have more than one '&.-isomorphism class in each C-isomorphism 
class. For a given E /'&., these other curves are called the twists of E 
(see [AEC X §5]). Our next result classifies these twists. 
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The Set e for Which j(7) E IR 

Figure 5.1 
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Proposition 2.2. (a) Let E/IR be an elliptic curve. Then the C-iso­
morphism class of E contains exactly two IR-isomorphism classes. (In the 
notation of [AEC X §5], Twist((E,O)/IR) ~ {±1}.) 
(b) More precisely, define an invariant I'(E/IR) E {±1} by the rule 

{ 
sign(c6), if j =J 1728 (i.e., if C6 =J 0), 

')'(E/IR) = . () 'f' 1728 (. 'f 0) sign c4, 1 J = J.e., J C6 = . 

(Here C4 and C6 are the usual quantities associated to some Weierstrass 
equation for E /IR.) Let E /IR and E' /IR be elliptic curves. Then 

E ~ E' over IR {==} j(E) = j(E') and I'(E/IR) = ')'(E' /IR). 

PROOF. From [AEC X.5.4], the twists of E are in one-to-one correspon­
dence with the elements of the group 

where n = # Aut(E) E {2, 4, 6}. 

Since n is even, IR* /IR*n ~ {±l} has two elements. This completes the 
proof of (a). 
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For (b) we use the more precise description of the twist provided by 
the second part of [AEC X.5.4]. If E/ffi. is given, and if E' /ffi. is the twist 
of E/ffi. corresponding to some D E ffi.* /ffi.*" , then [AEC X.5.4] says that 

c6(E') = D3C6(E) 

c6(E') = DC6(E) 

c4(E') = DC4(E) 

Hence in all cases 

if j(E) '" 0, 1728, 

if j(E) = 0, 

if j(E) = 1728. 

. ,(E/ffi.) 
slgn(D) = ,(E' /ffi.)' 

so the ratio ,(E /ffi.)h(E' /ffi.) determines whether E' is isomorphic to E or 
to its non-trivial twist. D 

Remark 2.2.1. For an analogous result over p-adic fields, see (5.2). 

By combining Propositions 2.1 and 2.2, we can now give a convenient 
set of q's which completely classifies all ffi.-isomorphism classes of elliptic 
curves. For any q = e2-rr:iT, we let Eq be the elliptic curve 

where a4(q) and a6(q) are the power series described in (1.1), and we let 

¢(u) = (X(u,q),Y(u,q)), 

be the C-analytic isomorphism from (1.1). 

Theorem 2.3. Let E /ffi. be an elliptic curve. 
(a) There is a unique q E ffi. with 0 < iqi < 1 such that 

(i.e., E is ffi.-isomorphic to Eq). 
(b) Composing the isomorphism from (a) with the map dJ described above, 
we obtain an isomorphism 

which commutes with complex conjugation, that is, 7./J is defined over R In 
particular, 

is an ffi.-analytic isomorphism. 

PROOF. Note first that if q E ffi., then the series (1.1) imply that a4(q) 
and a6(q) are in ffi., so Eq is defined over R We want to start by using (2.1) 
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to find a T with j(T) = j(E). As noted during the proof of (2.1), the 
points T = it and T = ~ + it give real values of q. However, for T = eiO we 
do not have q E 1Ft So we use the transformation 

-1 
a(T) = -­

T-1 
which satisfies 

iO 1 i () 
a( e ) = - + - cot -. 

2 2 2 

Thus a E r(l) yields a bijection 

a: e : - < () < - --> - + zt : - < t < - . { iO 7r 7r } ~ {I . 1 V3 } 
3- -2 2 2- - 2 

Since j(aT) = j(T), we conclude from (2.1) that there is a unique T in the 
set 

{it : t ~ 1 } U { ~ + it : t > ~} 

such that j ( T) = j (E). Note that in the second set we do not allow t = ~, 
since this would give the duplicate value 

j (~+ ~i) = j(a(i)) = j(i). 

The set of q = e27riT E 1R. with 0 < Iql < 1 corresponds bijectively with 
the T'S in the set 

'J = {it : t > 0 } U { ~ + it t > 0 } . 

Further, the transformations 

1 
ST = --, 

T 

give identifications 

T-1 
{3T = 2T - l' 

-1 
aT =-­

T-1 

S:{it: t>l}--=::"'{it: t<l}, 

{I I} ~ {I I} {3: 2" + it : t > 2" --> 2" + it : t < 2" ' 

. 1 1 . 
a: z ~ - +-2-

2 2 

(See Figure 5.2.) 
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map 
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o 
2 

A Set of 7 Giving All q E lR with 0 < Iql < 1 

Figure 5.2 

1 

Since j({7) = j(7) for any, E SL2(Z), we see from above that the 

j:'J~lR 

is exactly two-to-one. From (2.2a) there are exactly two lR-isomorphism 
classes of elliptic curves with a given j-invariant. Hence to complete the 
proof of (a) we must check that if 7,7' E 'J are distinct points with j(7) = 

j(7'), then Eq and Eq, are non-trivial twists of one another. To do this we 
will use (2.2b). 

The change-of-variable formulas for Weierstrass equations [AEC III §1] 
imply that 

and 

for some u E C*. (In fact, our explicit formulas imply that u = (27ri)-1, 
but for our purposes it suffices to know that u does not depend on 7.) Now 
suppose that 

, a7 +b 
7 =--

cr+d 
for some (~ :) E SL2(Z). 
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Then using the l'-invariant defined in (2.2b) and the fact that g2 and g3 
are modular forms, we find that 

I'(Eql/JR) = sign (c6(q')) = sign (93( T')) = sign{ (CT + d)6} 
I'(Eq/JR) C6(q) g3(T) 

if jeT) =1= 1728. 

Similarly, 

I'(Eq)JR) = sign (C4(q')) = sign (92( T')) = sign{ (CT + d)4} 
I'(Eq/JR) C4(q) g2(T) 

if jeT) = 1728. 

We must show that for the T'S and T"S described above, all of these signs 
are -1. This requires checking several cases. 

lease I: T = it, t > 1. T' = ST = -~.I 
In this case j ( T) =1= 1728, and 

(CT + d)6 = (it)6 = _t6 < O. 

lease II: T = - + it, t > 1. T' = (3T = --. 1 T -1 I 
2 2T-1 

Again we are in a case in which j (T) =1= 1728, and 

(CT + d)6 = (2T - 1)6 = (2it)6 = -64t6 < O. 

lease III: 
., -1 1 1. I 

T = 2. T = 007 = T _ 1 = 2 + 22. 
This is the case that j (T) = 1728, and 

(CT + d)4 = (T - 1)4 = (i - 1)4 = -4 < O. 

Hence in all cases Eq and Eql are distinct twists, which completes the 
proof of (a). 
(b) The series for X(u,q) and Y(u,q) show that if q E JR, then the map 

¢: C* /q'lt ~ Eq(C), ¢(u) = (X(u, q), Y(u, q)) 

commutes with complex conjugation. Since the isomorphism E ~ Eq in (a) 
is defined over JR, it follows that the composition 'IjJ : C* /q'lt ----> E(C) is also 
defined over lR. This proves the first half of (b), and the second follows by 
taking GlCjlR-invariants of the exact sequence 

1 --> q'lt --> C* --> E(C) --> 0, 

so we get JR* /qZ ~ E(JR). (Note that HI (Gc / lR , qZ) = Hom(Gc / lR , Z) = 
0.) Finally, it is clear that this isomorphism is lR.-analytic, since we know 
that 'IjJ is C-analytic and is given by power series with coefficients in lR. 

D 

An elliptic curve over lR. has either one or two components. We can 
use (2.3) to give a criterion to determine which case holds. 
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y2 = x3 _ 2x2 - x + 2 
L\ = 576 

y2 = X3 -x + 1 
L\ = -368 

Elliptic Curves over lR. with One and Two Components 

Figure 5.3 

Corollary 2.3.1. Let E(lR.) be an elliptic curve, and let tl.(E) be the 
discriminant of some Weierstrass equation for E /R Then there is an iso­
morphism of real Lie groups 

{ 
lR./IZ, if tl.(E) < 0, 

E(lR.) ~ 
- (lR./IZ) x (1Z/21Z) , if tl.(E) > O. 

PROOF. Fix an isomorphism E ~/lR Eq as in (2.3a). Then 

u12tl.(E) = tl.(Eq) = q II (1- qn)24 
n~l 

for some u E lR., so 

signtl.(E) = signtl.(Eq) = signq. 

Now (2.3b) says that E(lR.) ~ Eq(lR.) ~ lR.* /qZ, so the following isomor­
phisms complete the proof of Corollary 2.3.1: 

lR.* /qZ ~ lR./IZ, u ~ ~ C:: :~I- sign(u) + 1) (modlZ), if q < 0, 

lR.* /qZ ~ (lR./IZ) x {±1}, u ~ C~:gl~1 (modZ), Sign(u)) , if q > o. 
o 
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We conclude our discussion of elliptic curves over ffi. by describing the 
Weil-Chatelet group WC(E/ffi.). (See [AEC X §3] for basic facts about the 
Weil-Chatelet group.) As in (2.2), the fact that GC;'R is so small leads to 
a very simple answer. 

Theorem 2.4. Let E/ffi. be an elliptic curve, and let tl(E) be the dis­
criminant of some Weierstrass equation for E /ffi.. Then 

WC(E/ffi.) C:< {O if tl(E) < 0, 
- Z/2Z if tl(E) > O. 

PROOF. From [AEC X.3.6] there is an isomorphism 

Choose a q E ffi. and an ffi.-isomorphism E ~/1R Eq as in (2.3). Then 

as Gc/lR-modules, 

so we have an exact sequence 

o ----+ qZ ----+ C * ----+ E (q ----+ 0 

of Gc/lR-modules. Since 

from Hilbert's Theorem 90 (or by an easy direct calculation), the long exact 
sequence in GC/'R-cohomology gives 

Now GC;IR = {I, a} is cyclic of order 2, so for any GC/'R-module M 
(written multiplicatively) we have 

(This is a special case of a general formula for the cohomology of cyclic 
groups. See exercise 5.2.) Since GC/ IR acts trivially on qZ, we find 
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Hence we finally obtain an exact sequence 

where the right-hand map is induced by the natural inclusion qZ '--> ~*. 
From this exact sequence we immediately conclude that 

WC(E/~) ~ {O 
Z/2Z 

if q < 0, 

if q > O. 

But as we observed during the proof of (2.3.1), 

U12 fl(E) = fl(q) = q II (1- qn)24 for some u E ~, 

n2:1 

so signfl(E) = signq. This completes the proof of Theorem 2.4. D 

§3. The Tate Curve 

We have seen that every elliptic curve defined over the complex numbers 
has a parametrization C/ A for some lattice A c C. Suppose we replace C 
by rQp and endeavor to parametrize an elliptic curve E /rQp by a group of the 
form rQp/ A. Unfortunately, this approach immediately fails, because <Q!p 
has no non-trivial lattices. Indeed, if A c rQp is any non-zero subgroup 
:md 0 i- tEA, then 

pUt E A for all n ~ 0 and lim pnt = 0, 
n--->(X) 

so 0 is an accumulation point of A. Hence rQp contains no discrete subgroups 
other than O. 

Tate's idea is to first exponentiate, which leads to the alternative de­
scription C* / qZ for elliptic curves over C. Now the analogous situation 
over <Q!p is much more promising, since rQ; has lots of discrete subgroups. 
For example, any q E <Q!; with Iql < 1 defines the discrete subgroup 

Further, the series described in (1.1) will converge in rQp and give a p-adic 
analytic isomorphism of the quotient rQ;/ qZ with a certain elliptic curve E q . 
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The situation is nicely summarized by the following picture (taken from 
Robert [1, II §5]). 

Complex case 

CIA 

1 exponential 
map e27riz 

p-adic case 

no p-adic analogue 

no exponential available 

Q;/ qZ : p-adic elliptic curve. 

More generally, we can work over any p-adic field K, by which we mean 
a finite extension K/Qp. All of these facts (and more) are contained in 
the next theorem, the proof of which will keep us busy for the next two 
sections. 

Theorem 3.1. (Tate) Let K be a p-adic field with absolute value 1 . I, 
let q E K* satisfy Iql < 1, and let 

be the series described in (1.1). 
(a) The series a4(q) and a6(q) converge in K. Define the Tate curve Eq by 
the equation 

(b) The Tate curve is an elliptic curve defined over K with discriminant 

f)" = q II (1 - qn)24 
n2':l 

and j-invariant 

. 1 1 
J(Eq ) = - + 744 + 196884q + ... = - + L c(n)qn, 

q q n2':O 

where the c(n) 's are the integers described in (1.1). 
(c) The series 
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converge for all u E K, u ¢ qZ. They define a surjective homomorphism 

¢: K* 

u 

The kernel of ¢ is qZ. 

Eq(K) 

{bX(u,q), Y(u,q») ifu ¢ qZ, 
ifu E qZ. 

(d) The map ¢ in (c) is compatible with the action of the Galois group 
G k / K in the sense that 

In particular, for any algebraic extension Lj K, ¢ induces an isomorphism 

Remark 3.1.1. The p-adic uniformization described in Theorem 3.1 is es­
pecially useful for arithmetic applications because it is compatible with the 
action of Galois as described in (3.1d). Note that a complex uniformization 
Cj A ---> E(C) or C* jqZ ---> E(C) does not have this compatibility (except 
relative to GC/IR), since in general one cannot apply an element of Galois 
to the value of a convergent series by applying it to each term of the series. 
(See exercise 5.8.) 

Remark 3.1.2. Theorem 3.1 is actually true for any field K that is com­
plete with respect to a non-archimedean absolute value. The only time we 
will use the fact that K is a finite extension of Qp will be in the proof that 
the map ¢ in (3.1c) is surjective. (In fact, we will really only need the fact 
that the absolute value is discrete, so our proof actually is valid somewhat 
more generally, for example over the completion of Q~r.) For a proof of 
Theorem 3.1 in the most general setting, using p-adic analytic methods, 
see Roquette [1]. 

PROOF. (a) From (LIb), the series defining a4 and a6 are in Z[q], so they 
will converge in K for any value of q E K satisfying Iql < 1. 
(b) The discriminant of Eq is 

Substituting in the series for a4(q) and a6(q), we find the usual power series 

.6.(q) = q - 24q2 + 252q3 + ... == q (mod q2). 

Hence /.6.(q)/ = Iql =I- 0, so Eq is a non-singular elliptic curve. 
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Next we observe from (1.1c) that the identity 

~(q) = q II (1 - qn)24 

n~l 

holds for all q E C with Iqloo < 1, where for the moment we write I . I 
for the usual absolute value on C. It follows that this identity is true as 
an identity of formal power series in Z[q]. Hence it remains true when we 
take q to be an element of absolute value less than 1 in any field that is 
complete with respect to a non-archimedean absolute value. 

Finally, the formula 

.( ) _ (1 + 48a4(q)) 3 

J q - ~(q) 

1 + 240q + 2160q2 + .. . 
q - 24q2 + 252q3 + .. . 

1 
= -(1 + 744q + 196884q2 + ... ) 

q 

holds in the non-archimedean case, since it is obtained formally by taking 
the quotient of the appropriate power series. 
(c) We begin by rewriting the series for X and Y as follows, where we've 
used the alternative expression (1.2) for 81(q): 

These expressions show immediately that X(u, q) and Y(u, q) converge for 
all u E K*" qZ. (Note that although K itself is not complete, every term in 
these series is in the field K(u) = Qp(u, q), which is a finite extension of Qp; 
so we are really working in the complete field K(u). Similar comments will 
apply below whenever we speak of substituting elements of K into a series.) 
The functional equations 

X(qu,q) = X(u,q) = X(u-1,q) 
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are now obvious, the first equality from the original series for X and the 
second from the rearranged series we just gave. A little algebra gives similar 
functional equations for Y, 

Y(qu,q) = Y(u,q) and Y(U~I,q) = -Y(u,q) - X(u,q). 

If we restrict u to the range Iql < lui < Iql~l, we have Iqnul < 1 
and Iqnu~ 11 < 1 for all positive integers n. So we can use the expansion 

with T equal successively to u, U~I, and 1 to rewrite the series for X as 

X(u, q) = (1:: U)2 + :L(:L m(um + u~m - 2))qd E Q(u)[q], 
d~1 mid 

A similar calculation allows us to write Y as a power series in q with 
coefficients in Q( u): 

Y( )= u2 ""(,,,,{(m-1)m m_m(m+1) ~m }) d 
U, q (1 _ U)3 + L L 2 u 2 u + m q 

d~l mid 

E Q(u)[q], valid for Iql < lui < Iql~l. 

We begin our proof of (c) by showing that the image of the map ¢ is 
contained in the curve Eq given by the Weierstrass equation 

This amounts to showing that when we substitute the series X(u,q) and 
Y(u, q) for x and y in this equation, we get an identity valid for all u E 
K* "qz. By the periodicity of X and Y, it is enough to consider values 
of u such that Iql < lui :S: 1 and u oJ 1. In this range we can use the above 
formulas which express X and Y as power series in q with coefficients that 
are rational functions of u. Thus we will be done if we can show that the 
equation 

Y(u, q)2 + X(u, q)Y(u,q) = X(u, q)3 + a4(q)X(U, q) + a6(q) 

is valid as a formal identity in the ring of formal power series in q with 
coefficients which are rational functions of the indeterminate u. In other 
words, we want to verify that this identity holds in the ring Q(u)[q]. 
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From (1.1), we know that this equation is true numerically if we sub­
stitute any pair of complex numbers u, q E C in the domain of conver­
gence \q\oo < \u\oo < \q\~}, u i= 1. If we fix some u with \q\oo < \u\oo < 1 
and let q vary, we conclude that the resulting power series in q with com­
plex coefficients are equal coefficient-wise. Then letting u vary, we deduce 
that the coefficients are formally equal as rational functions of u. Hence 
we have an equality of formal power series in lQl(u)[q]. 

Next we prove that cP is a homomorphism. Given UI, U2 E K*, we 
put U3 = UI U2 and must prove that 

where Pi = cP(Ui), i = 1,2,3. 

In view of the periodicity cP( qu) = cP( u), we may restrict consideration to 
values of UI and U2 in the ranges 

Then all three Ui are within the domain of convergence of the power series 
expressions for X, Y E lQl(u)[q] described above. 

Since cP(I) = 0 by definition, the relation P3 = PI + P2 holds triv­
ially if UI = 1 or U2 = 1. Using the functional equations for X(u-l,q) 
and Y(u-l,q) and the fact that PI + P2 = 0 if and only if Xl = X2 
anel YI + Y2 = -Xl, it is also not hard to verify that P3 = PI + P2 in the 
case that u I U2 = 1. So we are reel uced to the case that PI, P2 , and P3 are 
all different from O. We write Pi = (Xi, Yi); that is, we set Xi = X(Ui, q) 
and Yi = Y(Ui, q) for i = 1,2,3. 

Suppose first that Xl i= X2. Then writing out the addition law on Eq , 

we see from [AEC, III.2.3] that the relation PI + P2 = P3 is equivalent to 
the two identities 

(X2 - xd2X3 = (Y2 - YI)2 + (Y2 - YI)(X2 - Xl) - (X2 - Xd(XI + X2), 

(X2 - XdY3 = -((Y2 - yd + (X2 - Xl))X3 - (YIX2 - Y2xd· 

Now we can argue as above that (1.1) implies that these identities hold for 
all complex numbers UI,U2,q in the specified ranges. Hence they are iden­
tities in the ring 1Ql( UI, U2) [q] of formal power series in q with coefficients 
that are rational functions of UI and U2, and so are true for UI,U2,q E K. 

To deal with the remaining case Xl = X2, we could use the duplication 
formula, or we could invoke a p-adic continuity argument, but perhaps the 
simplest solution is to observe that Xl = X2 if and only if PI = ±P2, and 
then use the following lemma. 

Lemma 3.1.2. Let cP be a map of a (multiplicative) group into an (addi­
tive) group which takes on an infinite number of distinct values and satisfies 
the identity 
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Then ¢ is a homomorphism. 

PROOF. Given any Ul and U2, the fact that ¢ takes on infinitely many 
distinct values means that we can choose a U such that 

¢(u) i- ±¢(ut}, 

Then ¢(uut} = ¢(u) + ¢(Ul) i- ±¢(U2), so 

¢(u) + ¢(ud + ¢(U2) = ¢(uud + ¢(U2) = ¢(UUIU2) = ¢(u) + ¢(UIU2). 

Canceling ¢(u) gives ¢(Ul)+¢(U2) = ¢(UIU2), valid for all Ul and U2, which 
shows that ¢ is a homomorphism. 0 

To finish the proof that our ¢ : K* --; Eq(K) is a homomorphism, 
we need merely observe that ¢ certainly takes on infinitely many distinct 
values. For example, the series for X (u, q) shows that for any t E K 
with It I < 1, we have IX(1 + t,q)1 = Itl-2 . Hence (3.1.2) applies in our 
case. 

So we now know that ¢ is a homomorphism of K* into Eq(K). That 
the kernel of ¢ is qZ is apparent from its very definition. It remains to 
prove that ¢ is surjective. This is the hardest part of the proof, which we 
will leave to the next section. 
(d) As noted above, the series for X (u, q) and Y (u, q) converge in the 
complete field K(u), so it really suffices to prove (d) for 0" E G L/K, where L 
is any finite Galois extension of K containing K(u). Any such 0" maps the 
maximal ideal of the ring of integers of L to itself, so 0" will preserve the 
absolute value on L: 

laul = lal for all 0" E GL / K and all a E L. 

It follows easily from this that if E O:i is a convergent series with ai E L, 
then (E ait = E af· (See exercise 5.8.) Applying this to the series 
for X(u,q) and Y(u,q), we deduce that ¢(u)U = ¢(UU). This proves the 
first part of (d). 

For the second part, we use (c) to produce the exact sequence 

We now know that the maps in this exact sequence commute with the 
action of G K / K. Hence for any algebraic extension L / K, we can take G K / L 

invariants of this short exact sequence to obtain the exact sequence 

To obtain surjectivity on the right, we observe that it suffices to prove 
surjectivity in the case that L is a finite extension of !Qlp; we will prove 
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exactly this fact in the next section. Alternatively, we may observe that 
the next term in this last sequence is the cohomology group HI (G K / L, qZ). 

Since q E K, the action of G K / L on qZ is trivial, so this is just the group 
of continuous homomorphisms from the profinite group G K / L to the dis­
crete group qZ ~ z. The only such homomorphism is the trivial one, 
so HI(GK/ L , qZ) = 0, which proves that L* -t Eq(L) is surjective. This 
completes the proof of (d). 0 

Before resuming the proof of Theorem 3.1 in the next section, we 
briefly pause to repeat Proposition 1.3 in the context of p-adic theta func­
tions. These formulas will be used in our study of local height functions in 
Chapter 6. 

Proposition 3.2. Define a function O(u, q) by the formula 

O( ) = (1 _ ) II (1 - qnu)(1 - qnu- I ) 
u, q u (1 _ n)2 . 

n~l q 

(a) O(u,q) converges for all u,q E Q; with iqi < 1 and satisfies the func­
tional equation 

1 
O(qu,q) = --O(u,q). 

u 

(b) 0 is related to the functions X(u, q) and Y(u, q) described in (3.1c) by 
the formulas 

(i) 

(ii) 

PROOF. The convergence of the infinite product defining 0 is clear, and the 
functional equation follows formally by substituting qu for u and renum­
bering. This proves (a). Next we observe from (1.3) that the two for­
mulas in (b) are valid over C. Now an argument similar to that used to 
prove (3.1c) shows that they are valid over K. We will leave the details to 
the reader. 0 
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§4. The Tate Map Is Surjective 

The final step in the proof of (3.1), which we postponed from the previous 
section, is to show that the map 

¢(u) = (X(u,q), Y(u,q)), 

is surjective. One approach is to reprove in the p-adic case some classical 
results from complex analysis concerning Laurent series. In particular, one 
proves Schnirelmann's Theorem that a Laurent series f(X) which converges 
for all X =I- 0 can be written as a convergent product 

where the product is over all roots a of f. Then one constructs the field 
of p-adic meromorphic functions on K* /qZ and shows using Riemann-Roch 
that it is a field of genus lover K.This leads to an isomorphism with some 
elliptic curve, and after some work with the classical power series for p 
and p', one deduces that the elliptic curve is indeed the curve we have 
denoted Eq . For details of this line of proof, see Robert [1], Roquette [1], 
and Tate [9]. We will take a more computational, geometrically inspired 
approach. However, we should note that the theory of p-adic analytic 
functions has many important applications in modern arithmetic geome­
try. The reader might consult Bosch-Giinter-Remmert [1] for a thorough 
introduction to this subject which is called rigid analysis. 

In order to prove that ¢ : K* -> Eq(K) is surjective, we need to show 
that for any given point P E Eq(K) there is some u E K* with ¢(u) = P. 
But the point P will be defined over some finite extension of K, so it suffices 
to prove that ¢ : L* -> Eq(L) is surjective for all finite extensions L/ K. In 
fact, this is even stronger than the original statement of (3.1c), although 
it is precisely the result we needed to complete the proof of (3.1d). For 
notational simplicity, we will write K in place of L, so we are reduced to 
showing that for any finite extension K/Qp and any q E K with iqi < 1, 
the map ¢ : K* -> Eq(K) described in (3.1) is surjective. 

We also set the following notation which we will use for the remainder 
of this section: 

R the ring of integers of K, 

9J1 the maximal ideal of R, 

1f a uniformizer for R, 9J1 = 1f R, 

k the residue field of R, k = Rj9J1, 

ordv the normalized valuation ordv : K* --» Z on K. 
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The group Eq(K) admits the usual filtration (see [AEC, VII §2]) 

Eq(K) :J Eq,o(K) :J Eq,l(K), 

where 
Eq,o(K) = {p E Eq(K) : FE Eq,ns(k)}, 

Eq,l(K) = {P E Eq(K) : F = 6}. 
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Here Eq/k is the reduction of Eq modulo VJt, and Eq,ns are the non-singular 
points on Eq • From [AEC, VII.2.1] and [AEC, VII.2.2] we have isomor­
phisms 

Eq,o(K)/Eq,l(K) ~ Eq,ns(k) and 

Pt-->F 

where E is the formal group of E [AEC, IV §1]. 
Similarly, the quotient group K* / qZ has a natural filtration 

where 
Ri = {u E R : u == 1 (mod VJt) } 

is the group of I-units in R. There are also isomorphisms 

R* /Ri ~ k* and Ri = Gm(VJt) 
a t--> aut--> 1 - u, 

where Gm is the formal multiplicative group [AEC, VI.2.2.2]. We are going 
to prove not only that the map ¢ : K* /qZ -> Eq(K) is an isomorphism but 
that it respects the filtrations we just described. 

We begin with the formal groups. First, from the formula for X(u,q), 
it is clear that 

u == 1 (mod VJt) ==} ordv(X(u,q») < 0, 

u 
since only the term (1 _ u)2 will be non-integral. This proves that 

Next we show that this inclusion is an equality. 
Using the isomorphisms described above, we look at the map 

Gm(VJt) ~ Ri ~ Eq,t{K) ~ 

t 

Eq(VJt) 
X(I+t,q) 
Y(l + t, q)" 
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Note that as sets, Gm(001) and Eq(001) are just the set 001; they merely have 
different group structures attached to them. If we substitute u = 1 + t into 
the series for X(u, q) and Y(u, q) and expand as Laurent series in t, we find 
that 

X(l+t,q) = r2(1+ L amtm) 
m2::1 

and Y(1+t,q)=r3(1+ L,Bmtm), 
m2::1 

with coefficients am,,Bm E R. By taking the ratio of X and Y, we are 
reduced to showing that if /1,)'2, ... E R, then the map 

t I---t t ( 1 + L /mtm) 
m2::1 

is surjective. This follows immediately from [AEC, IV.2.4], which asserts 
the existence of a power series 'x(T) E R[T~ satisfying 1/1 ('x(T) ) = T (Le., 1/1 
is surjective, since for any w E 001 we have ,x(w) E 001 and 1/I('x(w)) = w.) 

Next we look at the behavior of ¢ on R*. If we take the series 
for X (u, q) and reduce it modulo 001, we see that 

u 
X(u, q) =- (1 _ U)2 ¢ a (mod 001) for all u E R*, 

so ¢(R*) C Eq,o(K). Since ¢(Ri) = Eq,l(K) from above, we get a well­
defined injective homomorphism on the quotient groups 

k* ~ R*/Ri ~ Eq,o(K)/Eq,l(K) ~ Eq,ns(k) 

UI C1 ~U)2' (1 ~2U)3). 
This map k* ----> Eq,ns(k) is clearly surjective, the inverse being 

y2 
(x,y) I---t 3' 

x 

so the map on the quotient groups is an isomorphism. (Note that Eq has 
the equation y2 + xy = x3.) Then the commutative diagram 

1 ~ R* 1 ~ R* ~ k* ~ 1 

1/ 1q; 1/ 
a ~ Eq,l(K) ~ Eq,o ~ Eq,ns(k) ~ a 

implies that the map ¢ : R* ~ Eq,o(K) is an isomorphism. 
We are left to show that the injective homomorphism 

¢: K* /R*qZ ~ Eq(K)/Eq,o(K) 

is surjective. The group on the left is easy to describe, since the map 

K* / R*qZ ~ Z/ordv(q)Z 

u 

is clearly an isomorphism. So the following proposition will complete the 
proof of (3.1). 
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Proposition 4.1. 

To prove this estimate, we will use geometry to divide Eq(K) into 
several subsets, and then we will show that these subsets actually corre­
spond to the cosets of Eq,o(K) inside E(K). We start with an elementary 
characterization of the points in Eq,o(K). 

Lemma 4.1.1. Let P = (x, y) E Eq(K). The following are equivalent: 
(i) P E Eq,o(K), 
(ii) Ixl 2': 1, 
(iii) Iyl 2': 1. 

PROOF. Taking partial derivatives of the equation for E q , we observe that 

P E Eq,o(K) ~ Iy - 3x2 - a41 2': 1 or 12y + xl 2': 1 

~ max{ly - 3x21, 12y + xl} 2': 1 since la41 = Iql < 1 

~ max{lxl, Iyl} 2': 1. 

Suppose first that Ixl 2': 1 > Iyl. Then 

Ixl 3 = ly2 + xy - a4X - a61 ~ max{lyI2, Ixyl, la4xl, la61} < max{l, Ixl}. 

This strict inequality is a contradiction, so Ixl 2': 1 implies Iyl 2': 1. Similarly, 
the assumption Iyl 2': 1 > Ixl gives the contradiction 

so Iyl 2': 1 implies Ixl 2': 1. This proves that 

max{lxl, Iyl} 2': 1 ~ Ixl 2': 1 and Iyl 2': 1, 

so (i) implies (ii) and (iii). 
Conversely, if P fJ- Eq,o(K), then P = (x, y) reduces to the singular 

point (0,0) of Eq(k), so Ixl < 1 and Iyl < 1. Hence either of (ii) or (iii) 
implies (i), which completes the proof of the lemma. 0 

Next we use similar criteria to partition the points of Eq(K) that do 
not lie in Eq,o(K). 

Lemma 4.1.2. Let P = (x, y) E Eq(K) "Eq,o(K). Then exactly one of 
the following three conditions is true: 
(i) 1> Iyl > Ix + yl, in which case Iyl > Iql!, 
(ii) 1 > Ix + yl > IYI, in which case Ix + yl > Iql!, 
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(iii) jyj = jx + yj = jqj!. 

(Note that (iii) can only occur if ordv(q) is even.) 

PROOF. Let 

n = min{ordvx,ordvy} and N = ordvq. 

Dividing the equation for Eq by 7r2n , we obtain the equation 

2 + n 3 + -n () + -2n () Yn XnYn = 7r Xn 7r a4 q Xn 7r a6 q , 

where 
and 

(In fancy terminology, we've blown up the scheme Eq / Spec(R) to find 
the affine subscheme on which P lies.) Since ja4(q)j = ja6(q)j = jqj, it is 
immediate from this equation that 7r-2na6(q) E R, so 

(The fact that 1 :::; n comes from (4.1.1).) 
We ;:"W consider two cases. First, if n < !N, then reducing the above 

equation modulo 7r gives 

y~ + XnYn == 0 (mod 7r). 

This means that either 

Yn == 0 (mod 7r), or Yn + Xn == 0 (mod 7r), or both. 

But they cannot both be zero, since otherwise Xn == Yn == 0 (mod 7r), which 
would contradict the definition of n. Hence one of the following two asser­
tions is true: 

(i) Yn"¢ 0 (mod 7r) and Yn + Xn == 0 (mod 7r), 
(ii) Yn == 0 (mod 7r) and Yn + Xn "¢ 0 (mod 7r). 

These correspond to (i) and (ii) in the statement of the lemma. For exam­
ple, for (i) we find that 

and 

It remains to deal with the case n = ~N. Since a6(q) = -q + .. " our 
equation becomes 
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Hence IYnl = IYn + xnl = 1, which implies that 

o 
Lemmas (4.1.1) and (4.1.2) allow us to divide Eq(K) into the following 

subsets: 

Eq,o(K) = {(x,y) E Eq(K) 

Un = {(x, y) E Eq(K) 

Vn = {(x, y) E Eq(K) 

W = {(x,y) E Eq(K) 

Ixl 2: 1 or Iyl 2: 1}, 
17rln = Iyl > Ix + yl}, 

17rln = Ix + yl > Iyl}, 
Iyl = Ix+yl = Iql!}. 

Notice that (4.1.2) says that Un and Vn are empty unless n < ! ordv q, 
so Eq(K) can be written as the union 

Eq(K) = Eq,o(K) U W U 

Further, if ordv q is odd, then W = 0. So we have partitioned Eq(K) into 
(at most) ordv(q) pieces. The final step in the proof of Proposition 4.1, 
which will also complete the proof of Theorem 3.1, is to show that these 
subsets are the cosets of Eq,o(K) in Eq(K). More precisely, it will suffice 
to show that two points in the same subset are in the same coset, since 
this will imply that the number of cosets is no larger than ordv(q). This is 
exactly what we do in the following lemma. 

Remark 4.1.3. A more intrinsic explanation for the above decomposition 
of Eq(K) is that the subsets Un, Vn , and Ware neighborhoods of the 
non-identity components of the special fiber of the Neron model of Eq 
over Spec(R). This decomposition may be compared with the description 
of special fibers of Type In in (IV §8), Tate's algorithm (IV.9.1), and the 
discussion in (IV.9.6). 

Lemma 4.1.4. Let P, pI E Eq(K) be points satisfying anyone of the 
following conditions: 

(i) P, pI E Un; 

Then P - pI E Eq,o(K). 

(ii) P, pI E Vn ; (iii) P, pI E W. 

PROOF. The proof of this lemma is completely elementary, although some­
what computationally involved. We merely have to combine the geometric 
description of Un, Vn , and W with the algebraic formulas giving the group 
law on E q . 

If P = pI, there is nothing to prove. Assume for now that also P i= 
_P'. (We'll deal with P = _pI at the end.) Then writing P = (x,y) 
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and P' = (x', y'), the addition law on Eq and a little algebra yield the 
formula 

(P _ P') = (y + y' + x')(y + x + y') _ _ ' 
x (')2 X x. x-x 

In all three cases, (i), (ii), and (iii), we have Ixl < 1 and Ix'i < 1, so (4.1.1) 
and the formula for x(P - P') gives 

P - P' E Eq,o(K) ~ Ix(p - p')1 ::::: 1 

~ Iy + y' + x'I·ly + x + y'l ::::: Ix - x'1 2 • 

Suppose first that P, P' E Un. Then 

On the other hand, since Iyl = 11l"In and Iy' + x'i < 11l"1n, we get 

Therefore 

Iy + y' + x'i . Iy + x + y'l = 11l"1 2n ::::: Ix - x'1 2 , so P - P' E Eq,o(K). 

This proves (i). 
The proof of (ii) can be done in a similar fashion, but it is even easier 

to observe that 

P E Un {::::::} -P E Vn· 

This follows from the formula -(x, y) = (x, -y - x). Hence (i) implies (ii). 
Further, since Un and Vn are disjoint, we see that P =1= -P' in cases (i) 
and (ii). 

We turn now to case (iii), which is the most difficult. We claim that 
in this case we have 

Iy + x + y'l = Iy + y' + x'l· 

To see this, we note that 
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then we compute 

I(y + x + y')y - (y + y' + x')y'l 

= l(y2 + xy) - (y,2 + x'y') I 
= l(x3 + a4x + a6) - (X,3 + a4x' + a6)1 

= Ix - x'l·lx2 - xx' + x,2 + a41 
:s: Ix - x'llql since lxi, Ix'i :s: Iql!, la41 = Iql 

= I (y + x + y') - (y + y' + x') I . Iql 

:s: max{ly + x + y'l, Iy + y' + x'l} 'Iql 

437 

= max{l(y + x + y')yl, I(y + y' + x')y'l} 'Iql! 

since Iyl = Iy'l = Iql!, 

< max{l(y + x + y')yl, I(y + y' + x')y'l} 

since Iql < 1. 

The only way that this strict inequality can possibly be true is if 

I(y + x + y')yl = I(y + y' + x')y'l· 

Further, we know that Iyl = ly'l, so we have proven our claim 

Iy+x+y'l = Iy+y' +x'l· 

Using this equality, we compute 

Ix - X'I2 = I(y + x + y') - (y + y' + x')1 2 

:s: max{ly + x + y'l, Iy + y' + x'l} 2 

= Iy + x + y'l'ly + y' + x'l· 

From above, this inequality implies that P - P' E Eq,o(K). 
Finally, we must deal with the case P' = -P E W, so P - P' = 2P. 

We could argue by continuity, but here is a direct argument using the 
duplication formula, which on Eq reads 

Here f(x) and g(x) are the indicated polynomials. From general principles, 
one knows that f(x) and g(x) are relatively prime in K[x]. More precisely, 
if we let 
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then a little algebra suffices to verify the relation 

f(x)F(x) - g(x)G(x) =~, 

where ~ is the discriminant of the Weierstrass equation for Eq . Substitut­
ing f(x) = x(2P)g(x) into this relation gives 

g(x){x(2P)F(x) - G(x)} =~. 

We are assuming that PEW, so 

Ig(x)1 = 12y + Xl2 :::; max{lyl, Iy + xl} 2 = Iql, 

IG(x)1 = 112x3 - x2 - 20a4x + 2a4 - 108a61 :::; max{lx I2, la41, la61} = Iql, 

IF(x)1 = 148x2 + 8x + 64a4 -11 = 1, 

I~I = Iq - 24q2 + 252q3 - .. ·1 = Iql· 

Hence 

1:::; Igt) 1 = Ix(2P)F(x) - G(x)1 

:::; max{lx(2P)I'IF(x)l, IG(x)1} 

:::; max{lx(2P)I, Iql}· 

Since Iql < 1, it follows that Ix(2P)1 ~ 1, so 2P E Eq,o(K) from (4.1.1). 
This completes the proof of Lemma 4.1.4, and with it the proofs of Propo­
sition 4.1 and Theorem 3.1. 

o 

§5. Elliptic Curves over p-adic Fields 

In the previous two sections we have shown that for any p-adic field K /Qp 
and any q E K* with Iql < 1, the quotient group K* /qZ is (analytically) 
isomorphic to an elliptic curve Eq(K). In the analogous situation over 
the complex numbers, we know (LId) that every elliptic curve E/C is 
isomorphic to Eq for some q E C*. However, in the p-adic case we have 

Ij(Eq)1 = I~ + 744 + 196884q +···1 = I~I > 1, 

so it is clear that not every elliptic curve over K can be isomorphic (over K) 
to an Eq. A necessary condition is Ij(E)1 > 1. We begin by showing that 
this condition is also sufficient. 
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Lemma 5.1. Let a E Qp be an element with lal > 1. Then there is a 
unique q E Q; with Iql < 1 such that j(Eq) = a. This value oE q lies in 
Qp(a). 

PROOF. The j-invariant of Eq is given by the series (3.1), which we write 
as 

"() 1 + 744q + 196884q2 +.". 
J q = " 

q 

The reciprocal of this series, which we will call I(q), is given by the formula 

1 q 
I(q) = j(q) = 1 + 744q + 196884q2 +."" 

= q - 744q2 + 356652q3 - .. " E Z[q]. 

Applying [AEC, IV.2.4] to the series I, we get a series g(q) = q+ . .. E Z[q~ 
such that g(J(q») = q as formal power series in Z[q]. Since 9 has integer 
coefficients and leading term q, it will converge if we evaluate it at any 
element 13 E Qp of absolute value less than 1 and will satisfy Ig(13) I = 1131. 
In particular, since lal > 1, we find that 

satisfies 

and jtq) =/(q)=/(g(~)) =~. 
Hence j(q) = a as desired. This proves the existence part of (5.1). 

To prove uniqueness, suppose that j(q) = j(q') with Iql < 1 and Iq'l < 
1. Then I(q) = I(q'), so 

0= I/(q) - l(q')1 

= Iq - q'l .11 - 744(q + q') + 356652(q2 + qq' + q'2) +···1 
= Iq-q'l· 

Therefore q = q'. o 

Before proving the p-adic uniformization theorem, we describe an in­
variant which is useful for studying the twists of a curve. 

Lemma 5.2. Let Ej K be an elliptic curve defined over a field oE char­
acteristic not equal to 2 or 3, and choose a Weierstrass equation 
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for ElK. Let C4 and C6 be the usual quantities [AEC, III §1} associated to 
this equation. Assuming that j (E) f:- 0, 1728, we define 

(The reason for the negative sign will become apparent later when we prove 
that ,(EqIK) = 1.) 
(a) ,( ElK) is well-defined as an element of K* I K* 2 , independent of the 
choice of Weierstrass equation for ElK. 
(b) Let E'I K be another elliptic curve with j (E') f:- 0, 1728. Then E 
and E' are isomorphic over K if and only if 

j(E) = j(E') and ,(ElK) = ,(E'IK). 

(c) Let ElK and E'IK be elliptic curves with j(E') = j(E) f:- 0,1728, 
and suppose that ,(ElK) f:- ,(E'IK), so 

is a quadratic extension of K. Let 

,(ElK) ) 
,(E' I K) 

x: GR/K ---> GL / K ---> {±1} 

be the quadratic character associated to L I K. Then there is an isomor­
phism 

1jJ: E-tE' 

with the property that 

1jJ(PU) = x(a)1jJ(P) for all a E GR/K and all P E E(K). 

PROOF. (a) The condition j(E) f:- 0,1728 is equivalent to C4 f:- 0 and C6 f:-
0, so ,(ElK) exists. If we choose a new Weierstrass equation for EI K, then 
the new C4 and C6 are related to the old ones by the formulas u4c~ = C4 

and u6c~ = C6 for some u E K*. (See [AEC, III Table 1.2]. The fact 
that u E K follows from [AEC, III.3.1].) Hence 

which proves that ,(ElK) is independent of the chosen Weierstrass equa­
tion. 
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(b) If E and E' are isomorphic over K, then [AEC, III.1.4b] asserts that 
j(E) = j(E'). Further, since the Weierstrass equations for E and E' are 
Weierstrass equations for the same elliptic curve over K, it follows from (a) 
that '"'((ElK) = '"'((E'IK). 

Conversely, suppose that j(E) = j(E') and '"'((EI K) = '"'((E'I K). Since 
the characteristic of K is not 2 or 3, we can find Weierstrass equations for E 
and E' over K of the form 

E : y2 = x3 + Ax + B, E' : y2 = x3 + A' x + B', 

with A, B, A', B' E K. The fact that j (E) = j (E') 01 0, 1728 implies that 

4A3 

since j(E) = 1728 4A3 + 27B2 

Similarly, since C4 = -48A and C6 = -864B, our assumption '"'(( ElK) = 
'"'((E'I K) means that 

2A == C4 == -,",((ElK) == -,",((E'IK) == c~ == 2A' (mod K*2), 
B C6 c~ B' 

so there is some t E K* such that AB' = t2 A' B. Using these relations 
between A, B and A', B', it is now easy to check that the map 

E ---> E', 

is a K-isomorphism. 
(c) We take models for ElK and E'I K as in (b), and again the assump­
tion j (E) = j (E') 01 0, 1728 implies that A 3 B,2 = A,2 B3. Next we let 

t= 

Since '"'((EI K) 01 '"'((E' I K), we know that L = K(t) is a quadratic extension 
of K; and as in (b), the map 

'l/J: E ---> E', 

is easily seen to be an isomorphism. Finally, for any a E G k / K, we know 
that t<7 = x(a)t. So for P = (x, y) E E(K) we have 

'l/J(P)<7 = 'l/J(x, y)<7 = (t2x, t3y)<7 = (x(a)2t2xO", x(a)3t3yO") 

= (t2x<7, x(a)t3y<7) = x(a)(t2xO", t3yO") = x(a)'l/J(P'd. 

We are now ready to prove Tate's p-adic uniformization theorem, which 
applies to all curves whose j-invariant has absolute value greater than 1. 
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Theorem 5.3. (Tate) Let K be a p-adic field, let ElK be an elliptic 
curve with Ij(E)1 > 1, and let ,(ElK) E K* I K*2 be the invariant defined 
in (5.2). 
(a) There is a unique q E K* with Iql < 1 such that E is isomorphic over K 
to the Tate curve Eq . Further, this value of q lies in K. 
(b) Let q be chosen as in (a). Then the following three conditions are 
equivalent: 

(i) E is isomorphic to Eq over K. 
(ii) ,(EIK)=1. 
(iii) E has split multiplicative reduction. 

PROOF. (a) From (5.1) there is a unique q E K* with Iql < 1 such that 
j(Eq) = j(E). This implies [AEC, III.1.4b] that Eq is isomorphic to E 
over K, which completes the proof of (a). 
(b) From (5.2) we know that E is isomorphic to Eq over K if and only 
if j(E) = j(Eq) and ,(ElK) = ,(EqIK). So in order to prove that (i) 
and (ii) are equivalent, we must show that ,(Eq / K) = 1. Using (3.1) we 
find that the C4 and C6 values associated to the Tate curve 

are 
C4(q) = 1 - 48a4(q) = 1 + 240S3(q), 

C6(q) = -1 + 72a4(q) - 864a6(q) = -1 + 504s5(q). 

So the ,-invariant of Eq / K equals 

To see that ,(Eql K) is a square, we use the following elementary calcula­
tion which implies that C4(q) and -C6(q) are themselves squares in K. 

Lemma 5.3.1. Let a E K with lal < 1. Then 1 + 4a is a square in K. 

PROOF. We first observe that the binomial coefficient 

is an integer divided by 4n. Hence the coefficients of the series 
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are integers, so the series converges in K. Therefore (1 +40:)-1 is a square 
in K, so the same is true of 1 + 40:. This completes the proof of the lemma, 
and with it the fact that (i) and (ii) are equivalent. 0 

Next we note that since la4(q)1 = la6(q)1 = Iql < 1, the equation of 
the reduced curve Eq is 

which clearly has split multiplicative reduction. This shows that (i) im­
plies (iii). 

Conversely, suppose that E has split multiplicative reduction. We will 
show that 'Y(E/K) = 1, which will prove that (iii) implies (ii). Take a 
minimal Weierstrass equation for E, 

Making a linear change of variables, we may assume that the singular point 
modulo wt is the point (0,0), where as usual we write wt for the maximal 
ideal of the ring of integers of K. Then the fact that (0,0) is on the curve 
and singular modulo wt implies that 

and hence that 

b4 = a1a3 + 2a4 == 0 (mod wt) and C4 = b~ - 24b4 == b~ (mod wt). 

From [AEC, VII.5.1b], the fact that E has multiplicative reduction 
implies C4 t- 0 (mod wt), so we see that b2 t- 0 (mod wt). It follows that b2 

is a unit (Le., Ib2 1 = 1). Hence 

( 
1- 24b4 ) 

'Y( E / K) = _ C4 = ~ . b~ 
C6 b2 1- 36 b4 +216 b6 

b~ b~ 

Applying (5.3.1) to the numerator and denominator of the bracketed frac­
tion on the right-hand side of this equation, we find that 

It remains to show that if the mUltiplicative reduction of E is split, then b2 

is a square in K*. 
Note that the reduction of E is 
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We factor the polynomial 

The fact that E has multiplicative reduction means that E has a node, 
so Q =f. i3i and the fact that the reduction is split means that Q and i3 are 
actually in the residue field of K, rather than in a quadratic extension. 
(See [AEC, III §1, VII §5].) It follows from Hensel's lemma applied to the 
polynomial T2 + alT - a2 that Q and {3 lift uniquely to elements a, f3 E K 
such that 

Hence 

b2 = ai + 4a2 = (-a - (3)2 + 4( -a(3) = (a - (3)2 E K*2, 

so "((ElK) == b2 == 1 (mod K*2). 
We have now proven (ii) {:==} (i) ==? (iii) ==? (ii), which completes 

the proof of Theorem 5.3. 0 

Suppose that we have an elliptic curve ElK as in Theorem 5.3 with 

invariant "((EI K) =f. 1. If we let L = K ( v,,((EI K) ), which is well-defined, 

since "((ElK) is defined up to squares in K, then it is clear that "((ElL) = 

1. Applying (5.3) to ElL, we find that E is isomorphic to Eq over L, so 

We will now describe E(K) in terms of this identification. 

Corollary 5.4. With notation as in the preceding paragraph, 

PROOF. First we observe that the norm map N~ is a homomorphism 

N~ : L* IqZ --> K* Iq2Z, 

so N~(u) is well-defined modulo q2Z. Applying (5.2c) to E and E q, there 
is an isomorphism 

7jJ: Eq(K) --> E(K) 

satisfying 7jJ(PU) = x(a)7jJ(P)U for all a E GR/K, where X : GR/K -> 

GL / K -> {±1} is the quadratic character associated to LIK. On the other 
hand, the isomorphism ¢ : K* IqZ -> Eq(K) is defined over K, which means 
that ¢(PU) = ¢(P)u. We look at the composition 
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which we know from above is an isomorphism of groups. Let rEG R I K 

be an element with x(r) = -1, so r represents the non-trivial element 
in G L I K· Then for any u E L * , 

(1jJ 0 ¢)(u) E E(K) {::=? 1jJ(¢(u)r = 1jJ(¢(u») 

{::=? _1jJ(¢(uT )) = 1jJ(¢(u») since x(r) = -1 

{::=? 1jJ(¢(u- T )) = 1jJ(¢(u») 

since -1jJ(P) = 1jJ(-P) and -¢(u) = ¢(u-1) 

{::=? u-T == u (mod qZ) 
since ¢ and 1jJ are isomorphisms 

Since U1+T = N}((u), this completes the proof of the corollary. o 

§6. Some Applications of p-adic U niformization 

As we have seen amply demonstrated, the arithmetic properties of the 
torsion points on an elliptic curve are of fundamental importance. In the 
case that the curve has a p-adic uniformization, E(K) ~ K* IqZ, it is easy to 
describe the torsion subgroup of E. Further, since the p-adic uniformization 
commutes with the action of GRIK, it is similarly easy to describe the 
action of GRIK on the torsion subgroup of E. We will not prove the most 
general theorem in this direction but will be content with the following 
fundamental result. (See also exercise 5.13.) 

Proposition 6.1. Let K be a p-adic field with normalized valuation ordv , 

let ElK be an elliptic curve with ij(E)i > 1, and let e ~ 3 be a prime 
not dividing ordv j(E). Then there is an element a in the inertia subgroup 
ofGRIK which acts on the e-torsion subgroup E[e] of E via a matrix of 

the form ("6 1). In other words, there is a basis PI, P2 E E[e] sllch that 

and 

(One sometimes says that a acts as a transvection on E[e].) 

Remark 6.1.1. Recall that there is an e-adic representation [AEC, III §7] 

Pi: GRIK ---> Aut(Te(E». 
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Since E[f] ~ Te(E)/fTe(E), another way to state (6.1) is that relative to 
an appropriate basis, there is a a E G K / K satisfying 

pe(a) == (~ ~) (mod f). 

Remark 6.1.2. It is also worth pointing out that the proof of Proposi­
tion 6.1 does not need the full strength of Theorem 3.1. Specifically, we 
only need to know that the map ¢ : K* /qZ ---t Eq(K) is an injective ho­
momorphism; we do not need to know that it is surjective. The reason 
injectivity suffices is that we are really only interested in the torsion sub­
group of Eq , and a simple count shows that the there are m 2 points of 
order m in K* /qZ, so we get (essentially for free) that ¢ is an isomorphism 
on torsion. 

PROOF. First we observe that if L/ K is a finite extension of degree prime 
to f, and if (6.1) is true for E / L, then it is true for E / K. This follows from 
the equality ordw j(E) = ew / v ordv j(E), where w is the extension of v 
to L, and the ramification index ew / v is prime to f, since it divides [L : K]. 
Hence f will not divide ordw j (E), so there is a a E G K / LeG K / K that 
acts as a transvection on E[f]. 

From (5.3b) we know that E is isomorphic to a (unique) Tate curve Eq 
over an (at most) quadratic extension of K. So replacing K by this ex­
tension, it suffices to prove (6.1) for E q , where q E K*. Similarly, we may 
assume that K contains a primitive fth_root of unity (, since the degree 
of K «() / K divides £ - 1, so the degree is prime to e. 

Let Q = qi E K be a fixed fth_root of q. Since ordvj(Eq) = -ordvq 
is not divisible by £, the Kummer extension K(Q)/K is totally ramified 
of degree f. Hence there exists a a in the inertia subgroup of G K / K such 
that QU = (Q. We claim that this is the desired a; it remains to pick the 
right basis for Eq[f]. 

To do this, we use the p-adic uniformization (3.1) 

¢: K* /qZ ~ Eq(K). 

With this identification we clearly have 

¢: (e. QZ)/qZ ~ Eq[f]. 

Further, the p-adic uniformization map ¢ commutes with the action of 
Galois (3.1d) (Le., ¢(PU) = ¢(P)U), so the action of GK/K on Eq[f] is 
the same as its action on the quotient group (e· QZ)/qz. As our basis 
for Eq[f], we take the elements PI = ¢«() and P2 = ¢(Q). Then 

Pf = ¢«()U = ¢«(U) = ¢«() = P1 , 

Pf = ¢(Q)U = ¢(Qr7) = ¢«(Q) = ¢«() + ¢(Q) = PI + P2 . o 
We next observe that Proposition 6.1 remains true for certain elliptic 

curves over number fields. 
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Corollary 6.2. Let K /Q be a number field, let E / K be an elliptic 
curve, and assume that the j-invariant of E is not in the ring of integers 
of K. Then for all but finitely many primes f, the image of the f-adic 
representation Pe : GklK - Aut(Te(E») contains an element satisfying 

pe(cr) == (~ ~) (mod f) 

relative to a suitable basis for Te(E)/fTe(E) = E[f]. 

PROOF. Let v be a (finite) place of K for which j(E) is non-integral, 
so Ij(E)lv > 1. Let Gf<vlKv C GklK be the decomposition group of v 
for the extension of v to K corresponding to some embedding K ~ Kv. 

Now (6.1) gives an element cr E GkvlKv which acts like (6 l) on E[f]. 

But with our identifications, cr E GRIK and E[f] C E(K) c E(Kv), which 
gives the desired result. 0 

It is a legitimate question to ask why one should care that Gal(K / K) 
contains an element that acts on E[f] as a transvection. One answer is that 
this puts severe constraints on the allowable maps between such elliptic 
curves. For example, we will now give Serre's p-adic proof that an elliptic 
curve with complex multiplication has integral j-invariant. (For alternative 
proofs of this important fact, see [AEC, exercise 7.10] and (II §6).) 

Theorem 6.3. Let K /Q be a number field, and let E / K be an el­
liptic curve whose j-invariant j(E) is not in the ring of integers of K. 
Then End(E) = Z. 

PROOF. (Serre) We begin by recalling that there is a representation of the 
endomorphism ring of E [AEC, III §7j, 

End(E) -+ End(Te(E») , 

Further, we proved in [AEC, V.2.3] that for any'ljJ E End(E), this repre­
sentation can be used to compute the degree of 'ljJ via the formula 

deg('ljJ) = det('ljJe). 

(This result appears in [AEC] in the chapter on elliptic curves over finite 
fields, but the proof depends only on the non-degeneracy of the Wei! pair­
ing, which is valid in general.) 

Let 'ljJ E End(E) be an isogeny. Taking a finite extension of K if 
necessary, we may assume that 'ljJ is defined over K. This means that 

for all 'ljJ E GRIK and all P E E(K). 
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We need to show that 'IjJ E Z. 
Let 

m = deg(l + 'IjJ) - deg('IjJ) - 1. 

Notice that if we knew that 'IjJ was in Z, then m would equal 2'IjJ. So we 
will try to show that m = 2'IjJ by showing that the degree of m - 2'IjJ is O. 

Using (6.2), choose a "large" prime f, an element a E Gk/K' and an 
ordered basis {Pl , P2 } for E[f] so that relative to this basis, 

pt(a) == (~ ~) (mod f). 

(We will see below that any f larger than deg( m - 2'IjJ) will suffice.) Looking 
at the action of'IjJ on E[f], we find that 'IjJ is represented by a matrix 

'ljJt == (~ ~) (mod f) 

for some a, b, c, dE Z/fZ. In other words, 'IjJ(Pl ) = aPl + cP2 and 'IjJ(P2 ) = 
bPl +dP2 . Now, since'IjJ and a commute in their action on E(K), it follows 
that their matrices commute in End(E[f]) ~ GL2 (Z/fZ): 

(~ ~) (~ ~) == (~ ~) (~ ~ ) (mod f). 

Multiplying this out, we find that a = d and c = 0, so 

'ljJt == (~ !) (mod f). 

Next we determine the relationship between a and m: 

m = deg(l + 'IjJ) - deg('IjJ) - 1 by definition of m 

= det(l + 'ljJt) - det('ljJt) - 1 from [AEC, V.2.3] 

== det ( 1 b a I! a) - det (~ !) - 1 (mod f) 

== 2a (mod f). 

This now allows us to compute the degree of m - 2'IjJ, at least modulo e. 
deg(m - 2'IjJ) = det(m - 2'IjJt) from [AEC, V.2.3] again 

== det [ (~ ~) - 2 (~ ! ) ] (mod f) 

== 0 (mod f) since m == 2a (mod f) from above. 

We have now proven that deg(m - 2'IjJ) == 0 (mod f) for all primes f 
such that (6.2) is true, which means that deg(m - 2'IjJ) == 0 (mod f) for 
all but finitely many f's. Hence deg(m - 2'IjJ) = 0, so m = 2'IjJ. But 
every endomorphism is integral over Z [AEC, 111.9.4], so m must be even 
and 'IjJ E Z. This completes the proof that End(E) = Z. 0 
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EXERCISES 

5.1. Let q E IC, Iql < 1, and let k E JR. Prove that 

where as usual t7k(n) = Ldk. 
din 
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5.2. Let G be a cyclic group of order n, let t7 be a generator for G, and let M 
be a G-module. 
(a) Prove that 

H2 (G M) C>< {x EM: x - t7X = o} 
, - {x+t7x+···+t7n - 1x: xEMr 

(This piece of elementary group cohomology is used in the proof of (2.4).) 
(b) Prove that 

HI(G, M) ~ {x EM: x + t7X + ... + t7n - 1X = O}. 
{x - t7X : x E M} 

Use this directly to show that for q E JR., the Weil-Chatelet group 

has order 1 (respectively 2) if q < 0 (respectively q > 0.) 

5.3. Let E/JR be an elliptic curve, let 6(E) be the discriminant of a Weierstrass 
equation for E/JR, and let m be an even integer. 
(a) Prove that 

{ 
7../rnZ, if 6(E) < 0, 

E(R)[m] ~ (7../27..) x (7../m7..), if 6(E) > o. 

(b) Consider the Kummer sequence 

0--+ E(JR)/mE(R) --+ HI(GC/ R , E[m]) --+ WC(E/R) --+ O. 

If 6(E) < 0, prove that all three terms are O. If 6(E) > 0, prove that the 
sequence is 

o --+ 7../27.. --+ 7../27.. x 7../27.. --> 7../27.. --> O. 
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5.4. (a) Let a, b E JR, and let E /JR be the elliptic curve 

E : y2 = x 3 + ax2 + bx. 

If t:.(E) > 0, so in particular if b < 0, prove that WC(E/JR) has order 2, 
and its non-trivial element is represented by the homogeneous space 

(Hint. See [AEC X.3.7].) 
(b) Let E/JR be an elliptic curve with t:.(E) > 0. Exercise 5.3(a) says 
that E[2] C E(JR), so we can factor 

4x3 + b2x2 + 2b4x + b6 = 4(x - eI)(x - e2)(x - e3) 

with el < e2 < e3. 

Prove that the non-trivial element of WC(E/JR) is represented by the ho­
mogeneous space 

5.5. Let E/JR be an elliptic curve, and choose q E JR, ° < Iql < 1, so that j(E) = 
j(Eq). Suppose, however, that E is not JR-isomorphic to Eq. Then if we 
consider the isomorphisms 

the second map will not be defined over R Prove that with this identifica-
tion, 

5.6. For this problem we will write E(r) for Eq with q = e27ri-r, and for a 
given E/JR we write EX for the non-trivial twist of E. (See Proposi­
tion 2.2(a).) 
(a) Prove that 

for all t > 0, t =1= 1, 

E - + .:.. ~/R E - + ~ (1 't)X (1' ) 
2 2 2 2t ' 

for all t > 0, t =1= 1, 

E(i)X ~/R EG +~). 
(b) Fix E/JR with j(E) =1= 1728. From (2.3) there is a unique t > 0 so that 

E (y { E(it),. if t:.(E) > 0, 

-/R E(~+~), ift:.(E) <0. 

Let 'Y(E/JR) = signC6(E) be the invariant defined in (2.2b). Prove that 

'Y(E/JR) = sign(I - t). 
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5.7. Let KIQp be a finite extension with ring of integers R and normalized 
valuation ordv • Let q E K* satisfy Iql < 1, let Eq be the corresponding 
Tate curve, and let <p : K* -> Eq(K) be the homomorphism described 
in (3.1). Prove that for every r ::::: 1, <p induces an isomorphism 

<p: R; ---> Eq.r(K), 

where 

R; = {u E K* : ordv (u - 1) ::::: r}, 
Eq,r(K) = {(x,y) E Eq(K) : ordv(x) S -2r} U {O}. 

5.8. (a) Let L I K IQp be a finite tower of fields with L Galois over K, let ai E L 
be a sequence of elements such that the series L: ai converges, and let 0' E 

GL / K . Prove that 

(f>~ir = faT. 
i=l i=l 

(b) Show that (a) is true if we replace Qp by lR and take K = lR and L = 
C. 
(c) Find a sequence of elements ai E Q such that L: ai = y'2, and deduce 
that there is an element 0' E GQ/Q such that 

(faJ' # faf. 
i=l i=l 

Thus (a) is not true if we replace Qp by Q. 
5.9. Fill in the details needed to rigorously prove the formulas (i) and (ii) in 

Proposition 3.2(b). 

5.10. Let K be a p-adic field, let q,q' E K* satisfy Iql < 1 and III < 1, and 
let Eq and Eql be the corresponding Tate curves. 
(a) If Eq and Eql are isogenous, prove that there are positive integers m, n 
such that qTn = qtn . 
(b) * Conversely, if qrn = qln for some integers m, n ::::: 1, prove th~t E!j, 
and Eq' are isogenous. (Clearly, there are homomorphisms from K* Iq 
to j{* Iq'Z, for example u -> urn. What is unclear is that the corresponding 
homomorphisms Eq -> E q, are given by rational functions, rather than by 
power series.) 

5.11. Let K be a p-adic field, and let ElK be an elliptic curve such that Ij (E) I > 
1. Let ,(ElK) be the invariant described in (5.2), and consider the field 

L = K (V,(EIK»). 

(a) Prove ElK has split multiplicative reduction if and only if L = K. 
(b) Prove ElK has non-split multiplicative reduction if and only if L I K 
is unramified of degree 2. 
(c) Prove ElK has additive reduction if and only if LIK is ramified of 
degree 2. 
(d) Let Eo(K) be the group of points whose reduction is non-singular. 
Describe the quotient group E(K)I Eo(K) in each of the three cases (a), (b), 
and (c). 
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5.12. (a) Prove that Lemma 5.2 is still true if K has characteristic 3. 
(b) Show that if K has characteristic 2 and E / K is an elliptic curve 
with j (E) f 0, then ,( E / K) is always equal to 1. Hence Lemma 5.2 
is not true in characteristic 2. 

5.13. Let K be a p-adic field, and let E / K be an elliptic curve with split multi­
plicative reduction. 
(a) Prove that for each prime l f p there is an exact sequence of GkIK­
modules 

1 ~ Ti(p,) ~ Tt(E) ~ Zi ~ 0, 

where T£(p,) is the Tate module of K (see [AEC, III.7.3]) and GklK acts 
trivially on Z£. 
(b) Prove that there is a basis for Ti(E) so that the image of the inertia 
group of f< / Kin Aut(Tt(E)) ~ GL2 (Zt) is equal to 

{ (~ ~) E GL2 (Zt) : ord£(b) ~ ordt(VK(jE))}. 

(c) Prove that the exact sequence in (a), considered as a sequence ofGklK­
modules, does not split. 

5.14. Let E q / K be a Tate curve over a p-adic field K. 
(a) Prove that there is an exact sequence 

(b) Prove that 

(Hint. For the second isomorphism, use local class field theory.) 
(c) It is well known from local class field theory Serre [4J that there is an 
isomorphism H2(GkIK' f<-) = Br(K) ~ Q/Z. Prove that the map 

obtained by composing this isomorphism with the maps from (a) and (b) 
is given by the rule f 1--+ f(q). 
(d) Deduce that 

WC(Eq/ K) ~ Hom (Eq(K), Q/Z). 

In other words, the Weil-Chiitelet group of Eq / K is dual to the group of 
rational points Eq(K). 
(e) -More generally, prove that WC(E/K) ~ Hom (E(K),Q/Z) for any 
elliptic curve E/ K satisfying Ij(E)1 > 1. 

(In fact, it is true that WC(E/ K) ~ Hom(E(K) , Q/Z) for all elliptic curves 
over p-adic fields, not just those with non-integral j-invariant. The proof 
of this result, which is due to Tate [5,6J, requires different methods than 
those used in this chapter. See also Milne [1]) 



Exercises 453 

5.15. Let KIQp be a p-adic field, let ElK be an elliptic curve, let N 2:' 5 be a 
prime not equal to p, and suppose that there is a point P E E(K) of exact 
order N. 
(a) Prove that E has either good or multiplicative reduction. 
(b) Let E -+ E' be an isogeny of elliptic curves whose kernel is the cyclic 
subgroup generated by P (i.e., E' = EIZP). Prove that 

Here VK : K* -+ Z is the normalized valuation on K, and 'D E / K and'DE I / K 

are the minimal discriminants of ElK and E'I K respectively. (Hint. Take 
Tate models Eq and Eql and look at the isogeny Eq -+ Eql.) 

5.16. Let ElK be an elliptic curve defined over a number field, let N be a 
prime, and suppose that there is a point P E E(K) of exact order N. Use 
the previous exercise and Szpiro's conjecture (IV.1O.6) to prove that N is 
bounded by a constant that depends only on the field K. This approach 
to proving the boundedness conjecture [AEC, VIII.7.7j is due to Frey. 



CHAPTER VI 

Local Height Functions 

The canonical height function 

h: E(K) ------> [0,00) 

is a quadratic form whose value at a point P measures the arithmetic 
complexity of P. The importance of the canonical height stems from the 
fact that it relates the geometrically defined group law to the arithmetic 
properties of the algebraic points on E. See [AEC VIII, §9] for details. 

Recall that the ordinary height of a non-zero point P E E(K) (relative 
to the function x) is defined as a sum of local terms, one for each absolute 
value. Thus 

1 
h(P) = 2[K: Q] E nv max{ -v(x(P)), o}. 

vEMK 

The canonical height is then the limiting value of these ordinary heights, 
, 1 
h(P) = lim 2h([n]P). 

n-+oo n 
It is natural to ask whether the canonical height itself can be natu­

rally decomposed as a sum of quadratic forms, one for each absolute value 
in K. The answer is "no," but Neron and Tate have shown that there is a 
decomposition into local functions which are almost quadratic. Precisely, 
they show that for each v E MK there is an almost quadratic function 

Av : E(Kv) ,,{O} ------> lR 

such that 

, 1 '" h(P) = [K : Q] ~ nvAv(P) 
vEMK 

for all P E E(K) " {O}. 

In §1 of this chapter we will use an averaging argument to prove the 
existence of local height functions for all absolute values v E MK, and in 
§2 we will prove that the canonical height is equal to the sum of the local 
heights. It is also of interest to have explicit formulas for the local height 
functions, so we will give such formulas for archimedean absolute values in 
§3 and for non-archimedean absolute values in §4. For further information 
about local height functions, see for example Lang [3] and Zimmer [2]. 
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§1. Existence of Local Height Functions 

Let K be a field and let I . Iv be an absolute value on K. The absolute 
value can be used to define a topology on K in the usual way: a basis of 
open neighborhoods around an element 0: E K is the collection of (open) 
balls 

all E > O. 

Let E / K be an elliptic curve. In a similar way we can define a topology 
on E(K). 

Definition. The v-adic topology on E(K) is defined as follows. For a 
point Po = (xo, Yo) E E(K), a basis of open neighborhoods of Po consists 
of the sets 

U€={(X,y)EE(K): Ix-xolv<EandIY-Yol<E}, all E > O. 

For the point 0 E E(K) at infinity we take as a basis the open neighbor­
hoods 

u€ = {(x, y) E E(K) : Ixlv > E- 1 } U {O}, all E > O. 

(Notice that for the neighborhoods of 0 there is no need to require both Ixlv 
and IYlv to be large. The Weierstrass equation ensures that they simulta­
neously go to 00. For an alternative definition of the v-adic topology, see 
exercise 6.1.) 

In this section we will prove the existence of almost quadratic local 
height functions. These will be certain continuous functions 

E(K) " {O} ----> lR, 

where E( K) " {O} is given the v-adic topology induced from E( K), and lR 
is given its usual topology. The following formulation is due to Tate. 

Theorem 1.1. (N eron, Tate) Let K be a field which is complete with 
respect to an absolute value I . Iv, and let 

v( . ) = -log I . Iv 

be the corresponding additive absolute value. Let E / K be an elliptic curve. 
Choose a Weierstrass equation for E / K, 

E : y2 + alXY + a3Y = x3 + a2x2 + a4X + a6, 

and let ~ be the discriminant of this equation. 
(a) There exists a unique function 

A: E(K) " {O} ----> lR 



456 VI. Local Height Functions 

with the following three properties: 

(i) A is continuous on E(K)" {O} and is bounded on the complement 
of any v-adic neighborhood of O. 

(ii) The limit 
{A(P) + ~v(x(P))} 

p v~ic 0 
lim 

exists. 
(iii) For all P E E(K) with [2]P =1= 0, 

A([2]P) = 4A(P) + v((2y + alx + a3)(P)) - iv(~). 

(b) A is independent of the choice of Weierstrass equation for E / K. 
(c) Let L / K be a finite extension and w the extension of v to L. Then 
(with the obvious notation) 

for all P E E(K) " {O}. 

Definition. The function A described in Theorem 1.1 is called the (local) 
Neron height function on E associated to v. 

Remark 1.1.1. For other properties of A which are equivalent to (iii), see 
exercises 6.3 and 6.4. 

PROOF (of Theorem 1.1). (a) We begin with uniqueness. Let 

A,A': E(K) " {O} ----> lR. 

be two functions satisfying (i), (ii), and(iii); and let A = A - X be their 
difference. From (ii) we see that the limit 

lim A(P) 
P--->O 

exists; so if we define A(O) to be this limiting value, then (i) implies that 

A: E(K) ----> lR. 

is a continuous bounded function on all of E( K). 
Next we observe from (iii) that A([2]P) = 4A(P) provided [2]P =1= O. 

But the points satisfying [2]P = 0 form a discrete subset of E(K) (notice 
there are at most four such points), so by continuity A([2]P) = 4A(P) 
holds for all P. Iterating this relation N times and dividing by 4N gives 

A(P) = 4~A(2N P), valid for all P E E(K) and all N :::: 1. 
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Since A is bounded, we may let N --+ 00 to deduce that A(P) = O. 
Hence A = A', which proves uniqueness. 

Before proving the existence of A, which is more complicated, we will 
prove (b) and (c). 
(b) It is clear that conditions (i) and (ii) are independent of the choice of 
Weierstrass equation. Since the quantity 

(2y + alx + a3)4 
.6. 

is invariant under change of coordinates (see [AEC, III §1]), we see that (iii) 
is likewise independent. Hence A, if it exists at all, does not depend on the 
Weierstrass equation. 
(c) Since Aw satisfies conditions (i), (ii), and (iii) for E(L) and w, and 
since W restricted to K equals v, we see that Aw satisfies (i), (ii), and (iii) 
for E(K) and v. By the uniqueness already proven, the restriction of Aw 
to E(K) equals Av. 

We turn now to the proof of existence. Property (ii) says that A should 
look like ~v 0 X-I, at least close to O. Of course, this is no good for points 
with x(P) close to 0, since away from 0, A is supposed to be bounded. So 
as a first guess for A we might try the function 

1 
AI(P) = "2 max { v(X(p)-l), o}. 

It turns out that Al almost satisfies property (iii). We first need to make 
this precise, and then we will modify Al to produce A. 

Let 

¢(x) = x4 - b4x 2 - 2b6 x - bs, 

'!f;(x) = 4x3 + b2x2 + 2b4x + b6 = (2y + alX + a3)2 

be the usual functions on E, so the duplication formula [AEC III.2.3(d)] 
reads 

¢(P) 
x(2P) = '!f;(P)' 

Define a function 
1 1 

f(P) = Al ([2]P) - 4AI (P) - "2v( '!f;(p)) + 4v(.6.) 

for all P E E(K) with [2]P =1= O. 

Notice that if Al were to satisfy (iii), then f would be identically O. We 
are going to show that f is bounded. 

Using the definition of Al and the duplication formula, we can rewrite f 
as 

f(P) = ~log (max{I¢(p)/v' I~(P)IJ) + ~v(.6.). 
2 max{ Ix(p) lv' 1} 4 

(Recall that vet) = -log Itl v .) A priori, f is defined at all points P E E(K) 
with [2]P =1= O. The following crucial result shows that more is true. 
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Lemma 1.2. 'Vith notation as above, 1 extends to a bounded continuous 
function on all of E(K). 

PROOF. Let 
F(P) = max{I¢(P)lv' I~(P)IJ, 

max{ Ix(p) Iv' I} 

s01= ~log(F)+~v(~). Clearly,FiscontinuousonE(K),,{O}. Further, 
as P --; 0, we find 

lim F(P) = lim max{I¢(P)lv' ~1f0(P)IJ = l. 
P~O )x(Pl)v->= Ix(p)lv 

Hence F extends to a continuous, bounded function on E(K). 
Since the limit equals 1, we also see that there is a constant Cl > 0, 

depending on the chosen Weierstrass equation, such that 

So in order to prove that 10g(F) is continuous and bounded on E(K), we 
are reduced to showing that F is bounded away from 0 on the set I x I Ii ::; Cl· 

From the definition of F, we must show that there is a constant C2 > 0 so 
that 

for all P E E(K) with Ix(P)lv ::; Cl. 

The polynomials ¢(x) and 1jJ(x) are relatively prime in K[x]. We give 
two quick proofs of this fact. 

Proof 1 (theoretical): The map [2] : E --; E has degree 4 [AEC III.6.2(d)]. 
From the commutative diagram 

E 
[21 

E ------> 

1" 11 
pI ¢/1/J pI ------> 

the rational map ¢/1f0 has degree 4, so ¢(x) and 1f0(x) have no common 
roots. 

Proof 2 (computational): An explicit computation shows that 

Resultant(¢(x),1f0(x)) = ~2, 

where ~ is the discriminant of the given Weierstrass equation. Since ~ i= 0, 
we see that ¢(x) and 'lj!(x) have no common roots. 
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Therefore we can find polynomials <I>, 1)1 E K[x] satisfying 

¢(x)<I>(x) + 'l/J(x) 1)1 (x) = 1. 

Evaluating this identity at x = x(P) and using the triangle inequality yields 
the desired result: 

1:::; 1¢(x)<I>(x)lv + 11b(x)l)1(x) Iv 

:::; 2max{I¢(x)lv' 1'l/J(x)IJ· max{I<I>(x)lv' II)1(x)IJ 

:::; c;-l max{ I¢(x) lv' 11/i(x) IJ for Ixl" :::; C1· 
D 

According to Lemma l.2, the "naive" local height function ),1 satisfies 
condition (iii) up to a bounded function. The next proposition shows how 
to decompose such a bounded function into a difference of two functions. 
Then these new functions will be used to modify ),1 so as to make (iii) hold 
exactly. 

Proposition 1.3. (Tate) Let 

f: E(K) -t JR 

be any bounded continuous function. Then there exists it unique hounded 
continuous function 

Jl : E(K) -t JR 

such that 

f(P) = 4Jl(P) - Jl([2]P) for all P E E(K). 

PROOF. If the function Jl exists, then we can use its defining relation N 
times to compute 

1 1 
Jl(P) = 4: f(P) + 4:Jl([2]P) 

III 
= 4: f (P) + 16 f ([2]P) + 16 Jl ([4jP) 

Since Jl is supposed to be bounded, if we let N -+ 00, then the last term 
should disappear. So we define Jl by the formula 

Jl(P) = f 47:+ 1 f([2 n jP) 
n=O 
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and verify that it has the required properties. (Notice that if /-L exists, it 
must be given by this formula, so we get uniqueness for free.) 

First, since I is a bounded function, it is clear that the series is ab­
solutely convergent, so /-L is well-defined. But more is true. Each of the 
functions 

is bounded and continuous. (It is easy to check that the multiplication 
maps [mJ ; E(K) --> E(K) are continuous for the v-adic topology.) It 
follows that the series defining /-L gives a bounded continuous function 
on E(K). Finally, using Tate's telescoping series trick, 

4/-L(P) - /-L([2JP) = f: 4~/([2nJP) - f: 4n~1/([2n+lJP) = I(P). 
n=O n=O 

o 
We now have all the tools needed to prove the existence of A and so 

complete the proof of Theorem 1.1. As above, let 

1 
Al(P) = "2 max{ v(X(p)-l ),O}, 

1 
I(P) = Al ([2JP) - 4Al(P) - v((2y + alx + a3)(P)) + 4v(.6.). 

From Lemma 1.2, I extends to a bounded continuous function (also de­
noted f) on all of E(K). Then Proposition 1.3 gives a bounded continuous 
function /-L ; E(K) --> ~ satisfying 

f(P) = 4/-L(P) - /-L([2JP) for all P E E(K). 

Define 
A(P) = Al(P) + /-L(P). 

We now verify that A satisfies properties (i), (ii), and (iii) of Theorem 1.1. 
(i) By inspection, Al is continuous on E(K) " {O} and is bounded on the 
complement of any v-adic neighborhood of O. Since /-L is continuous and 
bounded on all of E(K), A satisfies (i). 
(ii) If Pis v-adically close to 0, then Al(P) equals -~v(x(P)). We com­
pute 

lim {>.(P) + ~v(x(P))} = lim {Al(P) + /-L(P) + -21v(x(P))} 
p~o 2 p~o 

= lim /-L(P) = /-L(O). 
p~o 

Hence>. satisfies (ii). 
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(iii) Using the formulas defining and relating A, AI, /-l, and j, we find 

A([2]P) = Al ([2]P) + /-l ([2] p) 
= Al ([2]P) - j(P) + 4f-l(P) 

= 4Al(P) + v((2y + alx + a3)(P)) - iv(~) + 4f-l(P) 

= 4A(P) + v((2y + alx + a3)(P)) - iv(~). 

461 

This proves that A verifies (iii) and completes the proof of Theorem 1.1. 
o 

§2. Local Decomposition of the Canonical Height 

The canonical height [AEC VIII §9] 

h : E(K) -+ [0, (0) 

is a quadratic form defined in terms of the arithmetic of E(K). We now 
show that h can be decomposed as a sum of local height functions. 

Theorem 2.1. Let K be a number field, MK the standard set of ab­
solute values on K, and nv = [Kv : IQv] the local degree of v E MK. 
(See [AEC VIII §5] for a description of MK.) Let E/ K be an elliptic 
curve, and for each v E M K , let Av : E(Kv) " {O} ~ lR be the local Neron 
height function associated to v as described in (1.1). Then 

for all P E E(K) " {O}. 

In order to prove Theorem 2.1, we will use the defining properties of A 
(especially Theorem 1.1(iii)), together with the following fact, which we 
will prove later. 

Lemma 2.2. There is a finite set of absolute values S C MK so that for 
all v ~ S, 

for all P E E(Kv) " {O}. 

PROOF. This lemma says that for almost all absolute values, the naive 
local height ~ max { v(x- 1 ), a} actually satisfies the quadratic property (iii) 
of Theorem 1.1. We will postpone the proof of (2.2) until §4, where we 
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will prove the more precise result (4.1) that Av = ~ max{ v(x- 1 ), o} for all 
finite places v such that the given Weierstrass equation has good reduction. 

o 

PROOF (of Theorem 2.1). Let S be the set described in (2.2). Define a 
function 

L : E(K) " {O} ----+ JR, 

For any given P E E(K) " {O}, (2.2) implies that 

if v rt. Sand v(x(P)) :::: o. 

Hence the sum L: nvAv(P) has only finitely many non-zero terms, so L(P) 
is well-defined. 

Next we compare L(P) with h(x(P)). From Theorem 1.1(i),(ii), for 
each v E M K there is a constant Cv so that 

for all P E E(Kv) " {O}, 

and (2.2) allows us to take Cv = 0 for all v rt. S. Now multiply by n v , sum 
over v E M K , and divide by [K : Q]. This gives 

1 
-c:::; L(P) - "2h(x(P)) :::; c for all P E E(K) " {O}, 

where 

is finite and independent of P. In other words, if we set L(O) = 0, then 

L(P) = ~h(X(P)) + 0(1) for all P E E(K). 

Finally, we verify the quadratic nature of L. Let P E E(K) be a point 
with [2]P i- O. Then 

1 
L([2]P) = [K: Q] L nv Av([2]P) 

vEMK 

= [K ~ QJ L nv{ 4Av(P) + v(2y + alX + a3)(P)) + v (.6.) } 
vEMK 

by Theorem 1.1 (iii) 
4 

= [K : QJ L nvAv(P) product formula [AEC VIII.5.3] 
vEMK 

= 4L(P). 
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Since we have defined L(O) = 0, the relation L([2JP) = 4L(P) holds 
for P = 0, too. We must also verify it for P E E[2J, P 1= O. The quickest 
way to do this is to use the triplication formula for A (exercise 6.4e) , 

2 
Av([3]Q) = 9>'v(Q) + v((3x4 + b2x 3 + 3b4x 2 + 3b6x + bs)(Q)) - 3v(~) 

for all Q E E(Kv) with [3]Q 1= O. 

Summing over v E MK as above gives 

L([3]Q) = 9L(Q) for all Q E E(K) with [3]Q 1= O. 

In particular, if P 1= 0 and [2]P = 0, then 

L(P) = L([3]P) = 9L(P), so L(P) = o. 
Hence 

L([2]P) = L(O) = 0 = L(P) = 4L(P). 

We have now proven the two relations 

L(P) = ~h(x(P)) + 0(1) and L([2]P) = 4L(P) for all P E E(K). 

The canonical height h also satisfies these relations [AEC VIII.9.3]. It 
follows that the difference F = L - h is bounded and satisfies F([2]P) = 
4F(P). Hence 

Therefore L = h. 

~ 0, 
N-+oo 

so F(P) = 0 for all P E E(K). 

§3. Archimedean Absolute Values - Explicit Formulas 

o 

Let K be a field which is complete with respect to an archimedean absolute 
value I . Iv, and let E / K be an elliptic curve. Then K is isomorphic to 
either lR or C, and I . Iv corresponds to some power of the usual absolute 
value. Thus in order to compute the local height function>. over E(K), it 
suffices to consider the case that K = C, so in this section we will derive 
explicit formulas for the local height for elliptic curves over the complex 
numbers. 
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Recall that an elliptic curve E IC has an analytic parametrization 

CIA -> E(C), Z f---> (p(z; A),g;/(z; A)), 

with Weierstrass equation 

having discriminant 

(See [AEC VI.3.6] and (1.4.4).) We put this in standard Weierstrass form 
by the substitution 

x = p(z), 
1 , 

y = 2P (z), 

yielding the equation 

with discriminant ~ = ~(A). 

Recall also the Weierstrass a-function (1.5.4) 

a(z)=a(z;A) = IT (1_~)e~+~(;~)2, 
wEA 
w#O 

which has a simple zero at each lattice point and satisfies the transformation 
formula 

a(z + w) = 'Ij;(w)e17 (W J(z+!w)a(z) for all z E C, w E A. 

Here 'Ij; : A --> {±l} is the map with 'Ij;(w) = 1 if and only if w E 2A, 
and TJ: A --> C is the quasi-period homomorphism. 

We have seen (1.5.6b) that there is a factorization 

Applying log I . I yields 

'( ) __ a(2z) 
p z - a(z)4. 

logla(2z) 1 = 4logla(z) 1 + loglp'(z) I· 

Since p'(z) = 2y, comparison of this equation with Theorem l.l(iii) (and 
the fact that the local height has a pole at 0) suggests that the local height 
function on E(C) = CIA should look like -logja(z)l. Unfortunately, the 
transformation formula for a(z) shows that la(z)1 is not invariant under 
translation by A, so -logla(z) 1 is not well-defined on CIA. The next 
proposition explains how to modify a(z) to obtain an invariant function. 
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Proposition 3.1. Let Ace be a lattice. Extend the quasi-period 
map 17 : A ~ C linearly to obtain an JR.-linear homomorphism (also de­
noted 17) 

(a) For all z, wEe, the quantity 

Z17(W) - W17(z) 

is purely imaginary. 
(b) Define a function 

Then 

F(z + w) = 'Ij!(w)e!(Z1J(w)-W1J(Z» F(z) for all z E C, w E A. 

(Note that F(z) is not holomorphic, because 17(z) is only JR.-linear.} 
( c ) The function IF (z ) I is a well-defined function on C / A and is real­
analytic and non-vanishing away from o. 

PROOF. (a) Choose a basis Wl,W2 for A with Im(wt/w2) > o. Legendre's 
relation (1.5.2d) says that 

Write 

with a, b, c, d E JR.. 

Then the JR.-linearity of 17 and Legendre's relation give 

Z17(W) - W17(z) = (ad - bC)(Wl17(W2) - W217(Wt}) 

= (ad - bc)27ri. 

(b) Using the transformation formula (1.5.4) for a(z) stated above, we 
compute 

F(z + w) = e-!(z+w)1J(z+w)a(z + w) 

= e-!(z+w)1J(z+w)'Ij!(w )e1J(w)(z+!w) a(z) 

= 'Ij!(w)e!(Z1J(w)-W1J(z» F(z). 

(c) Since 'Ij!(w) = ±1, and since (a) implies that 
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it follows from (b) that IF(z)1 is well-defined on CIA. Further, F(z) is 
clearly real-analytic on C and vanishes only at points of A, so IF(z)1 is 
real-analytic and non-vanishing on C\A. 0 

Theorem 3.2. Let EIC be an elliptic curve with period lattice A. Then 
the Neron local height function 

A: E(C)" {O} ->lR 

is given by the formula 

A(Z) = -log le-!Z1)(z)a(z)~(A)f2l 

1 1 
= 2" Re(z1](z)) -logla(z)I-1210gl~(A)I, 

where 1] : C ----> C is the extension of the quasi-period map described above 
in (3.1). 

PROOF. Let A(Z) be the indicated function. We must verify that A satisfies 
properties (i), (ii), and (iii) of Theorem 1.1. First, (3.1c) ensures that A 
is well-defined on E(C) ,,{O}. Further, since a(z) is holomorphic on C 
and non-vanishing on C" A, it is clear that A(Z) is actually a real-analytic 
function on E(C) " {O}. Hence it satisfies property (i) of Theorem 1.1. 

Next we observe that the limit 

. 1 
l~A(Z) + 2"V(p(z)) 

= lim - Re(z1](z)) - -logla(z)2p(z)l- -logl~(A)1 {Ill} 
Z-'O 2 2 12 

exists, since a(z) has a simple zero and p(z) has a double pole at z = o. 
(In fact, the limit equals 112 10gl~(A) I.) This verifies property (ii). 

Finally, we must check property (iii). From (I.5.6b) we have 

logla(2z)1 = 410gla(z) 1 + loglp'(z) I, 

and the linearity of 1](z) gives 

Re(2z1](2z)) = 4 Re(z1](z)). 

Subtracting the first equation from half the second, and then subtract­
ing 11210gl~(A)1 from both sides, we obtain the desired relation 

1 
A(2z) = 4A(Z) -loglp'(z)1 + 4Iogl~(A)I· 
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(Note that p'(z) = 2y and ~(A) = ~ for the Weierstrass equation y2 = 
3 1 1) X - 4g2x - 4g3 . 

This proves that A has properties (i), (ii) ,and (iii) of Theorem 1.1, so A 
is the Neron local height function on E(C). 0 

Remark 3.2.1. In proving Theorem 3.2, we verified directly that the func-
tion 

-log le-!Z'1(Z)O"(z)~(A)i21 

has properties (i), (ii), and (iii). This gives an alternative proof of existence 
for Theorem 1.1 in the case of archimedean absolute values. 

Corollary 3.3. The local height function 

.\: E(C) '- {O} ---+ lR 

satisfies the quasi-parallelogram law 

1 
'\(P + Q) + '\(P - Q) = 2A(P) + 2A(Q) + v(x(P) - x(Q)) - 6v(~) 

for all P,Q E E(C) with P,Q,P±Q =I O. 

(Note that the quantity (x(P) - x(Q))6 / ~ is well-defined, independent of 
the choice of a particular lVeierstrass model for E.) 

PROOF. The Weierstrass p-function has the factorization (I.5.6a) 

( ) _ ( ) __ O"(z+w)O"(z-w) 
p Z p W - 0"(Z)20"(W)2 for all z, w E C. 

Hence 

-logIO"(Z+w) I-IogIO"(z-w) 1 = -2IogI0"(z) 1-210gI0"( w) I-Ioglp(z)-p(w) I. 

Next, the linearity of TJ(z) immediately implies 

(z + w)TJ(z + w) + (z - w)TJ(z - w) = 2zTJ(z) + 2wTJ(w). 

Apply ~ Re( . ) to this last equation and add it to the previous one. Com­
parison with the formula (3.2) for A(Z) yields 

1 
A(Z + w) + A(Z - w) = 2A(Z) + 2A(W) -loglp(z) - p(w)1 + -logl~(A)I, 

6 

which is exactly the desired identity. o 

It is often convenient to use the Fourier expansions for O"(z) and ~(T) 
to rewrite the formula for the local height A(Z). 
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Theorem 3.4. Let E Ie be an elliptic curve with lattice Zr + Z normal­
ized so that Im(r) > O. As usual, let 

and identify 

z u. 

(See (1 §6) and (V §1).) Then the local height function 

>. : E(C) " {O} --> IR 

is given by the formula 

where 
2 1 

B 2 (T)=T -T+ 6 
is the second Bernoulli polynomial. 

Remark 3.4.1. The formula (3.4) for the local height >.(z) is sometimes 
rewritten using the equivalent quantities 

Imz 

Imr 
log lui 
log Iql 

v(u) 
v(q)' 

PROOF. The Weierstrass l7-function has the product expansion (1.6.4) 

The modular discriminant function has the product expansion (1.8.1) 

~(T) = (27r)12q II (1 _ qrL)24. 

n:2:1 

Hence 

le-~Z1](Z)l7(z)~(r)+'-1 

= le~Z(rl(1)z-1](Z)-211"i) q+'- (1 - u) II (1 - qnu) (1 - qnu- 1 ) \. 

n:2:1 
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To simplify the exponential, we use Legendre's relation (1.5.2d), which 
in the case of a normalized lattice ZT + Z says 

Writing 

we find 

Hence 

so 

z = aT + b with a, b E JR., 

7](l)z - 7](z) - 27ri = a(T7](l) - TI(T)) - hi = 27ri(a - 1). 

e ~ z(1)(1)z-T/(z)-27ri) q-f2 = e ~ (ar+b)·27ri(a-l) . e-f2 ·27rir 

= e(a2-a+i )7rir . e(a-l)b7ri, 

Substituting this in above yields the formula 

le-~ZT/(Z)(}(Z)b..(T)-f2 I = Iq~(a2-a+i)(1_ u) II (1 - qnu)(l- qnU-l)l· 

n2:1 

Theorem 3.2 says that applying -log(· ) to the left-hand side gives the 
local height 'x(z). Since Im(z) = Im(aT + b) = aIm(T), this completes the 
proof of Theorem 3.4. 0 

§4. Non-Archimedean Absolute Values ~ Explicit Formulas 

Let K be a field with absolute value v, and let E / K be an elliptic curve. If 
the absolute value v on K is non-archimedean, then we can talk about the 
reduction of E modulo v. More precisely, fix a Weierstrass equation for E 
with v-integral coefficients (i.e. v(a;) 20). We consider the reduction E of 
that Weierstrass equation modulo the maximal ideal of the local ring R = 
{o: E K : v(o:) 2 o}. The reduced curve E may be singular. Define a 
subset Eo(K) of E(K) by 

Eo(K) = {p E E(K) : P is a smooth point of E}. 

In particular, if the reduced equation is smooth (E has good reduction), 
then Eo(K) = E(K). (See [AEC VII], which discusses in some detail the 
case that v is a discrete valuation.) 

We now show that for points in Eo(K) the local height is given by a 
simple formula. 
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Theorem 4.1. Let K be a field complete with respect to a non-ar­
chimedean absolute value v, let E j K be an elliptic curve, and choose a 
Weierstrass equation for E with v-integral coefficients, 

Let .t. be the discriminant of this equation. Then the Neron local height 
function A : E(K) " {O} ----+ lR is given by the formula 

1 1 
A(P) = "2 max{ v(X(p)-l), o} + 12 v(.t.) for all P E Eo(K). 

Remark 4.1.1. If E has good reduction, then we can find a Weierstrass 
equation for Ej K with Eo(K) = E(K) and v(.t.) = O. In this situation, 
the proof of (4.1) will show that the function 

1 "2 max{v(x(P)-l), O} 

has properties (i), (ii), and (iii) of Theorem 1.1. This provides an alterna­
tive proof of the existence of A in this case. Further, since A is invariant 
under finite extension of the field K (LIe) and is independent of the choice 
of Weierstrass equation (LIb), we actually obtain an existence proof when­
ever E has potential good reduction. 

Remark 4.1.2. The local height A is independent of the choice of Weier­
strass equation. But the formula for A given in Theorem 4.1 does not 
appear to be independent of this choice. For example, the change of co­
ordinates x u-2x', y = u-3 y' will alter the formula in Theorem 4.1 
to 

However, this new formula for A(P) is valid only for points in Eb(K), 
where Eb(K) is defined using the equation with coordinates (x', y'). One 
can verify that the two formulas agree on the intersection Eo(K) n Eb(K), 
as they should. 

PROOF (of Theorem 4.1). Let 

By inspection, Al satisfies conditions (i) and (ii) of Theorem 1.1. We next 
verify condition (iii) for points in Eo(K) ...... {O}. 
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As usual, let 

¢(x) = X4 - b4 x 2 - 2b6 x - bs, 

1jJ(x) = 4x 3 + b2 x2 + 2b4 x + b6 = (2y + alx + a3)2 

be the functions appearing in the duplication formula 

Then the equation 

¢(P) 
x([2]P) = 1jJ(P)' 

to be verified is equivalent (after some algebra) to 

min{ v(¢(P)), v( 1jJ(P))} = min{ 4v(x(P)), o}. 

471 

First suppose that v(x(P)) < O. Then the (non-archimedean) triangle 
inequality yields 

v(¢(P)) = 4v(x(P)) and v(1jJ(P)) :::: v(4x(p)3) > 4v(x(P)), 

so the desired relation is true. We are left to prove 

P E Eo(K) and v(x(P)):::: 0 ===? min{v(¢(P)),v(1jJ(P))} = O. 

To prove this, we must express the condition P E Eo(K) in terms 
of ¢(P) and 1jJ(P). Let 

be the polynomial defining E. Recall that a point (xo, YO) E E is singular 
if and only if 

Fx(xo, YO) = Fy(xo, Yo) = O. 

(See [AEC 1.1.5]. The subscripts denote partial derivatives.) Now Eo(K) 
consists of all points whose reduction modulo v is non-singular on the 
reduced curve E. So we see that 

P E Eo(K) ===? v(Fx(P)) ~ 0 or v(Fy(P)) ~ O. 

We also recall the addition formula [AEC IlI.2.3(c)], which says that 
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where m is the slope of the tangent line to E at P. (Note that m i=- 00 

since [2]P i=- 0.) Thus 

and so we find 

for the polynomial 

Fx(P) 
m = Fy(P) , 

( [2]P) = FX (P)2 + G(P)Fy(P) 
x Fy (P)2 

G = alFx - (a2 + 2X)Fy E R[X, Y] c K(E). 

(N.B. G has coefficients in the valuation ring R, since by assumption the 
coefficients of F are v-integral.) Thus 

¢>=Fi+GFy and 'IjJ=F$. 

Now let P E Eo(K) satisfy v(x(P)) 2: O. Then 

o ::; min{ v( ¢>(P)), v( 'IjJ(P)) } since v(x(P)) 2: 0 

= min{ v(FX (p)2 + G(P)Fy(P)), v(Fy (p)2)} 

= 0 since either v(Fx(P)) ::; 0 or v(Fy(P)) ::; O. 

This completes the proof that 
1 

Al ([2]P) = 4Al (P) + v( (2y + alX + a3)(P)) - 4v(.6.) 

for all P E Eo(K) " {O}. 

We have now shown that Al satisfies conditions (i), (ii), and (iii) of 
Theorem 1.1 for all points in Eo(K) " {O}. If Eo(K) = E(K), that is, if E 
has good reduction and we take a minimal Weierstrass equation for E, then 
the uniqueness assertion of Theorem 1.1 implies that A = Al. However, 
even if the Weierstrass equation for E has singular reduction, the proof of 
uniqueness in Theorem 1.1 works for the subgroup Eo(K). A brief sketch 
follows. 

From (i) and (ii), the difference A = A - Al extends to a bounded, 
continuous function on all of Eo(K) (in fact, on all of E(K)). Further, 
from (iii) it satisfies A([2]P) = 4A(P) for all P E Eo(K). (By continuity, 
this holds even when [2]P = 0.) Then 

A(P) = INA([2N]P) ---t 0, so A(P) = 0 for all P E Eo(K). 
4 N_= 0 

It remains to find an explicit formula for the local height in the case 
that E has bad reduction at v and P is not in Eo(K). Since the local 
height is invariant under finite extension of K (LIe), it suffices in principle 
to consider the case that E has split multiplicative reduction at v. For 
computational purposes, however, it is often more convenient to work di­
rectly over K. Explicit formulas for A in the case of additive reduction are 
given in exercises 6.7 and 6.8. 
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Theorem 4.2. Let K be a p-adic field (i.e., a finite extension ofQp) with 
absolute value v = -log I . Iv, let q E K* satisfy Iqlv < 1, and let Eq / K be 
the Tate curve (V.3.4) with its parametrization 

(a) The Neron local height function 

is given by the formula 

(b) If we choose u (by periodicity) to satisfy 

O::S: v(u) < v(q), 

then 

{
I B (v(u)) () 

.>.(¢(u)) = "2 2 v(q) 1 v q , 

v(l - u) + 12 v(q), 

if 0 < v(u) < v(q), 

ifv(u) =0. 

(Note that for a Tate curve, v(q) = -v(j(Eq)) = v(~(q)).) 

PROOF. (a) The Tate parametrization (V.3.4) is a v-adic analytic map 
from K* / qZ to the elliptic curve with Weierstrass equation 

defined by 

¢(u) = (X(u), Y(u)). 

(For the series defining a4(q), a6(q), X(u), and Y(u), see (V.3.1).) The 
discriminant of the Weierstrass equation for Eq has the product expan­
sion (V.3.1b) 

~(q) = q II (1- qn)24. 
n~l 

Recall also the v-adic B-function (V.3.2) 
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and the factorization (V.3.2b) 

uO( U 2 ) 
2Y(u) + X(u) = - O(U)4 . 

Applying v to this relation and doing a little algebra, we find that 

{v(O(U2») - ~V(U2)} = 4 {V(O(U») - ~V(U)} + v(2Y(u) + X(u»). 

This suggests that v(O(u») - ~v(u) - 112V(~) would be a good candidate 
for A, since it has property (iii), but unfortunately it is not invariant under 
the transformation u !---t quo So we make a slight alteration to obtain an 
invariant function. 

Define 

'\(u) = ~B2 (~~~~) v(q) + v(O(u»). 

We will show that ,\ is the Neron local height function by verifying that it 
satisfies properties (i), (ii), and (iii) of Theorem 1.1. 

First, using the identities 

v(qu) v(u) 
----+1 v(q) - v(q) , 

1 
O(qu) = --O(u) 

u 

(the last is (V.3.2a», it is easy to check that ,\(qu) = '\(u); so'\ is well­
defined on 

Next, the product defining 0 is absolutely convergent and non-zero 
away from qZ. Hence A is continuous (in fact, v-adically analytic) on 
Eq(K) " {O} and bounded on the complement of any neighborhood of O. 
This verifies (i). 

To check (ii) we compute 

{ I} 1 1 lim '\(u) + -v(X(u» = -B2(O)v(q) + -2 lim V(O(U)2 X(u» 
u~l 2 2 u~l 

1 1 . 
= -B2(O)V(q) + - hm v«l - U)2 X(u»). 

2 2 u~l 

The series for X(u) given in (V.3.1) is 
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so we see that the pole at u = 1 comes only from the n = 0 term. Hence 

lim(l- U)2X(U) = 1, 
u~l 

which proves that the above limit exists. (In fact, the limit is 112v(q).) 
Finally, we verify the duplication formula (iii). Note first that for 

all n ::::: 1 we have v(l - qn) = 0, so 

v(~(q)) = v(q II (1- qn)24) = v(q). 
n;::':l 

N ext we add the formula 

obtained above to the identity 

- -- + - v(q) = 4 - - + - v(q) - -v(q). ( 1 (V(U2))2 1 ) (1 (V(U))2 1 ) 1 
2 v(q) 12 2 v(q) 12 4 

Since v(q) = v(~(q)), this gives property (iii): 

1 
A(U2) = 4A(U) +v(2Y(u) +X(u)) - 4v(.6.(q)). 

We have now shown that A(U) satisfies properties (i), (ii), and (iii) of 
Theorem 1.1, so it is the Neron local height function. 
(b) Since 0 S v(u) < v(q), we have 

for all n ::::: 1. 

So the formula in (a) becomes 

1 (v(u)) A(U) = 'iB2 v(q) v(q) + v(l - u). 

If in addition v(u) > 0, then v(l - u) = 0, which gives the first expres­
sion. Similarly, if v(u) = 0, then the second expression is a consequence 
of B 2 (0) = 1/6. 0 

Remark 4.2.1. The proof of (4.2) shows directly that the function de­
scribed in (4.2a) satisfies conditions (i), (ii), and (iii) of Theorem 1.1, so 
we obtain an independent proof of the existence of the Neron local height 
for Tate curves. We have now given proofs of the existence of the Neron 
local height, independent of the proof in §1, in the following three cases: 
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(A) K = C, see (3.2.1); 
(B) KIQp and ElK has good reduction, see (4.1.1); 
(C) KIQp and E = Eq is a Tate curve, see (4.2). 

But if K is the completion of a number field with respect to some absolute 
value, and ElK is an elliptic curve, then we can find a finite extension L I K 
so that ElL falls into one of the three cases (A), (B), or (C). This follows 
from [AEC, VII.5.5] and (V.5.3). Now using the elementary fact (1.1c) that 
the local height is invariant under field extension, we obtain an independent 
proof of the existence of A for all ElK. 

EXERCISES 

6.1. Let K be a field, I . Ivan absolute value on K, and E/ K an elliptic curve. 
For any rational function f E K(E), let 

Uj(K) = {P E E(K) : f is defined at Pl. 

( a) Prove that the map 

is continuous. (Here Uf(K) inherits the v-adic topology from E(K), and JR 
is given the usual topology.) 
(b) Prove that the topology on E(K) described in §1 is the weakest topol­
ogy (i.e., the topology containing the fewest open sets) such that the maps 
in (a) are continuous for every rational function f E K(E). 

6.2. Let K be a field, I . Ivan absolute value on K, and E/ K an elliptic curve. 
If K is locally compact, prove that E(K) is compact. In particular, E(K) 
is compact if K = JR, K = IC, or K is a finite extension of Qp. 

6.3. Let K be the completion of a number field with respect to some abso­
lute value, and let E / K be an elliptic curve. Prove that for all P, Q E 
E(K) with P, Q, P ± Q =1= 0, the Neron local height>. satisfies the quasi­
parallelogram law 

>.(P + Q) + >.(P - Q) = 2>.(P) + 2>.(Q) + v(x(P) - x(Q» - ~v(.6.). 

(Hint. We already proved this for K = IC in Corollary 3.3. Going to an 
extension field, it suffices to prove the result when K is a finite extension 
of Qp and E has either good or split multiplicative reduction. For the 
former, the formulas for X3 + X4 and X3X4 in the proof of [AEC, VIII.6.2] 
may prove useful, at least if p =1= 2,3; whereas for the latter, you can use 
the Tate curve together with (V.3.2b) and (4.2) to mimic the proof of 
Corollary 3.3.) 
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6.4. Let K and E be as in the previous exercise, and fix a Weierstrass equation 

E : y2 + alXY + a3Y = x 3 + azx2 + a4X + a6. 

For each integer m define a function 

Frn(x) = m 2 IT (x - x(T») E K(E). 

(a) Prove that 

TEE[m] 
TolD 

div(Frn) = 2( L (T») - 2mZ(0). 
TEE[m] 

(b) Prove that 

Fz = 4x3 + bzx2 + 2b4X + b6 = (2y + alX + a3)z, 

F3 = (3X4 + b2x 3 + 3b4x2 + 3b6x + bS )2, 

F4 = Fz(2x6 + bzx 5 + 5b4x4 + lOb6x3 

+ lObsxz + (b2bs - b4b6)x + b4 bs - b~)2. 

Generally, show that there exist functions 1jJm E K (x, y) = K (E) satisfying 
Fm = 1jJ;'. (1jJm is the mth-division polynomial; see [AEC, exercise 3.7).) 
(c) Let ~ be the discriminant of the given equation. Prove that the func­
tion 

~m2-1 

is independent of the Weierstrass equation. 
(d) Prove the recurrence formula 

Fm+1Fm- 1 = (x 0 [m) - x)F;', for all m 2: 2. 

By convention, we set H(x) = 1. (Hint. Compare divisors. Then to find 
the constant, let P ---> 0.) 
(e) Prove that 

( ) 2 1 ( ) m 2 - 1 >. [mJP = m >.(P) + 2"v Fm(P) - -1-2 -v(~), 

for all P E E(K) with [mJP =I=- O. 

6.5. Let EjC be an elliptic curve with normalized lattice ZT+Z, and let >.(z) = 
>.(x + iy) be the local height function on E(C) " {O}. 
(a) Prove that 

r >'(z)dxdy=O. 
JE(e) 

(Note that this is an improper integral, since >.(z) blows up at z = O. Be 
sure to check that the integral converges.) 
(b) Prove that >.(z) is a solution of the differential equation 

(~:2 + ~:2 ) >.(z) = I:T' 
(This exercise, together with Theorem 1.1(ii), says that >.(z) is the Green's 
function on E(C) for the divisor (0).) 
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6.6. Let K be a field with absolute value v and let E / K be an elliptic curve. 
Fix a Weierstrass equation for E, 

E : y2 = X3 + Ax + B, 

with discriminant and j-invariant 

and 

(a) If v is non-archimedean, and A and B are v-integral, prove that for 
all P E E(Kv) ,,{O}, 

- 2~ max{v(j(E)-l),O}::::: .>.(P) - ~max{v(x(P)-l),O}::::: 112v(D.). 

(Hint. Use the explicit formulas (4.1) and (4.2).) 
(b) If v is archimedean, prove that for all P E E(Kv) " {O}, 

I.>.(p) - ~ max { v (~~~) ,0 } I ::::: ~ max{ V(j(E)-l), O} + v(3). 

(c) Now suppose that K is a number field, and A and B are in the ring of 
integers of K. Prove that for all P E E(K), 

Ih(P) - ~h(x(p))1 ::::: ~h(j) + 112h(.6.) + log 3. 

(The constants in (b) and (c) are certainly not best possible. See if you 
can improve them.) 

6.7. The next three exercises give formulas for the local height which are es­
pecially well suited for numerical computations. We begin with the non­
archimedean case. 

Let K be a field complete with respect to a discrete valuation v, 
let E / K be an elliptic curve, and fix a minimal Weierstrass equation for E, 

y2 + alXY + a3Y = x3 + a2x2 + a4X + a6. 

Let D. be the discriminant of this equation, and let P E E(K). 
(a) Prove that P E Eo(K) if and only if either 

v((3x2 + 2a2x + a4 - alY)(P)) ::::: 0, or v((2y + alX + a3)(P)) ::::: o. 
Note that if P E Eo(K), then (4.1) says that 

.>.(P) = ~ max{ v(X(p)-l), O} + 112 v(.6.). 

(b) Assume that v(D.) > 0 and V(C4) = O. (This means that E has multi­
plicative reduction at v; see [AEC VII.5.1bJ.) Let 

(P) _ . {v((2y +al x+a3)(p)) ~} 
a - mm v(D.) '2' 

Prove that if P rt Eo(K), then the local height of P is given by the formula 

1 
.>.(P) = "2B2(a(P))v(D.). 
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6.8. 'Let K, v, E and D. be as in the previous exercise. Suppose that E has 
additive reduction (Le., v(D.) > 0 and V(C4) > 0.) Let P E E(K) with 
P fJ- Eo(K). Let F2 and F3 be the polynomials defined in exercise 6.4b. 
Prove that 

{ 
-~V(F2(P» + 112v(D.) ifv(F3(P» 2: 3v(F2(P», 

A(P) = 1 1 
-16 V(F3(P» + 12 v(D.) otherwise. 

6.9. Let EjR be an elliptic curve given by the usual Weierstrass equation 

and suppose that x(P) # 0 for all P E E(R). (Note that one can always 
achieve this condition by making a shift x = x' + r for sufficiently large T.) 
Then the functions 

are well-defined for all points in E(R). 
(a) Prove that 

w(P) 
t([2]P) = z(P)' 

This gives a convenient recursive formula for computing z([2n]p). 
(b) Prove that there are constants Cl, C2 > 0, depending on the Weierstrass 
equation, so that 

for all P E E(R). 

Conclude that the series 

00 

L ;n logiz([2n]p)i 
n=O 

is absolutely convergent for all P E E(R). 
(c) Prove that the local height function on E(R) " {O} is given by the 
formula 

1 1 1 00 1 
A(P) = 2Iogix(P)i- 12 log ID.I + 8 L 4n logiz([2n ]P)i· 

n=O 

(d) Give a modification of the series in (c) which converges to give the 
local height function on E(C) ,,{O}. (Note that in this case there will 
always be points with x(P) = 0.) 
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6.10. Using the previous three exercises, compute the canonical height h(P) of 
the indicated point on each of the following curves. 

(a) y2+ y =X3 _x, P=(O,O), 

(b) y2+y=X3 _x2, P=(O,O), 

(c) y2 + xy + y = x 3 - x 2 - 48x + 147, P = (13,33), 

(d) y2 + xy + y = x 3 + x 2 - 100lx + 12375, P = (45,224). 

6.11. Define the periodic second Bernoulli polynomial B2(t) by 

B2(t) = (t - [t]/ - (t - [tD + ~ 
(i.e., B2 equals B2 on the interval 0 :::; t < 1, and is extended periodically 
modulo 1 to all of JR). 
(a) Prove that B2(t) has the Fourier expansion 

(b) Let tl, ... , tN E JR. Prove that 

l~i,j'5:N 
i#j 

N 
B2(ti - tj) :::: -6' 

(c) Let K be a complete field with discrete valuation v, let ElK be an 
elliptic curve, and let ~ be the discriminant of a minimal Weierstrass equa­
tion for E at v. Prove that for any collection of distinct points PI, . .. , PN E 
E(K), 

L >'(Pi - Pj) :::: - ~ v(~). 
l~i,j~N 

i#j 

(Hint. Since>. is invariant under finite extension of K, it suffices to consider 
the two cases of good and split multiplicative reduction.) 
(d) Let K be complete with respect to a discrete valuation v, and sup­
pose that E has split multiplicative reduction. Choose a parametriza­
tion E(K) ~ K* Il, and let P E E[N + 1] correspond to ql/(N+I). (Take 
any root in k.) For each i, 1:::; i :::; N, let Pi = [i]P. Prove that 

L >'(Pi-Pj)=-~V(~)(l- N~I)' 
l~i,j~N 

i#j 

Thus the estimate in (c) is essentially best possible. 
(e) 'Let EIC be an elliptic curve. Prove that there is a constant c = c(E) 
so that for any set of distinct points PI, ... , PN E E(C), 

l~i,j~N 
i"ej 

(This is the archimedean analogue of (c). It is quite difficult.) 



APPENDIX A 

Some Useful Tables 

§1. Bernoulli Numbers and «(2k) 

Values of the Riemann (-Function at Even Integers, «(8) = ~ ~. 
~ns 
n2':1 

«(2) = 
1r2 

«(4) = 
1r4 

2·3 2.32 .5 

«(6) = 
1r6 

«(8) = 
1rs 

33 .5.7 2.33 .52 .7 
1r1O 6917r12 

«(10) = 35 .5.7.11 «(12) = 36 . 53 . 72 . 11 . 13 

«(14) = 
21r14 

36 . 52 . 7 . 11 . 13 

x 00 Xk 
Bernoulli Numbers -- = ~ Bk-kl eX -1 ~ . 

k=O 

B2 = 
1 

B4 = -
6 

Bs = 
1 

BlO = 
30 

BI4 = 
7 

B16 = 
6 

1 
B6 = --

30 
5 

BI2 = 
66 

3617 
B I8 = 

510 

1 
42 

691 
2730 

43867 
798 

B 20 = 
283·617 

B22 = 
11 ·131·593 

B24 = 
103·2294797 - -

330 138 2730 

B 26 = 
13·657931 

B 28 = 
7 . 9349 . 362903 

-
6 870 
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§2. Fourier Coefficients of ~(T) and jeT) 

Fourier Coefficients of (21T)-12~(T) = l: T(n)qn = q IT (1 _ qn)24. 
n20 n21 

T(l) = 1 T(2) = -24 T(3) = 252 

T(4) = -1472 T(5) = 4830 T(6) = -6048 
T(7) = -16744 T(8) = 84480 T(9) = -113643 

T(10) = -115920 T(l1) = 534612 T(12) = -370944 

The function T(n) is called the Ramanujan T function. For values of T(n) 
with n ::::: 300, see Lehmer [lJ. 

1 
Fourier Coefficients of jeT) = - + l: c(n)qn. 

q n20 

c(O) = 744 

c(2) = 21493760 

c(4) = 20245856256 

c(6) = 4252023300096 

c(8) = 401490886656000 

c(1) = 
c(3) = 
c(5) = 
c(7) = 

196884 
864299970 

333202640600 
44656994071935 

1 
Inversion of Series for j Function, q = l: d( n) -;-;;:-. 

n21 J 

d(l) = 

d(3) = 

d(5) = 
d(7) = 

1 

750420 

1102652742882 

2037518752496883080 

d(2) = 

d(4) = 
d(6) = 
d(8) = 

744 
872769632 

1470561136292880 

2904264865530359889600 
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§3. Elliptic Curves over Q with Complex Multiplication 

In this section we describe all elliptic curves defined over Q with complex 
multiplication by an order R = Z + f RK of conductor f in a quadratic 
imaginary field K = Q ( J - D) of discriminant - D. The first table gives 
the j-invariant for each such order. The second table gives a representative 
elliptic curve E over Q with the specified j, together with the minimal 
discriminant llE and conductor N E of E. Those curves possessing endo­
morphisms of degree 2 are discussed in (II.2.3.1). 

Discriminant Conductor j-invariant 
-DofK f of R of E 

-3 1 0 
2 243353 

3 _2 153.53 

-4 1 2633 

2 2333113 

-7 1 -3353 

2 3353173 

-8 1 2653 
-11 1 _215 

-19 1 _21533 

-43 1 _2183353 

-67 1 _2153353113 

-163 1 -2183353233293 

-D f 
Minimal Weierstrass 

llE NE 
equation of E over Q 

-3 1 y2 + y = x3 33 33 

2 y2 = x 3 - 15x + 22 2833 2233 

3 y2 + y = x 3 - 30x + 63 35 33 

-4 1 y2 = x 3 + X 26 26 

2 y2 = x 3 - 11x + 14 29 25 

-7 1 y2 + xy = x 3 - x 2 - 2x - 1 73 72 

2 y2 = x 3 - 595x + 5586 21273 24 72 

-8 1 y2 = x 3 + 4x2 + 2x 29 28 
-11 1 y2 + y = x 3 - x 2 - 7 x + 10 113 112 
-19 1 y2 + y = x 3 - 38x + 90 193 192 
-43 1 y2 + y = x 3 - 860x + 9707 433 432 
-67 1 y2 + y = x 3 - 7370x + 243528 673 672 
-163 1 y2 + y = x 3 - 2174420x + 1234136692 1633 1632 



Notes on Exercises 

Many of the exercises in this book are standard results which were not included 
in the text due to lack of space, whereas others are special cases of results which 
appear in the literature. The following list thus serves two purposes. First, it 
is an attempt by the author to give credit for the theorems which appear in the 
exercises, and second, it will aid the reader who wishes to delve more deeply into 
some aspect of the theory. However, since any attempt to assign credit is bound 
to be incomplete in some respects, the author herewith tenders his apologies to 
anyone who feels that they have been slighted. 

Except for an occasional computational problem, we have not included so­
lutions (nor even hints). Indeed, since it is hoped that this book will lead the 
student on into the realm of active mathematics, the benefits of working without 
aid clearly outweigh any advantage that might be gained by having solutions 
readily available. 

CHAPTER I 

(1.1) For an elementary proof, see Alperin [1]. 
(1.5) (e) Let h( -D) denote the class number ofQ (y'-D). Then h( -3) = 1, 

h( -5) = 2, h( -23) = 3, h( -29) = 6, h( -47) = 5. 
(1.10) See Serre [3, VII, §3.2, Cor. 2]. 
(1.11) A similar argument is given in Serre [3, VII, Thm. 3] and Apostol [1, 

Thm.2.4]. 
(1.13) See de Shalit [1, II §2, equation (4)]. See also Weil [1, Ch. III, IV]. 
(1.14) Proven in Stark [2] using Kronecker's limit formula. Alternatively, one 

can compare poles and zeros to see that the ratio is constant, and then 
let z ----> 0 to find the constant. 

(1.16) Answer: s(2,y) = (y-1)(y-5)/24 ifyisodd,and s(2,y) = (y2+5)/24y 
if Y is even. 

(1.19) (a) See Shimura [1, exercise 3.27]. (b,c) See Shimura [1, Thm. 3.24]. 
(1.20) (a,b) See Shimura [1, exercise 2.8]. 
(1.22) See Lang [2, Ch. III §4], Shimura [1, Ch. 3, §§4,5], or Ogg [1]. 
(1.24) See Serre [3, Ch. VII §4.3]. 
(1.25) See Apostol [1, Thm. 6.16]. 
(1.26) This is due to Hecke. See Apostol [1, Thm. 7.20]. 
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(1.29) (c) This is due to Hecke. See Ogg [1, Ch. I, Thm. 1, p. 1-5]. 

CHAPTER II 

(2.1) Write RK = Z + ZT, and for any a E R, write a = a", + b",T with 
a", E Z and b", E Z. Then f = min{b", : a E R,b", > O}. 

(2.2) This is due to Hurwitz [1]. A nice exposition of the proof is given in 
the appendix to Rosen [1]. 

(2.9) (a) See Shimura [1, (5.4.3), p. 124]. (b) See Shimura [1, exercise 5.8, 
p. 124]. 

(2.12) (b) This exercise was suggested by David Rohrlich. 
(2.13) The minimal polynomial of j3 is 27x8 + 72x4 - 16. 
(2.14) K2 = L2 = K, K3 = K, L3 = K( if.4), K4 = K()3), and 

L4 = K( J -9 + 6)3). Gal(L4/ K) is cyclic of order 4. In computing 
L4, the identity -10 - 6)3 = (-1- )3)3 is useful. 

(2.17) See Lang [1, Ch. 5, §1]. 
(2.18) (a,b,c,d) See Lang [1, Ch. 5, §2]' Shimura [1, Ch. 4.6]. (f) See P. Cohen 

[1] and Silverman [4]. 
(2.19) See Lang [1, Ch. 5, §3]. 
(2.20) See Lang [1, Ch. 5, §2]. 
(2.21) See Lang [1, Ch. 5, Thm. 2]. 
(2.25) See Gross [1, Lemma 9.2.5]. 
(2.30) See Lang [1, Ch. 10, §4, Thm. 10]. For the general case of abelian 

varieties, see Shimura [1, Thm. 7.46 and Prop. 7.47]. 
(2.33) See Ireland-Rosen [1, Ch. 18, §4]. 

CHAPTER III 

(3.4) The Mordell-Weil theorem for abelian varieties over finitely generated 
fields is due to Neron. See, for example, Lang [4, Ch. 6, Thm. 1]. 

(3.11) (c) See also Chapter VI text and exercises for an approach using local 
height functions which give a better estimate in (c). One can then use 
(c) to prove (a) and (b). 

(3.12) [0,1,0], [0, ±T, 1], [T, 0,1]' [1 - T, ±(1 - 2T), 1], 
[v'2, ±(2T - 1), 2v'2]. 

(3.14) See Mumford [1, §6, Lemma on p. 56]. 
(3.15) In general, the Mordell-Wei! group of an abelian variety is finitely gen­

erated in the following two cases: (i) (Neron) if the field of definition is 
finitely generated over Q. (ii) (Lang-Neron) if one takes the quotient 
by the subgroup of points defined over the constant field. For details, 
see Lang [4, Ch. 6, theorems 1 and 2]. 

(3.16) This version of (III.11.3.1) and (III.l1.4) for split elliptic surfaces is 
due to Dem'janenko [1], with a generalization to abelian varieties due 
to Manin [1]. The example in (d) is due to Dem'janenko. 

(3.17) See Kuwata [1,2]. 
(3.20) (a) 2. (b) 3. (c) 2. (d) 4. 
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(3.21) This is a special case of Zariski's Main Theorem, see Hartshorne [1, 
V.5.2, III.11.3, exercise III. 11.4). 

(3.23) This is a special case of the general fact that algebraically equivalent 
divisors are numerically equivalent, see Hartshorne [1, exercise V.1.7]. 

(3.24) (b) det(Ioo) = n. (c) ai = i(n ~ k)!n if 1::; i::; k, and ai = ken ~ i)!n 
if k < i < n. See, for example, Cox and Zucker [1, Table 1.14). 

(3.31) See Lang [4, Ch. 4, Prop. 5.2). 
(3.32) See Lang [4, Ch. 4, Prop. 3.3 and Cor. 3.4). 
(3.34) This estimate is due to Tate [4), see also Lang [4, 12 Cor. 5.4). 
(3.36) (b) This is due to Kodaira, see Shioda [3, Prop. 2.8). It has been 

frequently rediscovered, see for example Hindry-Silverman [2, Thm. 5.1) 
and Szpiro [1). 

(3.37) This result is due to Hindry and Silverman [2). 
(3.38) For an explicit construction of the Jacobian variety of a hyperelliptic 

curve, see Mumford [3, Ch. IlIa). In particular, Pic(C)[2) is described 
in Mumford [3, Ch. lIla, Lemma 2.4 and Cor. 2.11). 

(3.40) See Shioda [3, Prop. 1.6). 

CHAPTER IV 

(4.5) (a) See Matsumura [1, corollary to Thm. 45 (18.G)). 
(4.7) See Bosch-Liitkebohmert-Raynaud [1, §2.4, Prop. 8). 

(4.10) See Shatz [1, §2) or Waterhouse [1, Ch. 1 and 2]. 
(4.15) (a) This is a restatement of Lemma IV.9.5. 
(4.16) e7 : (y2 ~ x3)(x ~ 1)3(y ~ 2x) = O. 
(4.19) See Artin [1, §O). 
(4.24) See Bosch-Liitkebohmert-Raynaud [1, Ch. 7, Prop. 6). 
(4.25) Combine (IV.5.3) and (IV.9.1). For a more intrinsic proof for general 

group schemes, see Artin [1, Lemma 1.16). 
(4.26) See Greenberg [1, §3, Lemma 2) for a multi-variable version. 
(4.27) (b) See Bosch-Liitkebohmert-Raynaud [1, 2.2, Prop. 7]. (c) See Bosch-

Liitkebohmert-Raynaud [1, 2.3, Prop. 5). 
(4.29) See Milne [3, §7) or Wei! [3). 
(4.30) See Artin [1, Cor. 1.6). 
(4.31) (c) The special fiber has five components, three of multiplicity 1 and 

two of multiplicity 2. This is a fiber of Type IX-1 in the classification 
of Namikawa and Ueno [1). (d) The special fiber has four components, 
one of multiplicity 1, two of multiplicity 2, and one of multiplicity 3. 
This is a fiber of Type VIII-3 in the classification of Namikawa and 
Ueno [1). 

(4.32) (c) Raynaud [1) has proven a general result which allows one to compute 
the group of components on the Neron model of the Jacobian of a curve 
in terms of the incidence matrix of the special fiber of a minimal proper 
regular model of the curve. 

(4.35) This exercise is taken from Tate [2, end of §6). 
(4.36) (a,b) This is an unpublished result of Mestre; see Kraus [1]. (c) This 

is due to Kraus [IJ. 
(4.37) See Neron [1, §IIIJ. 
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(4.39) The proof is essentially the same as the proof of [AEC, IV.6.1]. See 
also exercises 2.22 and 2.23. 

(4.43) (a) {I}. (b) 7l./27l.. (c) Hs. 
(4.44) This follows easily from [AEC, IX.6.1]. 
(4.45) See Serre [4, Ch. IV, Section 1]. 
(4.46) (b) See Serre [4, Ch. VI, Thm. 1']. (d) See Ogg [2], Serre-Tate [1, §3], 

and Serre [7, Ch. 19]. (e) This is due to Ogg [2]. 

CHAPTER V 

(5.2) See Serre [4, VIII §4]. 
(5.13) This is due to Serre [1, (A.1.2), pp. IV-31,2.]. 
(5.14) This approach to Tate's theorem for elliptic curves with non-integral j 

is due to Shatz [1]. 

CHAPTER VI 

(6.5) See Lang [6, II §5]. 
(6.6) (a) This is due to Tate; see Lang [3, III, Thm. 4.5]. (b,c) See Silverman 

[3]. 
(6.7) See Silverman [2, Lemma 5.1]. 
(6.8) See Silverman [2, Thm. 5.2]. 
(6.9) The series (c) is due to Tate, and the extension to E(C) is due to 

Silverman. For proofs with error estimates, see Silverman [2]. 
(6.10) Solutions: (a) 0.02555 ... (b) j~(r) = 0, r is a 5-torsion point, (c) 

0.01028 ... , this point has very small height, (d) 0.01049 ... , this point 
has very small ratio h(?)/ log(6.). 

(6.11) (b) This is due to Blanksby and Montgomery; see Hindry-Silverman 
[1]. (c) Hindry-Silverman [1]. (e) This is due to Elkies, see Lang [6, VI 
§5]. One can give the explicit lower bound 

1 1 
-2N log N - 12Nmax{log Ij(E)I, O} - 3.64N, 

where the 3.64 is not best possible. 



References 

[AEC] The Arithmetic of Elliptic Curves, GTM 106, J.H. Silverman, Springer­
Verlag, New York, 1986. 

Abhyankar, 8.8. 
[1] 

[2] 

Resolution of singularit.ies of arithmetical surfaces. In Arithmetical 
Algebraic Geometry, Harper and Row, New York, 1965. 
Resolution of singularities of algebraic surfaces. In Algebraic Geometry, 
Oxford University Press, London, 1969, I-II. 

Ahlfors, L. 
[1] Complex Analysis: An Introduction to the Theor'y of Analytic Functions 

of One Complex Variable, 3rd ed., McGraw-Hill, New York, 1979. 
Alling, N. 

[1] Real Elliptic Curves, North-Holland, New York, 1981. 
Alperin, R. 

[1] PSL2(£:) = £:2 * £:3. Amer. Math. Monthly 100 (1993), 385-386. 
Altman, A. and Kleiman, 8. 

[1] Introduction to Grothedieck Duality Theory, Lect. Notes in Math. 146, 
Springer-Verlag, Berlin, 1970. 

Apostol, T. 
[1] 1110dular Functions and Dirichlet Series in NumbeT Theor'y, GTM 41, 

Springer-Verlag, New York, 1976. 
Arakelov, 8. 

[1] Intersection theory of divisors on an arithmetic surface. Izv. Akad. Nauk 
SSR Ser. Mat. 38 (1974), AMS Transl. 8 (1974), 1167-1180. 

Artin, M. 
[1] 

[2J 

Neron models. In Arithmetic Geometr'y, G. Cornell and J. Silverman, 
eds., Springer-Verlag, New York, 1986, 213-230. 
Lipman's proof of resolution of singularities for surfaces. In Arithmetic 
Geometry, G. Cornell and J. Silverman, eds., Springer-Verlag, New 
York. 1986, 268-287. 

Atiyah, M.F. and MacDonald, I.G. 
[1] Introd'uction to Commutative Algebra, Addison-Wesley, Reading, lvfA, 

1969. 



References 489 

Baker, A. 
[1] Transcendental Number Theory, Cambridge Univ. Press, Cambridge, 

1975. 
Beauville, A. 

[1] Complex Algebraic Surfaces, London Math. Soc. Lect. Note 68, Cam­
bridge Univ. Pres::;, Cambridge, 1983. 

Birch, B.J. and Kuyk, W., eds. 
[1] Modular Functions of One Variable IV, Lect. Notes in Math. 476, Sprin­

ger-Verlag, Berlin, 1975. 
Birch, B.J. and Swinnerton-Dyer, H.P.F. 

[1] Elliptic curves and modular functions. In Modular Functions of One 
Variable IV, Lect. Notes in Math. 476, B.J. Birch and W. Kuyk, eds., 
Springer-Verlag, Berlin, 1975, 2-32. 

Borel, 
[1] 

A., Chowla, S., Herz, C.S., Iwasawa, K. and Serre, 
Seminar on Complex Multiplication, Lect. Notes in Math. 21, 
Springer-Verlag, Berlin, 1966. 

Bosch, S., Gunter, U. and Remmert, R. 

J.-P. 

[1] Non-Archimedean Analysis: A Systematic Approach to Rigid Analytic 
Geometry, Springer-Verlag, Berlin, 1984. 

Bosch, S., Lutkebohmert, W. and Raynaud, M. 
[lJ Neron Models, Springer-Verlag, Berlin, 1990. 

Brumer, A. and Kramer, K. 
[lJ The conductor of an abelian variety. Compositio Math. (1994), to 

appear. 
Cassou-Nogues, Ph. and Taylor M.J. 

[lJ Elliptic Functions and Rings of Integers, Birkhiiu::;er, Boston, 1987. 
Chinburg, T. 

[IJ An introduction to Arakelov intersection theory. In Arithmetic Geom­
etry, G. Cornell and J. Silverman, eds., Springer-Verlag, New York, 
1986, 291-307. 

[2J Minimal models for curves over Dedekind rings. In Arithmetic Geometry, 
C. Cornell and J. Silverman, eds., Springer-Verlag, New York, 1986, 
309-326. 

Coates, J. 
[1] Elliptic curves and Iwasawa theory. In Modular Forms, R.A. Rankin, 

ed., Ellis Horwood Ltd., Chichester, 1984, 51-74. 
Cohen, H. 

[1] A Course in Computational Algebraic Number Theory, Springer-Verlag, 
Berlin, 1993. 

Cohen, P. 
[lJ On the coefficients of the transformation polynomials for the elliptic 

modular function. Math. Proc. Camb. Philos. Soc. 95 (1984), 389-402. 
Conway, J .H. 

[IJ Monsters and moonshine. Math. Intelligencer 2 (1979/80), 165-171. 
Conway, J.H. and Norton, S. 

[1] Monstrous moonshine. Bull. London Math. Soc. 11 (1979), 308-339. 



490 References 

Cox, D. and Zucker, S. 
[1] Intersection numbers of sections of elliptic surfaces. Invent. Math. 53 

(1979), 1-44. 
Crernona, J .E. 

[1] Algorithms for Modular Elliptic Curves, Cambridge Univ. Press, Cam­
bridge, 1992. 

Deligne, P. 
[1] Formes modulaires et representations l-adic. In Sem. Bourbaki, 21e 

annee, 1968/69, no. 355, Lect. Notes in Math. 179, Springer-Verlag, 
Berlin, 1971, 139-172. 

[2] La conjecture de Weil I. Publ. Math. IHES 43 (1974), 273-307. 
Dern'janenko, V.A. 

[1] Rational points of a class of algebraic curves. Izv. Akad. Nauk SSSR 

[2] 
Ser. Math. 30 (1966), 1373-1396. AMS Transl. 66 (1968), 246-272. 
An estimate of the remainder term in Tate's formula. Mat. Zametki 3 
(1968), 271-278. Math. Notes 3 (1968), 173-177. 

de Shalit, E. 
[1] Iwasawa theory of elliptic curves with complex multiplication, Academic 

Press, Boston, 1987. 
Eisenbud, D. and Harris, J. 

[1] Schemes: The language of modem algebraic geometry, Wadsworth & 
Brooks/Cole, Pacific Grove, CA, 1992. 

Elkies, N. 
[1] The existence of infinitely many supersingular primes for every elliptic 

curve over Q. Invent. Math. 89 (1987), 561-567. 
Faltings, G. 

[1] Calculus on arithmetic surfaces. Ann. Math. 119 (1984), 387-424. 
Ferrnigier, S. 

[1] Un exemple de courbe elliptique definie sur Q de rang > 19. CRAS 
Serie 1 315 (1992), 719-722. 

Greenberg, M. 
[1] Rational points in Henselian discrete valuation rings. Publ. Math. IHES 

31 (1966), 563-567. 
Griffiths, P. and Harris, J. 

[1] Principles of Algebraic Geometry, Wiley, New York, 1978. 
Gross, B. 

[1] Arithmetic on Elliptic Curves, Lect. Notes in Math. 776, Springer-Ver­
lag, Berlin, 1980. 

Gross, B., Kohnen, W. and Zagier, D. 
[1] Heegner points and derivatives of L-series. Math. Ann. 278 (1987), 

497-562. 
Gross, B.H. and Zagier, D.B. 

[1] Heegner points and derivatives of L-series. Invent. Math. 84 (1986), 
225-320. 

Grosswald, E. and Rachrnacher, H. 
[1] Dedekind Sums, Carus Math. Monograph, Math. Assoc. of America, 

Providence, RI, 1972. 



References 491 

Harris, J. 
[1] Algebraic Geometry: A First Course, Springer-Verlag, New York, 1992. 

Hartshorne, R. 
[1] Algebraic Geometry, Springer-Verlag, New York, 1977. 

Heegner, K. 
[1] Diophantische Analysis und Modulfunktionen. Math. Zeit. 56 (1952), 

227-253. 
Hindry, M. and Silverman, J.H. 

[1] Introduction to Diophantine Geometry, in preparation. 
[2] The canonical height and integral points on elliptic curves. Invent. 

Math. 93 (1988), 419-450. 
Hurwitz, A. 

[1] Uber die Entwicklungskoeffizienten der lemniscatischen Funktionen. In 
Mathematische Werke, vol. 2, Birkhiiuser, Basel, 1962, 342-373. 

Ireland, K. and Rosen, M. 
[1] A Classical Introduction to Modern Number Theory, GTM 84, Sprin­

ger-Verlag, New York, 1982. 
Katz, N. and Mazur, B. 

[1] Arithmetic Moduli of Elliptic Curves, Princeton Univ. Press, Princeton, 
NJ,1985. 

Kenku, M.A. 
[1] On the number of Ql-isomorphism classes of elliptic curves in each Ql­

isogeny class. J. Number Theory 15 (1982), 199-202. 
Knapp, A. 

[1] Elliptic Curves, Math. Notes 40, Princeton Univ. Press, Princeton, NJ, 
1992. 

Koblitz, N. 
[1] Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 

New York, 1984. 
Kodaira, K. 

[1] On the structure of compact complex analytic surfaces I, II. Amer. J. 
Math. 86 (1964), 751-798; 88 (1966), 682-721. 

Kolyvagin, V.A. 
[1] Finiteness of E(Ql) and IlI(Ql) for a class of Wei! curves. Math. USSR 

Izv. 32 (1989), 523-542. 
Kraus, A. 

[1] Quelques remarques a propos des invariants C4, C6, et b. d'une courbe 
elliptique. Acta Arith. 54 (1989), 75-80. 

Kubert, D. and Lang, S. 
[1] Modular Units, Springer-Verlag, New York, 1981. 

Kuwata, M. 
[1] The field of definition of the Mordell-Wei I group of an elliptic curve over 

a function field. Compos. Math. 76 (1990), 399-406. 
[2] Ramified primes in the field of definition for the Mordell-Wei! group of 

an elliptic surface. Proc. AMS 116 (1992), 955-959. 



492 References 

Lang, S. 
[1] 
[2] 
[3] 
[4] 

Elliptic Functions, GTM 112, Springer-Verlag, New York, 1987. 
Introduction to Modular Forms, Springer-Verlag, Berlin, 1976. 
Elliptic Curves: Diophantine Analysis, Springer-Verlag, Berlin, 1978. 
Fundamentals of Diophantine Geometry, Springer-Verlag, New York, 
1983. 

[5] Algebraic Number Theory, GTM 111, Springer-Verlag, New York, 1986. 
[6] Introduction to Arakelov Theory, Springer-Verlag, New York, 1988. 
[7] Algebra, 2nd edition, Addison-Wesley, Menlo Park, CA, 1984. 
[8] Integral points on curves. Publ. Math. IHES 6 (1960), 27-43. 

Laska, M. 
[1] An algorithm for finding a minimal Weierstrass equation for an elliptic 

curve. Math. Compo 38 (1982), 257-260. 
Lehmer, D.H. 

[1] Ramanujan's function T(n). Duke Math. J. 10 (1943), 483-492. 
Lehner, J. 

[1] Divisibility properties of the Fourier coefficients of the modular invari­
ant j(T). Amer. J. Math. 71 (1949), 136-148. 

[2] Further congruence properties for the Fourier coefficients of the modular 
invariant j(T). Amer. J. Math. 71 (1949), 373-386. 

Lenstra, H.W. 
[1] Factoring integers with elliptic curves. Ann. of Math. 126 (1987), 

649-673. 
Lichtenbaum, S. 

[1] Curves over discrete valuation rings. Amer. J. Math. 90 (1968), 
380-403. 

Lipman, J. 
[1] Rational singularities with applications to algebraic surfaces and unique 

factorization. Publ. Math. IHES 38 (1970), 195-279. 
[2] Desingularization of two-dimensional schemes. Ann. Math. 101 (1978), 

151-207. 
Liu, Q. 

[1] Formule d'Ogg d'apres Saito. preprint. 
Lockhart, P., Rosen, M. and Silverman, J. 

[1] An upper bound for the conductor of an abelian variety. J. Alg. Geo. 2 
(1993), 569-60l. 

Manin, Ju. 
[1] The Tate height of points on an abelian variety. Its variants and appli­

cations. Transl. AMS 59 (1966), 82-110. 
[2] The p-torsion of elliptic curves is uniformly bounded. Izv. Akad. Nauk 

SSSR 33 (1969), 433-438. 
[3] Rational points on an algebraic curve over function fields. Transl. AMS 

50 (1966), 189-234. 
Mason, R.C. 

[1] The hyperelliptic equation over function fields. Math. Proc. Camb. 
Philos. Soc. 93 (1983), 219-230. 

Matsumura, H. 
[1] Commutative Algebra 2nd ed., Benjamin/Cummings, Reading, MA, 

1980. 



References 493 

Mazur, B. 
[1] Modular curves and the Eisenstein ideal. Publ. Math. IHES 47 (1977), 

33-186. 
[2] Rational isogenies of prime degree. Invent. Math. 44 (1978), 129-162. 

Mestre, J.-F. 
[1] 

[2] 

Milne, 
[1] 
[2] 

[3] 

Formules explicites et minorations de conducteurs de varieties alge­
briques. Compos. Math. 58 (1986), 209-232. 
Courbes elliptiques de rang 2 11 sur Q(T), Courbes elliptiques de rang 
2 12 sur Q(T), Un example de courbes elliptiques sur Q de rang 2 15. 

C.R. Acad. Sci. Paris 313 (1991), 139-142; 313 (1991), 171-174; 
314 (1992), 453-455. 
J.8. 
Arithmetic Duality Theorems, Academic Press, Boston, 1986. 
Abelian varieties. In Arithmetic Geometry, G. Cornell and J. Silverman, 
eds., Springer-Verlag, New York, 1986, 103-150. 
Jacobian varieties. In Arithmetic Geometry, G. Cornell and J. Silverman, 
eds., Springer-Verlag, New York, 1986, 167-212. 

[4] Etale Cohomology, Princeton University Press, Princeton, NJ, 1980. 
Miranda, R. 

[1] The basic theory of elliptic surfaces, Dottorato di Ricerca in Matematica, 
ETS Editrice, Pisa, 1989. 

Mumford, D. 
[1] Abelian Varieties, Oxford Univ. Press, Oxford, 1974. 
[2] Curves and their Jacobians, The University of Michigan Press, Ann 

Arbor, MI, 1975. 
[3] Tata Lectures on Theta II, Prog. in Math. 43, Birkhauser, Basel, 1984. 

Mumford, D. and 8uominen, K. 
[1] Introduction to the theory of moduli. In Algebraic Geometry, Oslo 1970, 

F. Oort, ed., Wolters-Noordhoff, Groningen, 1972, 
Nagao, K. 

[1] An example of an elliptic curve over Q with rank 2 20. Pmc. Japan 
Acad.69 (1993), 291-293. 

[2] An example of an elliptic curve over Q(T) with rank 2 13. Pmc.Japan 
Acad. 70 (1994), 152-153. 

Nagao, K. and Kouya, T. 
[1] An example of an elliptic curve over Q with rank 2 21. Proc. Japan 

Acad. 70 (1994), 104-105. 
Namikawa, Y. and Veno, K. 

[1] The complete classification of fibres in pencils of curves of genus two. 
Manuscripta Math. 9 (1973), 143-186. 

Neron, A. 
[1] Modeles minimaux des varieMs abeliennes sur les corps locaux et glo­

baux. Publ. Math. IHES 21 (1964), 361-482. 
[2] Quasi-fonctions et hauteurs sur les varieMs abeliennes. Ann. of Math. 

82 (1965), 249-331. 
[3] Problemes arithmetiques et geometriques rat taches a la notion de rang 

d'une courbe algebrique dans un corps. Bull. Soc. Math. France 80 
(1952), 101-166. 



494 References 

Neukirch, J. 
[lJ Class Field Theory, Grund. der Math. Wiss. 280, Springer-Verlag, 

Berlin, 1986. 
Ogg, A. 

[lJ Modular Forms and Dirichlet Series, Benjamin, New York, 1969. 
[2J Elliptic curves and wild ramification. Amer. J. Math. 89 (1967), 1-21. 
[3J On pencils of curves of genus two. Topology 5 (1966), 355-362. 

Perrin-Riou, B. 
[lJ Arithmetique des courbes elliptiques et theorie d'Iwasawa. Mem. Soc. 

Math. France 17 (1984), 1-130. 
Petersson, H. 

[lJ Uber die Entwicklungskoeffizienten der automorphen formen. Acta 
Math. 58 (1932), 169-215. 

[2J Uber eine Metrisierung der ganzen Modulformen. Jber. Deutsche Math. 
49 (1939), 49-75. 

Raynaud, M. 
[lJ Specialisation du foncteur de Picard. Publ. Math. IHES 38 (1970), 

27-76. 
Robert, A. 

[lJ Elliptic Curves, Lect. Notes in Math. 326, Springer-Verlag, Berlin, 1973. 
Roquette, P. 

[lJ Analytic Theory of Elliptic Functions Over Local Fields, Vandenhoeck 
& Ruprecht, Gottingen, 1970. 

Rosen, M. 
[lJ Abel's theorem on the lemniscate. Amer. Math. Monthly 88 (1981), 

387-395. 
Rubin, K. 

[lJ Tate-Shafarevich groups and L-functions of elliptic curves with complex 
multiplication. Invent. Math. 89 (1987), 527-560. 

Saito, T. 
[lJ Conductor, discriminant, and the Noether formula of arithmetic sur­

faces. Duke Math. J.57 (1988), 151-173. 
Schmidt, W. 

[IJ Thue's equation over function fields. Aust.Math. Soc. Gaz. 25 (1978), 
385-422. 

Schneider, Th. 
[IJ Introduction aux Nombres Transcendents, Grund. der Math. Wiss. 81, 

Springer-Verlag, Berlin, 1957. 
Serre, J .-P. 

[1 J Abelian C-adic Representations and Elliptic Curves, Benjamin, New 

[2J 

[3J 
[4J 
[5J 

[6J 

York,1968. 
Proprietes galoisiennes des points d'ordre fini des courbes elliptiques. 
Invent. Math. 15 (1972), 259-331. 
A Course in Arithmetic, GTM 7, Springer-Verlag, New York, 1973. 
Local Fields, trans!. by M. Greenberg, Springer-Verlag, New York, 1979. 
Local class field theory. In Algebraic Number Theory, J.W.S. Cassels 
and A. Frohlich, eds., Academic Press, London, 1967, 129-162. 
Complex multiplication. In Algebraic Number Theory, J.W.S. Cassels 
and A. Frohlich, eds., Academic Press, London, 1967, 292-296. 



References 495 

Serre, J .-P. (continued) 
[7J Linear Representations of Finite Groups, GTM 42, Springer-Verlag, 

New York, 1977. 
Serre, J .-P. and Tate, J. 

[IJ Good reduction of abelian varieties. Ann. Math. 68 (1968), 492-517. 
Shafarevich, I.R. 

[IJ Basic Algebraic Geometry, Springer-Verlag, New York, 1977. 
[2J Lectures on Minimal Models, Tata Institute, Bombay, 1966. 

Shatz, S. 
[IJ 

[2J 

The cohomology of certain elliptic curves over local and quasi-local 
fields. Illinois J. Math. 11 (1967), 234-241. 
Group schemes, formal groups, and p-divisible groups. In Arithmetic 
Geometry, G. Cornell and J. Silverman, eds., Springer-Verlag, New 
York, 1986, 29-78. 

Shimura, G. 
[IJ Introduction to the Arithmetic Theory of Automorphic Forms, Princeton 

Univ. Press, Princeton, NJ, 1971. 
Shimura, G. and Taniyama, Y. 

[IJ Complex Multiplication of Abelian Varieties and its Application to Num­
ber Theory, Publ. Math. Soc. Japan 6, 1961. 

Shioda, T. 
[IJ The Galois representation of type Es arising from certain Mordell-Weil 

groups. Pmc. Japan. Acad. 65 (1989), 195-197. 
[2J On Mordell-Weillattices. Univ. Sancti Pauli 39 (1990), 211-240. 
[3J On elliptic modular surfaces. J. Math. Soc. Japan 24 (1972), 20-59. 
[4J Mordell-Weillattices and Galois representations I, II, III. Pmc. Japan 

Acad. 65 (1989), 268-271, 296-299, 300-303. 
[5J Mordell-Weillattices and sphere packings. Amer. J. Math. 113 (1991), 

931-948. 
[6J Mordell-Weil lattices of type Es and deformation of singularities. Lect. 

Notes Math. 1468 (1991), 177-202. 
[7J Construction of elliptic curves with high rank via the invariants of the 

Weyl groups. J. Math. Soc. Japan 43 (1991), 673-719. 
Siegel, C.L. 

[IJ A simple proof that 7J( -1/T) = 7J(T)F/i. Mathematika 1 (1954), 4. 
Silverman, J.H. 
[AEC] The Arithmetic of Elliptic Curves, GTM 106, Springer-Verlag, New 

York, 1986. 
[IJ Heights and the specialization map for families of abelian varieties. J. 

Reine Angew. Math. 342 (1983), 197-211. 
[2J Computing heights on elliptic curves. Math. Comp.51 (1988), 339-358. 
[3J The difference between the Weil height and the canonical height on 

elliptic curves. Math. Compo 55 (1990), 723-743. 
[4] Hecke points on modular curves. Duke Math. J. 60 (1990), 401-423. 
[5J Variation of the canonical height on elliptic surfaces I. J. Reine Angew. 

Math. 426 (1992), 151-178. 
[6] Variation of the canonical height on elliptic surfaces II, III. J. Number 

Theory (1994), to appear. 



496 References 

Silverman, J .H. (continued) 
[7J The Neron-Tate Height on Elliptic Curves. Ph.D. thesis, Harvard, 198!. 
[8J The S-unit equation over function fields. Math. Pmc. Camb. Philos. 

Soc. 95 (1984), 3-4. 
Stark, H. 

[IJ 

[2J 

A complete determination of the complex quadratic fields of class-num­
ber one. Michigan Math. J. 14 (1967), 1-27. 
The Coates-Wiles theorem revisited. In Number Theory Related to 
Fermat's Last Theorem, N. Koblitz, ed., Birkhiiuser, Boston, 1982, 
349-362. 

Szpiro, L. 
[1 J Seminaire sur les pinceaux de courbes de genre au moins deux. 

risque 86 (1981), 44-78. 
Aste-

Tate, 
[IJ 
[2J 

[3J 
[4J 

[5J 

[6J 

[7J 

[8J 

[9J 

J. 
The arithmetic of elliptic curves. Invent. Math. 23 (1974), 171-206. 
Algorithm for determining the type of a singular fiber in an elliptic 
pencil. In Modular Functions of One Variable IV, Lect. Notes in Math. 
476, B.J. Birch and W. Kuyk, eds., Springer-Verlag, Berlin, 1975, 
33-52. 
Letter to J.-P. Serre (1979), unpublished. 
Variation of the canonical height of a point depending on a parameter. 
Amer. J. Math. 105 (1983), 287-294. 
WC-groups over p-adic fields. Sem. Bourb. Expose 156 (1957/58), 
13pp. 
Duality thoerems in Galois cohomology. Pmc. Intern. Congress Math., 
Stockholm, 1962, 234-24l. 
Global class field theory. In Algebmic Number Theory, J.W.S. Cassels 
and A. Frohlich, eds., Academic Press, London, 1967, 163-203. 
Fourier analysis in number fields and Heeke's zeta-functions. In Algebraic 
Number Theory, J.W.S. Cassels and A. Frohlich, eds., Academic Press, 
London, 1967, 305-347. 
A review of non-archimedean elliptic functions. In Elliptic Curves, Mod­
ular Forms, & Fermat's Last Theorem, J. Coates and S.T. Yau, eds., 
International Press, Boston, 1995, 162-184. 

Vladu1;, S.G. 
[IJ Kronecker's Jugendtraum and modular functions, Gordon and Breach, 

New York, 199!. 
Vojta, P. 

[IJ Diophantine approximations and value distribution theory, Lect. Notes 
in Math. 1239, Springer-Verlag, Berlin, 1987. 

Voloch, J.F. 
[IJ Siegel's theorem for complex function fields. Proc. AMS 121 (1994), 

1307-1308. 
Waldschmidt, M. 

[IJ Nombres transcendent et groupes algebriques, Asterisque 69-70, 1979. 
Waterhouse, W. 

[IJ Introduction to Affine Group Schemes, GTM 66, Springer-Verlag, New 
York,1979. 



References 497 

Weil, A. 
[1] Elliptic Functions According to Eisenstein and Kronecker, Springer-Ver­

lag, Berlin, 1976. 
[2] 
[3] 

Arithmetic on algebraic varieties. Ann. Math. 53 (1951), 412-444. 
Varietes Abeliennes et Courbes Algebriques, Hermann, Paris, 1948. 

Zimmer, H. 
[1] On the difference of the Weil height and the Neron-Tate height. Math. 

Z. 147 (1976), 35-51. 
[2] Quasifunctions on elliptic curves over local fields. J. reine angew. Math. 

307/308 (1979), 221-246; Corrections and remarks concerning quasi­
functions on elliptic curves. J. reine angew. Math. 343 (1983), 203-211. 



List of Notation 

EA 
p(z; A) 
,c 
H 
SL2(7.) 
AT 
r(1) 

S 

T 

:r 
I(T) 
X(I) 
H* 
Y(I) 
X(I) 
I(Tl, T2) 
I(Ul, U2) 
'ljJx 
j 

ord=(f) 
f(oo) 
G2k(A) 
G2k(T) 
92 
93 
~(T) 

12x 
121: 
ordx(w) 
Wj 

M2k 

Mgk 

c'c'cc 
«(z; A) 

the elliptic curve y2 = 4x3 - 92(A)x - 93(A), 6 
Weierstrass p function relative to the lattice A, 6 
the set of lattices in 1[, 6 
the upper half plane {T E 1[: Im(T) > O}, 7 
special linear group over 7., 8 
the lattice 7.T + Z, 9 
the modular group, 10 

the element (~ r/) E r(1), 10 

the element (6 i) E r(l), 10 

fundamental domain for action of SL2(7.) on H, 10 
the stabilizer of T, 11 
modular curve, 14 
extended upper half plane, 14 
affine modular curve, 14 
projective modular curve, 14 
transformations sending Tl to T2, 17 
transformations "( with "(Ul n U2 =I- 0, 17 
local parameter for X (1), 20 
j-invariant map X(I) ---> jp'1(1C), 23 
order at 00 of a modular function, 24 
value at 00 of a modular function, 24 
Eisenstein series, 25 
Eisenstein series, 25 
equals 60G4 , 26 
equals 140G6 , 26 
the modular discriminant, 26 
space of differential I-forms on X, 27 
space of meromorphic k-forms on X, 27 
order of a differential form, 27 
differential form on X(I) attached to modular form f, 28 
space of modular forms of weight 2k, 31 
space of cusp forms of weight 2k, 31 
isomorphism classes of elliptic curves over 1[, 36 
Weierstrass ( function for the lattice A, 39 



List of Notation 

1] 

o-(z; A) 
1j; 
AT 
8J(Z;7) 
«(Z;7) 
0-(Z;7) 
U = U z 

q = qT 
qZ 

F(u;q) 
o-k (n) 
Bk 
E2k(7) 
T(n) 
c(n) 
1](7) 

.ph) 
SeX, y) 
Div(S) 
T(n) 
R>. 

A'CA 
M2(Z) 
Q(A) 
TIn 
Sn 
F j 

IF 
T2k(n) 
"((m) 
L(f, s) 
R(f, s) 
r(s) 
r(N) 
ro(N) 
rl(N) 
qD) 

/1>(Q,7) 

II[Qhk 
(j,g) 
r(s,x) 
g(X) 
I(x,7) 
L(j, x, s) 
RK 
EA 

quasi-period homomorphism, 41 
Weierstrass 0- function for the lattice A, 44 
character describing periodicity of Weierstrass 0- function, 44 
normalized lattice Z7 + Z, 47 
Weierstrass 8J function for the normalized lattice AT, 47 
Weierstrass ( function for the normalized lattice AT, 47 
Weierstrass 0- function for the normalized lattice AT, 47 
= e27riz , 47 
= e27riT , 47 

the cyclic group generated by q, 47 
an elliptic function, 49 
sum of kth powers of divisors of n, 55 
Bernoulli number, 57 
normalized Eisenstein series, 58 
Ramanujan 7 function, 59 
Fourier coefficients of the modular j function, 59 
Dedekind 1] function, 65 
integer in Dedekind 1] function transformation formula, 66 
Dedekind sum, 66 
divisor group of a set, 68 
nth Hecke operator, 68 
homothety operator, 68 

A' is a sublattice of A of index n, 69 
ring of 2 x 2 matrices with integral coefficients, 72 
the lattice Z(awl + bW2) + Z(CWI + dW2), 72 
integer matrices of determinant n, 72 
special integer matrices of determinant n, 72 
lattice function associated to the modular function I, 74 
modular function associated to the lattice function F, 74 
nth Hecke operator on space of modular functions, 76 
mth Fourier coefficient of T2k (n)I, 76 
formal Dirichlet series attached to the power series I, 80 
normalized L-series attached to I, 83 
gamma function, 83 
a congruence subgroup of rei), 86 
a congruence subgroup of r(I), 87 
a congruence subgroup of r(I), 87 
linear series attached to the divisor D, 87 
Weil pairing, 89 

= C7 + d, where Q = ( ~ ~), 91 

= (detQ)k/1>(Q,7)-2kIoQ, 91 

Petersson inner prod uct of I and g, 92 
incomplete gamma function, 93 
Gauss sum associated to X, 93 
twist of the cusp form I by the character X, 93 
twist of the L-series L(j, s) by the character X, 93 
ring of integers (maximal order) of K, 96 
the elliptic curve isomorphic to iC/ A, 97 

499 



500 

[.] 
eJ:.,qR) 
eqRK) 
n 
aA 
n*EA 
E[a] 
hK 
F 
Up 

I( c) 
P(c) 
K, 
H,HK 
Kv 
Rv 
A'K 
Kp 
Rp 
ordp 

(s) 
u, 
Nf( 
Kab 

[·,K] 
h 
Fn(X) 

Sm(T) 
Fn(Y,X) 

Hn(X) 
M[pOO] 
t/JEIL 
L'iJ(EIL,T) 
L(s, t/J) 
A(EIL),s) 
wElL 
1>;;' 
S;;. 
<Pn(X) 
Z(E/JF'iJ' T) 
(£(s) 
(EI L, s) 
Tp(E) 
K(8,2) 
K(8,m) 
Pic°(C) 
Jac(C) 
C(g) 

normalized isomorphism R --> End(E), 97 
elliptic curve, with endomorphism ring R, 98 
ideal class group of RK, 99 
the ideal class of a, 99 
the product of the ideal a and lattice A, 99 
action of ideal class n on elliptic curve E A , 99 
group of a-torsion points, 102 
class number of K, 107 

List of Notation 

complex multiplication map Gal(R / K) --> eJ:.,(RK), 112 
Frobenius element in Gal(LI K), 116 
fractional ideal prime to c, 116 
principal ideals congruent to 1 modulo c, 117 
ray class field of K modulo c, 117 
Hilbert class field of K, 118 
completion of K at v, 119 
ring of integers of K v, or Kv if v is archimedean, 119 
idele group of K, 119 
completion of Kat p, 119 
ring of integers of K p, 119 
normalized valuation on Kp and R p, 119 
ideal of the idele s, 119 
an open subgroup of the idele group A'K, 119 
norm map on idele groups, 119 
maximal abelian extension of K, 120 
the reciprocity map for K, 120 
Weber function E --> E/ Aut(E) == 11"1, 134 
the polynomial IT<:>ESn (X - j 0 a), 144 
the coefficients of the polynomial Fn(X), 144 
the modular polynomial Fn(j, X) = ITaESn (X - j 0 a), 146 
the modular polynomial Fn(X, X), 146 
p-primary component of an RK-module M, 157 
the Grossencharacter of a eM elliptic curve ElL, 168 
local L-series of E at p, 171 
Heeke L-series attached to the Grossencharacter t/J, 173 
modified L-series of ElL, 176 
sign of the functional equation of ElL, 176 
primitive integer matrices of determinant n, 181 
primitive special integer matrices of determinant n, 181 
the modular polynomial of order n, 181 
zeta function of the elliptic curve E/JF'iJ, 183 
zeta function of the field L, 183 
zeta function of the elliptic curve EI L, 183 
p-adic Tate module, 186 
subgroup of K* / K*2, 194 
subgroup of K*IK*m, 195 
group of divisor classes of degree zero, 197 
Jacobian variety of C, 197 
symmetric product of a curve, = cg 18g , 197 



List of Notation 

G(C) 
G(Cjk) 
¢(V) 
Dom(¢) 
7ft (f) 
it 
(- , . ) 
E(K,d) 
Div(S) 
(ls.p 

(ls,r 
ordr 
div 

Pic(S) 
D l · D2 
(Dl . D 2 )p 
7f* 

<PD 
Tp 

(P) 
Dp 
( . , .) 
Eo(K) 
<PP,Q 

[P,Q] 
Div 
h p 

hD 
h", 
Pt 
at 
Rs 
Mapk(C, E) 
kE 
fE/K 
lGa 

IGm 

GLn 

SLn 
C(K) 
CO 

AR 
lP"R 
X(T) 
X(R) 
Fx 
X xsY 
Xs 

group of sections to an elliptic surface, 202 
group of sections defined over k to an elliptic surface, 203 
the image of a rational map ¢: V --> W, 204 
domain of definition of a rational map, 204 
order of the pole of f at t, 213 
canonical height on an elliptic surface, 217 
canonical height pairing on an elliptic surface, 218 
points in E(K) with height at most d, 223 
group of divisors on a surface, 231 
local ring of a surface S at a point P, 231 
local ring of a surface S at a curve r, 231 
order of vanishing along a curve r, 232 
homomorphism k(S)* --> Div(S), 232 
linear equivalence of divisors, 232 
Picard group of a surface S, 232 
intersection pairing of divisors Dl and D 2 , 233 
local intersection index at P, 233 
homomorphism Div(C) --> Div(S) on a fibered surface, 237 
divisor on S with (D + <PD)' F = 0 for all fibral F, 240 
translation-by-P map on an elliptic surface, 245 
divisor associated to a section to an elliptic surface, 245 
divisor on elliptic surface G for a point P E E(K), 247 
canonical height pairing on an elliptic surface, 247 
subgroup of an elliptic surface, 251 
divisor with (P + Q) - (P) - (Q) + (0) '" <PP,Q, 252 
canonical height pairing with values in Pic(C), 252 
the group of divisors on a variety V, 255 
absolute logarithmic height on projective space, 255 
height on a variety associated to a divisor D, 256 
height on a variety associated to a morphism, 258 
the image of a section a P to an elliptic surface, 265 
the specialization map on an elliptic surface, 271 
the ring of S-integers of a function field, 275 
the set of morphisms from C to Eo defined over k, 281 
field of definition of sections to an elliptic surface, 282 
the conductor divisor of an elliptic surface, 287 
the additive group variety, 291 
the multiplicative group variety, 291 
the general linear group, 291 
special linear group, 292 
the group of K-rational points on a group variety, 292 
identity component of a group variety, 292 
affine space over the ring R, 298 
projective space over the ring R, 298 
the set of T-valued points of a scheme, 298 
the set of R-valued points of an R-scheme, 298 
functor defined by an S-scheme, 298 
the fiber product of two S-schemes, 299 
the fiber of an S-scheme X over a point s E S, 300 
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{t 

Ga 

Ga / s 
Ga / R 

Gm 

Gm / s 
Gm / R 

[m] 
OF 
ordF 

eO 
w 
WU 

elR 
clR 
Dom(¢) 
:X 
Rh 

Rsh 

Div(e) 
div(f) 
(r1 . r 2 )x 
Divp(e) 
D·F 
Pa(F) 
Ke 
Divfib(e) 
Elk 
Ens(k) 
Eo(K) 
E1(K) 
m(EIK) 

Gi(LIK) 
gi(LI K) 
E(EIK) 
8(EIK) 
f(EIK) 
f(EIK) 
/Lr 
Ctpr 

Gd 

reduction of the scheme X modulo p, 300 
the generic fiber of an R-scheme X, 300 
affine space over the scheme S, 301 
projective space over the scheme S, 301 

List of Notation 

identity section 170 : S --+ G of a group scheme, 306 
inverse map i : G -> G of a group scheme, 306 
group law {t : G x s G ...... G of a group scheme, 306 
the additive group scheme over Z, 307 
the additive group scheme over S, 307 
the additive group scheme over R, 307 
the multiplicative group scheme over Z, 308 
the multiplicative group scheme over S, 308 
the multiplicative group scheme over R, 308 
translation map Ta : G --> G on a group scheme., 310 
multiplication-by-m map on a group scheme, 310 
the local ring of a curve on an arithmetic surface, 311 
valuation attached to a curve on an arithmetic surface, 311 
largest subscheme of e smooth over R, 316 
the subscheme of lP'~ defined by a Weierstrass equation, 321 
largest subscheme of W smooth over R, 321 
minimal proper regular model of an elliptic curve ElK, 325 
largest subscheme of el R which is smooth over R, 325 
domain of a morphism ¢, 327 
special fiber of a scheme over a discrete valuation ring, 330 
the Henselization of a discrete valuation ring, 331 
the strict Henselization of a discrete valuation ring, 331 
the divisor group of an arithmetic surface e, 339 
the divisor of f on an arithmetic surface, 339 
local intersection index on an arithmetic surface, 339 
the group of fibral divisors on the arithmetic surface e, 340 
intersection index of divisors on an arithmetic surface, 341 
the arithmetic genus of a curve on an arithmetic surface, 342 
a canonical divisor on the arithmetic surface e, 342 
group of fibral divisors on the arithmetic surface e, 344 
the reduction of a Weierstrass equation modulo p, 362 
set of non-singular points of E(k), 362 
set of points of E(K) with non-singular reduction, 362 
set of points of E(K) which reduce to the identity element, 362 
number of components over k on special fiber e, 363 
equals 7r- r ai, 366 
the ith higher ramification group of L I K, 379 
the order of the ith higher ramification group of LI K, 380 
the tame part of the conductor of ElK, 380 
the wild part of the conductor of ElK, 380 
the exponent of the conductor of ElK, 380 
the conductor of an elliptic curve over a number field, 388 
the scheme of Tth roots of unity, 397 
a finite group scheme in characteristic P, 397 
a one-dimensional group scheme, 398 



List of Notation 

iL/K 
Ar 
Sw 
O"k(n) 
Eq 
Sk(q) 
a4(q), a6(q) 
X(u, q), Y(u, q) 
O( u, q) 
"(EjJR.) 
Eq 
E 
Gm 

"(EjK) 
!?q,r 
h 
I . Iv 
,\ 

lvh 

index function on the Galois group of local fields, 405 
the Artin character, 405 
the Swan character, 405 
the sum Edln dk , 409 
elliptic curve over C with j(Eq ) = j(q), 410 
the series En>l O"k(n)qn, 410, 423 
Weierstrass coefficients of Eq , 410, 423 
series giving parametrization of E q , 410, 423 
theta function, 412 
,,(-invariant for an elliptic curve defined over JR., 414 
Tate curve over p-adic field, 423 
formal group of an elliptic curve, 431 
formal multiplicative group, 431 
,,(-invariant for an elliptic curve defined over K, 439 
filtration of Tate curve E q , 450 
the canonical height on an elliptic curve, 454 
absolute value on the field K, 455 
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the local Neron height function on E associated to v, 455 
the standard set of absolute values on K, 461 
= [Kv : Qv], the local degree of v E MK, 461 

local height associated to v, 461 
the second Bernoulli polynomial T2 - T + ~, 468 
the reduction of E modulo v, 469 
points in E(K) with non-singular reduction, 469 
division polynomial, 477 
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abc-conjecture, 278 
Abel-Jacobi theorem, 198 
Abelian extension 

See also Class field theory 
Artin map, 117 
conductor, 117, 118, 123 
Frobenius element "'p, 116, 121, 128, 

129, 130, 132 
generated by j(E), 121 
generated by CM torsion points, 108, 

128, 135, 148, 149, 166, 168 
generated by roots of unity, 108, 128, 

153 
inertia group, 120, 149 
maximal, 120, 121 
of 1Ql, 129, 151 
of Hilbert elMS field, 134 
ray class field, 117, 118, 120, 129, 135, 

180 
unramified 

See Hilbert class field 
Abelian group 

bilinear form on, 273 
is sum of p-primary components, 152, 

157 
Abelian variety, 148, 196 

automatically commutative, 196 
field of definition, 196 
Jacobian, 197, 402 
Mordell-Weil theorem, 485 
of dimension one, 196, 279 
uniformization theorem over C, 196, 

199 
with complex multiplication, 96 

Abhyankar, S.S., 317 
Absolute value 

defines a topology, 455 
on a field, 455 
on a number field, 461 

Action of a Heeke operator 
on a cusp form, 76, 78, 79 
on Fourier coefficients, 76, 78 
on a lattice function, 74 
on a modular form, 76 

on a modular function, 76, 79, 91 
Action, group scheme, 321, 326, 400 
Action of SL2(Z) on 'Dn, 72 
Action of SL2(Z) on H, 9 

fundamental domain, 10, 92 
stabilizer of a point, 11 

Action of SL2(Z) on H*, 14 
Addition formula on an elliptic curve, 

210, 216, 323, 471 
Additive group, 398, 399 

S-valued points, 397 
over a field, 291, 293, 398 
over R, 307 
over S, 307 
over Z, 307 
rational points of, 292 
Tate module of, 382 

Additive reduction, 171, 287, 388, 399, 
403 

conductor, 381 
torsion limited, 453 

Adjunction formula, 234, 249, 345 
on arithmetic surface, 342, 351 

Affine group variety, 396 
Affine scheme, set of R-valued points, 

298 
Affine space 

over a ring, 298 
over a scheme, 301 

Algebraic equivalence, 486 
of divisors, 254, 285 

Algebraic family 
of elliptic curves, 201 
of points, 201 

Algebraic group variety, 115 
Algebraic group 

See Group variety 
Algebraic integer, j-invariant is, 140, 

147, 151,447 
Algorithm 

Laska's, 364 
minimal Weierstrass equation, 364, 403 
Tate's, 353, 361, 364, 387, 389, 435 
to compute local heights, 478, 479 
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Almost every, 201 
Almost quadratic function, 454, 455 

See also Local height 
Ample divisor, 233, 257 

height associated to, 257 
on a curve, 257, 264 
on a surface, 258 
Serre's theorem, 261 

Analytic continuation of L-series at­
tached to cusp form, 83, 94 

Approximation theorem, weak, 155, 158 
Arakelov intersection theory, 344 

adjunction formula, 345 
Riemann-Roch theorem, 345 

Arakelov, S., 344 
Archimedean fiber, 345 
Archimedean local height, 464 
Arithmetic genus, 342, 351 

in fiat family, 343 
one, 355 
zero, 343, 352 

Arithmetic surface, 311 
adjunction formula, 342, 351 
Arakelov intersection theory, 344 
arithmetic genus of curve on, 342, 351 
blow-up, 343, 345, 371 

example, 347, 402 
of a curve, 348, 372 

canonical divisor, 342, 350, 351 
closed fiber, 313 
connected fiber, 342, 353 
dual graph of special fiber, 353 
exceptional divisor, 344 
extension of automorphisms, 318, 336 
fiat, 345 
Galois action on special fiber, 353 
generic fiber, 311 
incidence matrix, 350, 402, 403, 486 
intersection pairing, 341, 342, 353 
intuitive definition, 311 
is curve over R, 311 
local intersection index, 339 
local ring 

of a closed point, 315 
of a curve, 311, 313, 339 
of a point, 370 

minimal proper regular model, 317, 
318, 344, 361 

model of curve of genus two, 355 
negative semi-definite intersection pair­

ing, 342, 353 
non-singular, 311 
non-singular point on fiber, 315, 351, 

399 
projective line lP'h, 312 
proper, 311, 316, 317, 351 
proper regular model, 317 
regular, 311, 315, 316, 317, 351, 370, 

399 
regular in co dimension one, 311 
resolution of singularities, 317 

singular point on fiber, 314 
smooth,311 
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smooth part, 316, 318, 321, 325, 332, 
335, 361, 362, 369, 378, 399, 400 

special fiber, 311, 314, 350, 352, 361, 
371,399 

of blow-up, 347, 371 
Wei! divisor on, 311 

Artin character, 405 
Artin map, 117, 118, 120, 174 

for Q, 154 
for Hilbert class field, 118 
is surjective, 118 
kernel of, 117, 118, 179 
prime splits completely, 117, 179 
trivial on norms, 179 

Artin reciprocity, 11 7 
Artin, M., 325, 327, 334 
Associative law, of a group scheme, 307 
Associativity, normal law, 334, 335 
Automorphism 

of arithmetic surface, 318, 336 
of a curve, 294 
of Neron model, 400 

Automorphism group 
of an elliptic curve, 183 
of an elliptic surface, 245 

Bad fiber, 203 
Bad reduction, 185, 321 
Baker, A., 141 
Basis for a lattice 

normalized, 7 
oriented, 6, 9, 71, 72, 73, 89 

Bernoulli numbers, 57 
Bernoulli polynomial 

Fourier expansion, 480 
second, 468, 473, 478, 480 

Bertini's theorem, 233 
Bezout's theorem, 232, 233 
Bilinear form, non-degenerate, 273 
Birational equivalence, 204, 205 

category of elliptic surfaces up to, 206 
category of varieties up to, 205 
of elliptic surfaces, 206 
over k, 204 

Birational isomorphism, 204 
Birational map of fibered surface, 244 
Birational morphism, 235 

arithmetic surface, 343 
blow-up, 343 

Birch, B.J., 389 
Birch-Swinnerton-Dyer fudge factor, 364 
Blanksby, P., 487 
Blow-down, 236, 244 

Castelnuovo's criterion, 344 
Blow-up, 204, 235 

of an arithmetic surface, 343, 345 
Castelnuovo's criterion, 344 
coordinate chart, 345, 347, 371 
example, 347, 402 
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Blow-up (continued) 
exceptional divisor, 344 
gluing of charts, 346, 348, 371 
height associated to, 285 
of multiplicative reduction curve, 403 
primer on, 345 
of a scheme, 434 
special fiber, 347, 348, 371 
of a Weierstrass equation, 371 

Bounded conductor, 404 
Boundedness conjecture, 453 
Brauer group, of a local field, 452 
Brumer, A., 385 

Calculus, freshman, 50 
Canonical divisor, 27, 87 

on an arithmetic surface, 342, 350, 351 
on an elliptic surface, 249 

Canonical height, 252, 454 
as intersection index, 247 
as limit, 454 
as sum of local heights, 454, 461 
associated to a divisor, 285 
comparison with naive height, 478 
explicit 0(1) estimate, 280 
for divisor of degree zero, 285 
is a quadratic form, 218, 454, 461 
lattice structure associated to, 254 
lower bound, 287 
on an elliptic surface, 217, 247, 265, 

266, 269, 281, 286 
on Jacobian variety, 271 
over function fields is rational, 219, 

247 
parallelogram law, 218 
positive definite, 218 
regulator, 273 
standard properties, 267 

Canonical height pairing, 218, 247, 252, 
265, 269, 286 

non-degeneracy, 272 
with values in Pic( £), 284 
with values in Pic(C), 252, 265 

Castelnuovo's criterion, 236, 344, 352 
Category 

of S-schemes, 298 
of elliptic surfaces up to birational 

equivalence, 206 
of varieties up to birational equiva­

lence,205 
Centralizer, 179 
Character 

Artin,405 
Swan, 405 

Characteristic polynomial of Frobenius, 
172 

Characteristic zero, 187, 189 
Chinese remainder theorem, 103, 158 
Circle group, 129 
Circle method, 61 

Index 

Class field theory 115-120 
See also Complex mUltiplication 

Artin map, 117, 118, 154 
idele group, 119 
idelic formulation 118-120 
local 

See Local class field theory 
of <QI, 151, 153 
ray class field, 117, 118, 120, 129, 135, 

180 
reciprocity map, 120, 152, 159, 165, 

166, 168, 169, 174 
Class function, 405 
Class number, 107 

is fini te, 86 
on~ 107, 109, 138, 141 
two, 142, 181 

Closed fiber over a DVR, 300 
CM 

See Complex multiplication 
Co dimension one 

generic point of subscheme, 328 
regular in, 311 

Cohomology, C-adic, 172 
Commutator subring of endomorphism 

ring, 129 
Complete intersection, 328 
Complete ring is Henselian, 330 
Complex Lie group, 48 
Complex multiplication, 95 

a-torsion points are free module, 102, 
109, 138 

action of ideal class group, 99, 122 
additional references, 95 
associated Grossencharacter, 165, 168, 

174, 175, 184, 185 
by 

K,96 
R,96 
Z[(l + v'=7)/2], Ill, 179 
Z[i], 101, 107, 109, 138, 185 
Z[yC2], 110, 180 
Zip], 102, 107, 177, 180 
non-maximal order, 160, 180 

computation of j, 142, 181 
degree not square, 143 
degree of an isogeny, 103, 124 
elliptic curve with CM by R K , 99 
endomorphism ring, 96, 129 
field of definition 

of endomorphisms, 106 
of isogenies, 105 

for abelian varieties, 96, 148 
Galois action 

on E, 112, 113, 122, 131 
on j, 112, 122, 166 

generate ring of integers, 95 
good reduction, 184 
group of a-torsion points, 102, 135 
isogenous curves, 178, 180 
Iwasawa theory, 96 
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j-invariant, 121, 122, 166 
in 02, 138 
is algebraic, 104 
is integral, 140, 147, 151, 176,447 
j = 0,102,107,177,180 
J = 1728,101,107,138,185 
j = -3375, III 
j = 8000, 110, 180 

lift of Frobenius map, 130, 132, 162 
L-series, 171, 175, 185 
main theorem, 157, 159, 166 
map F : Gal(K / K) ~ t:;L-(RK), 112, 

121 
number of points modulo 'P, 175 
of degree two, 109, 141, 179 
ordinary reduction, 179 
potential good reduction, 140, 447 
reduction mod 'P, 121, 127, 129, 131 
Tate module, 179, 186 
torsion generates abelian extensions, 

108, 135, 148, 149, 166, 168 
transitive action 

of Galois group, 122 
of ideal class group, 100, 113 

twist, 183 
Weber function, 1:34, 135 
with j E JR, 142, 179 

Complex structure, 19 
Components of fiber 

group of, 363, 364 
multiplicity of, :313 
number on special fiber, 363, 364, 389 
non-reduced, 31:3 
of a divisor, 231 
of multiplicity one, 102 
reducible, 313 
singular, 313 

Conductor 
bounded, 404 
constant under isogeny, 404 
divisor of an elliptic surface, 287 
exponent of, 363, :364, 380, 389 

bound for, 385 
computation of, 389, 407 
less than discriminant, 396 
maximum value, 387, 407 
over 2-adic field, 407 
over 3-adic field, 407 

independent of e, 381, 405 
of a Grossencharacter, 176 
of an abelian extension, 117, 118, 123 
of an elliptic curve, 379-388 
of an order, 178 
of ray class field, 1l7, 118, 129, 135 
square-free, 388 
Szpiro's conjecture, 287, 388 
tame part, 380, :381, 405 
wild part, 380, 381, 405 

Conductor-discriminant formula for ellip­
tic curves, 389 
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Connected component of Neron model, 
326, 361, 401 

Connected fibers, 240, 283, 342, 353 
Contravariant functor. 309 
Correspondence, 68 ' 

Heeke, 68 
See also Heeke operator 

hornothety, 68 
on set of lattices, 68, 90 
ring of, 70 

Cox, D., 486 
Cremona, J.E., 389 
Criterion of Neron-Ogg-Shafarevich, :362 
(~urvc 

See also Riemann surface 
ample divisor on, 257, 264 
automorphism group, 294 
canonical divisor, 27, 87 
differential form on, 207 
exceptional, 236, :344 
height on, 257, 264, 265 
holomorphic differential on, 198 
homology of, 198 
hyperelliptic, 287, 486 
Jacobian variety of, 197, 199, 402 
minimal proper regular model of, 317, 

:318, 344, 361 
normal law on symmetric product, 402 
of genus two, 287 
Picard group of, 192, 195, 199, 402 
projective, 27, 87 
proper regular model of, 317 
symmetric product, 229 
uniformizer for, 339 

Cusp, 287, 370 
of X(1), 14 
ofH*,14 
stabilizer of, 15 

Cusp form, 25, 91 
See also l\lodular function, modular 
form 

action of Hecke operator, 76, 78, 79, 92 
basis of eigenfunctions, 78, 80, 92 
dimension of space of, 31 
discriminant is a, 26. 31 
Fourier coefficients o'f, 79, 80, 81 
L-series attached to, 83, 85, 93 
simultaneous eigenfunction, 79, 80, 92 
size of Fourier coefficients, 81 
space of (M~k)' 31, 78 
spaces with dimension one, 34 
twisted L-series attached to, 94 
twisted by x, 93 

Cyclotomic extension, unramified, 383 
Cyclotomic field, 9.5, 128, 151 

is abelian, 108, 128, 151 

TIn, 72, 91,143 
action of SL2(Z), 72 

TI.~, 181 
Decomposition group, 116, 331 



508 

Dedekind, R., 67 
Dedekind domain, 113, 179 

arithmetic surface over, 311 
is regular scheme, 302 

Dedekind 'T/ function, 65 
transformation formula for, 67, 90 

Dedekind reciprocity, 67, 90 
Dedekind sum s(x, y), 66, 89 
Degree map on divisors, 197 
Degree one prime, in ideal class, 118, 

123, 161 
Degree 

non-square is CM, 143 
of a CM isogeny, 103, 124 
of a divisor, 232, 282 
of isogeny is preserved under reduc-

tion, 124 
Deligne, P., 61, 81 
Dem'janenko, V.A., 265, 269, 271, 485 
Descent theorem, 230 
Descent, faithfully flat, 338 
Determinant 

homomorphism of group varieties, 292 
kernel of, 292 

Deuring, M., 95, 175 
Diagonal 

height associated to, 285 
is complete intersection, 328 
morphism, 300, 309, 327 

Different, 176, 386 
Differential form, 207 

associated to a modular function, 28, 
31, 87, 91 

divisor of, 27 
holomorphic, 27 
invariant, 43, 183 
of the first kind, 43 
of the second kind, 43 
of the third kind, 43 
on a curve, 198 
on a Riemann surface, 27 
on elliptic curve, 43 
on H, 26 
on X(l), 23 
order of, 27 
regular, 27 
sheaf of relative, 306 

Dimension 
of a point on a scheme, 302 
of a scheme, 302 
of Jacobian variety, 197 
regular scheme of dimension one, 302 

Dirichlet character, primitive, 93 
Dirichlet series 

See also L-series 
analytic continuation, 83, 94 
attached to a cusp form, 83, 85 
attached to a power series, 80 
Euler product expansion, 80, 92, 172, 

173 
functional equation, 83, 94 

Index 

half-plane of convergence, 83, 94 
relations satisfied by coefficients, 80, 

92 
Dirichlet's theorem on primes in progres­

sions, 118, 123 
Discrete subgroup 

of Qp, 422 
of Q;, 422 

Discrete valuation ring, 328 
arithmetic surface over, 311 
closed fiber over, 300 
generic fiber over, 300 
Henselian, 330, 401 
Henselization of, 331 
smooth scheme over, 304 
special fiber over, 300 
strict Henselization of, 331 
strictly Henselian, 330, 402 
unramified extension, 399 

Discriminant function, Fourier expansion, 
59, 60, 467, 468 

Discriminant 
Fourier coefficients, 482 

See also Ramanujan 'T function; Ja­
cobi's formula 

is eigenfunction for Hecke operators, 
78,79 

minimal, 363, 364, 388, 389, 396 
for elliptic surface, 286 
over 2-adic field, 407 
over 3-adic field, 406 

modular, 26, 31, 32, 62, 89, 135 
of a cubic polynomial, 62 
of a Weierstrass equation, 62, 183, 455, 

458, 470, 478 
of isogenous curves, 453 
of Tate curve E q , 377, 423, 424, 473 
product expansion, 60, 62, 90, 409, 468 
vanishes only at 00, 32 
weight 12 cusp form, 26, 31, 32, 34, 66 

Div 
See Divisor group 

Division polynomial ,pm, 477 
Divisor class group 

of 11"1, 271 
of a curve, 

See Picard group 
of a function field, 

See Picard group 
Divisor group, 231 

induced homomorphism, 255 
of a fibered surface, 284 
of a set, 68 
of a variety, 255 
of an arithmetic surface, 339 

Divisor 
algebraic equivalence, 254, 285, 486 
ample, 233, 257, 258 
associated to a morphism, 258 
canonical height, 285 
components of, 231 
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degree of, 232, 282 
exceptional, 344 
fibral, 246, 247, 284, 340 
group of, 231 
height associated to, 256, 265 
horizontal, 340 
integer part of, 87 
intersection pairing, 233, 238 
is difference of very amples, 261, 284 
linear equivalence, 232, 339 
local equation, 232, 233 
minimal discriminant, 286 
numerical equivalence, 486 
of a differential form, 27 
of a section, 245 
of an elliptic function, 45 
on a surface, 231 
on an arithmetic surface, 311, 339 
positive, 285, 341 
principal, 232, 339 
self-intersection, 234, 238, 243, 283, 

342, 349, 351 
Serre's theorem on ample, 261 
transversal intersection, 232, 282 
very ample, 257, 261, 284 
Wei!, 339 

Domain 
of a rational map, 204, 279 
of morphism to group scheme, 327, 

333, 337 
Dominant rational map, 204, 222, 228 

from smooth scheme to proper scheme, 
328 

induces map on function fields, 205 
of elliptic surfaces, 208 

Dual graph of special fiber, 353 
Dual isogeny, 67, 125, 229 

of Neron model, 400 
Duplication formula, 139, 427, 437 

for height, 257 
for local height, 456, 471, 475 
has degree four, 458 
on an elliptic curve, 210, 214, 457, 471 

Dynkin diagram, 353 

Effective bound for S-integer points, 
277, 288 

Eigenfunction 
basis of Mgk , 80, 92 
for Hecke operators, 77 
normalized, 78, 79, 80, 92, 93 
simultaneous for all T2k 'S, 78, 79, 80, 

92,93 
Eisenstein series, 25, 91 

algebra generated by, 88 
E 2k ,58 
Fourier coefficients of, 58 
92 and 93, 26, 35, 58 
G4 and G6 algebraically independent, 

88 
G4 and G6 determine A, 35, 88 
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G 2 k, 25, 31, 32, 55 
is a modular form, 25 
is eigenfunction for Hecke operators, 

78,93 
normalized, 58 
q-expansion of, 55 
special value of, 178 
value at 00, 25 

Elkies, N., 487 
Elliptic curve 

addition formula, 323 
automorphism group, 183 
bad reduction, 185 
classification of special fibers, 350, 352 
conductor, 363, 364, 388 
endomorphism of degree two, 109, 141 
endomorphism ring R, 98 
endomorphisms are integral, 448 
existence of Neron model, 325, 332, 

335,337 
field of definition, 37, 38 
field of moduli, 37, 38 
formal group, 276 
Galois conjugate, 131 
good reduction, 184 
group of a-torsion points, 102, 135 
Grossencharacter of, 165, 168, 174, 175 
height over function field, 212, 213 
homogeneous space of, 199 
invariant differential, 43, 97, 134 
is abelian variety, 196 
is group variety, 291 
isogeny, 67, 182, 183 
j-invariant 

j = 0, 102, 107, 177, 180, 280 
j = 1728, 101, 107, 138, 185, 280 
j = -3375, 111 
j = 8000, 110, 180 
non-integral has End(E) = Z, 447 

f-adic representation, 405, 445 
L-series, 171, 172, 175, 183, 185, 364 
map to pI, 134 
minimal discriminant, 363, 364 
minimal proper regular model, 325, 

332, 335, 337, 350, 352, 361, 400 
multiplication map, 310 
multiplicative reduction, 403 
negation map, 325 
Neron model, 319 
normalized, 97, 131, 134 
of high rank, 272 
ordinary reduction, 184 
over IC 

See Elliptic curves over IC 
over function field 

See Elliptic surface 
over locally compact field, 476 
over p-adic fields 

See Elliptic curves over p-adic fields 
over lR 

See Elliptic curves over lR 
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Elliptic curve (continued) 
potential good reduction, 140, 447 
reduction modulo ~, 131 
reduction type, 352, 353, 363, 364 
representation on m-torsion, 108, 383 
supersingular reduction, 184 
translation map, 310 
twists of, 283, 414, 439 
v-adic topology 

See v-adic topology, on an elliptic 
curve 

Weber function, 134, 135 
with complex multiplication 

See Complex multiplication 
Elliptic curves over C, 408-413 

analytic parametrization, 6, 34, 408, 
411, 464, 468 

discriminant, 26, 409, 411, 464, 467 
See also Discriminant 

homology group, 37, 43 
isomorphism class of, 36, 37 
j-invariant, 34, 36, 411 

See also j-invariant 
lattice of, 408, 468, 477 
local height, 464, 466, 468, 477 
periods, 37, 43 
Uniformization Theorem, 6, 34, 35, 88, 

96, 196,411 
Weierstrass equation, 34, 409, 464 

Elliptic curves over non-archimedean 
fields, 424 

Elliptic curves over p-adic fields, 438-444 
See also Tate curve Eq 

additive reduction, 451 
applications, 445-448 
l'-invariant, 439, 441, 451 

not equal one, 444 
local height, 469, 472, 480 
multiplicative reduction, 377,478 
non-split multiplicative reduction, 378, 

451 
quadratic character, 440, 444 
split multiplicative reduction, 377, 441, 

451, 452, 472, 480 
Tate module of, 452 
torsion points, 383, 445 
uniformization, 141, 423, 441, 444, 473, 

480 
Weil-Chiitelet group, 452 

Elliptic curves over ~, 413--422 
C isomorphism classes, 414 
l'-invariant, 414, 419, 450 

not equal one, 450 
homogeneous spaces, 449 
isomorphic to real Lie group, 420 
Kummer sequence, 449 
number of components, 419 
~ isomorphism classes, 414, 416 
sign of the discriminant, 420, 421, 449 
torsion subgroup, 449 
twists, 414, 450 

uniformization over ~, 416 
Weil-Chiitelet group, 421, 449 
with CM, 142, 179 

Elliptic function, 39 

Index 

See also Weierstrass S" function, 
Weierstrass (Y function, Weierstrass 
( function 

divisor of, 45 
factorization as product of (Y's, 45 
Laurent series of F(u; q), 49 

Elliptic integral, 178 
Elliptic surface 

See also Fibered surface, surface 
algebraic equivalence, 254 
as subset of 1l"2 x C, 200 
associated elliptic curve, 206 
automorphism, 245 
bad fiber, 203 
birational equivalence, 206 
canonical divisor, 249 
canonical height on, 217, 247, 252, 265, 

266, 269, 281, 284, 286 
classical theory, 187 
conductor divisor, 287 
definition of, 202, 203, 205 
divisor Dp, 247 
divisor of a section, 245 
dominant rational map, 208, 222, 228 
fiber, 201, 202 
fiber product, 211, 301 
field of definition, 203 

of section, 189, 282 
generic fiber, 206 
good fiber, 203 
group of sections, 202, 210, 298 

defined over k, 203, 210 
height on, 212, 213, 265 
infinitely many points of bounded 

height, 220, 222 
is a C-scheme, 298 
j-invariant 

is algebraic function, 280 
constant, 286 

Kummer sequence for, 193 
lattice structure, 254 
lower bound for height, 287 
map on Pic is injective, 253 
minimal discriminant divisor, 286 
Mordell-Weil theorem, 230, 276, 279 
multiple fibers, 203 
multiplication-by-n map, 266 
Neron-Severi group, 254 
non-singular fiber, 286 
non-split, 218, 247 

with zero discriminant, 286 
one-cocycle on sections, 284 
one-parameter family, 188 
ordt(x) is bounded, 275 
over non-perfect field, 187 
points not a group, 211 
rational map between, 206 
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S-integral points on, 275, 277, 288 
section, 202 

of order eleven, 190, 279 
of order five, 278 
of order seven, 278 

singular fiber, 203 
specialization map, 271 

is injective, 271, 281 
of height, 265, 266, 269, 281, 286 

split, 220, 222, 228, 231, 271, 280, 281 
over 11"1,286 

subgroup Eo(K), 251, 284, 288 
torsion subgroup, 288 
translation map, 245, 248, 251 
weak Mordell-Weil theorem, 191-195, 

230 
zero section, 202 

Endomorphism 
field of definition of, 106 
of degree two, 109, 141, 179 
of an elliptic curve, 448 

Endomorphism ring 
commutator subring, 129 
elliptic curve with given, 121 
normalized isomorphism, 97, 129, 131, 

134 
quaternion algebra, 130 
reduction modulo ~, 129 

E q, See Tate curve Eq 
Etale morphism, 306 
Etale topology, 332 
Eta function (1/) 

See Quasi-period homomorphism, 
Dedekind 1/-function 

Euclidean structure on Mordell-Wei! 
group, 247 

Euler product, 80, 92, 172, 173 
Excellent scheme, 311 
Exceptional curve, 236, 244 
Exceptional divisor, 344 

Castelnuovo's criterion, 344, 352 
on an arithmetic surface, 344 

Exponent of the conductor, 380, 389 
bound for, 385 
computation of, 389, 407 
independent of £, 381, 405 
less than discriminant, 396 

Exponential function, special values, 151 
Exponential map on multiplicative 

group, 151 
Extended upper half plane H*, 14 

action of r(1), 14, 85 
cusps of, 14, 85 
is a Hausdorff space, 16 
topology on, 16, 85 

Faithfully fiat 
descent, 338 
strict Henselization is, 338 

Faltings, G., 271 

Fermigier, T., 272 
Fiber 

archimedean, 345 
closed, 300 
generic, 300 
multiplicity of components, 313 
of a scheme over a point, 300 
of an arithmetic surface, 313 
of an elliptic surface, 201 
singular point, 314 
smooth,397 
special, 300 

Fiber product, 299 
diagonal, 300, 309, 327 
graph in, 300 
group operation on, 211 
of elliptic surface, 211, 301 
universal property, 299 

Fibered surface, 236 
See also Surface, elliptic surface 

connected fibers, 240, 283, 342 
fiber of, 236 

genus at least one, 244 
fibral curve, 237 
fibral divisor, 237 
fibral homomorphism, 237 
fibral intersections, 238 
horizontal curve, 237 
horizontal divisor, 237 
map on Picard group, 284 

is injective, 253 
minimal, 244 
multiplicity of fibers, 237 
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negative semi-definite intersection pair­
ing, 238 

relatively minimal, 243 
Fibral curve, 237 
Fibral divisor, 237, 246, 247, 284 

group of, 340, 344 
intersects fiber trivially, 238 
on an arithmetic surface, 340 
self-intersection, 238, 342, 351 

Field 
locally compact, 476 
non-perfect, 187 
of characteristic zero, 187, 189 
perfect, 330, 332 
totally imaginary, 116 

Field of definition 
for E(qT)), 282 
of an abelian variety, 196 
of an elliptic curve, 37, 38 
of an elliptic surface, 203 
of Jacobian variety, 199 
of section to elliptic surface, 189, 282 

Field of moduli of an elliptic curve, 37, 
38 

Finite group scheme, 397 
Finite order elements in Picard group, 

192, 195, 199 
Finite type scheme, 311 
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First kind differential form, 43 
Fischer-Griess monster group, 61 
Flat family, arithmetic genus in, 343 
Flat morphism, 304, 397 
Flat scheme, 311, 345 
Formal Dirichlet series, 80 
Formal group 

of an elliptic curve, 276, 381 
of Tate curve E q , 431 

Formal logarithm, 150, 182 
Formal multiplicative group, 149, 431 
Fourier analysis, 173 
Fourier coefficients 

See also q-expansion 
action of Hecke operator, 76, 78, 79 
integer, 145 
of a simultaneous eigenfunction, 79, 80 
relations satisfied by, 79, 80 
size of, 81, 82, 92 

Fourier expansion 
See q-expansion 

Fractional ideal 
is a lattice, 99 
of quadratic imaginary field, 85 

Free module of rank one, 102, 138, 186 
Frey, G., 453 
Fricke, M., 95 
Frobenius map 

action on Tate module, 172 
automorphism, 116, 128, 129, 130, 132, 

161 
characteristic polynomial, 172 
lift to characteristic zero, 130, 132, 162 
of varieties, 132 

Fudge factor, 364 
Function field 

birational equivalence, 205 
canonical height is rational, 219, 247 
elliptic curve over 

See Elliptic surface 
finite subgroup of, 195 
height on, 212 

elliptic curve over, 212, 213 
ideal class group, 192 
infinitely many elements of bounded 

height, 213 
Kummer theory, 191 
local heights, 212 
map induced by dominant rational 

map, 205 
Mordell-Weil theorem, 230, 279 
S-integers, 275 
Szpiro's conjecture, 287, 388 
unit group of, 191 
valuation on, 194 

Functional equation 
of Dirichlet series attached to cusp 

form, 94 
of L-series, 176, 184 
of L-series attached to cusp form, 83, 

94 

sign of, 176 
for £I(u, q), 412, 429, 474 
for X(u, q), 425 
for Y(u,q), 425 

Functor 
contravariant, 299, 309 
defined by a group scheme, 309 
defined by an S-scheme, 298, 306 
Jacobian, 198 

Index 

Functoriality of height function, 256 
Fundamental domain (3'") for action of 

SL2(2:) on H, 10, 14, 82, 92 
Fundamental domain, for C/ A, 41, 71 

G 2 k> See Eisenstein series 
"1-invariant 

in characteristic two and three, 451 
of an elliptic curve, 439 

defined over JR, 414, 419 
f(l), See Modular group f(l) 
fo(N),87 
fl(N),87 
f(N),86 
res), See Gamma function 
Galois action 

on series, 424, 428, 451 
on special fiber, 353 

Galois cohomology 
of a cyclic group, 421 
of a discrete group, 428 

Galois conjugate of a eM elliptic curve, 
131 

Galois group 
decomposition group, 331 
higher ramification group, 379 
inertia group, 120, 149, 331 
of Hilbert class field, 118 

Galois theory, 37 
Gamma function, 83, 176 

incomplete, 93 
Gauss, K.F., 141 
Gauss sum, 93 
Gaussian integers, 178 
Gel'fond-Schneider theorem, 108, 142 
General linear group, 291 

centralizer of a subgroup, 179 
determinant, 292 
elements of finite order, 403, 404 
formal logarithm, 150, 182 
rational points of, 292 

Generic fiber, 300 
empty, 401 
of an arithmetic surface, 311 
of an elliptic surface, 206 
over a DVR, 300 

Generic point, 304, 328 
of a scheme, 300 
of Spec(R), 300 

Genus 
arithmetic, 342, 351 
in flat family, 343 
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of a smooth curve, 27, 87 
of the modular curve X(l), 20, 21 
two, special fiber of curve of, 355 
zero, 343, 352 

GLn , See General linear group 
Global sections, 397 
Good fiber, 203 
Good reduction, 184, 287, 321, 329, 383, 

388 
conductor, 381 
Grossencharacter is unramified, 168 
potential, 140, 148, 151, 176, 383 
torsion for, 453 

Graded algebra, 27, 88 
Graph of a morphism, 300 
Green's function, 477 
Group 

algebraic 
See Group variety 

pro-p, 150, 182 
sporadic, 61 
topological, 85 

Group chunk, 198, 334 
Group cohomology, 193 

of a cyclic group, 421, 449 
Group law 

induced by normal law, 334, 337 
is normal law, 334 

Group of components 
of a group variety, 292 
of Neron model, 350, 362, 363, 364, 

379, 402, 486 
of special fiber, 363, 364 

Group of sections to an elliptic surface, 
202, 203, 210, 298 

Group scheme, 306, 398 
action, 321, 326, 400 
additive group, 307, 397, 398, 399 
associated functor, 309 
associated to normal law, 334, 337 
associativity, 307 
diagonal morphism, 309 
extension of group law, 332, 335 
finite, 397 
identity component of special fiber, 

326,361 
identity section, 306, 326 
in characteristic p, 397 
inverse map, 306 
local ring along identity, 327 
morphisms to, 327, 333, 337 
multiplication map, 310, 398 
multiplicative group, 308, 397, 398, 

399 
Neron model, 319 
of roots of unity, 397, 398 
proper, 327 
set of T-valued points, 309, 397 
smooth part of Weierstrass equation, 

321, 362, 378, 399, 400 
smooth Weierstrass equation, 329 

translation map, 310, 336, 337, 400 
Group variety, 291 

abelian, 196 
additive group, 291, 293, 398 
algebraic, 115 
defined over K, 291 
determinant homomorphism, 292 
elliptic curve, 291, 293, 398 
general linear group, 291 
homomorphism, 292 
identity component, 115, 292 
irreducible components, 292 
is a group scheme, 307 
is non-singular, 292 
Jacobian, 402 
linear group, 292, 396 
multiplicative group, 291, 293, 398 
of dimension one, 293, 398 
orthogonal group, 396 
rational points of, 292 
special fiber of Neron model, 361 
special linear group, 292 
special orthogonal group, 396 
symplectic group, 396 
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Grossencharacter, 156, 165, 168, 173, 184 
conductor of, 176 
for j = 0 curve, 177 
L-series, 171, 173, 175, 185 
of twisted curve, 183 
on Q, 156 
reduction modulo 'l!, 174 
unramified, 168, 173, 174 

Half-plane of convergence 
of L-series attached to cusp form, 83 
of L-series attached to elliptic curve, 

183 
Hardy, G.H., 61 
Hasse, H., 95 
Hausdorff space, 16, 18, 19, 85 
Hecke, E., 81, 173, 484 
Hecke algebra, 70 

is commutative, 71 
of reI), 70 

Hecke L-series, 173 
Hecke operator, 67-74 

See also Hecke algebra 
action on a cusp form, 76, 78, 79, 92 
action on a lattice function, 74 
action on a modular form, 76 
action on a modular function, 76, 79, 

91 
action on Fourier coefficients, 76, 78, 

79 
as shifting operator, 76 
commutativity of, 71 
definition of, 68 
discriminant is eigenfunction, 78 
eigenfunction for, 77 
explicit formula for, 71, 73, 74, 90 
recursive formula for, 90 
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Hecke operator (continued) 
relations satisfied by, 68, 79, 90 
self-adjoint, 92 
simultaneous eigenfunction for all, 78, 

79, 80, 92, 93 
T(p), 74, 77 

Heegner, 141 
Height 

additivity, 256, 261 
and linear equivalence, 256 
associated to a divisor, 256, 265 
associated to a morphism, 258 
associated to a positive divisor, 285 
associated to an ample divisor, 257 
associated to diagonal of curves, 285 
associated to exceptional curve, 285 
canonical, 217, 247, 265, 266, 269, 281, 

286 
canonical 

See Canonical height 
duplication formula, 213, 257, 280 
explicit 0(1) estimate, 280 
finitely many points of bounded, 257, 

265 
for algebraically equivalent divisors, 

285 
functoriality, 256 
geometric transformation properties, 

213 
infinitely many elements of bounded, 

213, 220 
Neron-Tate, 217, 247, 265, 266, 269, 

281, 286 
See also Canonical height 

normalization, 256 
on a function field, 212 
on a variety, 256 
on an elliptic surface, 212, 213, 265 
on curves, 257, 264, 265 
on projective space, 255 
parallelogram law, 213 
quasi-parallelogram law, 280 
regulator, 273 
specialization of, 265, 266, 269, 281, 

286 
sum of local, 212 

Height Machine, 256 
verification of, 262 
standard properties, 267, 268 

Hensel's lemma, 330, 331, 401, 443 
multi-variable version, 401 

Henselian ring, 330, 401 
complete ring is, 330 
strictly, 330, 402 
surjectivity of reduction, 330, 333, 337, 

401 
Henselization 

fraction field, 332 
of a DVR, 331 
strict, 337 
universal mapping property, 332, 401 

Hermitian inner product, 92 
Higher ramification group, 379 

index function for, 405 
inertia group, 380 
is normal, 380 
over 2-adic field, 404 
over 3-adic field, 404 

Index 

Hilbert class field, 95, 118, 130, 132, 142, 
181 

abelian extension of, 134 
Artin map for, 118 
Galois group of, 118 
generated by j(E), 121, 122, 166 
of !QJ(v'-15), 180 
of!QJ( v'=i3), 180 
of quadratic imaginary field, 121, 122 

Hilbert irreducibility theorem, 272 
Hilbert theorem 90, 193, 421 
Hindry, M., 277, 278, 486, 487 
Holomorphic differential form, 27, 207 

on a curve, 198 
Homogeneous space of an elliptic curve, 

199 
Homology group, 37, 43 

of a curve, 198 
Homomorphism 

of groups, 427 
of group varieties, 292 

Homothetic lattices, 6, 9, 14, 37, 101, 
103, 161 

Homothety operator, 68, 90 
relations satisfied by, 68 

Horizontal curve, 237 
intersection with, 283 

Horizontal divisor, 237 
on an arithmetic surface, 340 

Hurwitz, A. 101, 294, 485 
Hyperelliptic curve 

integer points on, 277 
Jacobian variety, 199, 287, 486 
of genus two, 287 
over function field, 277 
Picard group, 287 

Ideal 
of an idele, 119, 152, 159 
principal, 132 

Ideal class group, 99, 180 
See also Hilbert class field 

acts on e,c£1..RK), 99 
acts on e,c£1..RK) transitively, 100, 

113 
algorithm to compute, 85 
class contains degree one primes, 118, 

123 
is finite, 86 
is Picard group, 192 
of a function field, 192 
of quadratic imaginary field, 85 

Idele 
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ideal of, 119, 152, 159 
multiplication by, 159, 170 

Idele group, 119 
characterization of ray class fields, 120, 

162 
class field theory using, 118-120 
contains K*, 119 
contains K~, 119 
norm map, 119 
topology on, 119 

Identity component 
of a group variety, 115, 292 
of Neron model is Weierstrass equa-

tion, 362, 378 
Identity element Neron model, 326 
Identity section of a group scheme, 306 
Image of a rational map, 204, 279 
Incidence matrix, 240, 241, 243, 283, 350, 

402, 403, 486 
Incomplete gamma function, 93 
Index function for higher ramification 

groups, 405 
Inert prime, 184 
Inertia group, 120, 149, 169, 331, 380, 

445 
absolute, 380 

Inner product 
Hermitian, 92 
Petersson, 92 
positive definite, 92 

Inseparable isogeny, 127 
Integer points 

effective methods, 277, 288 
on an elliptic surface, 275 

Integers of a function field, 275 
Integral scheme, 311 
Integral 

elliptic, 178 
not path independent, 198 

Intersection 
self, 234, 238, 243, 283, 342, 349, 351 
transversal, 232, 282 

Intersection index 
Arakelov, 344 
computation of, 283 
example, 349 
linear equivalence, 341 
local, 233, 283 
on IP'k, 340, 341 
on an arithmetic surface, 339, 341 
sum of local indices, 234 
symmetric, 341 

Intersection pairing, 233 
Arakelov,344 
incidence matrix, 240, 241, 243, 283 
on an arithmetic surface, 341, 342, 353 
on fibered surface, 238 
symmetric, 341 

Invariant differential, 43, 97, 134, 183 
Inverse on a group scheme, 306 
Irreducibility theorem of Hilbert, 272 

Irreducible topological space, 280 
Isogeny, 67, 182 

between CM curves, 178, 180 
between Tate curves, 453 
comparison of discriminants, 453 
conductors are equal, 404 
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degree preserved under reduction, 124 
dual, 67, 125, 229, 400 
equations for, 183 
field of definition of, 105 
is a homomorphism, 396 
lift of Frobenius map, 130, 132, 162 
of Neron model, 400 
purely inseparable, 127 
reduction mod <:p, 124, 127, 129 

Isomorphism birational, 204 
Iwasawa module, 186 
Iwasawa theory, 96 

j-invariant 
classifies elliptic curves, 36 
CM in IQI, 107, 138 
computation of, 142, 181 
divisibility properties of Fourier coeffi-

cients, 60 
elliptic surface with constant, 286 
Galois conjugate of, 112 
generates Hilbert class field, 121, 122, 

166 
growth properties of Fourier coeffi-

cients, 61 
in Z, 141 
integral, 383, 405 
integrality properties, 140, 151, 447 
j = 0, 102, 107, 180, 280 
j = 1728, 101, 107, 138, 280 

Grossencharacter, 185 
number of points modulo p, 185 

j = -3375, 111 
j = 8000, 110, 180 
map X(l) -+ 1P'1(C), 23, 34, 36, 88 
modular, 34, 88, 121, 143 
modular function of weight zero, 34, 

112, 144 
non-integral, 382, 405 
of an elliptic surface, 280, 288 
of CM curve is algebraic, 104 
of CM curve is integral, 140, 147, 151, 

447 
q-series, 59, 60, 121, 141, 142, 144, 

145, 146, 410 
rationality properties, 37, 104 
singular, 104 
supersingular, 104 
Tate curve E q , 423, 425, 438, 473 
transcendental values, 108 
valuation of, 362, 379 

Jacobi, C., 62 
Jacobi sum, 177 
Jacobi's formula, 60, 62, 65, 90, 409, 468 
Jacobian matrix, 330, 401 
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Jacobian variety, 197, 199, 402 
canonical height on, 271 
construction of, 197 
curve of genus two, 287 
dimension of, 197 
field of definition, 199 
is a functor, 198 
Neron model, 350 
of a homogeneous space, 199 
of a hyperelliptic curve, 199 
of genus one curve, 197 
of genus zero curve, 197 
of hyperelliptic curve, 486 

Jordan normal form, 179 
Jugendtraum, 96 

Kernel of Artin map, ll7, ll8, 179 
Kodaira, K., 287, 352, 486 
Kodaira-Neron classification of fibers, 

350, 352 
Kodaira notation for special fiber, 353 
Kodaira reduction type, 352, 353, 363, 

364 
Kouya, T., 272 
Kramer, K., 385 
Kraus, A., 486 
Kronecker, L., 95 
Kronecker congruence relation, 182 
Kronecker Jugendtraum, 96 
Kronecker limit formula, 484 
Kronecker-Weber theorem, 95, 129 
Krull dimension, 301, 302 
Kummer extension, 383, 446 
Kummer sequence 

for an elliptic surface, 193 
for fields, 193 

Kummer theory for function fields, 191 
Kuwata, M., 189,485 
Kuyk, W., 389 

L-series 
See also Dirichlet series 

analytic continuation, 83, 93, 94, 173, 
176 

attached to a cusp form, 83, 85, 93 
attached to a modular form, 93 
attached to a power series, 80 
attached to a twisted cusp form, 94 
elliptic curve, 364 
Euler product expansion, 80, 92, 172, 

173 
for j = 0 curve, 178 
functional equation, 83, 93, 94, 173, 

176, 184 
half-plane of convergence, 83, 172, 183 
Heeke, 171, 173, 175, 185 
integral representation, 84, 85, 94 
leading coefficient, 364 
local of B at p, 171, 184, 185 

Index 

of an elliptic curve, 171, 172, 175, 183, 
185 

relations satisfied by coefficients, 80, 
92 

residue of, 93 
special values of, 93 

£-adic cohomology, 172 
Lang, S., 231, 275, 285, 485 
Lang's conjecture, height lower bound, 

287 
Laska's algorithm, 364 
Laska, M., 364 
Lattice 

associated to a Weierstrass equation, 
35,88,89 

Euclidean, 254 
Heeke correspondence on, 68, 90 
homothetic, 6, 9, 14, 37, 101, 103, 161 
homothety correspondence on, 68, 90 
normalized, 47 
normalized basis, 7 
of an abelian variety, 196, 198 
of an elliptic curve, 408 
oriented basis, 6, 9, 71, 72, 73, 89 
set of all (,C), 6, 36, 68, 74 
sublattice, 67 
sublattice of index n, 71, 72, 73 

Lattice function, 74 
associated to a modular function, 74, 

79 
Laurent series 

for F(u; q), 49, 51 
for 1", 39, 51 
for (, 39 
p-adic, 429 

Lefschetz principle, 199, 463 
Legendre relation, 41, 465, 469 
Lehmer, D.H., 61 
Lehner, J., 60 
L'Hopital's rule, 45 
Lichtenbaum, S., 317, 338, 344 
Lie group 

complex, 48 
real, 420 

Limit formula of Kronecker, 484 
Linear equivalence 

and height functions, 256 
intersection index, 341 
of divisors on a surface, 232 

Linear fractional transformation, 294 
Linear group, 292, 396 
Linearly equivalence, 339 
Lipman, J., 317 
Littlewood, J., 61 
Liu, Q., 390 
Local L-series of E, 171, 184, 185 
Local class field theory, 140, 148, 149, 

452 
Local degree n v , 461 
Local equation for a divisor, 232, 233 
Local field 
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Artin character, 405 
different, 386 
higher ramification group, 379 
index function, 405 
inertia group, 380 
maximal unramified extension. 381 
Swan character, 405 

Local height function, 429 
algorithm to compute, 478, 479 
associated to v, 461 
comparison with naive height, 478 
differential equation for, 477 
duplication formula, 456, 475 
existence of, 455-461, 476 

archimedean absolute values, 467 
non-archimedean absolute values, 
470.475 

integral over E(C), 477 
is a Green's function, 477 
is continuous, 456 
is invariant under field extension, 456, 

476 
is well-defined, 456, 470 
is zero for almost all v. ,161 
lower bound for. 480 
multiplication formula. 477 
on Eo(K), 469, 478 
on Tate curve E q . 473, 475 
over IC, 464, 466, 477, 479, 480 
over non-archimedean fields, 469-476 
over p-adic fields. 469-476, 478, 479, 

480 
over nt 479 
quasi-parallelogram law, 467, 476 
triplication formula, 463 

Local intersection index, 233 
on pk, 340, 341 
on an arithmetic surface. 3:39 

Local Neron height function 
See Local height function 

Local parameter, 19. 20, 29, 30, 85 
Local ring 

is discrete valuation ring, 232 
of a curve on an arithmetic surface, 

:311, 313, 3:39 
of a surface at a curve. 231 
of a surface at a point, 231 
of arithmetic surface, 315 
of group scheme along identity, 327 
regular, 302, 370, 397 
regular of dimension two, 315 

Localization, 179 
Locally compact field, 476 
Lockhart, P., 385 
Logarithm 

formal, 150. 182 
principal branch, 44, 54, 56, 66 

Magic, 48 
Main theorem of complex multiplication, 

157, 159, 166 
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l\lanin, Yu., 247, 265, 269, 271, 275, 485 
Mason. R.e., 277, 278 
Masser, D .. 278 
Matrix 

incidence, 350, 402, 40:3, 486 
Jacobian, 330, 401 

Maximal abelian extension 
of exponent m unramified outside S, 

191 
of quadratic imaginary field, 135 

Maximal unramified extension 
abelian 

See Hilbert class field 
of a local field, 381 

Merumorphic function 
j is a, 23, 35 
on X(I), 23, 35 
on pI, 35 
on H, 24 

Mestre, J.-F., 272, 486 
Minimal discriminant, 363, 361, 388, 389 

greater than conductor, 396 
of an elliptic surface, 286 
of isogenous curves, 4-53 
over 2-adic field, 407 
over 3-adic field, 406 
Szpiro's conjecture, 287, 388 
valuation one, :369, 399 
valuation two, :399 

Minimal fibered surface, 244 
birational map is morphism, 244 

Minimal proper regular model 
components of special fiber, 389 
connected component, 326, 361, 401 
identity component of special fiber, 

326, 361 
number of components of special fiber, 

363, :~64 
of a curve, 317, :318, 344 
of an elliptic curve, 325, 332, :335, 3:37, 

350, 361, 400 
reduction type, 352, 353, 363, 364 
special fiber, 350, 352, 403 

Minimal surface, relatively, 235 
Minimal Weierstrass equation, 321. 403, 

478, 480 
algorithm. 364, 403 
for p ?: :3, 406 
for p ?: 5, 405 

Modular j-invariant 
See j-invariant 

Modular curve X(I), 14 
affine part Y(l), 14 
complex structure on, 16, 20, 26, 28, 

35 
cusp, 14 
differential forms on, 23, 28, 87 
has genus zero, 20, 21 
is a Hausdorff space, 18, 19 
is a Riemann surface, 20, 32 
is compact, 19 
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lvlodular curve X (1) (continued) 
is connected, 21 
j-function on, 23, 34, :36 
local parameter, 20, 21, 29, :{O, 85 
meromorphic functions on, 23, 35 
open cover of, 20 
order of a differential form, 28 
projection is open map, 19 
topology on, 16, 18, 19 

I\Iodular curve XJ(ll), 190, 279 
Modular discriminant 

See Discriminant 
Modular form, 2,5, 91See also Modular 

function, cusp form 
action of Hecke operator, 76 
dimension of space of, :n, 87 
Eisenstein series is a, 25, 31, 32 
Fourier coefficients of, 82, 92 
L-series attached to. 93 
size of Fourier coefficients, 82, 92 
space of (M2h)' 31, 87 
space of is generated by 04, 0 6 , 88 
spaces with dimension one, :n 

Modular function. 24, 91 
See also j-invariant; modular form: 
cusp form 

j is a, 34 
action of Heeke operator, 76, 79, 91 
associated differential form, 28. 31, 87, 

91 
associated lattice function. 74 
eigenfunction for Heeke operator, 77 
formula for order, 30 
Fourier series, 24, 76, 145 
holomorphic at CXl, 24 
meromorphic at CXl, 24 
of weight zero, 34, :35, 182 
order at CXl, 24 
value at oc, 24, 32 
weight of, 24 
why even weight, 24 

Modular group [(1), 6-14 
See also Action of SL2 (:2:) on H 

generated by Sand T, 14, 24, 62, 85 
is a free product, 14, 85 

Modular polynomial 
examples, 148 
F H , 144, U6. 181, 182 
<Pn, 181, 182 
H n , 144, 146 
size of coefficients, 181 

Monster group, 61 
Montgomery, H., 487 
Mordell, L.J., 61, 79 
Mordell conjecture. 271 
l\Iordcll-\'Veil group 

Euclidean structure, 247 
lattice structure, 25,1 

Mordell-\'Veil theorem 
hound for rank. 279 
for abelian varieties, ,lS5 

for elliptic surfaces, 276 
for function fields, 230, 279 
for split elliptic surfaces, 231, 281 
ineffective, 277 
over finitely generated fields, 279 
relative, 231, 281 
weak. 191-195, 230 

Morphism 
birational, 235 
diagonal, 300, 309, 327 
divisor associated to, 258 
etale, 306 
fiat, :301, :397 
graph of, 300 
of S-schemes, 297 
proper, :{05 
separated, 305 
smooth, 304, 305, 306, 320 
universally closed. 305 

Multiple fibers, 203 
Multiplication map 

Index 

continuous for v-adic topology, 460 
on elliptic curve, 310 
on group scheme. 310, 398 

Multiplication by an idele, 159, 170 
Multiplication-by-n map on an elliptic 

surface, 266 
Multiplication-by-~: map on Qj£:, 152. 

1.53 
Multiplicative group, 128, 151, 398, 399 

exponential map. 151 
formal, 149, 4:n 
over a field, 291, 293, 398 
over H, :~08 
over S, :308 
over £:, 308 
rational points of, 292 
S-valued points, 397 
Tate> module of. :382 
torsion subgroup, 151 

Multiplicative reduction, 287, 369, 3t;8, 
399 

conductor, 381 
Neron model, 403 
non-split, 171, 378 
split, 171. 362, 377, 379 
torsion for, 453 

Multiplicity of fibral components, 313 

Nagao, K., 272 
Nakai-Moishezon criterion, 25R, 261, 283, 

284 
Nakayama's lemma, 103 
Namikawa, Y.. :~55, 486 
Natural map, 197, 198 
Negatioll map, on an elliptic curve, 325 
Neron, A., 231, 265, 272, 352, 4,,4, 455, 

485 
Ncron height fUllction 

See Local height function 
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Neron-Kodaira classification of fibers, 
350, 352 

Neron mapping property, 319, 329, 333, 
338 

Neron model, 319, 361 
addition formula on Weierstrass equa-

tion, 323 
automorphism of, 400 
connected component, 326, :361, 401 
dual isogeny, 400 
existence, 325, 332, 33.5, 337 
extension of group law, :3:32, 3:35 
generic fiber, 319 
group of components, 350. 362, :363, 

364, 379, 402, 486 
group of sections, 319 
group scheme action, 326, 400 
identity component is \"Ieierstrass 

equation, 362, :378 
identity component of special fiber, 

326, 361 
identity section, 326 
isogeny, 400 
multiplicative reduction, 403 
negation map on Weierstrass equation, 

325 
Neron mapping property, 319, 320 
not proper, :n 9 
of Jacobian variety, 350, 486 
of Tate curve E q , 435 
over a strictly Henselian ring, 402 
over strictly Henselian ring, 332, 335 
special fiber, 350, 361, 400, 435 
subgroup scheme, 401 
translation map, 400 
uniqueness, 319 
unramified base extension, 320 
Weierstrass equation, 321, 329, 362, 

369, 378, :399, 400 
Neron notation for special fiber, 353 
Neron-Ogg-Shafarevich criterion, 140, 

151, 148, 170, 362, 381, 383 
Neron-Severi group 

of an elliptic surface, 254 
rank, 254 

Nice scheme, 311, 399 
Node, 287, :370 
Non-linearity, textual, 217 
Non-perfect field, 187 
Non-singular arithmetic surface, 311 
Non-singular point . 

on fiber of arithmetic surface, 315, 351, 
399 

on reduction, 362, 379 
on SChenl€ 

See Regular point 
Non-singular scheme 

See Regular scheme 
Non-split multiplicative reduction, 378, 

399 
Norm map 

compatibility with reciprocity map, 
120 

of fields, 444 
on ideles, 119 

Normal law, 334, 335 
associativity, 334, 335 
induces group law, 334, 337 
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on symmetric product of a curve, 402 
Normal scheme, 311 

principal divisor on, 328 
Normalized basis, 7 
Normalized eigenfunction, 78, 79, 80, 92, 

93 
Sere al.so Eigenfunction 

Normalized elliptic curve (E, [.]), 97, 
131, 134 

Normalized lattice, 47 
Nullstellensatz, 259 
Number field 

abelian extension, 128 
See also Class field theory 

Artin map, 117, 118, 154 
decomposition group, 116 
ideal class group, 99, 180 
idele group, 119 
maximal abelian extension, 120, 121 
of class number one, 138. 141 
Q(i), 138 
unit group of, 191 
:Lv-extension, 186 

Numerical equivalence, 486 

Ogg, A., 355, 389, 487 
Ogg's formula, 363, 364, 387, :389, 396, 

407 
One-cocycle on elliptic surface, 284 
One-parameter family of elliptic curves, 

188, 200 
Operator 

Hecke 
See Hecke operator 

homothety, 68, 90 
Order 

at 00 of a modular function, 24 
cond uctor of, 178 
non-maximal, 160, 178, 180 
of a differential form, 27 

Ordinary reduction, 179, 184 
Oriented basis, 6, 9, 71, 72, 73, 89 
Orthogonal group, 396 

speciaL 396 
Osterle, J., 278 

p-adic analysis, 424, 429 
p-adic field, 423 

squares in, 442 
p-adic period, 364 
p-adic Tate module, 186 
p-primary component. 157 
p, See \Veierstrass p function 
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Parallelogram law, 218 
for height, 213 

Path independent integral, 198 
Perfect field, 330, 332 
Period map, 43 
Period, p-adic, 364 
Periodic second Bernoulli polynomial, 

480 
Periods, 37 
Petersson, H., 61, 80 
Petersson inner product, 92 

Hecke operators are self-adjoint, 92 
Picard group 

See also Jacobian variety 
divisor class of degree zero, 197 
elements of finite order, 192, 195, 199 
induced homomorphism, 255 
is ideal class group, 192 
of 1P'2, 232, 282 
of IP'n, 282 
of a curve, 402 
of a fibered surface, 284 
of a surface, 232 
of curve of genus two, 287 
of hyperelliptic curve, 287 

Points 
of a group scheme, 309, 397 
of a scheme, 298, 309, 397 

Polar divisor on normal scheme, 328 
Positive divisor, 341 

associated height, 285 
Potential good reduction, 140, 148, 151, 

176, 383, 447 
Power divisor function O'k 

See O'k 

Prime ideal 
in arithmetic progression, 118, 123 
in ideal class, 118, 123 
inert, 184 
split, 184 
splits completely, 117, 118, 179 

Primitive Dirichlet character, 93 
Primitive root of unity, 21, 23, 29, 154 
Principal branch 

of logarithm, 44, 54, 56, 66 
of square root, 65, 67 

Principal divisor, 232 
on an arithmetic surface, 339 

Principal ideal, 132 
congruent to 1 modulo c, 117 

Pro-finite topology, 120, 182 
Pro-p group, 150, 182 
Product 

fiber, 299 
restricted, 119 

Product expansion of sine function, 56, 
58 

Projection morphism on fiber product, 
299 

Projective closure of a scheme, 371 
Projective line 

arithmetic genus, 343, 352 
arithmetic surface, 312 
proper over R, 312 
smooth over R, 312 

Index 

Projective plane, Picard group of, 232, 
282 

Projective scheme, is proper, 303, 322 
Projective space 

height on, 255 
over a ring, 298 
over a scheme, 301, 303, 322 
Picard group of, 282 

Proper arithmetic surface, 311, 316, 317, 
351 

Proper group scheme, 327 
Proper morphism, 297, 305 

intuitive definition, 301 
valuative criterion, 303, 317, 329, 333 

Proper regular model 
minimal, 325, 332, 335, 337, 389, 400 
of a curve, 317 

Proper scheme, 312, 321, 329, 399 
group, 327 
map from smooth scheme, 328 
projective scheme is, 303, 322 

Proper S-scheme, 301, 305 

q-expansion 
See also Fourier coefficients 

of Bernoulli polynomial, 480 
of discriminant ~, 59, 409, 467, 468 
of 92 and 93, 409 
of G2b 55 
of j-invariant, 59, 144, 145, 146, 410 
of a modular function, 24, 55, 182 
of p and pi, 47, 50, 409 
of Weierstrass 0' function, 53, 467 
of Weierstrass ( function, 52 

Quadratic character, 440, 444 
Quadratic field, non-maximal order, 178, 

180 
Quadratic form, canonical height, 454 
Quadratic imaginary field 

Q(i), 138 
abelian extension of, 128, 135 
algorithm to compute ideal class 

group, 85 
Hilbert class field of, 95, 121, 122, 142, 

166, 181 
ideal class group, 85 
maximal abelian extension, 135 
of class number one, 138, 141 
ring of integers, 85 

Quadratic transformation, 244 
Quasi-parallelogram law, 213, 467, 476 

explicit 0(1) estimate, 280 
Quasi-period homomorphism, 41, 43, 44, 

52, 53, 65, 89, 412, 464, 465, 466 
See also Legendre relation 

formula for, 41 
Quasi-periodicity of (, 40 
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Quaternion algebra, 130 
Quaternion group, 404 
Quotient topology, 8.5 

on X(l), 18, 19 

Ramanujan , S., 61, 79 
Ramanujan conjecture, 61, 81 
Ramanujan "T function, .59, 60, 482 

growth properties, 61 
multiplicative identities, 61, 79 
special values, 60 

Ramification index, 283 
Ramification, wild, 380 
Rank . 

high over Q, 272 
of Neron-Severi group, 2.54 
upper bound, 279 

Rank one module, 102, 138, 186 
Rational map, 203 . 

birational isomorphism, 204 
blowing-up, 204, 23.5 
domain of definition, 204, 279 
dominant, 204, 222, 228 
from smooth scheme to proper scheme, 

328 
image, 204 

is algebraic, 204, 279 
is irreducible, 204, 280 

naive definition, 204 
of elliptic surfaces, 206 
of varieties, 132 

Ray class field, 117, 118, 129, 13.5, 161 
conductor of, 117, 1l8, 129, 13,5 
idelic characterization. 120. 162 
modulo unit ideal, 118 . 
of Q( i), 138, 180 
of Q( V"=3), 180 
primes splitting completely, 118 

Raynaud, I'vI., 3.50, 486 
Real Lie group, 420 
Reciprocity 

Artin.117 
Dedekind, 67, 90 
map, 120, 1.52, 1.59, 165, 166, 168, 169, 

174 
Reduction map 

injective on torsion, 162 
surjectivity, 330, 333, 337, 401 

Reduction 
additive, 171,287,381,388, :399, 403 
bad, 321 
good, 287, 321, 329, 381, 383, 388 
multiplicative, 171, 287, 369, 381, 388, 

403 
non-singular points, 362, :379 
non-split multiplicative, 399 
of a scheme. 300 
of an isogeny, 124 
of Weierstrass equation, 362, 378 
ordinary, 179 
semi-stable, 388 

split multiplicative, 399 
Reduction type, 352, 3.53, :363, 364 

over 3-adic field, 406, 407 
Regular 

arithmetic surface, 311 
differential form, 27 
in codimension one, 311 

Regular arithmetic surface, 316, 317, 
3,51,370,399 
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non-singular point on fiber, 315, 351, 
399 

smooth part, 316, 318, 321, 32.5, 332, 
335, 361, 362, 369, :378, 399, 400 

Weierstrass equation, 399 
Regular local ring, 302, 370 

localization is regular, 397 
of dimension one, 328 
of dimension two. 31.5 

Regular model, minimal proper, 325, 
332, 33.5, 337, 400 

Regular point, 302 
on a scheme, 397 

Regular scheme, :302, 398, 399 
example, 313 
intuitive definition, 301 
of dimension one, 302 
smooth part, 399 
\Veierstrass equation, 399 

Regulator, height, 273 
Reimann conditions, 196, 198 
Relative differentials. 306 
Relative dimension ~f a smooth mor-

phism, 305 
Relatively minimal fibered surface, 243 
Relatively minimal surface, 235 
Representation 

irreducible, 405 
of type E s , 189 

Residue symbol, 6th-power, 177 
Resolution of singularities, 2:3.5 
Restricted product, 119 
Resultant, 458 
Riemann ( function, 25, 5.5, 171 

functional equation, 83 
special values, 26, 33, .57 

Riemann hypothesis for varieties over 
finite fields, 61, 81 

Riemann surface. 14, 19, 23, 27 
See also Curve 

differential I-forms on, 27, 43 
meromorphic k-forms on, 27 

Riemann-Roch theorem, 28, 30, 32, 87, 
198, 226, 238, 34.5, 430 

Rigid analysis, 430 
Rigidity lemma, 296, 396 
Ring of integers of a quadratic imaginary 

field, 8.5 
Ring 

Krull dimension of, 301 
of correspondences, 70 
regular local, 302 
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R-morphism, 297 
Rohrlich, D .. 485 
Root lattice of type En, 254 
Root of unity 

primitive, 21, 23, 29, 154 
group scheme of. 397, 398 

Rosen, lvI., 38;), 485 
R-scherne, 297 

generic fiber. 300 
reduction modulo p. 300 
set of R-valued points, 298 

Ruled surface. 2:36 
R-valued points. 298 

of an affine scheme, 298 

sk(q),410 
alternative form. 448 

81 (q),111. 425 
Sn, 72, 1·13 

order of, 72 
S.;, , 181 

order of, 181 
a See Vveierstrass a function 
ax-. 55. 61 
Saito. T., :389, 390 
Scheme, 434 

dimension, 302 
excpllent, 311 
fiber produd, 299 
finite type, 311 
flat, 311 
generic fiber, 300 
generic point, 304 
group, 306 
integral. :311 
nice. 311, :399 
non-singular point, :302 
normal, 311, 328 
of Dedekind domain, 302 
over a base ring, 297 
over a base S, 297 
projectivc closure, 371 
proper, 305, 321, :,22, 329, :399 
reduction modulo p. 300 
regular, :301, 398, 399 
regular of dimension one, 302 
regular point, 302, 397 
smooth, 328, :197, 40} 
smooth part, 399 
structure sheaf on. 397 

Schmidt, \V .. 277 . 
Schncider, T. 108 
SchnirPlrnann's Theorem, 429 
Second Bernoulli polynomial. 468, 473, 

478, 480 
Second kind differential form, 43 
Section 

divisor of a, 245 
to a morphism, 202 
to an elliptic surface, 202 
to an S-scheme, 298. 309, 397 

Index 

Segre embedding, 261 
Self-intersection, 234, 238, 24:3, 28:3, :342. 

349, .3;)1 . 
equals minus one, .344, 3S2 

Semi-stable reduction, :388 
Separated morphism, .305 
Serre, J.-P., 140, 149, 261, 381, 447, 487 
Serre's theorem. 261 
Shafarevich. I.R, 317, :338, 341 
Shatz, S., ,187 
Sheaf 

global sections, 397 
of relative differentials. 306 

Shimura, G .. 9.5 . 
Shioda, T., 189, 247, 254, ·186 
Siegel, C.L., 62, 275, 278 
Sign of functional equation, 176 
Silverm;;n, .l.R .. 265. 266, 269, 271, 277, 

278, .385, 486, 487 
Sine function, 56, 58 
Singular fib{'r, 203 
Singular j-invariant, 104 
Singular point, 471 

on fiber. 314 
on special fiber, 32S 

S-integers 
effective methods, 277, 28S 
of a function field, 275 
points on an elliptic surface. 275 

SL2 
See Special linear group 

Smooth arithmetic snrfacc, 311 . .316 
Smooth morphism, 305, 306 

composition of, 304. ;)20 
intuitive definition, 301 
of relative dimension zero, 30(j 

Smooth scheme, :312, :)97, :399 
map to proper scheme, 328 
morphism to group scheme. 327, .333, 

3:37 
over a DVR, :304 
surjectivity of reduction, 3:~0, .33:3, 3.37, 

401 
Weierst.rass equation, 321. 329, 362, 

369, .378, 399, 400 
Smooth special fiber, 401 
S-morphism, 297, 299 
Special fiber 

dual to Dynkin diagram, 353 
Galois action on, 353 
group of components, .36:3, 364 
identity component, 326, .361 
incidence matrix, 350. 102, 403, 486 
Kodaira notation, :353 
lIlultiplicity one components, ,102 
Neron notation, :{53 
number of components, 363, 364 
of an arithmetic surface, :Ul, 311, 361, 

.399 
of blow-up, 317, 371 
of curve of genus two. 355 
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of minimal proper regular modeL 350, 
352, 40:3 

of Neron modeL 350, 361 
over a DVR, 300 
oingular points, 325 
smooth, 401 

Special linear group, S, 292 
See also Action of SL2 (Z) on H 

action on 'D n, 72 
reduction mod N. 86 

Special orthogonal group, :~96 
Specialization map, 271 

constructing high rank curves. 272 
for height, 265. 266. 269, 2S1, 2S6 
is a homomorphism, 271 
is injective, 271, 2S1 
on split elliptic surface, 271 

Spectrum of a ring, 259 
Split elliptic ourface, 220, 2S6 

canonical height on, 281 
characterization of. 220, 228, 280 
has constant j, 221, 280 
if infinitely many bounded height 

points, 222 
Mordell-,Veil theorem, 2:31. 281 
specialization map is injective, 281 
specialization of height. 281 

Split multiplicative reduction, 362. 377, 
379. :399 

Split prime, 184 
Sporadic groups. 61 
Square-free conductor. 38S 
S'-ocheme, 297 

fiber product, 299 
morphism of, 297 
proper. :301 
set of T-valued points, 298, 309, 397 
set of sections, 29S, 309, 397 
smooth, :~01 

Stabilizer, 11 
Stark, I-I., 141 
Strict I-Icnseliza,tion, 337 

faithfully fiat, 3:38 
fraction field. :332 
of a DVR, 331 
universal mapping property, 332. 401 

Strictly I-Ienselian ring, 330. 402 
density of reduction, :3:30, 33:3, 337 
etale topology, 332 
Neron model over, 332, 335 

Structure ohear, ::l97 
Sum. telescoping, 269 
S'-unit equation over function fields, 278 
Supersingular j-invariant, 104 
Supersingular reduction, 184 
Surface 

See also Fibered surface; Elliptic 
ourface: Arithmetic surface 

adjunction formula, 2:34 
ample divisor on, 258 
divisor, 231 

exceptional curve, 2:36 
fibered, 2:36 
intersection pairing, 233, 238 
linear equivalence of divisors, 232 
local ring at a curve, 231 
local ring at a point, 231 
Picard group of, 232 
principal divisor, 232 
relatively minimal, 235 
resolution of singularities, 235 
ruled, 236 

Swan character, 405 
Symmetric product, 229 

of a curve, 197. 402 
Symplectic group. 396 
Szpiro, L., 388,486 
Szpiro's conjecture, 388 

function field analogue, 287, 388 
used to bound torsion, 453 
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Tame part of the conductor, 380, 381, 
405 

invariant under isogeny, 404 
Tangent line, 122-429, 472 
Tate. J" 140. 149, 173, 265, 269, 361, 

381,42:3,441, 4.54, 455, 459, 486, 487 
Tate curve' E q , 423, 441, 444 

See also Elliptic curves over p-adic 
fields 

diocriminant of, 377, 423, 424, 47:~ 
filtration of rational points, 430, 450 
formal group of, 431 
formula for j, 111 
formula for discriminant, 411 
,-invariant, 4·11 
has split multiplicative reduction, ::l77, 

441 
isogeny of, 451, 453 
j-invariant of, 123, 425, 438, 473 
local height on, 473 
Neron modeL 377, ·135 
reduction m;dulo 9)1, :377, ·130, ,142 
scheme associated to, 377. 4:H 
surjectivity of p-adic uniformization. 

429 43S 
torsion subgroup, 445 
uniformization compatible with Galois. 

42,1 
uniformization over p-adic fields, 141. 

377. 423, 450, 473, 480 
\Veierstrass equation, 423, 426, 412, 

473 
Weil-Chatelet group, 152 

Tate module. 380 
action of Frobenius, 172 
of a Cl\I elliptic curve, 148, 149, 179 
of a field. 452 
of an abelian group, :~82 
of an elliptic curve, 152 
of the aclditive group, 382 
of the multiplicative group, 382 
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Tate module (continued) 
p-adic, 186 
Weil pairing, 125 

Tate's p-adic uniformization theorem, 
377, 441 

Tate's algorithm, 353, 361, 364-368, 387, 
389,435 

minimal Weierstrass equation, 364 
multiplicative reduction, 377 
verification, 369-377 

T(n), See Ramanujan r function 
Tchebotarev density theorem, 161 
Telescoping sum, 269, 460 
Theorem 90 of Hilbert, 193 
Theta function B( u, q), 412, 429 

p-adic, 429, 473 
functional equation, 412, 429, 474 
relation to X(u,q) and Y(u,q), 412, 

429, 474 
relation to Weierstrass u function, 412 

Third kind differential form, 43 
Topological group, 85, 119 
Topological space, irreducible, 280 
Topology 

etale,332 
on a valued field, 455 
on an elliptic curve, 455 
pro-finite, 120, 182 

Torsion module is sum of p-primary com­
ponents, 157, 170 

Torsion point 
boundedness conjecture, 453 
field generated by, 128, 135, 383 
forces good/multiplicative reduction, 

453 
of multiplicative group, 151 
of order eleven, 190, 279 
of order five, 278 
of order seven, 278 
on CM curve form free module, 102, 

138 
on CM elliptic curves, 102, 135 
on elliptic curves over p-adic fields, 

383,445 
reduction is injective on, 162 

Torsion subgroup of Picard group, 192, 
195, 199 

Totally imaginary field, 116 
Transcendence of j, 108 
Translation map, 336 

on a group scheme, 336 
on an elliptic surface, 245, 248, 251 
on elliptic curve, 310 
on group scheme, 310, 337, 400 
on Neron model, 400 

Transvection, 445, 447 
Transversal intersection, 232, 282 
Triangle inequality, 459, 471 
Triplication formula, for local height, 463 
Twist 

of a cusp form, 94 

of an elliptic curve, 414, 439 
of an L series, 94 

Veno, K., 355, 486 

Index 

Uniformization Theorem, 6, 34, 35, 88, 
96, 196, 411, 413 

of elliptic curves over p-adic fields, 423, 
441 

of elliptic curves over JR, 416 
Uniformizer, 27 

for a curve on an arithmetic surface, 
339 

Unit disk, holomorphic automorphism of, 
22 

Unit group 
of a function field, 191 
of a number field, 191 

Universal family, point of order eleven, 
190, 279 

Universal property of fiber product, 299 
Universally closed morphism, 305 
Unramified extension 

cyclotomic, 383 
generated by torsion, 383 
of discrete valuation ring, 399 

Unramified Grossencharacter, 168, 173, 
174 

Upper half plane H, 7 
action of SL2(Z), 9 
differential form on, 26 
extended (H*) 

See Extended upper half plane 
fundamental domain for SL2(Z) ac­

tion, 10, 14, 25, 92 
stablizer of a point, 11 

v-adic topology 
multiplication map is continuous, 460 
on a field, 455 
on an elliptic curve, 455, 476 

Valuation 
of a curve on an arithmetic surface, 

311, 313, 339 
on a function field, 194 

Valuative criterion of properness, 303, 
317, 329, 333 

Variety 
abelian, 196 
birational equivalence of, 204, 205 
category up to birational equivalence, 

205 
curve through two points, 228, 281 
Frobenius map of, 132 
group, 291 
group of divisors, 255 
height associated to a morphism, 258 
height on, 256 
rational map of, 132 

Vertical strip, 94 
Very ample divisor, 257, 261, 284 
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Vojta, P., 278 
Voloch, J.F., 276 

Weak approximation theorem, 155, 158 
Weak Mordell-Weil theorem, 191-195, 

230 
\Veakly modular function, 24, 74, 91 

See also Modular function 
Weber, R., 95 
Weber function, 134, 135 

analytic definition, 135 
field of definition, 135 

Weierstrass equation 
addition is morphism, 323 
algorithm to find minimal, 364, 403 
associated lattice, 35, 88, 89 
bad reduction, 321 
blow-up of, 371 
good reduction, 321, 329 
group scheme, 321, :{29, 362, 369, 378, 

399,400 
identity component of Neron model, 

362. 378 
mini~al, 321, 403, 478, 480 

for p :::: 3, 406 
for p :::: 5, 405 

negation map is morphism, 325 
over IQ, 403 
proper ticheme, 321, 329 
reduction modulo p, 362, 378 
scheme defined by, 321, :{29, 362, 369, 

378, 399, 400 
smooth => Neron model, 329 
smooth part over R, 321, 362, 369, 

378, 399, 400 
with good reduction, 462, 469 
with rational two-torsion, 192, 194 

Weierstrasti p function, 6, 34, 39, 408, 
464 

at ha.lf periods, 62, 90 
at N-torsion points, 89 
factorization by <7, 45, 63, 90, 412, 464, 

467 
Fourier expansion, 47, 50, 409 
Laurent series, 39 

525 

Weierstrass <7 function, 44, 62, 412, 464 
factorization of elliptic functions, 45 
factorization of p, 45, 63, 90 
Fourier expansion, 53, 467, 468 
relation to e, 412 
special values of, 63 

\Veierstrass ( function, 39, 43 
Fourier expansion, 52 
Laurent series, 39, 52 
quasi-periodicity property, 40 

\Veight of a modular function, 24 
Weight 12 cusp form is unique, 34 
Wei!, A., 198, 256, 327, 334,402 
Weil-Chatelet group 

of an elliptic curve over 1Ft, 421, 449 
of Tate curve E q , 452 

Weil divisor on an arithmetic surface, 
311, 339 

Weil height 
See Height 

Weil pairing, 89, 125, 387 
Wild part of the conductor, :{80, 381, 405 

invariant under isogeny, 404 
\Vild ramification, 380 

X(I), See rvlodular curve X(I) 

Y(I), See Modular curve X(I), affine 
part 

Yoneda's lemma, 299 

Zp-extension, 186 
( function 

See also Weierstrass ( function; Rie­
mann ( function 

of a number field, 18:{ 
of an elliptic curve over a finite field, 

183 
of an elliptic curve over a number field, 

183 
Zagier, D., 217 
Zariski's l\lain Theorem, 283, 486 
Zero section to an elliptic surface, 202 
Zucker, S., 486 
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