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Preface

In the introduction to the first volume of The Arithmetic of Elliptic Curves
(Springer-Verlag, 1986), I abserved that “the theory of elliptic curves is
rich, varied, and amazingly vast,” and as a consequence. “many important
topics had to be omitted.” 1included a brief introduction te ten additional
topics as an appendix to the first volume, with the tacit understanding that
eventually there might be a second volume containing the details. You are
now holding that second volume.

Unfortunately, it turned out that even those ten topics would not fit
into a single book, so [ was forced to make some choices. The following
material is covered in this book:

I. Elliptic and modular functions for the full modular group.

[1. Elliptic curves with complex multiplication.

III. Elliptic surfaces and specialization theorems.

IV. Néron models, Kodaira-Néron classification of special fibers,
Tate’s algorithny, and Ogg’s conductor-discriminant. formula.

V. Tate’s theory of g-curves over p-adic fields.

V1. Néron's theory of canonical local height functions.

So what's still missing? First and foremost is the theory of modular
curves of higher level and the associated modular parametrizations of ellip-
tic curves. There is little question that this is currentiy the hottest topic
in the theory of elliptic curves. but any adequate treatment would seem to
require (at least} an entire book of its own, (For a nice intreduction, see
Knapp [1].) Other topics that I have left out in order to keep this book
at a manageable size include the description of the image of the #-adic
representation attached to an elliptic curve and local and global duality
theory. Thus, at best, this book covers approximately half of the material
described in the appendix to the first volume. T apologize to those who may
feel disappointed, either at the incompleteness or at the choice of particular
topics.

In addition to the complete areas which have been oinitted, there are
several topics which might have been naturally included if space had been
available. These include a description of Iwasawa theory in Chapter II,
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the analytic theory of p-adic functions (rigid analysis) in Chapter V, and
Arakelov intersection theory in Chapter V1.

[t has now been almost a decade since the first volumme was written.
During that decade the already vasl mathematical literature on elliptic
curves has continued to explode, with exciting new results appearing with
astonishing rapidity. Despite the many omissions detailed above, T am
hopeful that this book will prove useful, both for those who want to learn
about elliptic curves and for those who hope to advance the frontiers of our
knowledge. T offer all of you the best of luck in your explorations!

Computer Packages

There are several computer packages now available for pertorming compu-
tations on elliptic curves. PARIL and SIMATH have many built-in elliptic
curve functions, there are packages available for commercial programs such
as Mathewmatica und Maple, and the anthor has written a small stand-alone
prograim which runs on Macintesh computers. Listed below arce addresses,
current as of Aarch 1994, where these packages may be acquired via anony-
mous ftp.

PART (includes many elliptic curve functions)

math.ucla.cdn 128.97.4.2h4
megrez.ceremab.u-bordeans. (v 147.210.16.17

{directory pub/pari)
{unix, mac, msdos, amiga versions available)
SIMATH (includes many elliptic curve functions)
ftp.math.orst.edu
flpanath ani-sh.de
apecs (ariclunctic of plane elliptic curves, Maple package)
math.megill.ca 132.206.1.20
{directory pub/apecs)
Elliptic Curve Caleulator (Mathematica package)
Elliptic Curve Calculator (stand-alone Macintosh program)
gatss.nath. brown.edu 128.148.194.40
{dircctory dist/EllipticCurve)
A description of many of the algorithms used for doing compitations on
elliptic curves can be found in H. Cohen (1. Cli. 7] and Cremoua [1}.

Acknowledgments

T would like to thank Peter Landweber and David Rohrlich for their care-
ful reading of much of the original draft of this book. My thanks also go
ta the muany people whe offered corrections, suggestions, and eneourage-
ment, including Michael Artin, Tan Connell, Rob Gross, Mare Hindry, Paul
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many results which are now considered “standard” have been presented as
such. In any case, I claim no originality for any of the unlabeled theorems
in this book, and apologize in advance to anyone who may feel slighted.
Sources which I found especially useful included the following:

Chapter I  Apostol [1], Lang [1,2,3], Serre [3), Shimura {1]

Chapter II  Lang [1], Serre [6], Shimura [1]

Chapter IV Artin [1], Bosch-Liitkebohmert-Raynaud [1], Tate [2]

Chapter V. Robert [1], Tate [9]

Chapter VI Lang (3.4], Tate [3]

I would like to thank John Tate for providing me with a copy of his
unpublished mauuseript {Tate [9]) containing the theory of g-curves over
complete fields. This material, some of which is taken verbatim from Pro-
fessor Tate’s manuscript, forms the bulk of Chapter V, Section 3. In addi-
tion, the description of Tate’s algorithm in Chapter IV, Section 9, follows
very closely Tate’s original exposition in [2], and I appreciate his allowing
me to include this material.

Portions of this book were written while I was visiting the University
of Paris VII (1992), IHES (1992}, Boston University (1993), and Harvard
(1994). I would like to thank everyone at these institutions for their hos-
pitality during my stay.

Finally, and most importantly, I would like to thank my wifc Susan for
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providing all of those wonderful distractions so necessary for a truly happy
life.
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Introduction

In the first volume of The Avithmetic of Elliptic Curves, we pre-
sented the basic theory culminating in two fundamental global results,
the Mordell-Weil theorem on the finite generation of the group of rational
points and Siegel’s theorem on the finitencss of the set of integral points.
This second volume continues our study of elliptic curves by presenting six
important, but somewhat more specialized, toples.

We begin in Chapter I with the theory of elliptic functions and modular
functions for the full modular group T'{1} = SL2(Z)/{£1}. We develop this
material in some detail, including the theory of Hecke operators and the L-
series associated to cusp forms for I'(1). Chapter 11 is devoted to the study
of elliptic curves with complex multiplication. The main theorem here
states that if K/ is a quadratic imaginary field and if E/C is an elliptic
curve whose endomorphisim ring is isomorphic to the ring of integers of K,
then K(j(E)) is the Hilbert class field of K; and further, the maximal
abelian extension of K is generated by j(F) and the z-coordinates’ of the
torsion points in E{C). This is analogous 1o the cyclotomic iheory, where
the maximal abelian extension of Q is generated by the points of finite
arder in the multiplicative group C*. At the end of Chapter Il we show
that the L-series of an elliptic curve with complex multiplication is the
product of two Hecke L-series with Grossencharacter, thereby obtaining at
one stroke the analytic continuation and functional equation.

The common theme of Chapters III and IV is one-parameter families
of elliptic curves. Chapter III deals with the classical geometric case, where
the family is parametrized by a projective curve over a field of characteristic
zero. Such families are called elliptic surfaces. Thus an elliptic surface
consists of a curve €', a surface £, and a morphism 7 : & —  such that
almost every fiber m71(¢) is an elliptic curve. The set of sections

{maps o : C — & such that 7 oo (?) = 1}

T I j(E) = 1728 or j(£) = 0, one has to use 2% or % instead of .
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Lo an elliptic surface forms a group, and we prove an analogue ol the
Mordell-Weil theorem which asserts that this group is (1sually) finitely
generated. In the latter part of Chapter III we study canonical heights
and iutersection theory on € and prove specialization theorems for both
the canonical height and the group of sections.

Chapter TV continues our study of one-parameter familics of ellip-
tic curves in g more general setting, We replace the base enrve ¢ by a
scheme S = Spec R, where B is a iscrete valnation ring. The generic fiber
of the arithmetic surlace £ — 8 is an elliptic eurve E defined over the
fraction ficld K of R, and its special fiber is a curve £ (possibly singdar,
redneible, or even non-reduced) defined over the residue field k of B. We
prove that if € — 5 is a minimal proper regular arithmetic surface whose
generic fiher is E. and if we write £ for the part of € that is smooth over 5,
then € is a group scheme over S and satislies Néron's wiiversal mapping
property. In particular, E(RY = E(R): that is, every K-rational point. on
the generic fiher F extends to an R-valued point of £. We also describe the
Kodaira-Néron classitication of the possible configurations for the special
fiber € and give Tate’s algorithm for computing the special fiber. At the
etdd of Chapter IV we discuss the condnetor of an elliptic curve and prove
{some cases of) Oge's formula relating the conductor, minimal diserini-
nant., and munber of components of €.

In Chapler V we return fo the analytic theory of elliptic curves. We
begin with a brief review of the theory over T, which we then use to analyze
elliptic evrves defined over [E. But the main emphasis of Chapter V is on
elliptic curves defined over p-adic fields. Every elliplic curve E defined
over € is analvtically isomorphic to C*/¢® for some ¢ € C*. Similarly.
Tate hax shown that if I is defined over a p-adic field K and if the j§-
invariant of £ is non-integral. then £ is analytically isomorphic (o K*/g®
for some ¢ ¢ K*. (It may be necessary to replace K by a quadratic
extension.) Further. the isomorphism E(K) & K*/¢% respects the action
of the Galois group G e, o fact which is extremely important for the
study of arithmetic qu(‘étions. In Chapter V we describe Tate's theory
of g-curves and give some applications.

The final chapter of this volume contains a brief exposition of the
theory of canonical local height functions. These local heights can be used
to decompose the global canonical height deseribed in the first vohune
[AEC, VIII £9]. We prove the existence of canonical local heights and give
explicit formulas for them. Local Lieights are useful in studying some of the
more refined properties of the global height.

As with the first volutue, this book is meant to be an introductory text.,
albeit al an upper graduale level. For this reason we have occasionally inade
siwplilying assunplions. We mention in particular that in Chapter 11 we
restrict alieution to elliptic enrves whose ring of complex multiplications
is Integrally closed: in Chapter I11 we only consider elliptic surfaces over
fields of characteristic 0: and in Chapter IV we assume that all Dedekind
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domains and discrete valuation rings have perfect residue fields. Possibly
it would be preferable not to make these assunptions, but we feel that the
loss of generality is more than made up for by the concomitant clarity of
the exposition.

Prerequisites

The main prerequisite for reading this book is some famniliarity with the ba-
sic theory of elliptic curves as described, for example, in the first volume.
Bevond this, the prerequisites vary enormously from chapter to chapter.
Chapter [ requires little more than a first course in complex analysis. Chap-
ter 11 uses class field theory in an essential way, 50 a brief suminary of class
ficld theory has been included in {11 §3). Chapter III requires various clas-
sical results from algebraic geomeliry, such as the theory of surfaces and
the theory of divisors on varicties. As always, swmnmaries, references. and
examples are supplied as needed.

Chapter IV is techmically the mosi demanding chapter of the book.
The reader will need some acquaintance with the theory of schemes. such
as given in Hartshorne [1. Ch. 11} or Eisenbud-Harris [1]. But bevond that,
there are portions of Chapter IV, especially 1V 36, which use advanced
techniques and concepts from modern algebraic geometry. We have at-
tempted to explain all of the main points. with varying degrees of precision
and relance on intnition, but the reader who wants to fill in every detail
will face a non-trivial task. Finally. Chapters Voand VI are basically sell-
contained. allhough they do refer to earlier chapters. hMore precisely, the
interdependence of the chapters of this book is illnstrated by the following
guide:

Vs Ch. I1
Ch. I Ch. VI [Ch. IIT; —--»
™ Ch. V 4

The dashed line connecting Chapter II1 to Chapter IV is meaut to indicate
that althonugh there are few explicit cross-references. mastery of the subject
matter of Chapter 111 will certainly help to illuminate the more difficult
material covered in Chapler IV.

Ch. 1V

References and Exercises

The first volume of The Arithmetic of Elliptic Curves (Springer-Verlag.
1986} is denoled by [AEC]. so lor example [AEC, VIIL.G.7] is Theorem 6.7
in Chapter VIII of [AEC]. ANl oilier bibliographic references are given ly
the author’s name followed by a reference nntuber i square brackets. for
example Tate [7, theorem 5.1]. Cross-references within the sane chapter
are given by number in parentheses, such as (3.7} or {4.5a). References
from within one chapter to another chapter or appendix are preceded by
the appropriate Roman numeral or letter, as in (IV.6.1) or (A §3). Execrcises
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appear at the end of each chapter and are numbered consecutively, so, for
example, exercise 4.23 is the 23" exercise at the end of Chapter TV.

Just as in the first volume, numerous exercises have been included at
the end of each chapter. The reader desiring to gain a real understanding of
the subject is urged to attempt as many as possible. Some of these exercises
are (special cases of) results which have appeared in the literature. A list
of comments and citations for the exercises will be found at the end of the
book. Exercises miarked with a single asterisk are somewhat more difficult,
and two asterisks signal an unsolved problem.

Standard Notation

Throughout this hook, we use the symbols
Z, Q. R, C F, and Z,

to represent the integers, rational numbers, real numbers, complex num-
bers, field with ¢ elernents, and p-adic integers respectively. Further, it R
is any ring, then R* denotes the group of invertible elements of R; and if A
i an abelian group. then 4lm] denotes the subgroup of A consisting of all
clements with order dividing m. A more complete list of notation will be
found at the end of the book.



CHAPTER 1

Elliptic and Modular Functions

In most of our previous work in [AEC], the major theorems have been of
the form “Let E/K be an elliptic curve. Then E/K has such-and-such
a property.” In this chapter we will change our perspective and consider
the set of elliptic curves as a whole., We will take the collection of all
(isomorphism classes of ) clliptic curves and make it into an algebraic curve,
a so-called modular curve. Then by studying functions and differential
forms on this modular curve, we will be able to make deductions about
elliptic curves. Further, the IFourier coefficients of these modular functions
and modular forms turn out to be extremely interesting in their own right,
especially from a number-theoretic viewpoint. We will be able to prove
some of their properties in the last part of the chapter.

This chapter thus has two main themes, each of which provides a
paradigm for major areas of current research in number theory and alge-
braic geometry. First, when studying a collection of algebraic varieties ar
algebraic structures, onc can often match the objects being studied {up
to isomorphismm) with the points of some other algebraic variety, called a
moduli space. Then one can use techniques from algebraic geometry to
study the moduli space as a varicty and thereby deduce facts about the
original collection of objects. A subtheme of this first main theme is that
the moduli space itself need not be a projective variety, so a first task is to
find a “natural” way to complete the moduli space.

Our second theme centers around the properties of functions and dif-
ferential forms on a moduli space. Using techniques from algebraic geom-
etry and complex analysis, one studies the dimenstons of these spaces of
modular functions and forms and alse gives explicit Laurent, Fourier, and
product. expansions. Next onc uses the geometry of the objects to define
linear operators {called Hecke operators) ou the space of modular forms,
and one shows that the Hecke operators satisfy certain relations. (One then
takes a modular form which is a eigenfunction for the Hecke operators
ancl deduces that the Fourier coefficients of the modular form satisfy the
same relations. Finally, one reinterprets all of these results by associating
an L-series to a modular form and showing that the L-series has an Euler
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product expansion and analytic continnation and that it satisfies a func-
tional equation.

§1. The Modular Group

Recall {AEC V1.3.6] that a lattice A C C defines an elliptic curve E/C via
the complex analytic map
C/A — BA(C) 1y = 42® — gox — g3
Z— (g.‘)(z; A, 0’ (z; A))

ozh) =5+ X (2o - o)

wEA
wEl

is the Weicrstrass g-function relative to the lattice A. (See [AEC VI £3].)
Further, if A; and A- are two lattices, then we have

Here

En, =0 Ea, if and only if Ay and Az are homothetic.

{See [AEC VI.4.1.1}. Recall A; and Ay are homothetic if there is a num-
ber ¢ € C* such that A; = cAj.}

Thus the set of elliptic curves over C is intimately related to the set
of lattices in C, which we denote by L:

L = {lattices in T}.
We let C* act on £ by multiplication,
e = {ew 1w € A}
Then the above discussion may he summarized by saying that there is an

injection
{elliptic curves defined over (C}

C-isomorphisim

L/C* <

According to the Uniformization Theorem for Elliptic Curves (stated
but not proven in [AEC V1.5.1]), this map is a bijection. One of our goals
in this chapter is to prove this fact (4.3}. But first we will need to describe
the set L /C* more precisely. We will put a complex structure on L/C*,
and ultimately we will show that £ /C* is isomorphic to C.

Let A € L. We can describe A by choosing a basis, say

A = Zuwy + Ty

Switching w) and wy if necessary, we always assume that the pair (wg,w;)
gives a positive orientation. (That is, the angle from wy to w; is positive
and between 0° and 180°. See Figure 1.1.}
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An Oricnted Basis for the Lattice A
Figure 1.1

Since we only care about A up to homothety, we can normalize our
basis by looking instead at

1 w!
—A=Z— +Z.

wo wh
Our choice of orientation implies that the imaginary part of wy farn satisfics
Tm(w feoz} > 0.
which suggests looking at the upper half-plane
H={reC:Im{r) > 0}.
We have just shown that the natural map

H— L/C*,
T A =ET+ Z

is surjective. It is not, however. injective. When do two 77s give the same
lattice? We start with an easy calculation.
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Lemma 1.1. Letabcde R, reC, 7 ¢ E. Then

ar + &Y (ad —bc) Im(7)
o er4d?2

ProoF. Let 7 = s+ . Multiplying numerator and denominator by e +d.

we find

ar +b _ {ac|t]? + (ad + bc)s + b} + {{ad — be)t}i
er+d ler + d|? ‘

|
The ambiguity in associating a 7 € H to a lattice A lies in choosing an
oriented basis for A. Suppose that we take two oriented bases,

A = Fwy + Zwo = T + Zwds.
Then there are integers a, b. e, d, o', ¥, ¢/, d’ so that

W = awn + by, Wy = a'w] + bul.

wh = cwy + dua, wy = c'w) +d'ws.

Substituting the left-hand expressions into the right-hand ones and using
the fact that wq and wq are R-linearly independent, we see that

a by a" WY _(1 0
¢ d ¢ d )TN0 1)
Further, using Lemma 1.1 (with 7 = w4 /ws) and the fact that our
bases are orlented, we find that

0<I w I awt + bwe {ad — be) Im(wy fiwa)
m|—}=Im = —=
wh cw) + die le{wn fwa) +d]2

and so
ad — be > 0.
In other words, the matrix (‘: 2:) is in the special linear group over Z,

a b a 3y . , g
(C d)GSLg(Z)—-{(T 6).&,0’.7,662,&6 3y 1}.

This proves the first half of the following lemma.
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Lemma 1.2. {(a) Let A C T be a lattice, and let w.wy and W), wh be two
oriented hases for A. Then

b

i m e tbe e e matrix (? d) € StalZ)

cwy + dws

Wy

(b} Let 1.7 € H. Then A-, is homothetic to A, if and only if there is a

matrix
ar) + f

ety +d

b i)
((j d) € SLy(Z)  such that 7o =

(c} Let A C C be alattice. Then thereisar € H such that A is honothetic
oA, =Z7+ 2.

ProoF. (a]} This was done above.
(b) Using (a), we find that
A, is homothetic to A,
== Ty + L = Zary + Lo for some o € CF,
Ty = @exT1 + by a b ,
80I0e SL2(Z),
= { 1 = cam + do for some (c d) € SL2(Z),
at; +b

= To = .
e+ d

Conversely, if 2 = (a7 +b) /{ct1+d), let & = cry +d. Then again using (a},
we find

al., =Elan + b8+ Zen+d)=Zn +Z = A
Hence A,, and A,, are homothetic,

{c) Write A = uZ + wsZ with an oriented basis and take 7 = w) fws.
]

In view of Lemma 1.2(b], it is natural to define an action of SLy(Z)
on H as follows:

er +d cd

The fact that <7 is in H follows fromn Lemma 1.1, and the fact that this de-
fines a group action is an easy calculation. This action gives an equivalence
relation on the points of H, and Lemma 1.2{b} tells us what the cosets are.
There is a bijection

~T = ar +b for v = (a b) € SLyf(Z) and 7 € H.

SL2 (Z)\\H un(-!—t(:'tme !CJH/Ctg

7 —_— ALl

We can actually do a little bit better, since the matrix

(e 4

acts trivially on H.
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Definition. The modular group, denoted I'(1}, is the quotient group
T'(1) = SLo(Z)/{£1}.

Although T'(1) is the quotient SL(Z)/{+1}, we will generally just
write down matrices and leave it to the reader to remember that. (_01 90 1)
is equal to ([1] ?) For an explanation of the notation I'(1), see exercise 1.6
where we define groups I'(N) for all integers N > 1.

Remark 1.3. Note that £1 are the only elements of SLz(Z} which fix H.
For suppose that v = (f,.“ 2) satisfies v7 = 7 for all = € H. This means

that
crgw(dma)‘r—h=0 for all 7 € H,

from which we conclude that ¢ = 8§ =0 and a == d. Hence ~ = 1.

Remark 1.4. The group ['(1) contains two particularly important ele-
ments, which we will denote

0 -1 1 1
Their action o H is given by

S(T):—%, T(ry=v+1L

Notice also that the elements S and ST = (? _11) have finite order,

2 3
, 0 -1 0 -1
Szz(l o) =1 and (5?)32(1 1) =1,

so T'(1) contains finite subgroups of order 2 and 3.

The next proposition provides us with a good description of the quo-
tient space I'(1)\H.
Proposition 1.5. Let ¥ C H be the sct

F={reH:|r|>1 and |Re(r) <1}

(Sec Figure 1.2 for a picture of ¥ and some of its translates by clemerits
of T'{1}).)

{a) Let 7 € H. Then there is a v € ['(1) such that v7 C F.

{b) Supposec that both v and ~7 are in F for some v € I'(1), v # 1. Then
one of the following is true:
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w17y

F and Some of Its T(1)-Translates
Figure 1.2

(i) Re(r)=—-% and yr=7+1
(i1} Re(r} =1 and ~r=7-1
(i) =1

and ~7=-—-1/7.
{¢) Let + € F, and let

Iry={veT1): 97 =7}

be the stabilizer of 7. Then

{'l‘ S} Jf‘]‘ = 3';

I{r) = {1,8T.(ST)?} ifr=p= e2m3,
{1,TS.{T9)%} ifr = —p == 25,
{ 1 } otherwise.
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PROOF. {a) We prove something stronger. Let I be the subgroup of I'(1)
generated by § = ([1] _0]) and T' = ((1) %) and let 7 € H. We wil] prove
that there is a y € I such that y7 ¢ F.

For any v = (? 3) € T'{1), Lemma 1.1 says that

Im(r)

Iln('ﬂ') = m

Write 7 = s + #t. Since £ > 0, it is clear that
ler +d? = (es + d)é + (et} — o0 as |} + |d| — 0.

Hence, for our fixed 7, there is a matrix v € I which mazimizes the
quantity Im(~g7). Next, since T"7 = 7 + n, we can choose an integer n so
that
1
|Re(T“')«0'r)| < 35

We set v = T™~yg and claim that yr € F.
Suppose to the contrary that vr ¢ F. By construction, |Re(‘rr)| < %
s0 we must have |yr| < 1. But then

Im{~r}
fyrl?

Im{S~7) ~ > Im{yr) = Im(vyy7),
contradicting the choice of ~p7 to maximize Im(ypr}. This contradiction
shows that vr € F, which completes the proof of (a).

{b,c) We may assume that Im{y7r} > Im(r}, since otherwise we replace

the pair 7,47 by the pair y7, v~ !(yr). Writing y = (g ?i) as usual, we

have
Im(7}

Im{r) < Im(yr) = or b so |er +d| <.

Since Im(7) > $v/3, we must have || < 2/v/3, so |¢| < 1. Replacing «
hy — if necessary, it suffices to consider the cases ¢ = 0 and ¢ = 1.

Then a = d =1 and y7 = 7 + b. Since
|Re{T)| < % and {Re{yr)}| = |Re(r + b}| < %.

it follows that
b=+l and Re(7) = F=.

vl

c=1
By assumption, |7| > 1 and |t +d| < 1. Writing T = s+ it, this means that
1<s? 442 and (s+dy>+#2 <1

50
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1< +2<1-2ds—d? =1 -d{d+1) - d{2sF1).

Since d € Z, the quantity d{d £ 1) is non-negative. Similarly since |s] < é—,
the quantity d(2s ¥ 1} is non-negative for one of the choices of +/— sign.
We conclude that

Tl =2 +t2 =1 and a(2s + d} = 0.

We now look at several subcases.

Then v = (ff _01)? and since |7| = 1, we have

1> [Re(y7)| = |Refa — 77 1) = la - 5|

Hence one of the following three cases holds;

a=10, ls] < % |7| =1, v =5, ¥T = —1/T;
= 13 g = %3 T=-p 7= T‘g: A.'r(_ra) = _p!
a=-1. s=-i  T=p  ~y=(ST) vp = p.

o= Ldzhl,b‘:%

Then v = —-p, v = ‘f _“_I l), and 77 = a + 7, 80 just as in the previous

case there are two possibilities:
a=0, ~y=(T85)? ¥(=p) = —p:

a=-1, v= (_11 .9]_)3 =P} =p.
O
The geometric deseription of the quotient space T'{1}\H provided by
Proposition 1.5 can be used to give a quick proof of the following purely
algebraic fact.
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Corollary 1.8, The modular group (1)} is generated by the matrices

. {0 -1 _ (11
b—(l {)) and T—(O l)'

PrROOF. As in the proof of Proposition 1.5(a), we let I be the subgroup
of T{1} generated by $ and 7. Fix some 7 in ihe interior F, such as 7 = 24,
Let + € T'(1). From the proof of {1.5a) there is a 7' € T such that 4'(yr) €
F. Thus 1 is in the interior of . and {(v'v)7 isin J. We conclude from (1.5b}
that 44" = 1. Therefore v = v/~ € I, which proves that T = I'(1}. O

Remark 1.6.1. [t is in fact true thai I'(1} is the free product of its sub-
groups (5 and {ST) of orders 2 and 3. See exercise 1.1.

§2. The Modular Curve X (1)

The quotient sprce T'{1)\H classifies the set of lattices in T up to homoth-
ety. Proposition 1.5 provides a nice geometric description of T(1)\H. The
vertical sides of the fundamental domain F are identified by T, and the
two arcs of the circle {7] = 1 are identified by S, as shown in Figure 1.3.
Making these identifications, we see that as a topological space, T{1}\H
looks like a 2-sphere with one point missiug. Our next tasks are to supply
that missing point, define a topology, and make the resulting surface into
a Ricinann surface.

Rather than adding a single point to ['(11\H, we will give a more gen-
eral construction which is useful for generalizing the results of this chapter.

Definition. The erfended uwpper half-plane H* is the union of the upper
half-plane H and the Q-rational points of the projective line,

H = HUPF'(Q) = HU QU {x}.
One should think of PY{{}) as consisting of the rational points on the real

axis together with a point at infinity. The points in PHQ) are called the
cusps of H*.

There is a natural action of T'{1) on P'(Q) defined by

a by |x| _ |ar+by
e d}) \y|  |er+dy|’
{Ilere we use [fi] to denote homogeneous coordinates for a point in P1H{().)
Thus T'{1} acts on the extended upper half-plane H*. We define
Yi{i} =1"({1)\H and X(1)=T{10H".

The points in the complement. X {1} ~ Y (1} are cailed the cusps of X(1).
We now show that X (1) has only one cusp and caleulate its stabilizer,
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topologicai

The Geometry of T'{1)\H
Figure 1.3

Lemma 2.1. (a)
X~ ¥Y{(1) = {c}.

(b) The stabilizer in I'{1) of oo € H* is

I{oo) = {(.}, i’) e r(1)} —~ (the subgroup of I'(1) generated by T).

Proor. (a) Let [J] € P'(Q) be any point in H* \ H. Since x and y are
homogeneous coordinates, we may assume that x,y € Z and ged{xr,y) = 1.
Choose a,b € Z so that ax + by = 1. Then

(3 e o[-l

Therefore every point in H* ~ H is equivalent {under the action of I'(1))

0 00.
(b) We have (g 3) [(lj] = [é] if and only if ¢ = 0. Hence (g 3) has the

form ({1) il’ . O

Topologicalty, X (1) looks like a 2-sphere. To make this precise, we
need to describe a topology on X (1). We start by giving a topology for H*.
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M o e M W M M R A M Rl A e M e e

Some Open Sets in H”

Figure 1.4

Definition. The fopology of H® is defined as follows., For r € H, we take
the usual open neighborhivods of 7 contained in H. For the cusp x:, we
take as a basis of open neighborhoods the sets

{reH: Im(r) » v}uix} for every x = (.
For a cusp 7 #£ o0, we take as a basis of open neighborhoods the sets
{the interior of a circle in H tangent to the real axis at 7} U {7}
{See Figure 1.4.]

Remark 2.2.1. For any cusp 7p # 2. Lemma 2.1{(a) says that there is
a transformation + € (1) with voc = 7. Then one easily checks that
sends a set of the form {In{r} > x} to the interior of a circle in H tangent
to the real axis at 7. (See exercise 1.2.) In other words, the fundamental
neighborhoods of oc and of the finite cusps are sent one-to-another by the
elements of T'(1}.

Remark 2.2.2. From the definition, it is c¢lear that distinet points of H*
have disjoint neighborhoods. Hence H* is a Hausdorff space. It is also clear
from {2.2.1} that the elemenis of T{1) define homeomaorphisius of H*.

The next lemna will help us deseribe the topology on the quotient
space A{1) = T(1)WH*. 1L will also be used later to define a complex
structure o X (1}
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Lemma 2.3. For any two points 7, 72 € H*, lef
I, my={vyeT(): v ==},
and similarly, for any two subsets I, Uy C H*, Iet
I(Th.Uy) = {7 € T(1) : 403 N Uy # 0},

Then, for all 7,75 € HY, there exist open neighborhoods U . Us € H”
of Ty, T respectively such that

I{U Uy) = I{1y.72).

(In other words, if U7 and Uy have a point in common, then necessar-
iy vm = m.)

Proor. For any &, € I'(1} we have
Hor, 8m) = 3 (r.m)a ! and Healiy, 3U5) = gIH{U U™l

It thus suffices to prove the lemma for any ['{1)-translates of 7, and .
Using {1.5a) and (2.12), we may assume that

.73 € F =F U {x}.
From {1.5) and (2.1}, we have a good description of how ['{1} acts on H*

and F*, as illustrated in Figure 1.2, We consider three cases. depending on
whether or not our points are at ~c.

T1.Te €F

From (1.5} {or Figure 1.2} we see that I{F.F) is finite; explicitly,
HF.9) = {1, T, TS.TST.(TS), 8 8T, ST, (STY2. T}
Let
g = Interior( U '}-"3'"),

yEIF.F)

Then § is an open subset of H containing F. Further, 7(3, &) is finite, since

169¢  |J ImFwemnH= U  wiGE It

1. E (T g Ef{FF)

Next we observe that if v € £{G,8) ~ 7{r,72), s0 77| # T2, then we
can find open sets V., W, in H satisfying

yreV,, mmeW, and V,OW,=40
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Let
Ui=9n (] 'V, U=8n [ W,
+£7{G,5) YEH(5,9)
gL (ry,T2) yEI(Ti,72)

By construction, 7, € U} and m € Us, so
I{m,me) C I{UY, Uy).
Suppose that they are not equal, say v € IH{U,Uy) ~ {7y, 72). Then
+ € G, 8) ~ I{ry. 1), and so v € v "W, W) = IV, W,)v.

But V, N, =0, s0 1 ¢ I(V,.W.,}). This contradiction shows the other
inclusion and completes the proof that 1{m, ) = I{U, Ua).

Let {fy be an open disk centered at 7y, As in the proof of IProposition 1.5,
we observe that the quantity

Im(r)
k=xr{l71)= sup Im{yr)= su —_—
() retlfjl om) ret{')l ler + dj?
Tel(1}) (v 4)er(y

is finite. (Note that if 7 = s + 4 € U4, then 5 and ¢ are bounded, so
ler +d|? = (cs+d)2+(ct)? — o as |e|+|d] — o0 uniformly in € Uy.)

Now
Us={r e H:Im(r) > x} U {oc}

will be a neighborhood of oo satisfying

~UhnUz =0 forall v € T(1).

Hence
I{U,Up) = @ = I{r1,72).
Let

U = {r e H:Im{7) > 2} U {x}.
From (1.5} {or Figure 1.2) we see that the only elements of I'(1) which

take some point in Uy, to another point in Uy are powers of T. Hence
from (2.1b) we conclude that

U, Uno) ={T* € T(i) : k € Z} = I(00, 00}.
a
Next we define a topology on X(1) and use Lemma 2.3 to show that
X{1}) is a Hausdorfl space. Note that this fact requires proof; it is not
immediate from the fact that H* is Hausdorff. (See exercise 1.3.)



§2. The Modular Curve X (1) 19

Definition. Let
¢ H* — I'(1)\H* = X (1}

be the natural projection. The quotient topology on X (1) is defined by the
condition that Y € X (1) is open if and only if ¢~ {U/) is open. Equivalently,
it is the weakest topology for which ¢ is continuous. Note that ¢ is also an
open map, that is, it takes open sets to open sets. For if W C H* is open,
then so is
ooy = |J W
FeL(1}

Praposition 2.4, X(1) with its quotient topclogy is a compact Hausdorff
space.

Proor. We start by checking that X{1) is compact. Let {{U/;};c7 be an
open cover of X(1}. Then {qﬁ‘l(Ui)}ief is an open cover of H*. In par-
ticular, some ¢~ (U} contains oo, say oo € ¢~ (U, ). By definition of the
topology on H*, there is a constant £ > 0 so that

¢~ NU,) 2 {r € H:Im(r) > «} U {cc}.

Henee the set F~ ¢~ (U}, ) is compact (it is closed and bounded}, so there
is a finite subcover

FNo™HUL) C o (Uy)u U (Uy,)

Then U3, U ---UU,, covers X(1).

Next we verify that X (1) is Hausdorff. Let 2,22 € X(1) be distinct
points, and let 7,72 € H* be points with #(7;) = x;. Then v, # 72 for
all ¥ € T'(1}, so in the notation of (2.3), I{r),72) = 0. From (2.3), there
are open neighborhoods Uy, Uz € H* of 7y, 7 satisfying I{U,,Uz) = B
Then ¢(U)}, #{U,) are disjoint neighborhoods of z;, xs. m]

Making X (1) into a compact Hausdorff space is a good start, but recall
that our ultimate goal is to give X (1) a complex structure. We recall what
this means,

Definition. Let X be a topological space. A complex structure on X is
an open covering {U;};c; of X and homeomorphisms

Wi Uy = 9 (U;) c C
such that each ¥;{U;) is an open subset of C and such that for all 2,5 € F
with U7, N U; # #, the map
Yiow, L p(UinUy) — w(UiN ;)

is holomorphic. The map ¥, is called a local parameter for the points in U;.
A Riemann surface is a connected Hausdorff space which has a complex
structure defined on it.
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Theorem 2.5. The following defines a complex structure on X{1) which
gives it the structure of a compact Riemann surface of genus :

Let « ¢ X (1}, chuose 1, € H* with ¢(7;) = x, and let U, C H® be a
neighborhood of 1, satisfving

U, UL = Ime).

{(Such a U, exists from Lemma 2.3 with Ty = mp =7 and U, = U N 5.}
Then

Hr)\Us: C X(1)

is & neighborhood of x, so {I(TI)\U,I}

Let r = #1(1;), and let g, be the holomorphic isomorphism

seX(1) 15 an open cover of X(1).

T Ty

g9r :H— {zeC:jz| <1}, QI(T):T—?‘T'

Then the map
Yy I(Tl)\{}a — C, Wy (Q’b(T)J = !h.-(?')r

is well defined and gives a local parameter at x.
T =00

We may take 7, = o, so [{r;) = {T*}. Then

dméT L
et e o) = {7 460 2D

is well defined and gives a local parameter at x.
Remark 2.5.1. If i(r,} = {1}, then the natural map
¢ Up — I{r, \U; C X(1)
is already a homeomorphism, so
e =7 I )\Uz — Us

is a local parameter at x. Thus the only real complication occurs when z
equals ¢(7), d{p), or ¢{o0). (See also exercisc 1.4.)
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Remark 2.5.2. The following commmutative diagrams illustrate the defi-
nitions of the local parameters 4, : I, WU, — C.

&

Ur ~— Hm)\Ur Uy — Hr\U,
JV Hr Jv e e \ J'.,:-'.I
c = C C
r#F oo, gulr)= % F =00, goolT) = €57

ProoF {of Theorem 2.5). We already know that X (1} is a compact Haus-
dorfl space (2.4}, and it is clearly connected due to the continnous surjec-
tion ¢ : H* — X{1}. Further, an inspection of Figure 1.2 shows that X (1)
has genus 0. {For those who dislike such a visual argument, we will later
give an explicit map j : X(1) — P{C}. See (4.1} below. The interested
reader can check thal our prool that § is analytic does not depend on the
a priori knowledge that X (1) has genus 0. Then the elementary arguinent
deseribed in exercise 1.11 shows that j is bijective, henee an isomorphisiu. )
By construction, the set

(—D(Dr’r) = I(Ejr:il"? {I)\D'i = I{T.).‘}\{Jr.r
is a neighborhood of 2. We must verify that the maps
g I(TJ')\UI" — C

are well-defined homeomorphisms {onto their images) and that they satisfy
the compatibility conditions for a complex structure.

We begin with a lemma which shows that the function g, (7} behaves
nicely with respect to the transformations in f{7.}.

Lemma 2.6. Leta € H. let R : H — H be a holomorphic map with
R{a) = a. and let g(7) = {r ~ a) /(7 — @). Suppose further that

r tiles
im |
Re--oR(t)=71

and that v > 1 is the sinallest integer with this property. Then there s a
primitive r*'-root of unity ¢ such that

glRT)Y = CoglT) for all T € H.

PRrOOF. Note that ¢ is an isomorphism

¢:H—=-{zeC:|z{<1}
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with g{a) = 0, so the map

G=goRog ' {zeCT:|z] <1} —{zeC:

z

< 1}

15 a holomorphic antomorphism of the unit disk with G(0) = 0. It follows
that G(z) = cx for some constant ¢ € C. (Sec, e.g., Ahlfors [1].) Since
the r-fold composition G e - o Gz} = 2 and r i3 chosen minimally, we
concinde that ¢ is & primitive #™M-root. of unity. O

We resume the proof of Theorem 2.5. Supposc first that £ o, Note
that from (1.5}, I{r.) is cyelic, say generated hy R. Then {2.6) ituplies that

¢.(Rr)y={g(r)  forall 7 € H,
where ¢ is a primitive rtP-root of unity. Hence
U ((RT)) = go(R7) = (" gu(r) = v, (6(r)).

50 i, is well defined on the quotient f({v, )\U,.
Next we check that 3, s injective. Let 1.7 € /.. Then

volo(n)) = wa(o(n)) = gu(n) = g.(r2)"
= g ()=o) forsome 0 <i<r,
= g.(11) =g.(R'm2) for some 0 < i< r,
— 71 = R, forsome0<:<v,

== d{n} = ().

Hence #:, is injective. Finally, it is clear from the commutative diagram
given in (2.5.2) that both 32, and ¥, ! are continuous, since the maps ¢, g,.,
and z — 2" are all continuous and open. Therefore 4, is a homeommorphisim,

The case r = oc is similar. From (2.1b} we know that f{>c) = {T%}
consists of the translations 7 — 7 + & for & € Z. Hence u'-',.f.((;')(r}) = glmit
is well defined and injective on the quotient {{>c)\U'.. And, as above, ¢,
and u’;;l are continuous, since both ¢ and 7 — ™7 are continuous and
open. Hence 22, is a homeomorphisn.

It remains to check compatibility. First let ooy € X (1) with 2.y # .
Then

Uy oy (2) =4y 000 (o p)Hz) = grogrt (7).

Now g, and g, ' are holomorphic, so the only possible problem would he
the appearance of fractional powers of z. Let  be the primitive r,"'-root
of unity such that g.(R,7) = {g.(r). Then using the fact that o~y = ¢

for any -~y € T{1), we find

gy og; (¢z) =wy000 R 09 (2) = i, 0009, (z) = g 0 g7 (2).
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It follows that g,* o g7 {2} is a power series in 2™, which proves that the
composition ¢, o ¥, '(2) is holomorphic. {Note the importance of knowing
that { is a primitive r,'"-root of unity.)
By exactly the same computation, taking g..(7) = exp(2wit), the
function
P 02 Hz) = oxp (27.'{_(;;1(21"'""))

is holomorphic.
Finally. we note that
g;'v (r+ly=v ool {r)=y,o0(r)= g;!f {r),
$0 g,"(7) is a holomorphic function in the variable ¢ = €27, {Note T is
restricted to U, MU, it is not allowed to tend toward icc.) Hence the
transition map

. 1
Gy o (z) = g (4 log )

2mi

is holomorphie.
This completes the proof that the open sets 7{r,. )\, and the maps

Wy I(TJ:J\UJ; — C

define a complex structure on X (1). D

§3. Modular Functions

in the previous section we showed that the quotient space X (1) = I'{1)\H*
has the structure of a Riemann surface of genns 0. It is natural 10 look at
the meromorphic functions on this Riemann surface.

Example 3.1. Recall that to each 7 € H we have associated a lattice A, =
Z7 4+ Z and an elliptic curve C/A,. From Lemma 1.2(b} there is a well-
defined map (of sets)
r[{Ij\H — iC

T — J (LC/’\*) 4
We will show later (4.1) that with the complex structure described in {2.5),
the j function is a meromorphic function on X{1) which gives a complex
analytic isomorphism

7 X(1) -2 PYE.

Every meromorphic function f on X (1) is thus a rational function
of j, that is, f € C(7). In order to have a richer source of functions, we will
study functions on H that have “nice” transformation properties relative
to the action of I'(1} on H. Although these transformation properties may
loak somewhat artificial at first, the corresponding functions actually define
differential forms on X(1}. so they are in fact natural objects to study.
(See (3.5) below for further details. )
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Definition. Let & € Z, and let f{7} be a function on H. We say that f is
weakly modular of weight 2k (for T'(1)) if the following two conditions are
satisfied:

{i) f is meromorphic on H;

(il) fy7) = (er + ) f(r) for all v = (f;_ 3) eT(1}, 7 ¢ H.

Remark 3.2, Note that a function satisfving f{y7) = {er+d)* f{7) for an

odd integer x is necessarily the zero function, since taking v = (_Ul _01)

vields f{7) = —f(7). This explains why we restrict attention to even
weights.

Remark 3.3. Since (1.6} says that I'(1) is generated by the two matri-
ces § = ? 'E)l and T = (1) } . & meromorphic function f on H is weakly

modular of weight. 24 if it satisfies the two identities

o =fin) ad f(Z) =0,

From the first it follows that we can express f as a function of
g = €27
and f will be meromorphic in the punctured Qisk
{g: < |g| <1}).

Thus f has a Laurent expansion f in the variable ¢, or in other words, f
has a Fourier expansion:

s
j(q} = Z G-rr.qn‘
n=—n
Definition. With notation as in (3.3), f is saild to be

meromorphic at o0 if f = Z a,i"  for some integer ny,

TE=—1Liy

G
holomorphic at oo if f = z g™,

=0

If f is meromorphic at o, say f = 0_,,g~ " 4 - - with a_,,, # 0, then the
order of f af o is

orde (f} = ordy—o{f) = —ng.
If f is holomorphic at oo, its vafue at o0 is defined to be
floc) = f(0) = ay.

Definition. A weakly modular function that is meromorphic at oo is called
a rmodular function.
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Definition. A modular function that is everywhere holomorphic {(i.e., ev-
erywhere on H and at o) is called a modular form. If in addition f{oo) = 0,
then f is called a cusp form.

Example 3.4.1. Let A be a lattice. The Eisenstein series

1
Gop(A) = Z e

wEA
wEN

is absolutely convergent for all integers k > 2. (See [AEC VL.3.1]) For 7 €
H we let

T K l
Go(7) = GalAr) = Y Trr £ Ay
mmnga :

{m o )£ (0.0}

By inspection,

Gapleh) = ¢ Gae(A) for any ¢ € C~,

whereas
ar+b 1 1
A= = Ziar + b + Zlc 4} = A
! ZCT+(1+Z C7+d( (a7 +b) + Z{er + J) o+ d
Hence

Gop(y7) = Gar(Asr) = Gan(ler + d) 1AL
= (o1 + d)* Go(A,) = (er + A Gor(1).

Thus Gay, is weakly maodular of weight 2&.

Proposition 3.4.2. Let k > 2 be an integer. The Eisenstein series G,
is a modular form of weight 2k. Its value at oc is given by Gag(oo) =
2((2k), where {(s) is the Riemann zeta function. (For the complete Fourier
expansion of Gy, see (7.1}.)

PrOOF. We have just shown that Gay is weakly modular, so it remains to
show that Gy is holomorphic on H and at oc and to compute its value at oo.
Note that if 7 is in the fundamental domain F deseribed in Propesition 1.5,
then

lmT + n|* = m?|7)? + 2mnRe(7) +n® = m? — mn +n?® = mp — n*.

Hence the series obiained from Gazx{7) by putting in absolute values i
dominated, term-by-term, by the series obtained from Gzx(p) by putting
in absolute values. Therefore 74 is holomorphic on F. But H is covered
by the ['(1)-translates of F, and Gor{v7) = (¢7 + &) *Gar(7). 50 Gax is
holomorphic on all of H.
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Next we look at the behavior of Gep(7) as 7 — i, Since the series
for Gy converges uniformly. we can take the limit term-by-term. Terms

of the form (mr + 7))~ with m £ 0 will tend to sero, whereas the others
give n~ 2%, Hence
=~ 1
lim Gop(T) = — = 2({2k).
T HL{ ) Z T?,.z'i“ qi )
==
w7 )
This shows that G is holomoerphic at oc and gives its value. 0

Example 3.4.3. It is customary to let
ga(7) = 6064 (7) and gs(t) = 140G4(7).
{See [AEC V1.3.5.1].) The (modular) discriminant is the function
A7) = go(7)° = 27ga()*.
It is o modular form of weight 12, since from {3.4.2) we kuow that (74(7)

and Gg(7) are modular forms of weights 4 and 6 respectively.
Using the well-known values (see (7.2) and (7.3.2))

?T4 ﬂ.ﬁ
¢{4) %0 Rl 6 = o
we find thal
) 4t . o &xb
ga{oc) = 120¢(4) = 3 (o0 = 280¢(6) = 5 Afnc) = 1.

Hence A{7) is a cusp form of weight 12, We will see below (3.10.2) that it
is essentially the only onc.

Remark 3.5. Let v = ('f 3) € SL2(Z), and let d7 be the usnal differential
form on H. Then

dr = {er +d)%dr.

{f("}‘T)Zd((IT+b) _ad—be

er+d) (et +d)?

Thus dr has “weight -2." In particular, if f{7) is a modular function of
weight 2k, then the k-form
F(r)(dn)*

s T(1)-luvariant. It thus defines a k-form on the quotient space I'(134H, at
least away from the orbits of ¥ and g, where the corplex structure is & bit
more cornplicated.
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We will soon show that f(7) {(d7)* actually defines a meromorphic k-
form on X{1). We begin with a brief digression concerning differential
forms on arbitrary Riemann surfaces. In particular, formula {3.6b) below
will be crucial in our determination of the space of modular forms of a
given weight.

Definition. Let X/T be a smooth projective curve, or, equivalenily, a
compact Riemann surface. Recall that €1y is the C{X)-vector space of
differential 1-forms on X. (See [AEC II §4].) The space of (meromor-
phic) b-forms on X is the k-fold tensor product

S!f‘ = Sl'f,_:;;' = Q\’ ®"Cf,\'] v 1:;73_1:{)(} QX.

Q% is a 1-dimensional T(X )-vector space [AEC 11.4.2a). Notice that if we

=
set Q% = C(X), then @ Q% has a natural siructure as a graded C(X)-
k=0
algebra,
Let w € %, 2 € X, and choose a uniformizer # € C(X) at x. Then

w = g(dt)*
for some function g € C{X). We define the order of w at 2 to be
ord, (w} = ord, (g).

It is independent of the choice of ¢. (If # is another uniformizer, then ap-
plying [AEC [1.4.3b] we find that ot /d# is holomorphic and non-vanishing
at 2.} Just as with 1-forms, we define the divisor of w by

div(w) = " ord.{w)(r) € Div(X});

TEX
we say that w is regular (or holomorphic) if
ord,(w) =0 for all z € X.

Proposition 3.6. Let X/C be a smooth projective curve of genus g,
let k > 1 be an integer, and let w € Q.
fa) Let Kx he a canonical divisor on X [AEC II §4]. Then div{w) is
Lincarly equivalent to kK x.
(b)

deg{divw) = k(2¢ — 2).

ProOF. (a) Let € % be a non-zero 1-form with divisor divin) = Kx.
Then
F=uw/y® e =CX)
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is a function on X, so
div{w) = kdiv(y) + div(w/7*) = kK x + div{F)

is linearly equivalent to kK x.
(b} From (a), deg{divw) = kdeg(Kx). Now apply the Riemann-Roch
theorem [AEC IL.5.4b], which says that deg{Kx) = 29 — 2. O

The next proposition gives the precise relationship between a modular
function f of weight 2k and the corresponding k-form f(r) (dr}~.

Proposition 3.7. Let f be a non-zero modular function of weight 2k.

(a) The k-form f(7){d7)* on H descends to give a meromorphic k-form wy

on the Riemann surface X(1). In other words, there is a k-form wy € Q’)‘((l)

such that
¢ {ws) = f(r) (dr)¥,
where ¢ : H — X (1} is the usual projection.
(b} Let x € X(1), and let 7, € H* with ¢(r;} = x. Then

ord,, {f) if x # ¢i), ¢{p) plo0);
Lord;(f) — 3k if T = ¢(i);

%ordp(f) -~ %k if x = ¢(p);

orde(f) — & if £ = ¢(c0).

ord, (wy) =

Remark 3.7.1. If f is a modular function, then it is easy to see that the
order of vanishing of f at 7 € H depends only on the I'{1)-equivalence class
of 7. The point is that since f{y7) = (er + d)** f(7) and er + d # 0, we
have

ord,{f} = ord, (f ov™!) = ord,. ().

Thus the expression in {3.7b) really does not depend on the choice of the
representative 7.

PRrOOF. (a) As we have seen, the k-form f(r){dr)* is invariant for the
action of I'(1) on H. We must show that for each z = ¢(7;) € X(1},
the k-form f{7) (d7}* descends locally around x to a meromorphic &-form
on X(1), and that it vanishes to the indicated order. Clearly, we will
need to use the description of the complex structure on X(1} provided by
Theorem 2.5. We consider two cases.

Using the notation from (2.5), there is a commutative diagram

Uy ""—qb—_’ I(Tx)\Ux

J» [+

c — C
z—rw=z"
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which defines a local parammeter

at @, We write

T—Tr

229.:.—(’*’)2?__“-. : 9. w1

so uwr = 27 is our local parameter.
Let R be a generator of I{7.). Then from {2.6),

g.(Rr) =(g(r). andso  Rr=Rog;'(z}=g;"(C2)

Here ¢ is some primitive r

Now

-root of unity.

(9:1(2)) (dg; ()"

Fryidrys = flg;!
flor (20 gr ) (2)F (d2)* = F(z2) (dz)*,

where F(z) = f(g\.:l(z})g;:lj{z}"' is a meromorphic function of z. Note
further that since g, is a local isomorphism. we have

UI'd-,———,—_‘_(f) = Ordzz()(F}'

We must show that F{z) (d2)* is a ineromorphic function of w = 2”.
To do this, we use the fact (3.5) that f(7) (d7)* is T(1)-invariant. This
implies

F(z){d2)* = f(r)(dm)* = f(R7) (dRT)*
= £{g, (¢} (dgz 1 (C2))" = F(C2) (d¢2)* = F((2)¢H (dz)*,

In particular, the function z#F(z) is invariant under the substitu-
tion z = (z. Since { is a primitive r*'-root of unity, it follows that

AF(2) = Fi(z")

for some meromorphic function Fy(w). Hence

F(z) (d2)F = 7 * 250" F(2) (d(2" )"

= :r_“’z_rkﬂ(zr) (d(z’”}) =R R (ur) (du:)k,

which proves thai, f(7) (d7}* descends to a meromorphic k-form wy in a
neighborhood of .
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Finally, we compute
ordr=-, f{7) = ord,; = F(z) = ord,—q 27RE (") = —k+rord=y FL(w);
ord, wy = ordy—g r R R (w) = —k + ordyeg By ().

Eliminating ord,,=g Fi () from these two equations yields

1
ord, wy = ;ordrr f- (l - 1) k.
; -

It only remains to note that from (1.5),

1 if = # &), &ip),
r=¢ 2 ifr=a),
3 if x = o(p).

Again using (2.5), we have a local parameter

I e\ U — C, w{a(r)) = 3™,

Let ¢ = €*™ be the local parameter at oo, and write f(r) = f{q) as
in (3.3). Since dr = (2mwig) "' dq, we have

7){dr)* = flgH2mig) ™ (dg)".

By definition, f is meromorphic at ¢ = 0, so f{7) (d7r}* descends to a
meromorphic k-form wy in a neighborhood of >¢. Finally,

ordy, wy = ordy—g f{g}(2mig) ™F = ord (f) - k.
O
Proposition 3.7 describes the local behavior of the k-form wy € SZ\(I

The Riemann-Roch theorem, specifically Proposition 3.6(b), gives a global
description of its degree. Combining these results, we obtain thie following
important formula.

Corollary 3.8. Ler f be a non-zero modular function of weight 2&. Then

k
old(f)—l— ord{,(f)—l—ord Af)+ Z ord-(f} = G
TEL{1YH?
TEL S
{Here the sum is over any set of representatives for T(1)\H* exchiding the
equivalence classes containing i, p, and .}

ProoF. First note that from (3.7.1), the sum is independent of the choice
of representatives for T{1)\H*. Let wy € S'E’j\,m be the k-form corresponding
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to f(7){d7)* as in Proposition 3.7. By the Riemann-Roch theorem {3.6b)
and the fact that X (1) has genus 0 (2.5}, we find that

deg(divwy) = —2k.
On the other hand, {3.7) gives
deg{divwy) = (%ordif — ‘—ik) + (% ord, f — %k)
+lordee f—k)+ ) ord.(f).
Tel(1)\H*
T, 000

Equating these two expressions for deg(divwy) gives the desired formula.
]

Using Corellary 3.8, we can give a good description of the space of all
modular forms of a given weight. We set the notation

My — {modular forms of weight 2k for I'(1)},
MY, = {cusp forms of weight 2k for T'(1}).

Note that both Mgz, and MS, are C-vector spaces.

Example 3.9. For all £ > 2, the Eisenstein series Gor(7) is in Mz, but
is not in MJ.. The modular discriminant A{r) is in MJ;. See (3.4.2)
and (3.4.3).

Theorem 3.10. (a) For all integers k > 2,

Mo = M3, 4+ CCay.

(b) For all integers k, the map
Max_12 — M3, f—7A

is an isomorphism of C-vector spaces.
{¢) The dimension of My, as a C-vector space is given by

0 ifk < 0;
dim Moy, = { [k/6) ifk >0, k=1(mod 6);
(k/6+1) ifk>0, k% 1(mod 6).

(The square brackets denote greatest integer. For an alternative proof of (c)
using the Riemann-Roch theorem, see exercises 1.8 and 1.9.)

PROOF. (a) By definition, M9, is the kernel of the map

M‘zk I Cs f L f(OCI),
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50 fbfgkmfﬂgk has dimension at most 1. On the other hand, for & > 2, the
Eisenstein serics (o is in My, and is not in M{,)k. (See {3.4.2).) Hence

Moy = M3 + CGa  forall k>2.

{b) First we note that
Ga(p) = (p+1)'G4(STp) = p°Galp) and Go(i) = i®Gs(Si) = —Gsl(i),

which implies that G4{p) = 0 and Gg(z}) = 0. Since G4 and Gy are modular
forms of weight 4 and 6 respectively (3.4.2}, it follows from {3.8) that they
have no other zeros in T'(1)\H. 1n particular,

Alp) = (60C4(p))" — 27(140Gs(p))” = —29335272C4(p)? # 0,

so A(T) is not identically zero.
Thus A{7) is a non-zero modular form of weight 12 with A{cc) = 0.
It follows from (3.8) that
ordy (A} =1

and that A{7) # 0 for all 7 € H. {For an alternative proof that A{7) £ 0
for all 7 € H, see [AEC VI.3.6a).) Therefore 1/A has a simple pole at oo
and no other poles, so the map

M3, — M2,

f—F/a

is well-defined. (The main peint is that as long as f vanishes at oo,
then f/A will still be holomorphic at oc.} This gives an inverse to the
map in (b), so MJ, = Mak_12.
{c) If k& < 0, then (3.8} implies immediately that Max = 0. (Note that all
of the terms in the left-hand sum are non-negative.) Similarly, if f € M,
then (3.8) says that f has no zeros on H*. Thus f gives a holomorphic
non-vanishing function on X (1). But X (1) is a compact Riemann surface,
so an analytic map [f,1] : X(1} — P(C) is necessarily either constant or
surjective. Henee f is constant and My = C.

Next we use (3.8) to describe all functions f € Afy for small values
of k. Note that for small values of &, the equation

Lok
273 77 8
will have very few solutions in non-negative integers a, b, c. For example,
if k = 1, there are no solutions. We compile the results in Table 1.1.
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Table 1.1

ord;, f bagis

L ord; f ord, f T#ip for Moy,

1 — — — 0

2 0 1 0 e
3 1 0 0 Gs
4 0 2 0 G2
5 1 1 0 G1Gs

Everything in Table 1.1 is clear except that the functions in the final
column actually form a basis. They are in My, from (3.4.2), so we need to
show that Moy has dimension 1. But if f;, fo € Mg with 2 < k < 5, then
Table 1.1 shows that f; and fs have exactly the same zeros. Hence f1/f3 €
My = C, which proves that dim{My,) =1for 2 <k < 5.

We have now verified (¢} for all integers & < 5. On the other hand,
if k = 0, then using (a) and (b} we find that

dim Mojp1z =dim M5, . +1  from (a}
= dim My + 1 from (b).

Thus the left-hand side of (¢} increases by 1 when k is replaced by & + 6.
Since the same is trie of the right-hand side, an easy induction argument
completes the proof. (m]

Example 3.10.1. Each of the vector spaces
ﬂfiro, i‘l'f4, ﬂffﬁ, fl«fg, ﬂf.ifl()e f'ffm

has dimension 1. For example, since Gg € My and (g € My, it follows
immediately that
Gy = ¢G?3

for some constant ¢ € C. Letting 7 — ioco and using {3.4.2), we can even
compute
o= 20(8) 3
TEEPTT

(See (7.2} for the calculation of ((8).) Similarly, Gig = £ G4Gs and Gy =
%GEGG, More generally, Mo; has a basis consisting of functions of the
form G3GE. (See exercise 1.10.) To appreciate the subtlety of identities
such as these, the reader might try to give a proof that Gy = %Gi directly
from the series definition (3.4.1) of the Gop's.
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Example 3.10.2. Since My, 2 MY, 5 from (3.10b). the spaces
AR MO M AL, ALD,, ALD,

also have dimension 1. In particular, up to mudtiplicalion by a constant,
there is only one cusp form of weight 12. namely A{r].

§4. Uniformization and Fields of Moduli

We begin by proving the Uniformization Theorem for elliptic enrves, which
was stated but not proved in [AEC VI.5.1]. This theorem says that ev-
cry elliptic eurve over T is parametrized hy Weierstrass elliptic functions.
Our main ton! will be Theorem 3.7(a). which savs in particular that every
modular funetion of weight 0 defines a weromorphic function on the Rie-
manun surface X {1}, For a more elementary, hut less intrinsic. proof of the
iiformization Theorem, see exercise 1.11.

Definition. The maodular j-invarient j{r) is the function

N g2(7)*
)y = 17283(?.

Thus j§{7) is the j-invariant of the clliptic curve

Ex, ¢yt =40 — gar)r — gulr).

and Eq {(C) has a parametrization using the Welerstrass g-function,

C/A, — Ex (C).
= ez ) (21 A5).

(For details, see [AEC V1.3.6].)

Theorem 4.1.  j(7) is a modular function of weight 0. It induces a
{complex analvtic} isomorphism

X (1) = PHC).

ProOF. From (2.4.2} and (2.4.3), both A{r) and go(7)° = 283%53G,(7)3
arc modular fornus, and both have weight 12, so their quotient is a modular
function of weight 0. By (3.7a) with & = 0, j delines a meromorphic
function on X(1). (N.B. This means that j is meromorphic relative to
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the complex structure on X (1) described by (2.5).) Hence § gives a finite
complex-analytic map
j:X{(1) — PYT).

Finally, we note that gefioc) = 120¢(1) # 0 {3.4.2) and A(ix) =
0 (3.4.3). Since A has weight 12, (3.8} implies that

ord, A =1

Thus 7 has a simple pole at the cusp oc € X{1) and no other poles on X {1},
so the map § @ X(1} — PYHCT) is an analyvtic map of degree 1 between
compact Riemann surfaces. It is therefore an isomorphism. 0

Corollary 4.2, Let f he a modular function of weight ().

{a) The function f is a rational function of j, that is. f € T{j).

(b) If in addition f is holomorphic on H, then [ is a polvnomial fanction
of j. that is. f € C[j].

Proor. (a) From {3.7a}, f defines a weromorphic function on X{1). and
so by (4.1}, f o 77! is a meromorphic function on FY{C). But the only
meromorphic fimetions on P1{C} are rational functions, so

foi t#) = P(r) for some P{T) € C(T).

Substituting ¢ = 7{x} with 2 € X (1) gives f{r) = P(j{x)).

(b} From (a)., we know that f = F({J) for some rational function P{17) €
C(T). Suppose P is not a polynomial. Then there is a £y £ C such
that P{ta) = oc. The isomorphism j : X{1}) 5 PYT) from {4.1) sends H
to C < P'(C), so we can find a 7 € H with j{7,) = {4. But then f{ry) =
P(j('ru)) = P(ty) = co. contradicting the assumption that f is holomorphic
on H. Hence P{T} must be a polynomial. O

Corollary 4.3. {(Uniformization Theorem Yor Elliplic Curves over C)
Let A, B ¢ C satisfy 4A* +278B% £ 0. Then there is a unique Inttiee A ¢ T
such that

ga(AY = 60G LAY = —4A4 and gs(A) = 140G, (A) = —413.

The map ) )
C/A — FE: ¥ =2"+Az+B.
z {o(z:A), 39'(2: A))

1% a complex analytic isomorphism.
ProoF. Using Theorem 4.1, we can choose a 7 € H such that

143

) =1728— 0
I =B s
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Assnmie first that AB £ 0. It follows from this and the definition of j{7}
that

-0 - . 2 ? v 8
27B° 1728 | 27gs(7) - ( B ) (92(7)) -4

A5 gr) T galr)® g7} A
Let
Agi(r)
o= V/ B?E:; and A=l =Zor + Za.
a2
Then 2o
- Bgo(r)
! — 4 i — - =
g2(A) = a7 ga(AL) A ga(r)? 44,
— BSQ‘Q(T)‘J
- = {¥ 6 k) — e = ] .
a5(A) = a7 gu(Ar) Adgs(7)? 45

Similarly. if 4 = 0. then j{r) = 0 and g (7} — 0. whereas if B = 0,

then j{r) = 1728 and g3(r) = . Hence in these two cases it suffices to
take A = oA, with

— :
o= v%% fA=0.and a= \‘}f ”'_2&2 if B =0.

This gives the existence of A. Since we will not need the uniqueness of A
in our subsequent work, we will leave this fact to the reader. {See ex-
ercise 1.12.) Finally., we note that the second part of Corollary 4.3 is
essentially a restatenient of [AEC VI.3.6b). ]

We are now ready to relate the function j{r), defined as a meromor-
phic finction on the Riemann surface X(1}. to the j-invariant defined
in {AEC I §1] which classifies isormorphism classes of elliptic curves. We
let
{elliptic curves defined over '}

ELLy =
- C-isomorphism

Thus an element of ELL is a C-isomorphisin class of elliptic curves, We
also recall the notation

L = {lattices in C}
rom §1. Mnch of our preceding discussion is summarized in the following

proposition.

Proposition 4.4, There are one-to-one correspondcences between the
following four sets, given by the indicated maps:

ELLe «—  L/CT — T(PH — C,
{Fal — {A}={Ar} — T — 7).
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Here A, = Z7 + Z, {Ex} denotes the C-isomorphism class of the elliptic
curve Ey : y% = 4z — ¢2{A)r — ga(A), and {A} is the homothety class of
the lattice A.

PROOF. Since jlix:) = =, the bijectivity of T{1}\H & C is (4.1). The
bijectivity of T{1}\H — L£/C* is (1.2be}. Finally, the injectivity of L/C* —
ELL- is [AEC 4.1.1] and the surjectivity is (4.3). o

Let us describe in a bit more detail the bijective map
ELLy — C
given in Proposition 4.4. Let {E} € £LLz be an isomorphism class of
elliptic curves, and choose a Weierstrass equation
E:y=s'4+Ar+B
for some curve E in this class. Now take a basis +v|, 72 lor the homology
group I ( £(C),Z), and compute the periods

dr ] dr
Wy = — and woe = —.
L ¥ 2 y
(See [AEC VI §1].} Switching wy and wy if necessary, we may assurne that
TE = “1 < H.
wz

Then evaluate the holomorphic function j{r} at = 75.
Thus the map
j:E8LLy — C. {E} — j{7e)

involves two transcendental (i.e., non-algebraic) operations. namely the
comptation of the periods wy,we and the evaluation of the funetion j{r).
From this perspective, it scems unlikely that rationality properties of j{rg)
should have anything to do with rationality properties of £. To describe
the relationship that does exist, we make the following two definilions.

Definition. Let {E} € ELLe. and lot K € C. We say that K is a field
of definition for {E} if there is an elliptic curve Ej in the isomorphism
class {E'} such that Ey is defined over K. We say that K is a field of
modulé for {E} if for all automorphisms o € Aut{C/(Q),

E7 e {E} if aud only if o acts trivially on K.

Note that the field of moduli exists and iz unique, since by Galois
theory an equivalent definition is that the field of moduli is the fixed feld
of the group

{¢ € Aut(C/Q) : E” € {E}}.
From the complex analytic viewpoint described above, iv is not clear that
the number Je({E}) should have any relationship to ficlds of defiuition and
moduli for {E£}. Note that there are lots of bijections ELLs — C. Tor
example, j'{{F}} = ¢"j({E}) + ¢~ is alsv a bijection. But clearly, it is
not. possible for both j and j to have good rationality properties.
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Proposition 4.5. Let {F} € £LLg.
(a) Q(j({£})) is the field of moduli for {E}.
(b) Q(3({E})) is the minimal field of definition for {E}.

ProOF. The j-invariant j{E)} of the elliptic curve
E : y* =42 — ga(7)x — ga(7)
is )
g2(7e)?
g{re)® — 27gs(7e)
so for any o € Aut{(C/Q),

J(E) = 1728 s =i(re) =3i({E}).

JE%) = JE).

(a) From [AEC IIL.1.4b] we have
E° e {E} if and only if  j(E7) = j(E).

Since j(E7) = j(E)?, this shows that Q(j{E)) is the field of moduli
for {E}.
(b} We know from [AEC IIl.1.4bc] that there exists an elliptic curve Ey
defined over Q(j(E)) with §{Ey) = j(E), and so satisfying Ey 2c E. This
shows that Q(j(E)) is a field of definition for {E}.

On the other hand, if K is any field of definition for {E}, let Ep/K be
a curve in {E} given by an equation

Eo: v =x+Ax+B with A/ BcK.

Then
443

1A% 2780 ©
80 Q(j(E))(_:K D

HE) = j(Eo) = 1728 K

7

Remark 4.6. The reader should note that the proof of Proposition 4.5 is
very elementary because we have explicit Weierstrass equations with which
to work. (This is how [AEC I11.1.4bc] was proven.) For modular curves
of higher level the problem becomes considerably more difficult, since one
cannot rely on explicit equations. {See Shimura [1, §6.7].) Finally, we
should mention that an analogous statement is false for abelian varieties of
higher dimension; the field of moduli for an isomorphism class of abelian
varieties need not be a field of definition.
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55. Elliptic Functions Revisited

Let A € C be a lattice. Owur fundamental elliptic function is the Weier-
strass p-function,

v =5+ 3 (o)

wEA -
w#f)

As we have seen [AEC VI §3], p defines a meromorphic function on the
elliptic curve C/A. It has a pole of order 2 at ) € T/A and ne other poles.
We have also computed the Laurent series of g around 2z = 0 {AEC V1.3.54],

1 = o1
plzd) = Z (2k + D)Goipa(A)z?

non-zero vector in A.

Since g z; A} has no residues, we can integrate it to ind a new function
which will almost be periodic for the lattice A, Note, however, that when
we integrate the series for p(z; A} term-by-terny, it is necessary to adjust
the constant of integration in each term so as to cusure convergence,

\_h H

Proposition 5.1. {a} The series

C(z:.f\)——+2(_ 1‘ L:?)

WEJ’J‘L
N

is absoltutely and uniformly convergent on compact subsets of T~ A It
defines a meromorphic function on C with simple poles on A and no other
poles. (=, A) is called the Weierstrass (-function {associated to the laf-
tice A)

(b} The Laurent series for { around z =0 Is

o

1 : ok
g{Z:-A) = ; - Z(;Q;‘:+2(;‘\)zzj‘+l‘

k=1
Proof. {a) Let €7 C T ~ A be a compact set, and let
c=mf{|z—wl:z€C. we i} and AM =sup{|z{: 2 € C}.

Since ' is compact, we have ¢ > () and M < 2c.
Let z € (7, and let w € A satisfy jw| > 2M. Then

1 +1+:_32 Lo 2ar
T-w o ow wl L B WL

!
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On the other hand, there are only finitely many terms in the sum with 0 <
lw] < 2M. and for z € C those terms all satisfy

1 1 z 1 1 |z] 1 1 Af
b b S| € e b T = e 5.
Z—w W ow |z —w|  |w| |l el e
Hence
1 1 1 s 1 1 | AM 2M12
_+Z ot o h g s o F (:+m+|,.|2)+z WEN
losaa T oW W T wEN N « “ weA
) < jw|<2M w2 M

We know [AEC VL.3.1a] that the last series converges, which proves the
series delining ¢({z; A) converges absolutely and uniformty on C'.

It follows that {{z; A) is holomorphic on € ~ A, and an inspection of
the series defining ¢ shows immediately that it has simple poles at each
point of A.

{b) Let z be a complex number such that |z| < |w} for all non-zero w € A
Then

1 1 z i 1 z
+ -+ =-= > —1-—
Z—w W W w12 W
w?
1=/ 2\F
=2 (2)
k=2
S0 o
O | 1
iy =te T 530 (2)
wEA k=2
wEld
1 «— '
==Y Gru(a),
Tok=2
This is the desired series once one notes that Gi{A) = 0 for odd k. ]

Differentiating the series (5.1a), we see that ¢'{z; A) = —p(z; A). Thus
the derivative of ({z; A) 1s periodic for the lattice A, so ¢ itself will have some
sort of “gquasi-periodicity” property as explained in the following proposi-
tion.

Proposition 5.2. {a} For all z € C,
;—Q(z;f\) = —plz; A

{b) Foralliwe Aandallz e T,

Clz 4w A) = {lz A) + nlw),
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where the number n(w) is independent of =. The map
n:A—C

is called the quasi-period mop associated to A. If w € A and w ¢ 24,
then n{w) is given hy the formula

- plw) = 2¢(3an A).

(¢} The quasi-period map is a homomorphism of A into C.
{d) {Legendre Relation) Let A = Zwy + Puy be a lattice with basis satis-
fving Im{w, fws) = 0. Then

wip{wy) — wanlun ) = 271

Proor. (a) The series (5.1a) defining ¢ converges absolutely and unilormly.
s¢ it can be differentiated term-by-term. The result is the defining series
for —gp.
(b}

d . d
d—C(: +wiA)=—plz+w A= —plzA) = —C(z A
[z

[ 99

Integrating, we find that the quantity
Mw) =z +uwn A) = (2 A)

is independent of 2. If, further, w & 2A, then ¢ does not have a pole at :t%;u.
Putting = = -—%w‘ and using the fact (evident fromn the defining series)
that {(~z: A} = —{(= A). we find in this case that flw) = 2((%-.;;: A

(c} We compute

pw ~w) =z +w+wA) = (2 A)
={z+w+ " A)~ ((z+wiA}} + {Clz+wiA)— ({2 A}}
= plw’y + ().

{d} We integrate {{z; A) around a fundamental parallelogram oflset slightly
$0 a5 not to contain points of A on its boundary. Thus let D be the region

D= {ft-{-f[uﬂ +towy 1 0=ty ty S 1}._.

and let
gD = L] =+ L;g + L.’S + L.l

be its boundary as illustrated in Figure 1.5.
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a+(!)] 4-0)2

L

An Offset Fundamental Domain for C/A
Figure 1.5

The only pole of ¢ in D is a simple pole of residue 1 at z = 0. (Look
at the series (5.1a) defining ¢.) Hence

C{zy A)dz = 27mi.
a0

On the other hand. using (b) we get some cancellation when computing
the line integrals aover opposite sides. Thus

[t}

I
/ C(z;A)dz = / Cla +twas Adwodt + | (la+wy + fuw; A)wadt
Li+Ls Jo

1
1 1
= / Cla + twg; A)wadt — / (Cla + fwz) + plwy)} wsdt
0 Jo

=1y Juta.

I

Similarly,
/ ClziA) dz = n{wy)w.
Lo+ Ly

Therefore

2mi = / Clz;A)dz = / ClziAydz = n{wa )y — nlw) Jws.
aD JLy+La+Llat+l, O
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Remark 5.3. Let E/C be an elliptic curve given by a Weierstrass equa-
tion, and let
dr

Wy = ————————
£ 2+ a x + ay

be the associated invariant differential. The lattice A for E is the set of

periods
/ WE
g+

where + runs over all closed paths on £{C}). (Equivalently, ~ runs through
the cyctes in H,(E{C).Z). See [AEC V1 §1].} The classical name for an
evervwhere holomorphic differential such as wp on a Riemann surface such
as E{C) is a differential of the first kind.

Similarly, a differentiol of the second kindis a meromorphic differential
with no residues {i.c., with no sinple poles}, and a differentiel of the third
kind is a meromorphic differential with at worst simple poles.

The differential

plzN)dz = zwg

is thus a differential of the second kind on C/A, and its indefinite integral
is the multi-valued function —{{z; A). The indeterminacy in ¢ is given by
the numbers

[E ot
[ LTip = / oz A)dz = —Cla+w A) + {{as A) = —nlw),

A

where w = jw wi b 1he period associated to the closed path ~.
In terms of our original Welerstrass equation, there is the period map

H, [E(C]“Z) — . i / W

whose image is the lattice A. Using this to identify A with the first Lho-
mology of E(C), we see that the quasi-period map associates to a path the
negative of the corresponding period for the differential wwg:

w: Hi(E(TLZ) — C, Y — — /;{rwg.

The last function we want to examine is essentially the integral of &.
To eliminate the indeterminacy caused by the simple poles of . we take
the exponential of the integral. This leads to a familiar function whicl we
uwsed in [AEC VI §3] to construct clliptic functions with a given divisor.
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Proposition 5.4. (a} The infinite product

P o FERY
oz A) = 2 (1 _ _) 2wt (172} (5 /w)
A ) H " L&
WwEM
w0
defines a holomorphic function on C with simple zeros on A and no other
zeros. It is called the Weierstrass o-function (associated to the lattice A).

(b)
d s d? .
o logo(z: A) = ((2: A). pe loga{z; A) = —p{z A).

{¢) Forall:eCandw e A,
alz +wiA)Y = g'.l(w)e”f“’]':”%'““')0'(3; A).

where 5+ A — C is the quasi-period map for A, and v Is defined by

: ; 1 fw e 2A;
A =]

viA R O =0y g on,
ProoF. (a) This is a restatement of (AEC VI1.3.34].

(b} Taking the derivative of

A) = log(z NEANE- A YA
oo 3 -3 £10)
WE

gives the defining series {5.1a) for ¢, and then from (5.2a) we sec that the
second derivative is —p. Note that the logarithms are locally well defined

up to the addition of a constant which disappears when we differentiate
L . zy .
and also that we must take the principal branch of log (1 — _—) for almost

ek
all w in order to ensure the convergence of the series.

{c) From {b) and {5.2h),

d oz +wr A)

e log ol A) =Gz +wiA) — (2 ) = nlw),

50
oz +wiA) = Ce™™a(z A)
for some constant € not depending on z. Note also that ¢ is an odd
function, a fact that is clear from the product defining o,
We consider two cases. First, if w & 2A, then ¢ does not vanish at i%w,
Hence putting z = —%w gives
o (%w; A) = Cem2ww s (—%w; A) = —Ce 1My (%u,':_ A) .

30
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O = _edrww

Next, if w € 2A, then o has a simple zero at :tfl,w‘ Using L'Hépital's
rule vields

. .
Ce #1wh —  |im o(z+w; A) 4 (2w,A) _

w2 o(zA) o' (—dwiA) L

(Note that ¢’ is an even function, since ¢ is odd.) Hence in this case we

find that
C = e%n(w)w‘

which completes the proof of (c). a
Any elliptic function can be factored as a product of Weierstrass o-
functions reflecting its zeros and poles. We give a general result and two

important examples. To ease notation, since the lattice A is fixed, we will
write oz} and p(z) instead of a{z; A) and p(z; A).

Proposition 5.5. Let f(z) be a non-zero elliptic function for the lat-
tice A. Write the divisor of f as

div(f) =D nslas)
=1
for some a; € C, and let

"
b: E ;.
i=1

(See [AEC VI §2] for the definition of the divisor of an elliptic function. }
Then there is a constant ¢ € C* so that

oD TTotr— aym
f(z)*“a(z_b)g“(z a;)™.

Corollary 5.6.

o ol =_a(z+a}a(z—a)
{a} piz) — pla) o2 (a)?

a(2z)
o)t

(b) ©'(z) =
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Preor {of Proposition 5.5). Let

3

o) = HZ oz - o
i=1

Exrom [AEC VI.2.2¢| we know that b € A, so using (5.4c), we find that

o) nte-1b
a(z —b) )

is holomorphic and non-vanishing on all of C. Since ¢(z)} has simple zeros
on A and no other zeros, it follows that ¢ has exactly the same zeros and
poles as f. Hence f{z} / g{z) is everywhere holomorphic.
Next we verify that ¢ is an elliptic function. Let w € A, and use (5.4c)
to write
oz +w)
o(z)

for certain constants A and B which depend on «w but not on z. Then

:AeBZ

glz+w)  alz—b) clz+w)r (0(z+w“6i) ™
g(z) ~ olz—-b+tw) oz) E o{z — a;) )
— ¢~ Bla—b) Bz ﬁ (Aeﬁ(znﬂi))n*

- eB(b—Z"mm) (AEBZ)En‘- -

The last equality follows from the definition of & and the fact [AEC V1.2.2b]
that the divisor of an elliptic function has degree 0.

This proves that g(z) is an elliptic function, and so f(z]/g(z) is an
everywhere holomorphic elliptic function. From [AEC V1.2.1] we conclude
that it is constaunt. 0

ProOF (of Corollary 5.6). (a) Since p{z) is an even function of order 2,
we sec immediately that the zeros of p(z) — pla) are @ and —a. Thus

div(p{z) — pla)) = (—a) + (a) — 2(0}.
Applying {5.5) we find

a{z +a)o(z —a)
7(z)?

wlz) —pla) =C

for some constant C. Multiplying by 2% and using

- 4 — l‘ J(Z) — 1
il_r%z plzy=1 and Jim —
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gives the value of C,

1 = Co{alo{—a) = —Co{a)®.

{b) Divide (a) by 2z — a and let z — . This vields

g(z—a) olz+a) a{2a)
= lim — 2272 = —g'(0 .
/() 1931 —a o(z)%0(a)? 4 }o(a)”*
Since #'(0} = 1, this is the desired result. O

£6. g-Expansions of Elliptic Functions

As we have seen in §§1-4, it is often convenient 1o use normalized lattices
A, =Z++ % with + € H.
We then use the obvious notation
pla:ith, (lzim). olair) for p(ziAr). (21 A7), oz A).

We will soon see that p, ¢, and o are quite well behaved when considered
as functions of two variables (2;7} € € x H.
Note that since 1 € A, the p function satisfies the relation

plz+ 17 = plerh

This means that it is possible to expand g as a Fourier series in the vari-
able w = €7, Similarly, since A, = A, the ¢ function satisfies

olziT+ 1) =p(z 7

Thus. as a function of r, the g function should have a Fourier expansion
in terms of ¢ = 277,
This idea can be forintlated more intringically as [oliows. Let

o=, = 027 and g =q, =77,
and let
= {qk ke Z}
be the cyclic subgroup of C* generated by g. Then there is a complex-
analytic isomorphism

C/Ar = T /g5, 2 =€



48 1. Eiliptic and Modular Functions

Note that this is an isomorphisin of complex Lic groups, since it is clearly
a homomorphisni.

Onr first step is to express p(z: 7) as a power series in the variables w =
e2™7 and g = 27, The quickest way to do this is to write down (by
magic?t?} the correct expression, and then verify that it gives the same
function as @ z: 7). We opt instead for a somewhat lengthier, but hopefully
more perspicuous, derivation.

Consider first. the series

1 1 1
pleid)= 5 + Z GowR ot
- WwWEM e W
W)

defining . How does it arise? From [AEC V1.2.3] we know that any nou-
constant elliptic function must have at least two poles, so we look for a
weromorphic function F(z) satisfving
(i) Fz+w)=F(z)forall : € C,we A;
{(ii} F{(z) has a double pole at each point in A and no other poles.
The simplest function with a double pole at w is (= — w) ™2 By aver-
aging over w € A, we find a series

1
F1(3’) = Z m

wEMA

which formally satisfies (i) and (ii). The problem is that this series is not

absolutely convergent. However, by subtracting an appropriate constant

from each term, we can create a series which does converge and has the

desired propertics. This is how we “discovered™ oz, A) in [ARC VT §3].
We apply the same principle to express o z; 7) as a funetion of v and q.

Exponentiating the conditions (i) and {ii}, we ook for a function F(u; g}

satisfying

{iii} Fg"wq) = Fluiq) forallu € C*, k € &:

{ivl F(u;q} has a double pole at cach v € ¢ and no other poles.

As above, we look for F to be an average

Fluyq) = Z fla™u)

nEL

for some elementary function f. Such an F will clearly satisfy the period-
icity condition (iii).

To obtain {iv), we need f{T) te have a double pole at ™ = 1. For
example, we might use f(T) = (1 — T)~2. But ihe series

P —
(1 — g™u)?

ncd
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does not converge, since |¢| < 1. The terms with n — —oc are all right.
since then ¢™ — o¢. But as n — o0, the 70 term goes to 1.

In order to get convergence, we want f(T) to have u double pole at 17 =
1 and also to satisfy

111151.0_;‘( )= and 111_1’11& Ty =4

The simplest such function is fF(7) = T(1—T) 2. which leads us to consider
the function F{u;g) in the following lemma.

Lemma 6.1. Let

(4 0) :; ] W

{(a) The series defining F, considered as a function of z, converges abso-
lutely and uniformly on compact subsets of T ~ A,

(b) F is an elliptic function for the lattice A;. It has a double pole at
each z € A, and no other poles.

(¢} The Laurent series for F' around z = 0 begins

Tl

. 1 1 q
Fui6) = Gy ~ {13 2 (g (  (Poven of 2

il

Proor. (a) Note that

-y, -t

qﬂ - q u

(1 — g™u)? B {1- q~nu—l)2‘

We use this identity to rewrite the terms in F' having n < 0. This gives an
alternative expression for F,

il o, —1l
. G g
Fluig) = ——— + ) Z("
(uiq) (1—u)? + { (1 — gnu)? + (1 - g"u—1)2 }

n=l

Now let ¢ € C ~ A, be a compact set. Then w = 27 i bounded away
from 0 and o uniformly for z € €. Since ¢” — 0 as n — oc, it follows that
there are constants ¢; and cy so that

(._,T”"U_l

hl gruTt)?

‘n.u
‘ ¢ < e |g™ forall =€ O, n = ey,

(1-q"u)?

This shows that cxcept possibly for the terms with n < oo, the series is
absolutely and uniformly convergent on €.



50 I. Elliptic and Modular Functions

Consider now one of the finitely many terms with » < ;. We know
that « # ¢ for z € C. 50 the compaciness of € ensures that

i1_1(f_‘]l — g uT = 0.

Hence the terms with n < ¢z are also uniformly bounded.

(1) Frow {«), F' is a holomorphic function on €~ A, and looking at the
series defining F. it is clear that F' has a double pole at each point in A,
Finalvy, since the transformations = = =z + 1 and z — 2z + 7 correspond
to w— 1 and u — gu respectively, it is clear again from the series that F
is an elliptic function for the lattice A,

(¢) Note thai v = €™ — ] as » -» (. Hence the pole at 2 = 0 in the
series for Feowes frotn the term with n = 0. Now a little freshinan calenlus
vields

® e’m 1 ! + (powers of z)
— _— - ‘ers .
(] _ ..u_)'z (1 _ e2rre:}2 (Qﬂiz)z 12 !

Hence using the alternative series for F given above, we find

. b 1 i o oy it
:hi'h{F(”'q} Zmin)? 12} - 1”1};{"?(“’”) (1 —11}2}

] A — 1
. g g u
= lim - + - :
n—1 Z { (1 —gru)? {1 - q”t;.—1)2}

n=l1

.. /
e

[T |

i

Theorem 6.2, Let = ¢*™* and g = ¢

l q'N,“. 1 q'”

(él) %g\)(:;T): -_—‘--'—r':_—\.-i-——Q 3

(2mi}? ; (L—gruy? 12 ”g {1-¢m")2
1

_ g"u ¢t uT
_Z(l . +Z(]__qnu—l}2

— gt)2
=l T el

12

! q
Loy
Ty

n=l

] , fu{l + ¢ u
{h) yrrerd ¥ (z;r)zzq—(—- ¢

ppe (l _ qnu)lj

_ Z qn’if,{l + q”‘f_.t) _ Z q”u'l(l + q”"u_l)
- (1 — gru) (1 —gruu—1)3

w20} izl
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Remark 6.2.1. For |X| < 1 there is the elementary identity
X d
— Y X‘JH
(1-X32  ~ax ( ) ,glm

This is sometimes used to rewrite the finsl sum in (6.2a) as

Tl

Z (]_ qn)Z Z Z ;“q"”” = Z lﬂiqqm'

n>l wxlwnzl el

ProoF {of Theorem 6.2). (a) Let F(u;g) be as in (6.1). Consider the

function ]

e fz ) — F{ug + — =2 -—-——,
(Q?T'E)zs ( v ( q’} Z 1 _ qu)
=1
From (6.1b} we see that this expression is an elliptie function for the lat-
tice A; which is holomerphic on © -~ A;. Further, comparing the Laurent
series for F given in (6.1¢) with the known Laurent series for ¢, we see that
it is also holomorphic et z = 0, and in fact it vanishes there. It thus repre-
sents an everywhere holomorphic elliptic function which vanishes at z = {).
Applying [AEC VI[.2.1], we conclude that it is identically zero. This proves
the first equality in (a}, and the second is an easy rearrangement of the
terius in the initial sum. (Sce the proof of (6.1a).)
) d
by Apply — = 2min— to {a). 0
(b) Apply — 7o b0 (a)
The next step is to find a g-expansion for {(z;7) analogous to {6.2).
By construction,

j_ztf(zz_ﬂ = —pl=m),

so we try integraling the series (6.2a) for o term-by-termi. Procecding
blindly, we find
gt de — / g due 1 i
(I —gmu)2 " ) (1 —¢™u)?2miu 2w (1 —g™u)
Unlortunately, the scries
1
> T
nek 1 i
is clearly divergent, the n'!' term goes to 1 as n — oc. But just as in
the original definition of ¢, we can improve the convergence by adding a
coustant onto each terin.
The second expression for @ in (6.2a) has the form

-1

q u M u
— + ),
Z (1 Hu Z (1_()?:.11—1)2 +04

rzi) nxl

L
@rip T

where
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=i = 2% i
(We will soon identify C} more precisely.) Now integrate:

1 1 du
quz T)=5— | —wlaT)dz= —pr(z;r);

2
Fi, —1
gt du
ST SIS TR
— — -1}z
= 1 q“u = (1L —gru=1} U
1 ~g"u! o .
Z_E T -1 —§ Py - — 2miCz + Cy
nz0 T n=>l A
_qﬂu q-nu—l

—2miC 1z +

il
—_
I
=]
E
=
=

1_11—1

for some constant of integration €, = C3(g}. Note that the last series is
absolutely and uniformly convergent on compact subsets of C ~ A, so it
defines a meromorphic function on C. {The proof is identical to the proof
of (6.1a).) Further, the (d/dz)-derivative of this series can be computed
term-by-term and agrees with the series (6.2a) for . This proves that it
equals ¢ for some choice of Cy.

To find C5, we compute the frst few terms of the Laurent series
around z = {}. We already know (5.1b) that

lzir) = % — G4(7)2% + higher powers of 2.

On the other hand, the pole at z = 0 (L.e, at ¥ = 1} in the above ¢-scries
comes from the n = (} termn, s0 we find

—u _qnu qnu-—l .
+ —2mic’ C;
1—u+z {1—-q“u l—q“u‘l} itz + 63

=1

vanishes at z =0 (u = 1}

2Lz
= ——=1—f—2;72— + €5 + (powers of 2}

1 1
= —— + = + (5 + {powers of z).
2miz 2 2+ (p )
Since the Lanrent series for ¢ has no constant term, we see that Cp = —3.
This proves part of the following theorem.

Theorem 6.3. Let {{z;7) be the Weierstrass {-function and n: A, — C
the quasi-period homomorphism associated to A.

T, —1
—q™u g 1 1
= 5 (e — .
{a) C(z )= + + er}( )z 3

1 —ghu 1-— nu—l
=0 4 rl 4




86. ¢-Expansions of Elliptic Functions 53

1 1
b)) = g 1+z42(

[(ap!
Proor. Let
Tt GTby, —1
—g LA
G Z3 = — ——  and
( T) g 1 — Q‘”’H- ; 1-— q'n,u—l wn
Clg) = = =2D_ 73
A
= 9")

We proved above that
) 1
—((zi7) = Glzir) — 2wiCy{g) — 3

Now evaluate at z = 5. krom (5.2b), ((3i7) = #{1). Further, z = 1
corresponds to u = €™ = —1, s0 all of the terms in G(5:7) cancel except
the n = 0 term. Thus

L

LN q —¢* 1
G(ﬁ'T) _'Zl+q"- +§1+q“ T2

n20
Hence
1 1 . 1 .
27! 7(l) = Q_HC( ) =G (ET) — 2miC1{g) - 5= ~2miCy(¢),
= 1
Crlg) = —(Q—T'r'?_._)-gn(l)-
This completes the proof of both parts {a) and (b). |

Finally, we integrate the series for {{z;7) and exponentiate o obtain
an important ¢-product expansion for o{z: 7).

Theorem 6.4. The Welerstrass a-function has the product expansion

Tt it —1
]}2: .—'rrr;.{l R)H 1 q U)(] qu )

o(zi7) = .

271'?

=l

where w = ¢¥™2 and ¢ = ¢®™7 as usual, and 7{1} is the guasi-period

assoclated to the period 1 € A,
ProorF. By construction,

a'{z7)

d
(_:r-(_z_;T) =5 logof(z:my=C{z; 7).
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Using {6.3a) and integrating gives

logo(z /C(7 T} dz = /_—lfc(z:_T)gE

"u du / gt du f )
o Z — gt Z — g7t 1 i —1 (TJ}(]‘)Z - Tn) dz
n>0,/‘ 1—g™u u 1—gru—1 u
—Zlog(l—‘f"“)Jrzlo“(l*q u=ty + Ln(1)2? — miz + Cy.
w2l rzl

We claim that the series will converge provided we uge the principal branch
of the logarithm when evaluating log(1 — g™i) and log{1 — g"u~"). To see
this, note that for n sufficiently large we have |g"u*!| < 1. So, for all but
finitely many n,

flog(l - q"u*!)| =

Z g u*h

=1

< |qnuj:ll.

Hence the series will converge.
Exponentiating, we eliminate any ambiguity arising from the choice of
a branch of the logarithm and obtain the product representation

glz7) = 62’“”” —miz+lh H(l - g"u) H(l —q"u

w20 nxl

It remains to find 4. Recall that ¢ was normalized by the condition
that a(z:7)/z — Las = — 0. It is the n = 0 term in the product which
vanishes at z = (), so we find

. a(zi7)
= lim

z—] z

1—u

o 1: 2?}{1]'\' —miz+{s T oo, —1
_ll_r‘r}]e (_z )H(l gt uy(l —gtuT)

il >l
= e (—2m) [T (1 - ¢")*

n=l
Hence
O —

1 1
= T o H o mna?
2mi kel (1-—¢m)

which gives the desired product formula for o(z: 7). O
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§7. g-Expansions of Modular Functions

The Eisenstein series Gap{7) is a modular function of weight 2k. It sat-
isfies Gar(T + 1) = Gax{7), so it has a Fourier expansion in terms of the
variable g = €7, In this section we will compute the Fourier series of Gy
and use it to deduce various properties of the Fourier expansions for 4 (7)
and j(7).

Proposition 7.1. Let k > 2. Then

(2mi)k

Gax(7) = 2¢(2k) + 2(2k P Zdn 1(n)g",

where

¢(s) = Z ;11; and  ox{n) = de

=l d|n

are respectively the Riemann (-function and the k*-power divisor func-
tion.

PRrOOF.
Goplr) =

1
Z {(n7 + n)k

m,ncl
{m,m}# (0,0}

- Z 2k +ZZZ mT_Jrn)z;.

ned m=1neck
n#0

The first sum is just 2((2k). Notice that the rightmost {inner) sum is
clearly invariant under 7 — 74 1. We now compute its Fourier expansion.

Lemma 7.1.1. Let k > | be an integer. Then for all T € H,

1 _ (Qﬂ—i)gk = 2k—1 _2miry
Z(T—I—H)Zk _(2k—1)!§T € '

nEd

PrOOF. Ignoring questions of convergence, we have a formal identity

2
2 ('r+n]2" Z (2k Ty 2y BT

rncZ

1 d2*

(2k k= T)1 %5 log H('r—i—n)
neEL

Of course, this product does not converge. But we do get convergence if we
factor an n out of each term. (Remember this is just a formal manipulation
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to see what the answer should be. Otherwise one might rightly object that
dividing by {o0!)? is a highly dubious procedure.) The product

r
T 14 —) =T 1-——

[L(+5)--T1 (-

neEld

n#l

converges to give a function that is holomorphic on C, has simple zeros
at each integer, and no other zeros. With this description, the reader will
undoubtedly recognize the usual product expansion for the sine function.

{See Ahlfors [1].)
o0 2
sin{nr) = 71 H (1 — n—2)

We now reverse our formal argument to produce a rigorous proof.
Starting with the product expansion of the sine function, we take the log-
arithmic derivative, yielding

‘-II*-‘

d
— log(sinwr)

dr

“n?— 72

(W =)

Now taking {2k — 1) more derivatives, we find

-1|H

2k

d _ 1
i log(sinr) = ~(2k 1)) { -+ Z ( Ty T)zk)}
@k -1y o +r)2k

nel

H

Next we compute the Fourier series of (a branch of) log(sin#r). Writ-
ing

sin{rr) = —1- (e”‘f _ e"?fiT) — _ie—rir (1 _ e?ﬂ'ir) ‘

2i 2
we find {for 7 € H)

lOg(SiI] ?TT) = — log( __23) — it + ]()g (1 _ e??n'.'r)
1
= — Y — i — = 2merr
= —log(~2:) — mwir ;:1 e .

Differentiating 2k times {with k > 1) yields
d2x

T log sinar) = Z(gm)ﬂc 2k—1 2mirr

r=1
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Equating this expression for d%* log{sin m‘)/dr”‘ with the expression ob-
tained above gives the desired result.

a

We resume the proof of Proposition 7.1. Applying (7.1.1) with mr in
place of 7, we find

Gai(r) = 20(2k) + 2 Z Z (raT + 11)2"

m=1ncd
(27i)*F
= {2k 2 2.&—1 2rmmr
o+ 2 3
@mi)** o P21 .2
= (2% ) m,n.r
2y 3 g
n=1 r|n

As is well known, ({(2k)} is a rational multiple of w25, It is frequently
convenient to factor a 2% out of the Foutier series for Gay, yielding a seties
with rational cocfficients. We briefly recall the details concerning special
values of the Riemann {-function at even integers.

Definition. The Bernouwlli numbers By are defined by the power series

expansion
ac
-3 84
R
;\.:

For example, one easily computes

1 1 1
By=1, Bi=-5, B= By = ——,
Lt} 1 : 2 4 0

1
¥eh By = T and Bopp =0forall k = 1.

B; =
For a longer table of By's and the corresponding values of {2k), see (A §1).
Proposition 7.2. For all integers k > 1,

1 2mri)2k
C(2k) = = - ( 22),8

n=1

Proor. First we use the definition of the By’s to write

'.rr::r +e—1’ru 2
wrcot(nx) = wix E_“;"‘—e?—m = wix (1 + Zrw ] 1)

v

) . 27‘?3: 2mix)?
=m;r+ZB;t ) Zng( 25
k=0
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Next we use the product expansion for sin(wz) already considered in the

proof of (7.1),
, = x?
sin(mx) = 7 H (1 — n_z) .

7=l
Taking the logarithmic derivative yields

e

1 2 1
woot(my =—+E _——
T T T

L UER))

n=1 o=
- %{1 - zgjl G(2k)a* ).

Comparing the two Lanrent scries for i cot{mx) gives the desired result,
O

Remark 7.3.1. We can now define a normalized Fisenstein series Eap{7)
as the series

Using (7.1} and (7.2} we sec that
Gar(r) = 2C(2k) B2y (7).

The fact that the FEoy's have leading coeffictent 1 makes them particularly
easy to compare. For example, E and Fy are both modular forms of
weight 8. Since My has dimension 1 from (3.10.1), we know that they are
multiples of one another. But since they are normalized, we sce on comn-
paring their constant terms that E; = Eu. Eqguating Fourier coefficients
zives the identity

=1

or{n) = as(n) + 120 Z ag{m)os(n —m).
m=1

The reader will be able to construct many more identities of this sort.

Remark 7.3.2. We can also write go(7) and g3(7) in terms of normalized
Eisenstein series:
1

a2(7) = B0G,(7) = 120C(4)E4{T) = (gﬁ)4273

E:{(T):
: N |
g3(7) = 140Ga(7) = 280¢(6)Es(7) = (2m)* 23—331?0(7).
These expressions are useful for compuiing the Fourier expansion of A{r)
and j(t), as explained in the next proposition.
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Proposition 7.4, (a) The modular discriminant has the Fourier expan-

sian
A{r) = 2m)2 T (n)g",

w1

where (1) = 1 and 7(n) € Z for all n. The arithmetic function n +— r(n)
is called the Ramanujan 7-function.
(b) The modular j-function has the Fourier expansion

, 1 n
Hry ==+ e(n)g",
4 >0
where c{n) € Z for all n.
PProoF. (a) Using (7.3.2) we compute

)12 )
A7) = go(7)? =~ 27g3(7)° = %%-3— (E‘;(‘r)d — E5(7)2).

We must show that cvery coefficient of EF — EZ is divisible by 2633 = 123
From (7.3.1) we have

Ei(r)=1+2403 o3(n)g®  and  Eg(r)=1-504%  as(n)q™.

n>1 nzl
To ease notation, let us write
Ea(r) =1+2404 and Eg{r}y=1-504B.
Then
Eq(7) — Es(m)? = (1 + 2404)3 ~ (1 — 5048)2
= 122(5A + 7B) + 123(1004% — 1478 + 8000A4™).

It remains to show that every coefficient of 54 + 7B is divisible by 12.
We have

5A+7B =" (5os(n) +Tos(n))q" = >_ > (54> + 7d°)q",

n>l nzl din
and for any integer d,

d3(1 — d®) = 0 (mod 4),

5d° +7d° = (5 + 7d%) =
( ) d*(~1 4 d®) = 0(mod 3).
Hence 5d® + 7d® = 0 (mod 12). This proves that

Alr) = (2m)"? ) r(n)g"

nzl
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for integers 7{n).
Finally, the coefficient of g is

(2m)'?
53 122 (5a3(1) + To5(1)) = (27) 2,
so (1) = L.
(b) We use (a), (7.3.1), (7.3.2), and the definition of j{(7) to compute
(2m)12
o Ea(r)?
. g2(7)° 128 4
§{r) = 17282270 1798
A{r) (2r)'2 Z T(n)g"
izl
3
(1 + 240 Z Jg(ﬂ.)qn)
B n>1
g+ T(n)g"
n>2

Since the ¢3(n})'s and the 7(n)’s are all integers, this last expression gives a
Laurent series of the form ¢~ + Y e(n)¢™ with integer coefficients. {Note
the reciprocal of a power series with integer coefficient and leading term 1
will again have integer coefficients.) O

Remark 7.4.1. Using the formulas developed in the proof of (7.4), it is
easy to compute the first few values of 7{n) and ¢(n). Thus

(2m) A7) = ¢ — 24¢% + 252¢° — 1472¢ + 4830¢° + -+ |

H{T)=q ™' + 744 + 196884q + 21493760¢° + - - - .

For a more extensive list, see (A §2).

Remark 7.4.2. In the next section we will prove that A(r) has the prod-
uct expansion

A{r) = (2m) % [[(1 - g™

>l
This gives an alternative (but less elementary) proof of (7.4a)

Remark 7.4.3. The e(n) coeflicients of j{7) have many interesting arith-
metical properties. For example, Lehner [1,2] proved that they satisfy the
following divisibility conditions. (See also Apostol [1, Ch. 4].}

n=0 (mod 2°%) = e(n) = 0 (mod 2%¢+8),
n=0 {mod 3%) = e(n} = 0 (mod 3%¢+3),
n =0 {mod 5°) = e(n) = 0 (mod 5°1),
n =0 {mod 7°) == e(n) = 0{mod 7¢},

n =0 (mod 11%) = ¢(n) = 0 (mod 117).
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Remark 7.4.4. The values in {(7.4.1) and (A §2) suggest that the ¢(n)'s
grow quite rapidly. This is indeed the case, as is clear from the following
asymptotic formula proven by Petersson (1] using the circle method of
Hardy, Ramanujan, and Littlewood:

(,-1#\/7_:
—~—_—
\/§n:if4

e(n) a8 1 — 0.

It also turns out that the e(n)’s are intimately connected with represen-
tations of the largest sporadic groups, in particular with the Fischer-Gricss
monster group. See Conway [1] and Conway-Norton [1] for an interesting
account of this surprising conncction.

Remark 7.4.5. Ramanujan’s 7-function also has many interesting prop-
erties. For example, we will later prove (10.7) that it satisfies the identitics

T{mn) = T(m)r(n) if {m.,n) =1,
r(pt) = r(p)r(p*) — p' ' (ptT!) for p prime and € = 1.

These identities were conjectured by Ramanujan; the first proof was given
by Mordell.

We will also prove (11.2) that the 7{n}s grow much more slowly
than the e{n)’s. Precisely. we will show that there is a constant ¢ such
that |'r(n)] < enY for all n > 1. Another conjeciure of Ramamnjan, proven
by Deligne as a consequence of his proof of the Riemann hypothesis for
varieties over finite fields, sayvs that one can do betrer.

Theorem 7.5. (Deligne [1,2])

|r(n)| € ou(n)n!? forallnz 1.

(Here og{n) is the number of divisors of n. For example, if n is prime,
then O'(](Tl) = 2)

In the other direciion, there is the following open conjecture of Lehmer.

Conjecture 7.6. (Lehmer [1])

T{n)#0 for alln > 1.
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8. Jacobi’s Product Formula for A(7)

in this section we will prove Jacobi’s beautiful product expansion for the
modular diseriminant A{r).

Theorem 8.1. (Jacobi}

Alr) = (2m)2 [T - g™,

>l

Remark 8.2. We will derive the product (8.1) directly fromn the definition
of A{7} and the product representation (6.4) for the Weierstrass ¢-function.
There are other methods which can be used to prove (8.1}). For example, see
Serre [3, Ch. 7, Thm. 6| for a proof based on rearrangement of conditionally
convergent double series, and Apostol {1, Ch. 3, §2] or Siegel [1] for an
exposition of Siegel’s clever proof using residue caleutations. The heart of
both of these proofs lies in first proving that the function

Fir)=q]J0 -aM*
n=1

satisfies

F(=1/7) = t2F(7).
Since [ visibly satisfies

Flr+1)=F(7) and lim F(v)=0,

T =300

and since S and T generate the modular group I'(1}, it follows that F'is
a cusp form of weight 12. Hence F(T)/A(T) is a holomorphic medular
function of weight {1, so it is constant. Finally, letting v — ioc, one easily
checks that this constant is {27)~!2.

Proor (of Theorem &.1). By definition,
A(r) = gao(7)* - 27g3(7)°
is the discriminant of the cubic polynomial
4X7 — go(1)X — ga(7) = 4z — e1)(x — e2)(z — €3).

But we know the roots of this polynotnial from [AEC, V1.3.6], namely

1 T T+1
g = E‘T R €y = (2 5’7' \ €3 =@ _E_'T .
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Thus
._\(T) = ]ﬁ(f’.] — 62)2(61 - (3;;)2({’,2 — !‘?3)2.

The idea of our proof is to express A{7) in terms of speclal values of the
Welerstrass o-function and then use the product expansion (6.4} for .
If we differentiate the equation

ol = dip —e1)p — e2){p — e3)

and divide by 2g’, we find

0" =2p - l{p—e2}+ 2w —e1dp—ex)+ 2 — e2)ip — e3).

\ . 1 T T+1
Now if we evaluate successively at * = -, 2= -, and z =

2 2
each case that only one of the threc terms survives:

we See i1

1
p" (5“’) = 2(e1 — ez)(e1 — e3),

-
[0” (ET) = 2(82 - f-‘l)(l‘i‘z - F.-‘:a)‘
_|..

o (T 2 'T) = 2fes — e1)(es — e2).

Comparing these formulas with the expression for A{7), we write A{r) in
terms of values of g,

s (3o ) ()

Recall (5.6b) that we have expressed ¢ in terms of the Weierstrass o-
function,

; a{2z,7)
(2 T) = ————,
#(2.7) a(z, 7)1
Taking derivatives gives
(2, 7) = _20"(2z,7') a2z, 7)o (2, 7)
Flz, 7)1 alz,7)°
i . i+ 741 .
If we evaluate " successively at z = 29 g the second term will

vanish, since o(z, 7) has zeros at points

—
-

n the lattice Zr + Z. We obtain

o 4 !
o (%1’) :—2% forw=177+1.
o (5.7}
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Cotnbining this with the above formula expressing A in terms of ", we
find

o' (1,1’ (r, 7)o’ (v 4+ 1,7)

1 T +1 1-
[0 (5:7)o (5. 7) o (F.7)]
In order to compute the values of the derivatives in this expression, we

take the transformation formula {5.4¢) for ¢(z,7) and differentiate it with
respect to z. This gives

Alr) = 16

7 (2 +w,7) = Plwn(w)e"™ TIN5 (2) 4+ plw)en @ gl (4)
for all w € Zr + Z.
Now put z = 0 and use the fact that ¢{0) = 0 and ¢'{0) = | to get

o'(w) = Y(w)e V2 Takingw = 1, w = 7, and w = 7 + | in succession
yields

o' (1) = —emM1)/2, gty = -2 and o'l +1) = —elHUnT/2

Next we use Legendre’s relation {5.2d), which in our situation reads mn{1)—
7{7) = 2mi, to eliminate n(7). After some algebra we obtain

(1) = —e??, o'(7) = —e%"fﬁq"%, and o'(t+1)= —e TN

where to ease notation we write 7 = {1}
The next step is to use the product expansion {6.4) for o to compute
o at the half periods. Thus

]

4
1 1 1 144"
Z E———— L ,
4 (2,1') (2:“-)48 H 1—gn

2l

P L — Y1 — g d)
T,T) = e%'”zq—l(l—q%) H (1—g =) (1-¢""3)

2 2mi)yd gt (1—qgn)®
. 8
1 1,2 1—gnz2
e ammTt o —1 I
(27”')462 4 H 1—g7
n>l
4
1 1
7 (%'T) - (Qm)‘ie%“’*')zq_‘(l +q%)

(1 + ) (1 gn-5)
x H (]__qn)s
;]

nzl

1
1 L 2 1+gn2
35‘7(7+1) -1
(2mi)? | 1152 e

nzl
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= (27)12 (1_(}”)3
P! Srernierey

&

_ ronni2 (1 —¢™*(1 - ¢*")

- (QTT) q H 1 _|_ qn

since ([T1 - ¢ 1)(T]1 - ¢) = [T1 - ¢"
= (‘2?r)12q H (1-— Q‘n)24 since 1 — g®" = (1 + ¢"){1 - g™).

nzl

>l

O
In view of the exponent appearing in the product expansion for A{r),
it is natural to study the function obtained by taking 24*'-roots.

Definition. The Dedekind n-function n(7) is defined by the product

(1) = 277/ H(l - ") for T € H, g = ™7,
n=l

Warning. Do not confuse the Dedekind n-function with the quasi-period
map (5.2b) 7 : A — C. This may be especially confusing when A = A.,
since then the symbol n{r) has two meanings, and it is quite possible for
both to appear in a single formula. For example,

]'24

{27)'?(Dedekind n(7))" = A(7) = product of values of a(r),

and using the product expansion {6.4) for & will give a formula involving the
quasi-pertod n{1). Why, vou may ask, do we continue to nse this confusing
notation? Tradition!

Proposition 8.3. (a) The Dedekind n-function satisfies the identities
1
n(r + 1) = ™/ X p(7), and n (—;) =/ —irn{7).

Here we take the branch of v/~ which is positive en the positive real axis.

(b)
Ar) = (2m) Zn(r),

ProoF. Note first that (b) is immediate from the definition of n(r) and Ja-
cobi’s product formula (8.1) for A(7). Next, since the transformation 7 —
7 + 1 does not change g, we see from the definition of n{r) that

7?("" 4+ 1) — 6’211'?'.(T+l],.-"24 H{l _ qn) — erri/?éln(T).
=l
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Finally, we know that A(7} is a modular form of weighi 12, so
a{-1) =r2am
- )

Using (b) and taking 24*%-roots shows that

. (_1) = ev/=ir(r)

T

for somne 24M-root of unity s. Now evaluate at © = 4. Since —1/i = i, we
find that ¢ = L. 0

Remark 8.4. More generally, let

F = ((: 3) € SLa(Z£) with ¢ = 0.
Taking the 24" -root of (8.3b) and using the known transformation property
of A7) shows that

poyr) = i

v —ier 4+ din(T)

for some integer @{~) depending on . For example, {8.3a) says that ®{5) =
(0 and ®(T) = 1. Note that althougli ®(+) is only defined modulo 24, we
can pin down a particular value for @(~) by fixing a branch of logn{r}.
setting

%Q(’T) = logn{y7) — logn(r) + % log{—i(er + d)} ife>0

and requiring ®(—) = ¢y} if ¢ < Q.

For many purposes it is important to know precisely how  transforms.
The following theoremn of Dedekind supplies the answer. First we tieed one
delinition.

Definition. Let & and y be rclatively prime integers with y > 0. The
Dedekind sum s(x, y) is defined to be

{The square brackets denote the greatest integer function.)
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Theorem 8.5. (Dedekind) Lety = (‘g g) € SLz(Z) with e > 0. The
Dedekind n-function satisfies the transformation formula

n{yr) = 2ROV iler + dn(r),

where / Is the branch of the square root which is positive on the positive
real axis, ®(v) is given by the formnla

B(v) = % + T ouid, o),
' o

and s{z,y) is the Dedekind sumn defined above.

PrRoeF. Since we will not need this result, we omit the lengthy proof. The
interested reader might consult Apostol {1, Thm. 3.4] or Lang |2, Ch. IX].
O

Remark 8.6. Dedekind sums s(x,y) satisfy many interesting relations.
Of particular importance is Dedekind’s reciprocity law: Let z.y > 0 he
integers with ged{x,y) = 1. Then
128(z,y) +125(g, ) = = + ¥+ = _3
s{x, 1 siy,£)=—+=+— -3
Y y s T2
See Apostol [I, Thm. 3.7} or excrcise 1.17. A good source for information
about Dedekind sums is Grosswald-Rademacher [1].

§9. Hecke Operators

Let E/C be an elliptic curve. We have seen amply demonstrated in [AEC]
the importance of studying isogenies connecting our given elliptic curve E
with other elliptic curves. If E(C) = C/A for some lattice A € L, then an
isogeny E° — F of degree n corresponds to a sublattice A’ € A of index n
by the natural map

C/A — C/A, Z— z.

In keeping with our general philosophy in this chapter, rather than
focusing on a single isogeny, we instead consider the set of all isogenies
to £ of degree n. Equivalently, we look at all sublattices of A of index n.
This is the same as studying degree n maps from E to other elliptic curves,
since we can always take the dual isogeny. In our situation, the dual isogeny
C/A — C/A’ is induced by the map z — nz. This leads to the notion of a
Hecke operator.
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Definition. For any set S, let [v{S} denote the divisor group of the set S,
that is. the free abelian group generated by the clements of S,

Div(S) =EP Z-s.

sE8

A homomorphism T @ Div(8) — Div(S) is called a correspondence on S,
Notice that a correspondence is determined by linearity once its valies are
known on the elements of 5.

Definition. Let n > 1 be an integer. The n'" Hecke operator T(n) is the
correspondence on the set of lattices L whose value at a lattice A € L is

TmA= > ()

ACA
[A:A]=n

If two lattices are homothetic, then they give the same elliptic curve.
This suggests that we should also look at the following homothety operator.

Definition. Let A € C*. The homothety operator Ry is the correspondence
on L whose value at a latlice A€ L is

H-)\.-'\ = AA.

Since the T'{n)'s and the Ry’s are homomorphisms which map the
group Div(£) to itself, they can be composed with one another. The fol-
lowing fundamental calculation describes the algebra that they generate.

Theorem 9.1.

(a) B\R,=H,, for all A, e C.

(b) RT(n) = T(n)R, forallAeCr, n> 1.

{c) T{mn) = T{m)T{n) for all m,n > 1 with ged{m,n) = 1.
(dy THT(p) =T+ pT(pﬁ_l)R for p prime, e > 1.

ProoOr. (a)
RaRu(A) = Ra(pA) = Apd = Ry (A).

(b} This follows immediately from the definitions and from the fact that A’
is a sublattice of A of index n if and only if AA’ is a sublattice of AA of
index n.

(¢} Let A" fa A, where the superscript mn denotes the index. Since
and n are relatively prime, the quotient A/A” has a unique decompositicn

AN =@, x &, with |®,,] = m and |®,] = n.
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It follows that there is a unigue intermediate lattice A” satisfying

THL Tl

A" C AN CA.

namely
AM={reA mreA"}

Using this fact, it is now easy to verify (¢).

Tma)A= > Wi=> > (A"

A A AMEA AYEAT
= ¥ Tim)A) = T(m}( 3 (A')) = T(m)T(n)A.
ACA ACA

n4 1
{d} Let A € L. For a given sublattice A’ & A, let afA') and b(A') be the
integers defined by

aA)=#{T:NCTEA)  and  bA)= {[1) y 2 ; it

Then
TEIO)TEA =Y > (W)= D a(r)n).
réa adc AN
Tptha= > @),
pr'+l
A'C A
T HRA= > (A= Y aANA).
=1 k41
A"E pa PO

(Note that pA has index p? in A.} The identity {d) we are trying to prove
is thus reduced to verifying
+1

a(A) =1+ ph(A)  forall A’ E AL

We congider two cases.
Case 1. A’ CpA. (A} =

Let T & A, Then T O pA O A so a(A') is increased by one for each
such I'. Hence

a(N)=#{T:TEAY =p+1 =14 pp(A).
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[Quick proof of the middle cquality: The set of T A corresponds to
subgroups of A/pA = (Z/pZ)? of index p {or cquivalently of order p).
These are the lines in A%(Z/pZ). so there are #P'(Z/pZ) = p+ 1 of then.
For a proof of a more general result, see (9.3) below.]

‘Casc 2. Mg pAl AN = ('}l

Let I satisfy A" C T & A. Note that pA C I’ We have inclusions

A r e A
0 —_— . — —
A'npA T pA - pA
T 1
Not equal, Index p,
since A’ 2 pA. since T & A.

But A/pA has order p?, so we conclude that the middle inclusion must be
an equality. Therefore
= A"+pA.

Thus for a given A" & pA there is exactly one I satisfying A’ ¢ T A
Hence
alA'y =1 =1+ pb(A").
)

Corollary 9.1.1. FEvery T'(n) is a polynomial in the T{p}’s and R, s for
primes p. More precisely, the rings

Z[T(n}. R,:n€f& n> 1] and Z[T{p)' Ry, :p prime]

are the same. This ring is called the Hecke algebra {of I'(1})). {Notice that
the Hecke algebra is a subring of the ring of correspondences

End(Div(L}) = { homomorphisms Div{L) — Div(L)}.)

PROOF. Factor n=pi' - --p& . From (9.1a) and (9.1c} we find
R.=1IR: and  Te)=]][T&".
=1 i=1

Finally, (%.1d) and an easy induction on ¢ shows that T{p"} is a polynomial
in T{p) and R,. ]

Corollary 9.1.2. The Hecke algebra Z[T(-n.), Ro:nmek n> I] is com-
mutative. In particular,

T(m)T(n) = THOT (m) for al m,n = 1.
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{Note that End(Div(L)) is definitely not commutative.)

ProoF. From (9.1a,b,c), we are reduced to showing that T'(p*) comnutes
with T{pf). This follows from (9.1.1}, since both T{(p") and T(p/) are
polynomials in T(p) and R,, which commute from (%.1b). m|

Example 9.2. Using (9.1d), it is easy to illustrate (9.1.1} for small pow-
ers T{p"). For example,

T(p*) = T(p)’ - pRy,

T(p") = T(p)* - 2pRyT(p).

T(p*) = T(p)' -~ 3pR,T(p)* + p*R>.
For a general recursion, see exercise 1.19.

The Hecke operator T{n) sends a lattice A to the sum of its sublattices
of index n. We now describe these sublattices more precisely. Let A € L,

(1)
and fix an oriented basis Zw; + Zws for A. For any A" C A, we choose an
oriented basis wi,w) for A and write

wy = aw| + bwa, wh = cwy + dwa,

with integers a, B, ¢, d. Then one casily checks that

n=[A:A]=det (a. b) = ad — be.

¢ d

Here's a quick geometric proof of this fact. The linear transtormation a =
(? 3) acting on the vector space R? & Runy +Rwy = C sends a fundamental

parallclogram D for C/A to a fundamental parallelogram for C/A’. Tlence

_Area of aD

A M :'\.; = " = \ ).
[ ) Arvea of D det(a)

Conversely, if ad — be = n, then
N = Flaw) + bwa) + Zlew; + dws)

iy a sublattice of A of index n. We thus obtain a map

{o € M{Z) : det(a) =n} — (AN ¢ Al
= (?f 3) —  a(A) = Zlaw) + bwz) + Zlow + dun).

(Here M2(Z) is the ring of 2 x 2 matrices with integral coefficients.) Note
that a(A) depends on the choice of basis for A, although our notation does
not reflect. this dependence.
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It is possible, of course, for different a’s to give the same sublattice.
According to (1.2}, we have a(A) = o'(A) if and only if & = o' for
some ~ € SLo(Z). Note that the basis for a{A) will be oriented if the basis
for A is, since (1.1) gives

- (a.wl + bwg) _ (deta) Im{w /w)
cw + ey |(:(u,-‘1/u2} + d‘z :

and det(n) = n > 1. This proves the hrst half of the next lemma, which
we state after setting some notation.

Notation. Let » = 1 be an integer. We defiue

D, = {((f g) € My(Z) :o.d—-bc-—:n}.

&, = {(3 2) EALZ) :ad=n, a0, d>0,0<h< d}.

-

Note that 8, is a finite subset of D,, having order

d—1

#8, = ZZ 1 =a{n).

dlen B=0

Note also that SLy(Z) acts on D, via multiplication: if v € SLy(Z) and o €
Dy, then det{yo) =n, 50 va € T,
Lemma 9.3. Let A € L be a lattice given with a fixed oriented basis A =
F + Zwy.
{a} There is a one-to-one correspondence

SLy(Z]\D, 4= {4878 A}

o = (f‘ 3) — alA) = Zlaw; + bwa) + Elewy + duws

{(b) The natural inclusion 8,, < D, induces 8 one-to-one correspondence

8, <= SLo(Z)\ D,

PROOF. {a) This was proven during the discussion above.

{b) Let a = (? E:i) e D, We construct a v € SLafZ) such that vo €
S,. Suppose first that ¢ # 0. Write the fraction —a/c in lowest terms,
say —a/e = s/r. Since r and s are relatively prime, we can find iutegers p
and ¢ so that ps —gr = 1. Then

oy a by = = p g
(-r .w) ((: d)_([} *) and (r S)ESLE(Z).
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8o we are reduced to the case that ¢ = 0. Replacing o by —a if necessary, we
may also assume that a,d > 0. Finally, for an appropriate choice of ¢ € Z,

the matrix
1t a by (o b+td
0 1 0D 4] \0 d

satisfies 0 < b4 ¢d < d. so it is in 8,,. This proves that 8, surjccts
onto SLo{Z)\Dy,.

Suppose now that .o’ € §,, have the same image. Thus there is a
¥ = (¥ 9) in SLy{Z) such that

a by (p ¢ ad VY [(dp Vp+dy

0 4} \r s 0 d&) \ar bVr+ds)’
Since o’ #£ 0, the lower left-hand entry gives r = 0. Next, comparing
diagonal entries, we find

a'd’
a=a'p, d=ds, ps—r = 1, ad,a’,d >0
il

It follows that p = s = 1, and so @ = o’ and d = 4’. Finally, we have
b="b'+dq  and (by assumption) 0<b b <d =d

Hence |d'g| = |6 — | < d', from which we conclude that ¢ =0 and b = ¥,
Therefore o = o' (]

Proposition 9.4. Let A € L be a lattice, and let A = Zw, + Zws be an
oriented basis for A. Then the Hecke operator T'(n) is given explicitly by
the formulas

T(n)A= Y (Zlaw +bup) +Zdws) = Y (a(A)).
ad=nr,a>1 aE8,,
0<b<d

{The notation a{A) is as in {9.3a).)

Proor. Immediate from (9.3}, which says that the sublattices of A of
index n are precisely the lattices a{A) with a € §,,. ]

Example 9.4.1. For primes p, (9.4) gives the formuta

T(p)A = (Bpwy + Zws) + D _(Z{wy + bws) + Zpws).
b=0
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510. Hecke Operators Acting on Modular Forms

T the last scetion we described Hecke operators T'(n) which assign to a
lattice A € £ a formal sum of lattices

T(mA= > (A),
ATCA
aed we also gave homothety operators By defined by Ry (A) = AA. Lelting

F L — C be any fanction on the space of laliices, we define new
functions T{r) F and Ry F on L in the natural way,

(TEyF)(A) = > F(A)  and  (RyF)(A) = F(AA).
ATCA
We would like to define an action of T(n} on the space of modular
functions f of weight 2&. Unfortunately. a4 modular function f is not a
well-defined function on the space of lattices L: it is only a function ou the
space of latrices with given bases:

W

']
A ZZML-I-ZQJQ'——*f(—).

However, we can use the fact that f is modular to construet a function
on L having a certain homogeneity property, as described in the following
proposition.
Proposition 10.1. There is a one-to-one corresponderice
lattice functions F': L — C
satistving F(AA) = A7 F(A)
for all A e C*
f — F{(Bwy + Tws) = wy 2 flwy fun).
Fr(r) = P(Ar) — F.

weakly modnlar functions -1
f:H — T of weight 2k '

ProoF. First we check that Fy(A) depends only on A, and not on the
choice of an (oriented) basis for A. From {1.2a), any other oriented basis
has the form

b

d) € SLy(Z);

. I
(awy + bz, cwy + dwn) for some ( )

80
awy + b
cw + dwp

2k _
= (cen + duz) ™ (c""—* + d) f(ﬂ)
L'2 why

= {.U'Q_Qkf (E) = Ff{Z'.u‘] + Zw‘?)

W

Fi{{awy + bu)Z + () + duwz}Z) = {cwy + dwa) ™2 f (
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Next, it is clear that

F(AA) = Fp(Zhw) + Zhiwg) = A2 Fp(A),

o od

Similarly, if 4 = (“ b) € SLy(Z}, then

Ay = (er + &) HBlar +8) + Zler +d)) = (o7 + d) 1AL,
which implies that
Frivm) = FlAa-) = Fller+d)7TAL) = (er+dVPPF(AL) = (em +d)* fr (7).
This shows that the indicated maps are well defined.
Finally, we check that they are inverse to one another, which will prove
that they give one-to-one correspondences between the indicated sets.

Fyr (A) = "“"Q_MIfF (W_l) - "";AF (ij_fwz)

fr (7)) = Fy(Ar) = Fy(Zr + Z) = f{7)- 0
Using (10.1}, we can define Hecke operators on the space of modular
lunctions of weight 2k It turns ouk to be convenient to mnltiply by the
sealar factor n®¥ L which will prevem the appearance of denominators
in (10.3) below.

Definition. The n'™ Hecke operator Toi(n) on the space of {weakly} mod-
nlar funciions of weight 2k is defined by the formula

(T () ) (7) = n261 Z Fr(A]) = nt1 Z a2y (ar(:— b) .

al=w. >l

AV CAL Dhed

Here F{Zw) + Zws) = L,\J;zkf(u)lfu,‘g} is as in {(10.1). The equality of the
last two expressions is immediate from {9.3), which says thar
{A A c At={Zlar+b)+Zdad=n,a> 1, 0 b < d}.

Theorem 10.2. Let f be a modular function (respectively modular form,
respectively cusp form) of weight 2k, Then so is Top(n) f.

Proor. First, we verify that Top(n}f has weight 2k, By definition, Ty (n) f
is associated as in (10.1) to the lartice function n?8=1F(n)F;. The scalar
factor 2%~ 1 ig immaterial, and we have

(Tr)FY(AA) = D F(A) = > F(AA)
AEAA AT A
= A7 N F(A) = AT (T () F)(A).

ATA
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Again invoking (10.1), it. follows that T(n) Fy corresponds to a weakly mod-
ular function of weight 2k, and so Top(n)f is weakly modular of weight 2k.

Next we observe thal if f is meromorphic (respectively holomorphic)
on H, then the formula

- g . fOT+ D
(Tan(n)f)(ry =0 37 d "f( a )

ad=n.azl
vahod

shows that the same is true of T'(n) f.

Tt remains to check the behavior of Toi(n) f at oo, The next proposition
gives an explicit formula for the Fourier cocfficients of Tox(n}f. from which
it follows by inspection (1(0.83.2) that Tuy(n)f is meromorphic (respectively
holomorphic, respectively zero} at oc if f is. This completes the proof
of (10.2). O

Proposition 10.3. Let f(7) = _clm)g™ be a modular fuuction of
weight 2k. Then the Fourier series for Top(n)f is

L
(Tea(n)f)ir) = Z +(m)¢”, where ~(m)= E a? e ((—2) .
4
mel a| gedim.n)

As a special case of (10.3), we list the values of ¥(0), ~(1). and ~v(p) for
primes p. Notice in particular that {1} = e{n). Thus in some sense 75.{n}
acts as a shifting operator on the Fourier coefhcients of f.

Corollary 10.3.1. With notation as in (10.3),
{a)
Y0} = {02k -1 {1n) and ~(1} = ¢(n).

(b} For primes p.

o Jelpr) v p¥ elnfpy il pln.
7P} = { clpn) ifpin.

Remark 10.3.2. Notice that il c{m) = 0 form < —my = 0, then v(m) =0
for m £ —mgn. This is clear because ¥{m) s a sum of terms of the
form e{mr/a?) with ¢f ged(m, n), so mnfa® < —my. Thus Tyg{n)f will be
meromorphic {respectively holomorphie, respeetively zero} at oc il f is.
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Proor (of Proposition 10.3). We use the formula defining Tor(n)f and
colnpute

(Tox(n}f)(r) = n2*" Z 42 (m—;- b)

ad=n,a>1
O=b<d
- Z: d—2k Z C('m.){32”m(ar+b)/d
adern, o>l meL
0<bed
= p2k-1 Z § : c(m)d-—ZkeZm'maT/d Z gimimb/d
mel ad=n,a>) O=<hed

The innermost sum is

Z 2mimbra _ J 4 i dlm,
© 10 ifdim

0<bed

Replacing m by md = mn/a and using n/d = a, we find

(Tox(n}f) () = Z Z g lmimaTe (%&),

mEL ad=n,a>l

and collecting equal powers of q = ¢*™*7 {let M = ma) yields

. Mn ;
§ : E : G)k—lc( 5 e?fmh’f-r_
¢}
MEeZ a| ged(M,n) 0

Suppose that a modular function f is an eigenfunction for the Hecke
operator Thi(n). This means that there is a constant A{n) € C so that

(Tar(m)F)(r) = A(n)f(r)  forall r € H.

Using (10.3) to compare the Fourier coefficients of Aln}f and Tor(n)f, it
is clear that the eigenvalue A{n) is related in some way to the Fourier
coeflicients of f.

Of particular importance are those modular forms which are simul-
taneous eigenfunctions for every Tai(n). Although it may seem unlikely,
a priori, that there are any such funetions, we will later observe (10.9) that
in fact MZJ, has a basis of such functions. In any case, we can already
construct the following examples.

Example 10.4. The modular diseriminant A7) is an eigenfunction for
every Hecke operator Tya(n), n > 1. To see this, note that {10.2) says
that T12(n)A is also a cusp form of weight 12. But from (3.10.2) the space
of weight 12 cusp forms MP, has dimension 1. It follows that T)2(n)A is a
constant multiple of A.

Similarly, G4(r) and Ge{r) are eigenfunctions for Ty{n} and Ts(n)
respectively, since the spaces My and Mg have dimension 1 (3.10.1).
fact, it is not hard to show that Gy (7} is an eigenfunction for Tag(n) for
all k > 2 and n > 1. See exercise 1.25.
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We now describe the relationship between the eigenvalues and the
Fourier coefficients of simultaneous eigenfunctions.

Theorem 10.5. Let f{r} =% c{m)q™ # 0 be a cusp form of weight 2k,
and suppose that f is an eigenfunction for all Hecke operators Top(n), say

Topln)f = Aln}f.
Then
(1) # 0, and e(n) = Mn)e(l) foralln > 1.

Proor. Comparing the leading coefficient. in

Andf = Alnle(Vg+--- and Top(n)f =clndg+---,

(see (10.3.1b}}, we find that ¢{n) = A{n)c{1}. This proves the second part
of the theorem.

Suppose now that (1) = 0. Then what we have proven implics
that e{n) = AMn}e(l) = 0 for all » > I, so f = 0. This contradicts
onr original assumption that f # 0. Hence 1) £ 0. 0

Definition. A sinultaneous eigenfunction as in (10.5) is called nermafized
if ¢{1} = 1. In view of (10.5), every simultancous eigenfunction is a constant
multiple of a normalized eigenfunction.

In the last section we proved several identities (9.1) for Hecke oper-
ators T'{n) acting on the space of lattices £. These give us the following
identities for the action of Hecke operators on modular functions, which in
turn give us relations on the Fourier coefficients of simultaneous eigenfune-
tiomns.

Proposition 10.6. Let f be a {weakly) modular function of weight 2k,
(a}  Top(mn)f = Top(m)Top(n) f for all m,n € Z with ged{m, n) = 1.

(b)  To()VTex(@)f = Tarlp" ™) + 0™ " Ton (07 ")S
for all primes p and all e = 1.

ProoF. (a) This is hnmediate from (9.1¢).
{b} We apply the identity (9.1d) to the lattice function Fy described
in (10.1). Since

Raf b (A) = Fr(QA) = A7 Fp(A),

we lind

T )\T{p)Fy = T )V Fy+ p' 2T ) Fy.
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By definition, Toi(n}f = n**~'T(n)Fy, so multiplying by p'* 11241 gives
the desired result. O

Corollary 10.6.1. Let f(7} =3 clnlg™ # 0 be a cusp form of weight 2k
that Is a normalized cigenfunction for every Hecke operator Top{n).

(a}y  clmn) = clme(n) for all m.n € Z with ged(im.n) = 1.

(b) elpe(p) = clp®tHY + 2 Le(p™h) for all prirues p and e = 1.

PROOF. {a) We combine {10.5) and {10.6a) to find (note that ¢(1) = 1)

cfmn)f = Almn)f = Ty (mn)f
= Top(mY g (n) f = Alm)Aln}f = clm)e{n)f.

(b} This follows similarly from {10.5) and (10.6b). ]
Example 10.7. Let 7{n} be Ramanujan’s r-function defined hy
(2m)~ %A =3 T = [T - ¢
n>1 1

(See (7.4a) and (8.1).) Then (10.4) says that > rin)g" is a normalized
gsimultaneous eigenfunction. so {10.6.1) gives the relations

T(mn) = 7(m)r{n) for all m,n € Z with ged(m.n} = 1.

(P )r(p) = et + ptlrpe ) for all primes p and all ¢ = 1.

These identities, conjectured by Ramanujan, were lirst proven by Mordell.

Remark 10,8, It is clear from (10.6.1) that modular forms that are si-
multaneous eigenfunctions have many interesiing arithinetical properties.
(We will see some additional ones in the next section.) We have given
examples of such functions {e.g., A{7)), but so far we only know finitely
many such examples. The following theoremu of Petersson shows that there
arc many functions 1o which (10.6.1) applies. We will not give the proof,
which requires additional machinery involving subgroups of SL2(Z).

Theorem 10.9. (Petersson [2]}) The set
-{f < ;‘l-f{}]k_ [ is a nonmalized eigenfunction for all Top(n}, n 2 l}
15 o hasis for the space M’é’k of cusp forms of weight 2k.

PrRoOF. See Lang [2, Ch. III §4]. Ogg [1], Shimura [I, Ch. 3 §§4.5], or
exercise 1.22. ]
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811. L-Series Attached to Modular Forms

Let f{7) =3 e(n)g™ # 0 be a cusp form of weight 2k which is a normalized
cigenfunction for all Hecke operators Tyi(n). Then the Fourier coefficients
of f satisfy the identities given in (10.6.1). We now show that these identi-
ties are equivalent to an Euler product decomposition for a certain Dirichlet
series attached to f.

Definition. For any power scrics
=3 cn)g" € Cly),
el
the L-series attached to f is the (formal) Dirichlet series

(f.5) = Z elnjn=".

=l

Proposition 11.1. Let f = Y ¢(n)g" be a power serjes with (1) = 1.
=l

Then the coefficients of [ satisfy the identities

(i) clmm) = e{m)e(n) for all m,n with ged{m,n) =1,

(i) e(pelp) = e 4+ pPF e for primes p and ¢ > 1,

if and only if the associated L-series L( f. s) has the Euler product expansion

1
{iii} L{f.5) = H Toim—n 1 y2k—1—2x"
’ l—clpip= +p

(Note that this Is an equality of formal Dirichlet series. We have said
nothing vet about convergence properties. }

PrOOF. Suppoese first that f satisfies (i} and {(ii}. The multiplicativity
relation (i) implies that we can decompose L(f, s} into a product over

primes,
Lif.s)= Zc{n]n o HZ p e

nzl Pzl

If we multiply the inner sum by 1 — c{p)p~" + p** =172, we find

(1 —e(pyp™ + p?h—172%) (Z fr(p"‘)p"“")

o=
oy —es ey — [ L ey Ak —1— (o425
=3 e pT = Y )T D epptt i
o0 ¢ e

{e(1) + ctpip™} ~ {elp)e(llp™}
+3{elp?) — elpelpt T+ elp T ) e

vrd

=1 using (i} and (1} = 1.
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Hence

1
Zc(pe)p-cs = s L ok-1-2s°
= 1 —elplp= +p
which proves that L(f,s) has the Euler product expansion (iii).
We leave the converse as an exercise, since it will not be needed in the
sequel. See exercise 1.23. O

In order to prove that the formal Dirichlet series L{f, ¢) converges in
some half-plane Re(s) > sg, we need an estimate for the size of the Fourier
coefficients of f.

Theorem 11.2. {Hecke) Let f{r) be a cusp forin of weight 2k with
Fourier expansion Y_ c{n)q". There is a constant &, depending only on f,
such that

le(n)| < rn* foralin > 1.

Remark 11.2.1. Let f{r} = 3 ec(n)¢™ be a normalized cusp form of
weight 2k which is a simultanecous eigenfunction for all Hecke operators
Tar{n). Then the Fourier coefficients of f actually satisfy the stronger
estimate

le(n)| < oo(n)n* 7,

where op{n} is the number of positive divisors of n. This is the generalized
Ramanujan conjecture (for I'(1)}, which was proven by Deligne [1,2] as a
consequence of his proof of the Riemann hypothesis for varieties over finite
fields.

Remark 11.2.2. If f(r) is a modular form of weight 2k which is not a
cusp form, then the Fourier coefficients of f grow at the faster rate

rn?ft < |c{n}| < kon?*-L,
See exercise 1.24,

PROGF (of Theorem 11.2). For any y > 0, we can extract the n'" Fourier
coefficient of f by integrating

1
e(n) = / e~ 2mnETY) £ 1 iy) der.
0

Hence
[c(n)l < e®™Y sup |f(;': + .*,y)l
o<zl

Next consider the (non-negative) real-valued function

¢(r) = [f(7)|(Im7)*.
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Using (1.1} and the fact that f is modular of weight 2k, we see that
Pyr)=d(r)  forally € (1)

Hence

sup ¢{7) = sup &{7),
TEH TeF

where F is the usual fundamental domain (1.5) for I{1)\H. Further, ¢ is
continuous on F, and

(Im7)* = 0.

litn @(r) = lin |Zc(n)€.2“’”
Tt 10 n>1

Note the impaortance of knowing that f is a cusp form, since if ¢(0} £ 0,
the limit would not exist. It follows that ¢ is bounded on F, and so it is
bounded on all of H.

Let

C =sup¢(7).
TE£H

Then
| £z +iy)| = le +iyy ™™ < Cy™*  forall z + iy € H.
Substituting this estimate for f into the above inequality for |e(n)| yields
'c(n)' < Oy ke ™y,

This inequality is valid for all ¥ > 0. In particular, putting = 1/n gives
the desired result. 0

Corollary 11.3. Let f be a cusp form of weight 2k. Then the as-
sociated L-series L{f,s) converges to give a holomorphic function in the
half-plane

Re{s) > &k + L

Proor. From {11.2) we have
|c(1‘1,)-n_s| = |(r(n)|n_ Rels) « yopk—Rels)
Hence 37 c{n)n* is absolutely convergent provided Re(s) > & + L. O

Our next goal is to show that the L-series L{ f, s} attached to a cusp
form f has an analytic continuation to all of € and that it satisfies a
functional equation similar to the functional equation satisfied by the Rie-
mann {-function.
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Theorem 11.4. (Hecke) Let f(r} be a cusp form of weight 2k.
fa} L{f.s} has an analyvtic coutinuation to all of C.
() Let

R(f.s} = (2m)*T(s}L(f. s},

where I'(s) Is the usual P-function. Then

R{f.2k -8y =(=1)"R(f,s) forallseC.

Proor. The I-function is given by the integral
o)
[{s) = / o let dt for Re(s) = 0.
0

(For basic facts about I', see Ahlfors [1].) Replacing ¢ by 2ant in the
integral. we obtain the useful fornula

e )

n * = (Q?r)‘”‘lﬂ{s)hl/ et gy

U

Write f(7) = 3" e{n)¢”. Multiplying our formmla lor ™" by ¢{n) and
summing over all n > 1 gives

Lif. s} = Z elnyn™" = Z {c(-n.)(?r)"‘]"(.‘?}_l ]x i e amndt dt}

nzl ol 0

= (2T ”l“s_l/xt"_l c(nle” & 4
(em e/ > " eln)

=l

— (2m)T(s)"! f’ ity dt.

Note that since |c(n)| < xn from (11.2). the quantity

% '
E C('H-) / rs—le—Zﬂ'nt dt
At

n=l

is absolutely couvergent for Re{s) > & + 1, s0 it is permissible for us to
reverse Lhe order of the sum and the integral.

We splil the above integral for L{f. &) into two parts. For large ¢ the
integral will converge for all s € €. For small ¢ we replace £ by 1/1 and use
the fact that f satisfies

r (i) ~ F(S(it)) = (i) F(it).
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Thus

(2m) " T{(s)L{f.5) = /000 2= F(it) dt from abaove,

1 oo
— 5—1 ; s—1 p7:
= -/[; 277 fit) dt +-/1 B f (i) dit

L)) s
=ﬁm(_l)kz%—s—‘f(fu]dc+f1mt3~1f(it)da.

This gives us the integral representation
o
L(f.8) = @aTie [T+ (ke o e
1

valid a priori for Re(s} > &+ 1.

But I'(s)~! is holomorphic on C, and by inspection the integral is
absolutely aud umiformly convergent for s in any compact subset of C.
{Note that since f is a cusp form, | f{it}| goes to 0 like a multiple of e~%
as t — 00.) Hence this integral gives the analytic continuation of L(f,s)
to C. Finally, we observe that the expression

g(s,8) =¥ 4 {—1)*t?* =71 satisfies £(2k — 5,1) = (—1)Fe(s, 1).
It follows immediately that

R(f,s) = (2m)*T(s)L(f, s) = f " es,0) £t dt

has the same functional equation, R(f,2k — s5) = (—1)*R(f, s). m]

We record as a corollary the useful integral expression for L{f, s) de-
sived during the course of proving (11.4).

Corollary 11.4.1. Let f{7) be a cusp form of weight 2k. Then

L{f, 3) = (27)°T(s)™" flm{ﬁ—l + (—1)kEEa-1) £ (i) .

EXERCISES

1.1. Prove that the modular group I'(1) is the free product of its subgroups (5}
and {5T} of orders 2 and 3.
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1.2,

1.3

Let 7y € 1, and let v € ['(1) satisfy y50 = 7. Prove that v sends the set
{r eH:LIin(r) > r}

to the interior of a circle in H which is tangent to the real axis at 7. Prove
that the radius of the circle goes to 0 as £ — oc.

Give an example of a Hausdorff space X and a topological group I' acting
continuonsly on X such that the quotient space Ty X, taken with the quo-
tient topology, is not Hausdorff. (By definition, the action of T on X is
continuous if the map I' x X — X, {y. 1) — vz, 15 continuous.)

For any a € C, let g.(7) = (+ —a)}/(r — a).

{a) Prove directly thar

ai(ST) = —gi{7)  and  g,(ST7) = p'gs(7).

(As nsnal, i = ™2 and p = 2Tl )

(b} Find the largest disk L'  H centered at i such that the map
{]__.S}\Llr fm— 'C, Tl——-o-_q,{T)z

is injective. Compute its image and its inverse,
{c) Same as (b) for U centered at p with

{1 8T (3T} \U — C, r— g {r)®.
Lel 7 € H be a point satisfying a quadratic cquation
t—ar + b, abcZ, a® —4b < 0.

Suppose further that Z[7] is the ring of jutegers of the quadratic imaginary
field Q{r}.
fa} Prove that the fractional deals of G{7) are in one-to-one correspon-
dence with the lattices L contained in {7} which satisfy 7L C L. {In this
context. a lattice is a froe Z-module of rank 2.}
(b} Prove that every ideal class is represented by a fractional ideal of the
form

T+T

)

Z+

b
ey

satisfving the following conditions:

(b zy&€Z withy =0,

(it} 4y? — (db—a?) < (22 + a)® < ¢,

(iliy ylz* + ax + 5.
Conclude that the class number of {7} is finite.
{¢) Prove that the ideal classes in {b) are distinct provided that we discard
all pairs (z, y) satisfying either of the following conditions:

(iv) 2z +a = —y,

(v} 2+ ar+b=1y" with 2z +a < 0.
{d) Use the above algorithm to compute the class number of the following
quadratic fields:

QV-3) QV-E). QV-23) @V-) Qv-dAT).
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1.6.

1.7.

I. Elliptic and Modular Functions
{a) Prove that the natural reduction map
SLa(Z) — SL2(Z/NZ)
is surjective.

{b} Define I'{N) to be the subgroup of I'(1) consisting of matrices congru-
ent to 1{mod N), that is,

=d =1 1N
rvy =4 (¢ b)erm: et L
e d b=c¢=0{mod N}
Prove that

6 it N =2,
iC(1) : T(N)] = { INTTI(1—p7?) N23

BN

(¢} Prove that T(N) is a normal subgroup of T'{1) and that

T{1)/T{N} = 8Ly (E/NZ) /{£1}.

Define subgroups Ug{ &} and ') (N) of F(1) by

Fo(N}) = {(2 ;) el {1}:e=0(mod N)} .

Ny = {(2 3) el{ly:a=d=L{mod N}, ¢ =0 (mod ,-'\")} .

{a) Prove that I'i (N} is a normal subgroup of I'y{ N}, and show that

Dol NYV/TI{N) = (Z/NZ) /{£1}.

(b} Prove that

TUNYT(N) = Z2/NZ  (taken additively).

{¢) Prove the following two formulas:

[F(1): To(N}] = N H(l +p ).
PN

3 N =2,
[C(1) : Ti{(N)] = { IN I —p™*) ifN 23

M
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1.8.

1.9.

Let X/C be a smooth projective curve of genus g. For any divisor D =
3 ne{x) with real coefficients n, € E, let

[P = [n.](x} € Div(X)

reX

be the inieger part of D, where [n.] denotes the greatest integer in ..
Also let

£(D) = {f € CIX)" : div(f) > —D}u {0}

(a) Prove that L(D) = L{[D]).
(b} Let & = 1 be an integer, and let Kx be a canonical divisor on X.
Prove that

{we 0% div(w) > —D} 2 L(kKx + [D]).

Let ¢ : H* — X(1} be the usual projection, and let

Du = 3(6(1)) + 2@l)) + (#(c0)) € Div(X (1)) 2@

{a} Prove that the map
Moy — {we Q% diviw) 2 —kDs}, [ wy

is an isomorphism. Here wy is the A-form described in {3.7a} having the
property ¢ wy = f(r) (dr}*.
(b} Cenclude that Afax = L{kKx. + [kDa]). Use the Riemann-Roch
theoremn [AEC I1.5.4] to calculate the dimension of Mgy, thereby giving an
alternative proof of {3.10c).

. {a) Provc that the set

{GSGEabeZ, 0,620, 20 +3b =k}

is a basis for May.
{b) Conclude that the map

CIX. Y] — P M, PIX.Y)— P(Gs.Ge).
k=il

is an isomorphism of gracded C-algebras. where we grade C[X, Y by assign-
ing weights wt{X) = 2 and wt(Y) = 3. In particular, the functions Ga(7)
and Gu{r) are algebraically independent over .
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1.11.

1.13.

1.14.

1. Elliptic and Modular Functions

This exercise outlines an elementary proof that the modular 7-invariant
defines a bijectivemap

7:P(L\H — C.

Fix some jy € C, let H be a large real number, and let F{H} C H be the
region hounded by the curves

rfl=1, Re{r)=3, Relr)=-3 Im{r)=#
Let 8F(H} be the boundary of F(H), which we take with a counter-

clockwise orientation. Assume for now that j(7) # jo for all v € F(H).
a) Prove that

1 F(7)
#{reFH) §()=jo} = 5 i e dr.

{b) IProve that

litn L/ & d‘T = 1.
H—oo 21 DIH) (7T} -

{Hint. Use 5(r) = 3{r+ 1} = 5(—1/7) to cancel out most of the line integral,
and use j{r) = ¢~ ! +{power series in ¢} to evalnate the remaining piece.)
(¢) Conclude that (T} = C and that j is injective on the interior of J.
{d} Tf j(ma} = jo for some 7 € &F, use a slightly modified region to show
that j is still injective. Conclude that j maps the quotient I'(1)\H bijec-
tively to C.

(e) Use the bijectivity from (d} to prove the Uniformization Theorem {1.3}.

. Let A, A’ C C be lattices satisfying

Ga(AY = Ga(AY  and  (elA) = Gg(A).

Prove that A = A,
*Let A = Zwy + Zws be a lattice given with an oriented basis, and let 7 :
A — C be the associated quasi—period map. Prove that

Mwa)
ZZ m1+m2)2’ wa ZZ nw|+nwa

nEl med mET nck
n#0 m#ED mAD #F0

N.B. These double series are not absolutely convergent; the order of sum-
mation really does matter.
{a} Provethat

H (p(z +u; A} — plz + v A))

e L
urE & AJA (2NE 3 NZ 1)

o — ENY (N AV TIAA) >

(b} Prove that

(N2 1N -3
[ (ot - o)) = 282V Da@) 8

uvE S ASA
uztv {(mod A}
w0 (mod A}
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1.15. Let E/C be the elliptic curve associated to the oriented latiice A = Zwy +
Zwy. Recall the Weil pairing

em : Elm] x Elm] — pm
defined in [AEC III §8). Prove that on
Elm] = m ™ 'AJA C C/A,

the Weil pairing is given by the formula

(O-Lu'l +bwe o + dws ) 2wmi(ad-be) /m
Ern B =€ -
m m

{ Hint. Use (5.3) to write the elliptic functions appearing in the definition
of e, as products of ¢ functions.}
1.16. Let s{x,y) be the Dedekind sum defined in §&.
{a) Prove that
p-Dy—2)

1l y) = ———————

(1, y) 124
{(b) Derive a similar formula for s{2,4). (The answer will depend on the
parity of y.)
fc) Prove that s(z° + 1, y) = 0 for all integers y > 0.

1.17. Let v = (g- 3) € SL2(Z) with ¢ > 0, and let @ be as in (8.4) and (8.5).

(a} Prove that &(+T) = &(+) + L.
{b) * Prove that ©(+5) = P(~) — 3 provided that d > 0. {Hint. Use the
definition of © (8.5} and (8.3a) to show that

2(®@(yS) — @(*))% = log{cST + d) + log{7) — log{dr — ¢) — 7—}

Now evaluate at = = 4.)

{¢} Use {b} and (8.5) to deduce Dedckind’s reciprocity law {8.6),

1
12s(x,y) + 128{y, z} = §+ g + pro -3

1.18. Let

Ry =[] -4 P o=JJa-qe %),

=] L

Py = H(] + g, P o= H(l—i—q"_%).

nel n1
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{a) Prove that

() () -
(v ()~ (5}
(o () o 5)} =t

{Hint. Use (5.6a) and the product expansion {6.4) of 5.}
{b) Prove that

= H}F)lz

PPy =1

{ Hint. Tt’s easier to show that Py PPy = Fiy.)
{¢) Use (a) and (b} to prove Jacoli’s formula

A(r) = (2m) % [T - ).

el

1.19. Verify the following identities for the Hecke and homothety operators acting
ay correspondences on the space of lattices L. (Note that there are similar
identities for the operators Tz (n) acting on the space of modular forms of
weight 2k which will differ from these identities by various scalar factors.)

{a) Tip)" = Z K:) - (T i l)] PR T(p ).
O e fl
(b) TRT(pY =D pRAP ™) for0<r<s

=4

(<) )T =y dRJT(%;),

d| poeder ]
1.20. {a) Let f{r} be a modular function of weight 2%. Prove that

df)z—:zk-f-dzf

o =4

g=(2k+1}( 73
is a modular function of weight 4k + 4.

() If fis a modular form, prove that g is a cusp form.
(¢} Tf f s the Eisenstein series Ga{7), prove that

1
9= gipgzaa T
Similarly, if f = Gs{7). prove thal g = ¢G4 (TIA(T), and find the value of
the constant c.
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1.21.

1.22.

For any matrix e = (? 2) with real coefficients and det{a) > 0, define

ple, 7) = o7 + d.
For any function f: H — T, define a new fanction f|[a]zr by

(fllalae) () = (det o) plar, 7) 7% flar).

{a} Prove thal [ is weakly modular of weight 2% if and only if

Al = forall 4 € SLa(Z).

{b} Prove that
Wf o= wyla)y

where wy 15 the differential form described in (3.7}
{c} Verify the identities

a3, 1) = pla. A3 1) and (f”ﬂ]gk) [k = flleP)ze.

{d) Prove that the action of Tax(n) on a weight 2k modular function f is
given by the formula

Tu(m)f =™ ' 3" Hlalw

aESLa (21D,

{See §9 for the definition of D,,.)
Let f.g € M. The Petersson inner product of f and g is defined by the
integral

dr andr

. Y &
(ﬂg}—fjf(f}g(’r)(lmﬂ s T r—

{Here ¥F is the usual fundamental domain for I'{1}\H. See (1.5).)

fa) Prove that the integral converges. (Note that f and g are assumed to
be cusp formms.)

(b} Prove that { , } is a positive definite Hermitian inner product on the
complex vector space AS,.

(¢] Let w{f, g) be the integrand

dr A dr

w(f.g) = f(r}g(r}(Im f)km‘

Prove that for any matrix & with real coefficients and det{a) > 0, and any
functions f,g on H.

w(f g} oo =w{filalan. gllalw) -
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1.23.

1.24.

1.25.

1.26.

I. Elliptic and Modular Functions

In particular, if f,g € Max and v € SLq(Z}, then

w(f,g)ev=w(f g).

{See exercise 1.21 for the notation flla]ax.)
(d) * Prove that The{n} is self-adjoint with respect to the Petersson inner
product:

{Tax(n) f, g} = (f, Tax(n)g) for all f,¢ € M3, n > 1.

(e) If f,g € M3, are normalized eigenfunctions for every Tuy(n), prove
that either
{(fig) =0 or f=g

() Prove that
{fe M2, : f is a normalized eigenfunction for all T (n),n>1}

is a basis for M.

Prove that if L{f, s) has an Euler product expansion as in {iii) of {11.1),
then the coefficients of f satisfy the identities (i} and (i) of {11.1).

{a) Let Ga{r) = 3 e(r)g™ be the Fourier expansion of the Eisenstein
series (o1 Prove that there are constants 1, k2 > {, depending only on &,
such that

il < le(n)| < Kon2E! for all n > 1.

(b} Let f{r) = ¥, c(n)q" be a modular form of weight 2k which is not
a cusp form (i.e. ¢(0) # 0). Prove that there are constants ky,k2 > 0,
depending on f, such that

mn ol < le(m)| < mgne? foralln > 1.

{a) Prove that the normalized Eisenstein series Ez; is a normalized eigen-
function for every Hecke operator Tox(n). See {7.3.1) for the definitien
of E‘zk.

(b} Let f € Mz, be a modular form of weight 2k > 4 which is not a cusp
form, and suppose that f is a normalized eigenfunction for every Hecke
operator Tax(n). Prove that f = Ey.

Let f € M, be a modular form of weight 2k > 4 which is not a cusp
form, say f has the Fourier expansion f = ¢(0} + ¢(1}g + - - - with ¢(0) # 0.
Let L{f, s} be the L-series attached to f as described in §1§.

(a) Prove that L(f, s} can be analytically continued 1o C ~ {2k} and that
it has a simple pole at s = 2k with residue

(=1)*c(0)(2m)*™
T2k

(b) Let R{f, s) = (2x) °I'(s)L(f,s). Prove that L(f,s) satisfies the func-
tional equation H{f,2k — s) = (—=1)*R(f, s).

e85 =28k L(f: 3) =
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1.27. Let f(7) be a cusp form of weight 2k with k an even integer.

1.28.

(a) Prove that
2 cfn)
LUK = g §>1: — Tk, 2mn),

where I'(s,z) is the incomplete I'-function
T{s.z) = / et gt fors€ C, x> 0.

{b} Prove that

(f k) =2 Zﬂ) Zc(n)e'zm Z (Q_WW

n>l
{Note that this scrics converges quite rapidly, since from {11.2), |c(n)| grows
no faster than r*.)
Let f{7) = Y e(n)q"™ be a cusp form of weight 2k, let p be a prime, and let
x {Z/pZ)" — "

be a primitive Dirichlet character and extend x to Z be setting x(») = 0.
The Gauss sum g{x} associated to x is given by the formula

p—1
g(x) = > x(b)e* /.
b=0
We define the the twist of f by ¥ to be the function

0

Foomy =3 elmx(ng”,

n=1
{As usual, we set x(n) = 0 if ged(p,n} > 1.) We will denote the associated
twisted L-series by
L{f,x:9) = L{f(x, - ),8) = 3 _ eln)x(n)n
nzl
{a) Prove that

= —g(x)z x(—a)etrens?,

a=0
(b} Let R{f,x,s) be the [unction

R = (2) 20,0,

g(x)
Prove that R has the integral representation
> & + 13 s il
R R
\p Tg(x) Tz

{c) Prove that L{f, x,s) has an analytic continuation to all of C and that
it satisfies the functional equation

R(f,x,8) = (1D x(—1)R(J, %, 2k — s).
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1. Elliptic and Modular Functions

1.29, Let ai,@2,... be a sequence of complex numbers, and suppose that there

is a constant ¢ > 0 such that |aa| < n° for all n. Let A > 0 be a constant
and &k > 0 an integer, and define functions

(s} = Zann‘*" B(s) = (2711)—*" Ls)6(s),  f(r) = Zanezﬂnfﬂ_

nzl n>1

(a) Prove that #{s) is absolutely convergent provided Re(s) is sufficiently
large.

(b) Prove that f{7) is holomorphic on H.

(c) *Prove that the following two facts are equivalent:

(I} €(s) has an analytic continuation to all of C, is bounded on every
vertical strip, and satisfies the functional equation

Dk — s) = +O(s).

{A vertical strip is a region of the form ¢; < Re(s) < cz.)
(I} F(r) satisfies the functional equation

(1) =2()) 0



CHAPTER 11

Complex Multiplication

Most elliptic curves over C have only the multiplication-by-m endomor-
phisms. An clliptic eurve that posscsses extra endomorphisms is said to
have compler multiplication, or CM for short. Such curves have many spe-
cial properties. For example, the endomorphism ring of & CM curve E is
an order in a quadratic imaginary field K, and the j-invariant and tor-
sion points of F generate abelian extensions of K. This is analogous to the
way in which the torsion points of G, (C) = C* gencrate abelian extensions
of Q. An important result in the cvclotomic theory is the Kronecker-Weber
Theorem, which says that every abellan extension of Q@ is contained in a
cyclotomic extension. We will prove corresponding results for a quadratic
itmaginary field K. For example, we will show how to construct an elliptic
curve E such that K(j(E)) is the Hilbert class feld of K, and we will
explain how to use the torsion points of E to generate the maximal abelian
extension of K,

We have generally not tried to assign credit for the results described
in this chapter but will content ourscives with mentioning Kronecker, We-
ber, Fricke, Hasse, Deuring, and Shimura, who are largely responsible for
that part of the theory of complex multiplication that we will cover. In
particular, the algebraic proofs in §84 and & are essentially due to Deuring,
and the idelic description of complex multiplication in §§8 and 9 is mainly
due to Shimura.

The material included in this chapter barely scratches the surface of
the theorv of complex multiplication: a complete treatment. of even the
basics would fill {at least) an entire voliume. The reader desiring further
information might profitably consult the following sources, as well as the
references they contain. We must especially acknowledge Lang [1]. Serre [6],
and Shimura [1], whose expositions strongly influenced our organization of
this chapter.

Borelet al. [1]: A development of the basic theory of CM using an analytic
approach, together with some useful computational methods.

Cassou-Nogués-Taylor {1]:  The basic theory of CM is developed in the first
lew chapters, followed by the use of CM to generate rings of integers.
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Coates [1]:  The basic theory of CM is described, followed by an introduc-
tion to the Twasawa theory of CM eclliptic curves.

Lang [1}:  Part IT develops the theory of CM much as we do, with addi-
tional material on the arithmetic properties of special values of elliptic
and modular functions.

Perrin-Riou [1): Iwasawa theory for CM elliptic curves.

Serre [6]: A very brief, but beautifully written, swnmary of the main
theorems of CM for elliptic curves.

Shimura [1]:  The idelic formulation of CM for elliptic curves is covered in
Chapter 5 and is extended to abelian varieties in §§5.5 and 7.8. For a
more complete treatment of the theory of complex multiplication on
abelian varieties, see Shimura-Taniyama [1].

Vladut {1]: A nice historical account of Kronecker's Jugendiraum, the
theory of complex multiplication, and the relationship with the theory
of modular forms.

The main prerequisite for this chapter is some familiarity with the basic
theorems of class field theory. We have provided in §3 a resumé (without
proof) of the results we will need. We also assume that the reader is familiar
with basic properties of elliptic curves over the coinplex munbers.

81. Complex Multiplication over C

In this section we are going to discuss elliptic curves with complex multi-
plication from the viewpoint of complex analysis. Although interesting in
its own right, this should be viewed mainly as the preparation needed to
study arithmetic questions.

Let E/C be an elliptic curve with complex multiplication. We know
from [AEC VL.5.5] that End{ E) % is isomorphic to a quadratic imaginary
fleld and that End(E) is an order in that field. If End(E) = R < C
and K = R& G, then we will say that that “F has complex multiplication
hy R or thal “F has complex mualtiplication by K." We also let

By = ring of integers (maximal order) of K.

Much of the theory becoines easier if one restricts attention to elliptic curves
with complex multiplication by Ry, so we will usually take this course. For
the general theory, see Lang [1] or Shimuara {1, Ch. 5].

The unifortmization theoren for elliptic curves [AEC VI.5.1] says that
for every elliptic curve E/TC there is a lattice A C € and an isomorphism

Fi C/A = E(C)
z o (p(z M) @' (2 A).



§1. Complex Multiplication over C 97

We will denote the elliptic curve corresponding to a lattice A by Ey; it is
given by the usual Weierstrass equation

E;\ : y2 = 4.’.63 — gg(x'\)l‘ — g3(A).

If £ has complex multiplication, then there are two ways to embed the
order End(E) into €. It is important to pin down one of these embeddings.
This is done by the following proposition, which also provides an important
tool for studying arithmetic properties of varicus analytically defined maps.
The reader might compare Proposition 1.1 with [AEC II1.5.3], which gives
the case that o € Z. We will use Proposition 1.1 to make deductions in a
manner similar to the way we used [AEC II1.5.3] to deduce [AEC IIL.5.4|
and [AEC 1I1.5.5}.

Proposition 1.1. Let E/C be an elliptic curve with complex multipli-
cation by the ring R C C. There is a unique isomorphism

[-]: R —> End(E)
such that for any invariant differential w € Qg on E (see [AEC III §5]),
[0 w = aw for alla € R.
We say in this case that the pair (E,| - ]} is normalized.

Proor. Choosing a lattice A and an isomorphism F = Ej. it suffices to
prove the proposition for Ex. (Note that [AEC III §1, Table 1.2] says
an isomorphism has the effect of multiplying an invariant differential by a
constant. }
Next we recall [AEC VI.5.3] that the endomorphism ring of E, is
isomorphic to
{aeC:a0ACA}=RCC.

Maore precisely, each « € R gives an endomorphism [a] : Ex — E4 deter-
mined by the commntativity of the following diagram:

C/A —2 0 /A

saz
I s
Ep

B, (2]

We claim that this map [-] : R — End(F) satisfies [a]*w = aw.

To verify our claim, we first note that any two non-zero invariant
differentials on E's are scalar multiples of one another. This follows trivially
from the fact that their quotient would be a translation invariant function,
hence would be constant. So if we take any invariant differential w € Qg
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and pull back via the isomorphism f : C/A — E4(C). we obtain a multiple
of the invariant. differential dz on T/A, say

frw=cdz.

Now tracing around the commutative dingram shown above pives the de-
sired result:

[O:]*{.g) = (f_l)* a (D; [a) j*(w')
=(f" W oalcd:) = (1 (cordz) = aw.
O
Corollary 1.1.1. Let (Ey, [ -)p,) and (Fz.[ -]&,) be normalized elliptic
curves with complex multiplication bv R, and Iet ¢ : Ey — E be an

isogenv. Then

dolalg, =[alg, 00 for all o € R.

PROOF. Let O # w € f1g, be an invariant differential. Then

(¢0(als,)" = [olh, (o)
a@w  since ¢'w is an hvartant differential on £

= (;'IJ‘( (8399
= o ([als)
= ([Q]H'z o ('b)* w

Every non-zero isogeny E)} — I is separable (we're working in character-
istic 00}, so [AEC T1.4.2¢] says that the map

Hom{E,. £3) — Hom{Qg,. g, } P O,
is injective. Therefore ¢ o fa]p, = [o]e, o @. o

We have secn in Chapter 1 that in order to understand particular ellip-
tic enrves, it is often useful to stndy the set of all elliptic curves. Similarly.,
in order to study a particular elliptic curve with complex multiplication,
it turns out that one should look at the set of all elliptic curves witl the
same endomorphisin ring. Of course, by “elliptic curves™ we really mean
Isomorphisin classes of elliptic curves, which leads ws to define the following
et _ elliptic curves E/C with End(E) = R}

- isomorphism over €

_ Alattices A with End{£y) = R}
N homothety ’

ELL(R)
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If we start with a quadratic imaginary field K| how might we constriet
an elliptic curve with complex multiplication by Rg7? If a is a non-zero ideal
of Ry, or more generally if it is 4 non-zero fractional ideal of A, then using
the embedding a € A < € we see that a is a lattice in £, (This is clear
from the definition of fractional ideal, which for quadratic imaginary fields
implies that a is a Z-module of rank 2 which is not contained in R.) Henee
we can form an elliptic curve I, whose endemorphism riug is

End{iE;) ={a e T : aa Ca}
={o €K : va Ca) since a C K
= Ry since a is a [ractional ideal
Thus ecach non-zero fractional ideal a of & will give an clliptic curve
with comnplex multiplication by Ry . On the other hand, since homothetic
lattices give isomorphic elliptic curves, we see Lhal 6 and ca give the samne
elliptic curve in ELL{Rg ). This suggests that we look at the group of
fractional ideals modulo prinecipal ideals. which the reader will recognize as
one of the fundamental objects of study in algebraic munber theory:

CL{RE) = ideal class group of By

_ {non-zero fractional ideals of K}
— {uon-zero principal ideals of K}

If a is a fractional ideal of K, we denole by a its ideal class in CL{Ry ).
We have seen that there is o map

CL(Ry) — ELL(Ry).  a— Ea

More generally, if A is any lattice with Ey € ELL{RL ) and o is any non-
zero fractional ideal of K. we can form the product

ad ={a A+ -+ A a; €Ea A € A}

We will now prove the elementary, but crucial, fact that this induees a
simply transitive action of the ideal class group CL{Ry) on the set of
clliptic curves ELL{Ryg). This proposition forms the basis for all of onr
subsequent work on complex multiplication.

Proposition 1.2. {a) Let A be a lattice with Ey € ELL{Ry ), and et a
and b be non-zero fractional ideals of K.
(i) ad is a lattice in C.
fii} The elliptic curve Egp satisfics End(E 4} 2 Ry
{1ii) Ea=Eyy  ifandonlyif a=bin CL(Ry).
Hence there is a well-defined action of CL{Ry) on ELL{Ry) deferinined

by
a* E_.\ == En—J__.‘\.
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{The reason for using a™! instead of a will become apparent below.)
(b} The action of CL{Rk) on ELL(RE) described in (a} is simply transi-
tive. In particular,

#CL(Rp) = # ELLIRg).

Proor. {a) (i} By assumpiion, Eud({Ex) = Rg, 50 BgA = A. Choose a
non-zero integer d € Z so that da C Ry, which is possible by the definition

: . 1 . ) -

of fractional ideal. Then aA C —}A. 30 ad is a discrete subgroup of C. Simi-
il

larly, choosing a non-zero integer  so that dRyx © a. we find that dA < aA,

hence aA spans €. This proves that oA is a lattice,
(ii) For any o € C and any fractional ideal a # 0, we have
aaAd C oA <= aloaA Ca 'ad = aAC A
Hence
End{E.at — {a € C @ nah C ad}

={a el :aA C A} =FEnd{Ey) = Rg.

(iii} From [AEC V1.4.1.1], the isomorphism class of E.a is exactly deter-
mined by the homothety class of aA. In other words, E,4 = Fya if and
only if there is a ¢ € C* such that aA = ¢bA. Multiplying by o' and using
the fact that g A = A, we see that

Eon 2 Epa == A =co lbA.
Similarly. multiplying by ¢~ 16~1 gives

Eop 2 Eyp — A=clab™ A

Hence if Eo4 = Eps, then both ea™ b and ¢ 'ab ™! take A to itself, so they
are both contained in Ky, and hence are equal to Ry. Therefore

a = cb,
from which we sco immediately that ¢ € K and @ = b. This completes the
proof of (iii}).
Finally, the trivial observation

a* (E) * E‘-\) =ax* E[_,—l_,-\ - En‘l(h_l;\) - E{ub)—l‘!\ = (E([_v) * E‘.\

shows that the definition a + By = E -1 gives a group action of CL{Rg)
on ELL{RE).
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(b} Let Ea, and E4, be two elliptic curves in ELL(Ry ). To show that
the class gronp CL(Ry} acts transitively on ELL{RE), we must find a
fractional ideal a with the property n* Ey, = E4,. Choose any non-zero

1
element. A; € A;. and consider the lattice a;, = A_Al' From [AEC V1.5.5]

1
we see that ap is contained in K, and by assumption it is a finitely gen-
erated Rp-module, hence it s a fractional ideal of A7, Similarly, choosing

a non-zero Az € A, we obtain a second fractional ideal a, = /\—1'\2 of K.

2
Then

Note the last equality follows from the fact that homothetic lattices give iso-
morphic elliptic curves. This shows that the action ol CL{Rx ) on ELL{ Ry )
is transitive.
To prove that the action is simply transitive, we must show that if
ax Ea =hx £y, then a = b. But this is immediate from part (i) of (a).
O

We have already seen two sorts of elliptic curves which have complex
multiplication, namely the curves with j = 0 and j = 1728 whose auto-
morphism groups are strictly larger than {£1}. {See [AEC IIL.10.1].) Now
we'll ook at these curves from a complex analytic viewpoint.

Example 1.3.1. Let A = Z[i] be the lattice of Gaussian integers. Then
the endomorphism ring of E4 is Z[¢]. In particular, Aut(Ex) = {£1. 14},
so our general theary [AEC IIL10.1] tells us that j{E4) = 1728, But we
can see this directly in the following way. The lattice A satisfies 1A = A,
Hence

ga(A) = ga(1A) = Pga(A) = —ga(A),

50 g3(A) = 0. Therefore E4 is given by the Weicrstrass equation
Eary® =10 — go{A)r.

from which we see immediately that j(Ex} = 1728,

Since j{Ex) is rational. we know that Fy is isomorphic over € to an
elliptic curve defined over (J; for example, it is isomorphic Lo the curve y? =
2% + z. But it does not follow that g,(A) itself is in Q. In fact, a theorem
of Hurwitz [1] says that

wizt) =t ([ 42
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Example 1.3.2. Similarly, let g = ¢2™? be a primitive cube root. of unity.
and let A = Z|p] be the associated lattice. Then pA = A, s0
92{A) = @2(pA) = p 02(A) = pga(A).
and hence g2({A} = 1. Thus £, is given by the equation
Exy? =4x® - gs(A),
so j{E4) = 0. This confirms [AEC MHL10.1], since Aut{Ey} = Zlp]* =

{+1,4+p. +p7}. Further, we see that Ex is C-isomorphic to the curve
y? = % + 1, which is defined over Q.

If F has complex multiplication by K, we will eventually use torsion
points of £ to generate abelian extenstons of K. We could restrict ourselves
to studying points of order m for varions integers m, but because E has
complex multiplication, there are other natural finite subgroups to look at.
In general, if a is any integral ideal of Ry, we define

Ela) ={P € E : [a]P =0forall o € a}.
We call E[q] the group of n-torsion peints of E. For example, if a = mBy,
then ETa] is just E[m]. Notice that the definition of Ela] depends on
choosing a particular isomorphism {+] : Rx = End(E); we always choose
the normalized isomorphism described in {1.1).

If a is an integral ideal of Ry . then A € a~“'A. This means that there

s a natural homomeorphism
C/A —*C/a_lf\._ T — z,
which in turn induces a natural isogeny
Eqy — ax* Fy.
The following uselul proposition gives a precise description of this sogeny
and of E[a)].

Proposition 1.4. Let F € ELL(Rk). and fet a he an integral ideal
of RK.

(a) E[a) is the kerirel of the natural map £ — i« E.

(b} Ela] is a free Ry /a-module of rank 1.

Proor. Let A be a lattice corresponding to E. Fixing an analytic isomor-
phism C/A = E(C), we find that
Elaj = {: € C/A : oz = 0 for all o € a}
={zeC:uzcAlorallxea}l/A
={zeC: zaC A}/A
=a"tA/A
= ker ((C;’_-\
—ker{E — ax F).

C/a‘lA)
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{b) Continuing with the notation from (a), we choose a non-zero lattice
clement A € A. Then {AEC VL5.5] says that the lattice {1/A)A is contained
in K, and it is a finitely generated Rp-module, s0 it is a Iractional ideal
of K. Since homothetic lattices give isomorphic clliptic curves, we may
assume that A is a fractional ideal of K.

From (a) we know that Ela] = a7 'A/A as Ry /a-modules. Note that
if q is any integral ideal dividing a. then the fact that RxgA = A implies

(a7 'A/AY2p, (Ri/q) = a 'A/(A+qa™"A) =a "A/ga "A.
Hence if we use the Chinese Remainder Theorem to write

Rijoz== H Ry /pct¥h, then FEla] = H a tA/p P AL

p prime P oprime

So it suffices to prove that if b is a fractional ideal of Ry (snchas b = a™'A)
and if p© is a power of a prime ideal, then b/p™d ix a free Ry /p -module of
rank one.

To ease notation, we momentarily write

R'=Rg/fp*.  p'=p/p°. and  b'=b/p°b.

Notice that R’ is a local rving with maximal ideal p’. (In fact, the only
ideals in R’ are (0).p"""",---.p’,{1}.) Consider the quotient

b'/p's’ = b/pb  as a vecior space over the field R'/p’ = Ry /p.

We claim that it is a one-dimensicnal vector space.

First we observe that any two elements of b are Rp-linearly dependent,
s0 the dimension of b/pb over Ry /p is at most one. On the other hand,
if the dimension were zero. then we would have b = pb, which is absurd.
Hence the dimension is one. By Nakayama's lemma (Ativah-MacDonald (1,
Prop 2.8]) applied to the local ring R’ and the E-module b, it follows
that b’ is a free R'-module of rank one. This completes the proof of Propo-
sition 1.4.

O

We can use {1.4) to compute the degree of the isogeny F — a* E, as
well as the degree of an endomorphism [o] : £ — E.
Corollary 1.5. Let E € ELL{(Rg).
{a) For all integral ideals a © Ry, the natural map E — @+ I has de-
gree Nil‘ a.
{b) For all o« € Ry, the endomorphism [a] : E — E defined in (1.1) has
degree |N{§a{.

Proor. Both parts are immediate from (1.4). For exanple,

deg{E — a* £) = £ E[a) from (1.4a)
= N_g a from (1.1b).
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Similarly,

degla] = # ker[a] = #E[jaRy] = Ng(nﬁf;\') = |N,§o{|.
O

Remark 1.6. Before going on to arithmetic questions, we want to make
one brief remark about terminology. The classical name for the j-invariant
of an elliptic curve with complex multiplication is a singular j-inveriant.
This terminoclogy, meant to single out such j-invariants as being unusual,
is somewhat unfortunate, since it suggests that the elliptic curve itself has
singularities. We will not use the word “singular™ in this sense, hut the
reader should he aware of this usage, since it is still fairly common.

Notice that an elliptic curve defined over a finite field alwayvs has a
“singular™ j-invariant, since its endoinorphism ring is always larger than Z
[AEC, V.3.1]. In those vare cases that the endomorphism ring is a quater-
niou algebra, the singularity is especially exceptional, which explains the
crigin of the term “supersingular”™ to deseribe such curves,

42, Rationality Questions

In this section we will study the field of definition for complex multiplica-
tion elliptic curves and their endomorphisms. We begin by showing that
every elliptic curve with complex nltiplication is defined over an algebraic
extension of Q.

Proposition 2.1. {a) Let E/T he an elliptic curve, and let o : C© — C be
any fleld automorphism of C. Then

End{E7) =2 Eud{E}.

(b) Let E/TC be an efliptic curve with complex multiplication by the ring
of integers Ry of a guadratic imaginary fleld K. Then j(E) € Q. (Later
we will show that j{F) is an algebraic integer. See (11 §6) and (V.6.3).)
{e)

CLL(Ry) = {elliptic curves E /) with End{E) = RK_]:‘

isomorphism over @

(Note that the original definition of ELL{Ryc) is in terms of isomorphism
classes of elliptic curves over C, not over Q.)

PrOOF. (a} This is clear, since if ¢» : £ — £ is an endomorphism of £,
then ¢7 : E7 — E7 is an endomorphism of £7.
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(b) Let 7 € Aut{C} be as in {a}. Now E7 is obtained from E by letting o
act on the coefficients of a Welerstrass equation for £, and j(E) is a rational
combination of those coeflicients, so it is clear that

JHET) = J(E)".

On the other hand, (a) implics that End(E7} = Ry, so (1.2b) implies
that £ is in one of only finitely many C-isomorphism classes of elliptic
curves. Since the isomorphism class of an elliptic curve is determined by
its j-invariant {AEC IIL1.4b), it follows that j{E}” takes on only finitely
many values as o ranges over Aut{C}. Thercfore [Q(}(E}) : Q] is finite,
so f{E) is an algebraic mumber.

(¢) For any subfield F of C, let us momentarily denote by ELL . ( Ry ) the
et elliptic curves E/F with End{F) = Ry}

. |
ELLF{RE) = .
Fife) isomorphism over F

If we fix an embedding § < €, then there is a natural map
£ ELLg (R ) — ELLo(RK).

We need to show that this map is a bijection.

Let £/C represent an element of ELL-(Ry ). Then we have:

(i) {E) € Q. from (D)

{ii) there is an elliptic curve E7/Q(j(E)) with j(F') = j(E), from

[AEC [11.1.4¢];

(iii) F’ is isomorphic to E over C, from [AEC II1.1.4b].
These three facts imply that #{F") = £, which proves that s is surjective.

Next let E; /() and Ey/Q represent elements of ELLg(RK ). and sup-
pose that ¢(E\) = z{£7). Then j(E} = F{FE2)} from [AEC II1.1.4b], and
another application of [AEC I1T11.1.4b] says that B} and E\ are isomorphic
over Q. Hence E| and E; represent the same element of ELLG(Ry), which
shows that 2 15 also Injective. O

Next we study the effeet that field automorphisms have on the maps
[a) : E — E described in (1.1). In particular, we will find a Geld of defini-
tion for these maps. Note that if ¢ is an endomorphism of E and o is any
autororphisim of €, then ©” will be an endomorphism of E7.

Theorem 2.2. (a) Let E/T be an elliptic curve with complex multiplica-
tion by the ring R C C. Then

[@] g7 = [07] ge for alf 4 € R and alf o € Aut(C),

where the isomorphisms |- ]g « R — End{E)} and |- |g- : B — End{(E")
are normalized as in {1.1).
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{b) Let E he an elliptic curve defined over a fleld L < T and with com-
plex multiplication by the guadratic imaginary feld K C C. Then every
endomorphisin of E is defined over the compositum LK.

(¢} Let I /L and By /L be elliptic curves defined over a field L C C. Then
there is a finite extension L'/ L such that every isogenv from E| to F s

defined over L.

PrROOF. Let w £ Qg be a non-zero invariant differential on ££. Then the
normalization described in (1.1} says that

[ v = evw for all o € IV
Further, w” is an invariant differential on E7. 50 again from (1.1) we get
(A Eaw” == dw” for all 5 € R.
Now [or any e« € R and any o € Aut{C), we compute
(lle”) ") = ([a]5)” = (aw)" = 0% = [a%]5n (7).

Thus [¢]g” and [¢"] gs have the same effect ou the invariant differential w7
Now we use AEC 11.4.2¢], which says ithat the natnural map

End{E7) — > End(Qz-). W— o,

is injective. {Note we are working in characteristic 0, so all finite iaps are
separable.} This proves that [a]g” = [a7]p..

{b) Let o € Aut{C) be an automorphism of T that fixes L. Since E is
defined over L, we can take a Welerstrass equation for £ with coefficients
in L. so £7 — E. Then (a) says that for all o € R,

ol " = {0 = [07] 5.
[ in addition ¢ fixes K, then o% = . This proves that
[]g” = [a]g for all o £ Ant(C) such that o fixes LK.

Hence the endomorphism [o] is defined over LA

(¢) Asin {b). we take Weierstrass cquations for E} and E» with coefficients
in L. Let ¢ € Hom(E,, E2) be an isogeny. Then for any o € Aut(C) such
that ¢ fixes L, we have ¢ € Hom{FE,, E;). Note that dego” = degd.
From [AEC I11.4.11], we see that an isogeny ¢ € Hom{ E. E,) is determined
by its kernel. at Teast up (o an antomorphisiy of £ and F2. Since F) has
ounly finitely many subgroups of any given finite order, and since Aut{E))
and Aut{Ls) are finite, it follows that Hom(E,. F2) contains only finitely
many isogenies of a given degree. Therefore the set

{07 : o€ Aut{C), & fixes L}
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is finite, which implies that ¢ is defined over a finite extension of L. Fi-
nally, we observe from [AEC IIL7.5] that Hom({F|, E,) is a finitely gener-
ated group, so it suffices to take a field of definition for some finite set of
generators. O

Remark 2.2.1. Notice that the proof of (2.1b) together with the estimate
in (1.2b) shows that if End{E) & Ry, then

[CU(E)) : Q] < hk.

where hy = # CL{Hy ) is the class number of K. We will prove later (4.3)
that this is an equality, In particular, 7(£) is in @ if and only if K has
class number 1. For a complete list of these {J-rational j-invariants, sec
Appendix A §3.

Remark 2.2.2, In view of {2.2.1), we see that if By has class number L,
then E has a model defined over (. We hiave already seen examples of this
in (1.3.1) and (1.3.2}, where we looked at curves with complex multiplica-
tion by Z[i} and Z[p]. (Here p = ¢¥3.) We can also illustrate (2.2) for
these curves. For example. to normalize the curve

E:y?=a%+uz,
we use the isomorphisin [ -] @ Z[{) — Eud(£) determined by
(. ) = (2. iy
To see that this is the correct normalization, we compute

i = di=z) _ &
y ' '

Y Y

If 7 € Aut{L) is complex conjugation. then

([ )" = (—r.iy)” = (~2".i7")

= (=7 —iy?) = [=il(@”. YT} = ["](=". 7).

Hence [{]” equals [(7], as it should by (2.2).
sSimilarly, for the curve

E:y? =041
we take the isomorphisin [1] 1 Z[p] — End(E} determined by

[Pl y) = (pr.y).



108 1. Complex Multiplication

Remark 2.2.3. There is an interesting converse to (2.1b). Suppose that
A = Zwy + Zaug is a lattice satisfying

3 < [Qwn/wa) - Q] < o0

that is, wy /w2 is an algebraic number of degree at least 3 over . Then one
canl show that 7(E,) is a transcendental number. Notice the analogy with
the Gel'fond-Schneider theorem, which says that if o € Q with a £ 0,1
and if 3 satisfies 2 < [Q(B) : Q| < o<, then o” is transcendental. The
transcendence of §(E ) was first proven by Schocider. The interested reader
will find a proof of this fact in Schneider [1, Thm. 17| or Waldschmidt [1,
Cor. 3.2.4]. For a general account of the transcendence properties of elliptic
and modular functions, see for example Waldschmidt [1, Ch. 3.

[t is an immediate consequence of {1.4b) and {2.2b) that the torsion
points of E generate abelian extensions of K ( JE )) Before giving the
proof, we remind the reader of the analogous result for eyelotoniie fields.
Thus let ¢ € C* be a primitive N*"-root of unity and let & € Gal (Q(C)/Q).
Then (7 is another primitive N*'-root of unity, say (7 = ¢, and it is
an easy matter to check that the map

p: Gal{Q(0)/Q) — Aut(py) = (Z/NZ)

is an injective homomorphism. (Here py = ¢Z is the group of N'"-roots
of unity.) Hence Q(¢)/Q is an abelian extension. We now prove the same
thing for eliiptic curves. (For another proof, sce exercise 2.6.)

Theorem 2.3. Let E/C be an elliptic curve with complex multiplication
by the ring of integers Ry of the quadratic imaginary field K, and let

L= I((J(E)$ Etor:s)

be the fleld generated by the j-invariant of E and the coordinates of all
of the torsion points of E. Then L is an abelian extension of K{j{E)).
(N.B. In general, L will not be an abelian extension of K.)

ProorF. To ease notation, let H — K(j(E'}), Further let
Ly = K(j(E), Elm]} = H{E[m])

be the extension of H generated by the m-torsion points of E. Since L is
the compositum of all of the L,;’s, it suffices to show that Ly, is an abelian
extension of H.

As usual, there is a representation

p: Gal{K /1Ty — Aut{E[n])
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determined by the condition
pla)Ty=T°  forall ¢ € Gal{K/H) and all T € E[m].

{See [AEC IIT §7].) For an arbitrary elliptic curve, all we would be able to
deduce from this is that Gal(L,,/H) injects into the automorphism group
of the abelian group E£[mi], so we would find that Gal( L., /H) is isomorphic
to a subgroup of GL; (Z/mZ) .

But the fact that our elliptic curve has complex multiplication gives us
additional information. We take a model for E defined over H = K (j(E)),
and then {2.2b} says that every endomorphism of E'is also defined over H.
So elements of Gal(L,,/H)} will cominute with elements of Hx in their
action on E|ml:

([0]T)" = [a|(T°) for all o € Gal{L,,/H)., T € E[m], and & € R.

In other words, p is actually a homomorphism from Gal{ K /H) to the group
of By /mRg-module automorphismus of E[m|. Hence p induces an injection

@ Gal{Lyn /HY — Autg, rmu, (El]).

Now we use (1.4b), which says that E[m] is a frec Ry /mRy-module
of rank one. This inplies that

Autp,ympx {E[m]) = (Rx /mRg)"
and hence Gal{L,,/H) is abelian. O

Before proceeding with the general theory. we will pause to construct a
few more examples of elliptic curves having complex multiplication. More
precisely, we will find all elliptic curves that possess an endomorphisn of
degree 2. We already know one such curve, namely the curve 42 = 2% +
with complex nmltiplication by Z[i], since the mwap |1 + ] has degree 2.
From (1.5b), we need to find all gquadratic imaginary ficlds X that have an
clement o ¢ Ry satisfying |N,{§a-| = 2. This is an easy exercisc {(which we
leave to the reader), the answer being that there are three such helds:

14+ v —1;

K=0Q(V-1). BRx=2Z[V-1] o

K=Q(v-2), Rx=2Z[V-2], ==
K = Q(\C?_)__ R =72 [1% ‘*_7}_ o = l% “—?‘

Since all three of these rings R g have class number 1, we know from (2.2.1)
that the corresponding clliptic curves have j-invariants in Q.
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How can we find equations for these curves and their endomorphisms?
It is possible to proceed analytically, but we will take another approach.
If ¢ : E — E has degree 2, then its kernel E|[¢] consists of two points, O
and a point of order 2. If we move the point of order 2 to (0,0), then E
will have a Weierstrass equation of the form

E:y® =234 az? + bx.

For this elliptic curve E, we have already determined an elliptic curve E'
and an isogeny ¢ : E - E' whose kernel is {O, {0, 0]}, namely

E' Y%= X3-2eX 4+ (a?—4D)X, olx,y) = (a:+a-+ ;,y (1 - ;b;;))

{See [AEC HI.4.5], although note we have taken the negative of the isogeny
defined there and have substituted 7% + az? + bz for y°.} Hence E will
possess an endomorphism of degree 2 if and only if this £ is isomorphic
to E.

To sce when E and E’ are isomorphic, we set their j-invariants to be
equal and solve for & and b, or more precisely for the ratio a?/b. Now

Lo 256{a% — 3b)? ooy 16(a® +12)°
Ao a1 S L

Setting §{E) = j{E"), we find after some calculation that
166(a® — 4bja*(a® — 8b)(16a* — 81ah + 324b%) = 0.

The first two cases, b = 0 and a® — 4b =— 0, give singular curves, so
we discard them. The third case, a = 0, gives the curve y? = z° + bx
with j{E) = 1728 and complex multiplication by Z[¢].

Next consider the case a® — 86 = 0. Taking b = 2 and @ = 4 gives the
curve

E:y* =2+ 427 422

with j{E) = 8000 = 2852, Similarly, E’ is given by the equation
E':Y?=X%-8X%+8X

with j-invariant j{E’} = 8600. Hence E and E' arc isomorphic, and we
casily find an isororphism

1 1
" E, XY )r— | --X ——=Y).
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Composing the isogeny £ — FE’ with this isomorphism, we obtain the
desired endomaorphism of £ of degree 2:

E:yt=x34+422+ 22 [E] E
- L O A N _2
) H" ( 5("'”%)‘ s (! 2))

There remains the case 16a' — 81a®b + 3245%. which (taking « = 36)
leads to the elliptic curves

E:y? =3 +362" +18(9+5V-T) x,
EyP=X'-72X°+72(9-5V-7) X

with §(F) = j(E') = —3375 = —3*5% We will leave it to the reader to
make the appropriate variable changes which lead to models for £ and £
over ) and to an cxplicit forimula for the corresponding endomorplism
of degree 2. The final answer is given in the following summary of our
calculations.

Proposition 2.3.1. There are exactly three somorphism classes of el-
liptic curves over C which possess an endomorphism of degree 2. The
following are representatives for these curves and endomorphiisms.

iy E:y*=x%+z. 7= 1728, =14 =1,
. 1 . 1
[@](c, y) = (a‘z (CL‘ + ~) L3y (l - —7)) :
£ T
(i) E:y?=x>+422+ 22,  j= 8000, a=v-2
. 2 . 2
. -2 -3
[yl = |« 44— ) o 1-— :
[e¥] (. ) (r} (1 + :1.‘) oy y( 12)) .
(i) E:y2=2% 3574908, j= —3375., = HT_’

We now resume our developinent of the general theory of complex
multiplication. From here on we will use (2.1) to identify ELL(R ) will
the (-isomorphism classes of elliptic curves having complex multiplication
by Ryc. Then there is a natural action of Gal{ & /K) on ELL(Rk) defined
by the property that o € Gal{K /K) sends the isororphism class of E (o
the isomoerphism class of £7. On the other hand, {1.2b) says that the action
of the class group CL(Ry) on ELL(R ) s shaply transitive, so there is
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a unique a € CL(Rk}, depending on o, such that = E = E“. In other
words, there is a well defined map

F:GallK/K) — CL{RK)
characterized by the property
ET=Flo)*» E for all o € Gal(K/K).

It is by studying this map F that we will be able to precisely describe
the field K(j(E')). An easy property of F, which we will prove below, is
that F is a homomorphism. A much deeper property, which we will also
prove, is that F is independent of the choice of the curve E € ELL(Hy).
The astute reader will have noticed that F is actually well defined on the
larger group Gal{QQ/Q). However, it is only on the smaller group Gal( K/ K)
that F will be independent of E.

Before proving these basic propertics about F, we want to stress that
the definition of F has an essential analytic compaonent, since F{s) depends
on the way in which the lattice of an elliptic curves changes when the lattice
is multiplied by an ideal, Thus if we denote by j{A) the j-invariant of
the elliptic curve Ey, then as described in Chapter I, j{A) is an analytic
function of A. The map F is then characterized by the formula

J(8)7 = 5(F(a)™'A),

so F' converts the algebraic action of ¢ into the analytic action of multipli-
cation by F{a)~1.

Proposition 2.4. Let K/Q De a quadratic imaginary field. There exists

a homomorphisn
F:Gal{K/K) — CL(Rg)

uniguely characterized by the condition

E? = FPlog)+ E for all ¢ € Gal(K/K)} and all E € ELL{Rk).

PROOF. As described above, (2.1} and {1.2b) ensure that for any eletnent
g € Gal(K/K) and any E € ELL(Ry), there is a unique @ € CL(Hg) with
E® =@« E. So for a fixed E, we get a well-defined map

F:Gal(K/K) — CL(RF)

determined by the property E° = F(o) + E for all ¢ € Gal(K/K). It is
easy to check that F is a homomorphism, since
F(or)+ BE = E°T = (E")" = (F(r)+ E)’
= F(a)* (F(1)x E) = (F(o)F(r)} * E.
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(Note that Gal{K/K) acts on the left.}

It remains to show that the definition of F is independent of the choice
of a particular elliptic curve in ELL{Rg). So let E\,E; € ELL(Rg),
let o € Gal(K/K), and write E{ = &, * E; and EJ = &y x Eo. We need to
show that @, = a;. Since CL{RK) acts transitively on ELL{Ry), we can
find some b with B2 = b % E;. Then

(bx E\)" = ES =y x By =da+ (b By) = (Aba; ") » EY.

So if we can prove that (b E))7 is equal to b * EY, then we can cancel b
from both sides to conclude that EY = (ﬁgﬁl_l) + E7; and then (1.2{iit})
will give a; = 2. Hence the following proposition completes the proof of
Proposition 2.4. (Note that b” = b, since b € K and ¢ € Gal(K/K).)

Proposition 2.5. Let E/Q be an elliptic curve representing an element
of ELL(Ry), let & € CL(Rk ), and let o € Gal{Q/Q). Then

{ax E)T =a% = E°.

Although the statement of Proposition 2.5 looks relatively innocuous,
it is giving & relationship between the algcbraic action of ¢ and the ana-
Iytic action of multiplication by a. This suggests that the proof imay not
be entirely straightforward. The main idea is to find an algebraic descrip-
tion of @+ E. One of the tools we will need is the following lemma from
commutative algebra, whose proof we leave as an exercise.

Lemma 2.5.1. Let R be a Dedekind domain, Iet a be a fractional ideal!
of R, and let M be a torsion-free R-module. Then the natural map

¢: a M — Homg{a, M)
T — (p 1 @ — ax)

is an isomorphism,

PROOF (of Proposition 2.5). Choosc a lattice A so that E = E4. Also fix
a resolution (i.e., an exact sequence)

RE 2R —a—0, (i)

where 4 is an m x n matrix with coefficients in Ry. The idea underlving
the proof of Proposition 2.5 is that we should Lave

C/a~'A = a+ E = Homs, E),

where we want to describe Hom(a, F) as an algebraic variety and not just
as an Ax-module. (Here and in the following, Hom means homomorphisins
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of Hy-modules.) We begin by applying Hom to the “product™ of the exact
sequence {i} and the exact sequence of Rg-modules

00— A —C—F—A. (ii)
This gives us the following commutative diagram:
0 0 {
0 —  Homf{a.A) —  Hom{a.C) — Hom(a, F)

| | L

0 — Howm(RE.A) — Hom(R%L.C} — Hom(R},£)

[ |+ |

0 — Hom(R{.A) — Hom(RE.C) — Hom(RY, E)

For any Ry-maodule A, we have Hom( R} M) = M". and applying
Lemna 2.5.1, first with A = A and then with M = C. we get

Hont{a.A) = a™'A and Hom(a.C)=a"'C=C.
Using these isomorphisms, we can rewrite the diagram (iii) as

¢ f) 0

|

— Homf{a. E)
| (iv)

I—
{ —

o
!
=]
I
-
|
!
@)

[ A—
i —

{} . ‘.-’\” — ,rCrf _—— ]_'.IH —— {]
* | L Jvr 4
J, A 1 A A

(] . Anl . ,Cm . E‘TFL N {]

Here "4 is the transpose of the matrix A, and the bottomn two rows are
clearly exact on the right, since they are just a number of copies of the

exact sequence {ii).
Applying the snake lemma to the bottom two rows of (iv) gives the

exaclh sequonce

0—a” A — T — (ker E" 2 B} — A" /'4A™. v)
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Notice that E™ “ E™ is an algebraic map of algebraic varicties, since '4 iy
an m x n matrix whose coeflicients are elements of End(F) = Ry. Hence
the inverse image of the point {0.0,....0) £ E™ is an algebraic subvaricty
of E*. Of course, E? and E™ are group varieties, so what we are saying is
that the kernel of £™ 4 E™ is an alpebraic group variety. Further, (2.2a)
says that lor any & € Aut(T), the corresponding map from E°% — E7™
is obtained by applving o to the entries of 'A. treating those eutries as
elements of R < €.

On the other hand, looking at the complex topology for one more mo-
ment. we note that A™/fAA™ Is diserete and C/a™'A is connected. [Tence
the exact sequence {v) gives

{a* E}(C) = C/a™'A = identity component of ker({ " “A Em).

We have thus described a # E algebraically in terms of the algebraic

t - . . Syt <
map " 4 E™, and it now easy to finish the proof of Proposition 2.5.
For any ¢ € Gal(Q/Q}. we apply our characterization first Lo £ and then
to 7 to deduce that

{a* £Y7 = (ident.ity component of ker{ at E”"})

S tAT .
= identity component of kcr((E"’)” A (E")m)
=a” x £,

This completes the proof of Proposttion 2.5, and with it the proof of Propo-
sition 2.4,
O

£3. Class Field Theory — A Brief Review

Class ficld theory describes the abelian extensions of a number ficld X
in terms of the arithmetic of K. The theory of complex multiplication
provides an analytic realization of class field theory for quadratic imaginary
fields, much as cyclotomic theory gives a realization of class field theory
for €. In this section we will briefly review, without proof, the basic facts
from class field theory which will be used in the sequel. We will begin with
the classical version using ideals and ideal class groups. Afterwards we will
present the nore modern idelic version. For proofs of the theorems staled
in this section and for additional material on (global) class field theory, the
reader might consnlt Lang [5], Tate [7], or Neukirch [1]. We will mostly
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restrict attention to totally imaginary fields, that is, fields with no real
embeddings, since (except for §7) that is the only case we will use in the
sequel.

Let K be a totally imaginary number field and let L be a finite abelian
extension of K; that is, L/K is Galois with abelian Galois group. As usual,
we write Ry and Rj, for the rings of integers of K and L respectively. Let p
be a prime of K which does not ramify in L, and let P be a prime of L
lying over p. Thus the picture is

L B Ry /P
finite abelian unramified extension of
extension prime finite fields

K p Ri/p

By restriction, we get a homomorphism from the decomposition group of
to the Galois group of the residue fields,

i3 gr f
(0 < Gai(e/R) 97 =} — (Gre BB el Y.

The right-hand Galois group is cyclic, generated by the Frobenius auto-
morphism
x> NP,

Further, since p is unramified, there is a unique element ¢, € Gal(L/K)
which maps to Frobenius. Qur notation reflects the fact that o, is deter-
mined by the prime ideal p in K. For a general Galois extension L/K, p
will only determine the conjugacy class of ¢y, and making a new choice
for B will change o, by conjugation. But in our situation o, will not
change, since we have assumed that L/ K is abelian. Thus o, € Gal(L/K)
is uniquely determined by the condition

op{z) = 2M6® (modP) forall z € Ry.
Let ¢ be an integral ideal of K that is divisible by all primes that
ramify in L/ K, and let
I(¢) = group of fractional ideals of K which are relatively prime to c.

Then the Artin map is defined using the o,’s and linearity:
(-,L/K): Ii¢) — Gal{L/K),
(a,L/K) = (H p“v,L/K) = o
P P

Notice that the Artin map is defined by piecing together local information,
one prime at a time. The following theorem, which is a weak version of
Artin’s reciprocity law, provides important global information.
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Proposition 3.1. {Artin Reciprocity) Let L/K be a finite abelian ex-
tension of number fields. There exists an integral ideal ¢ C Ry, divisible
by precisely the primes of K that ramify in L, such that

{{a), L/K) =1 for all & € K* satislfying o = 1 {mod ¢}.

If (3.1} is true for the ideals ¢; and ¢z, then it also true for ¢; + ¢3.
There is thus a largest ideal for which (3.1) is true. We call this ideal the
conductor of L/ K and denote it by ¢z /x.

In view of (3.1), it is natural to define the group of principal ideals
congruent to 1 modulo «:

P(c) ={(a) : 2 € K*, a =1(mod ¢)}.

Artin reciprocity says that the kernel of the Artin map contains P(c) for
an appropriate choice of ¢. More precisely,

ac P(CL/K) = (ﬂ.L/K) =1.

It is important to observe that a principal ideal () may be in P{c) even
if o # 1 {mod c}; all that is necessary is that there exist a unit £ € R}, such
that £&a = 1 (mod «).

Let p be a prime of K which is unramified in L. Then p splits com-
pletely in L if and only if the extension of residue fields has degree 1, or
equivalently if and only if (p, L/K) = 1. Thus the unramified prime ideals
in the kernel of the Artin map are precisely the primes of K that split
completely in L.

Definition. Let ¢ be an integral ideal of K. A ray class field of K {mod-
ulo t} is a finite abelian extension K,/K with the property that for any
finite abelian extension L/K,

CL/K[': = L C K,;.

Intuitively, one can think of the ray class field as the “largest” field
with a given conductor. However, it is important to note that the conductor
of K. need not actually equal c. For example, the ray class field of Q%)
modulo the ideal (2) is just Q(3) itself, so Q(i)(z) has conductor (1).

Theorem 3.2. {Class Field Theory) Let L/K be a finite abelian exten-
sion of number fields, and let ¢ be an integral ideal of K.
(a) The Artin map

(L/K): I{cpyx) — Gal(L/K)

is a surjective homomorphism.
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(b) The kernel of the Artin map is (NgIp)P{cy i), where Iy is the group
of non-zero fractional ideals of L.

(c) There exists a unique ray class field K, of K {modulo ¢). The conductor
of K /K divides c.

(d} The ray class fleld K, is characterized by the property that it is an
abelian extension of K and satisfies

{ primes of K that

split completely in Kc} = {prime ideals in P(c)}.

Example 3.3. Consider the ray class field of K modulo the unit ideal ¢ =
{1}. It is the maximal abelian extension of K which is unramified at all
primes. We call K¢y the Hilbert class field of K and denote it by H or Hy.
Notice that

Hegsx) = I((1)} = {all non-zero fractional ideals of K},
Pley i) = P((1)) = {all non-zero principal ideals of K},

so the Artin map induces an isomorphism between the ideal class group
of K and the Galois group of the Hilbert class field of K-

(.. H/K): CL(Ry) —= Gal(H/K).

We will also need the following version of Dirichlet’s theorem on primes
in artthmetic progressions.

Theorem 3.4. Let K be a number field and ¢ an intcgral ideal of K.
Then every ideal class in I{c)/ P{c) contains infinitely many degrece 1 primes
of K.

The [delic Formulation of Class Field Theory

We will now briefly recall how class field theory is formulated using ideles.
This material will not be used until §7, so the reader may wish to omit the
rest of this section until arriving at that point.

Let K be a number field, and for each absolute value v on K, let K,
be the completion of K at v. Further, let R, be the ring of integers of K,
if v is nen-archimedean, and let R, = K, otherwise. The idele group of K

is the group
¢
A =[] &2
v

where prilne indicates that the product is restricted relative to the R,'s.
This means that an element s € [] K} in the unrestricted product is in A}
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if and only if x, € R} for all but finitely many ». In particular, we can
embed K™ into A} by using the natural diagonal embedding

K — A%, ar— (oo,

since any « € K™ is in R}, for all but finitely many K. Similarly, for any
given v we embed K as a subgroup of Aj- via

K;‘—>A}‘(, te— ..., 1,14, 1,1,...).
T

w-colnponent

If v is a non-archimedean absolute value corresponding to a prime
ideal p. we will often write K, and R, in place of K, and R,. We will also
write ord, for the corresponding normalized valuation.

Let 3 € A% be an idele. We define the ideal of 3 to be the fractional

ideal of K given by
{S) = H pordp = 1
p

where the product is over all prime ideal of K. Note that (s) is well defined,
since s, is a p-adic unit for all but finitely many p.

One makes A} into a topological group in the usual way; we will not
need the precise definition of the topology. For any integral ideal ¢ of K,
let U, be the subgroup of Aj defined by

U = {S €Ay sp€ Ry and sy =1(mod c¢Ry) for ail primes p}.

Then U, is an open subgroup of A}, and one proves that K*U/, is a subgroup
of finite index in Aj.

If L/K is a finite extension, then there is a natural norm map from A}
to A%. This is a continuous homomorphisin

Ni : A} — A
defined by the prescription that the v-component of NLx is
HN%‘(‘:xw.
w|w

The idelic formulation of class field theory is given in terms of the
reciprocity map described in the following theorem.
Theorem 3.5. Let K be a number fleld, and let K*° be the maximal
abelian extension of K. There exists a unique continuous homomorphism

o — Gal(K*°/K), s+ [s, K],
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with the following property:
Let L/K be a finite abelian extension, and let s € A}
be an idele whose ideal (8) is not divisible by any primes
that ramify in L. Then

(s, K}|, = ((s). L/ K).

Here (-, L/K) is the Artin map, and Gal(K*"/K) is given the usual pro-
finite topology. The homomorphism |-, K] is called the reciprocity map
for K.

The reciprocity map has the following additional properties:
{a) The reciprocity map is surjective, and K* is contained in its kernel.
{b) The reciprocity map is compatible with the norm map,

(2, L]| o = [NEz, K] forallz € A}

(c) Let p be a prime ideal of K, let I?® C Gal{ K®"/K) be the inertia
group of p for the extension K**/K, let 7p € K be a uniformizer at p,
and let L/ K be any abelian extension that is unramified at p. Then

[7p, K|, = (b, L/ K} = Frobenius for L/K at p,
and

Ry, K] = I3

There is, of course, much more to class field theory that we have not
mentioned. For example, one often wants to know the exact kernel of
the reciprocity map and the correspondence between subgroups of A}, and
subfields of K**. However, the only additional fact that we will need in
this chapter is the following idelic characterization of ray class fields.

Theorem 3.6. Let A be a number field, let ¢ be an integral ideal of K,
let K. be the ray class field of K modulo ¢, and let U, be the subgroup
of A} described above, Then the reciprocity map induces an isomorphism

[ K] : AR /KU, =5 Gal{K./K).

In other words, [s, K| acts trivially on the ray class field K, if and only if s
can be written as s = au witha € K* andu e U_.
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%4. The Hilbert Class Field

Our goal in this section is to prove the following theorem.

Theorem 4.1. Let K/Q be a quadratic imaginary field with ring of
integers Ry, and let E/C be an elliptic curve with End(E) = Rg. Then
K (H{E)} is the Hilbert class field H of K.

Remark 4.1.1. Note that it is easy to produce an elliptic curve with
endomorphism ring equal to Rg. For example, we could take E to be the
curve corresponding to the lattice Ryg. Then

g2 Rx)?

J(E) = j{BRk) = 1728_(}2(}?;()3 — 27g3(Rk)?

is given in terms of series go( Ry ) and ga(Rx ) involving the elements of By .
Alternatively, if we write Rg = Z7 + Z, then

. . 1 = .
HE) = §(Rg) = gz + D e(m)e”™™™,
n=0

where the c¢(n) € Z are the coefficients in the g-series expansion of j (1.7.4b).
So Theorem 4.1 says that the Hilbert class field of a quadratic imaginary
field K is generated by the value of a certain holomorphic function j(7)
evaluated at a generator for the ring of integers of K.

We will actually prove much more than the tnere statement of The-
orem 4.1. We will give an explicit description of how the Galois group
of H/K acts on j(E). To do this, we recall the homomorphism

F:Gal(K/K) — CL(Rg)
from §2 characterized by the condition
E=F(o)+ E for all ¢ € Gal(K/K) and ali E € ELL(Ry).

Note that the kernel of F' is actually a finite quotient of Gal(K /K), since
any E will be defined over some finite extension L/K, and then F(o) =1
for o € Gal(K'/L}. Sinve CL{Rk) is an abelian group, F factors through

F:Gal{K*®/K) — CL(RK),

where K2® is the maximal abelian extension of K. Recall also the Frobenius
element o, € Gal(K*®/K) corresponding to a prime p in K. The following
proposition, together with basic class field theory, will serve to completely
determine F'.
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Proposition 4.2. There is a finite set of rational pritnes S C Z such that
ifp & 5 s a prime which splits in K, say as pRy = pp’, then

Flop) = F € CL(Rx).

Proposition 4.2 docs not look very strong, since it determines F on
fewer than Lalf of all Frobenius elements. But we will be able to use it
to get complete information about F. Before proceeding with the proof of
Proposition 4.2, we will derive some of its consequences, including a proof
of Theorem 4.1.

Theorem 4.3. Lef E he ap efliptic curve representing an isomorphism
class in ELL{ Rk ).

(a) K{j(E)) is the Hilbert class field IT of K.

(b) {Q((E)) : Q] = [K(j(£)) : K] = h.

where hy = # CL{Ry ) = # Gal(H/K) is the class number of K.

(¢} Let Ep..... Ey be a complete set of representatives for ELL(HRE).

Then j(I)).....j(Ey) is a complete set of Gal( K /K) conjugates for j{F).
(d}) For every pritie ideal p of i,

HEY = 55+ B,
More generally, for every non-zero fractional ideal a of K,

JE) ) = j(a« £).

Remark 4.3.1. It is now clear why we took the inverse when we defined
the action of an ideal class a on an elliptic curve E,. If we had used the
more natiral definition a = By = Eya, then the action of the Artin svibol
on J{E) in {1.3d) would instead huave been j(E)®H/ED = j(a=1« E). Thus
we put the inverse into the action of CL(Ry) on ELL{R,) so that the
Artin symbol would act without an inverse.

ProoE (of Theorem 4.3). Let L /K be the finite extension corresponding to
the homomorphism F : Gall K/K) - €L{Rg). by which we mean that L
is the fixed feld of the kernel of £, Then
Gal(K/L} = ket F

= {a € Gal(K/K) : Fio) = l}

= {rr EGCalK/K): F(o)+ E = E} since by (1.2), CL(Ry)

acts simply transitively on ELL{Ry)

={o e Gal(lK/K): E" = F} from the definition of F

= {cr € Gal{K/K) : H{ET) =j(E)}

= {0 € Gal(K/K) : j(E)” = i(E)}

= Gal{K/K{(j{E})).
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Hence L = K(j(E)). Further, since F maps Gal(L/K) injectively into
CL{Rg), we see that L/K is an abelian extension. So we have shown
that L = K (j(E)} is an abelian extension of K.

Let ¢z s be the conductor of L/K, and consider the composition of
the Artin map with F,

(LK) F
Hepsg) —— » G — CL(Rg).

We claim that this composition is just the natural projection of ey x)
onto CL{Rp). In other words, we wish to establish the

Claim:  F{(a.L/K)) =a for all a € I{epp).

Let o € I{cr ;4 }, and let § be the finite set of primes deseribed in {4.2).
Froni Dirichlet’s theorem (3.4) there exists a degree 1 prime p € ey, x)
in the same P(cp,p)-ideal class as o and not lying over a prime in S In
other words, there is an n € K" satisfving

a=1(modeg;p) and a=(n)p.
We compute

F{{a. L/K)) = F{({a)p. L/ K)) since a = (wp

F{{p. L/K)) since o = 1 {mod ¢z 5 )
from (4.2}, since ng g8

H

i
= T -1

since a = {ev)p.

This completes the proof of Lthe claim.
Notice that as an immediate consequence we find that

F({{a). L/K)) =1 for all principal ideals () € I{ep ),

and not just for those that are congruent to 1 modulo ¢z, . We also know
that the map F: Gal{L/K) — CL{Ry) is injective, so this implies that

((@). LK) =1  forall () € T{cp k).

But the conductor of L/ K is the smallest integral ideal ¢ with the property
iLhat
a=1{mod ¢) = ({a). L/K) = L

{See §3.) It follows that ¢ = (1), The conductor is divisible by every
prime that ramifies (3.1), from which we conclude that the extension L/K
is everywhere unramified. Therefore L is coutained in the Hilbert class
field H of K.
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On the other hand, the natural map I{cg pc) = I({1)) — €L{Rk) is
clearly surjective, so the claim implies that F @ Gal{L/K) — CL(Ry} is
surjective, hence an isomorphism. Therefore

(L:K}=#Gal(L/K) = #CL(Rk) = # Gal(H/K) = [H : K].

This combined wilh the inclusion L C H proves that I = H. Since L =
K {j{E)). this completes the proof of {a), as well as the second equality
in {h).

To prove the first equality in (b}, we use the observation (2.2.1) that

[QUi(F)) - Q] < hy.

This inequality combined with [I&(J[E‘)) : K] = hy and [K : Q] = 2
implies that [Q(J(E)) : Q] = hg, which completes the proof of (b).

Next, from (1.2h) we know that CL{I ) acts transitively on the set
of j-invariants

J={GEN.....j(Ey}}.

since by [AEC IIL.1.4b] the set ELL{Ry) may be identified with the j-
invariants of its elements, The map F : Gal{(K/K) — CL{Rx) is defined
by identifying the action of Gal(A/K) on J with the action of CL{Ry)
on g, so Gal{K/K) also acts transitively on J. Therefore J is a complete
set of Gal(K /K '} conjugates of j{E), which proves (c}.

Finaily, we see that the claim proven above gives (d] for all ideals
in I{cy pc). But cpic = (1), 50 I{cg ;5 ) is the set of all non-zero fractional
ideals of K. O

It remains to prove Proposition 4.2, For that purpose we will need the
following result which says that isogenies behave nicely under reduction.

Proposition 4.4. Let L be a number field, 1} 2 maximal ideal of L. E /L
and Fa/L elliptic curves with good reduction at ‘R, and Ey and E5 their
reductions modulo B. Then the natural reduction map
Hom(FE:, F2) — Hom(E‘l, Eg), g
is injective. Furthoer, it preserves degrees,
deg(e) = deg(o).
PROOF. Since the degree of a non-zero isogeny is non-zero, the injectivity

follows from the preservation of the degree. However, the proof of injectiv-
ity is more elementary, so we will give a separate proof.
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Let ¢ By — E» be an isogeny satisfying ¢ = [0]. For any integer m
prime to B, [AEC VIL.3.1b] says that Fy[m injects into Ez. On the other
hand, if T € E,|m]. then by assumption

o(T) = $(T) = 0.

Since ¢{T) € Ey[m]. it follows that &{T) = O. Therefore E\fm] < ker(d).
This holds for arbitrarily large . so we must have ¢ = [0].

Now we begin the proof that deg(¢) = deg{¢). Choose a rational
prime £ relatively priine to P. Our idea is to use the Weil pairing and
calculate everything on the Tate modules. (See [AEC IIL8.3] for the prop-
erties of the Weil pairing e : To{F) x Te{ B} — To(p) that we will need.)
For amy z,y € T¢(E) we have

e, (2, )" ° = e, ((deg )7, y) = ep, (dox.y) = ep,{da.dy). (i)

and a similar calenlation on Ey gives

= ~)t|t—*g &

ep (& G5 = e (0F, Bif). (i)

Next we observe that if /L is any elliptic curve with good redue-
tion at P, then Te(E) = T{E). This crucial equality is a consequence
of {AEC VIL3.1b], which says that E[¢"] = E[¢"] for all n. Looking at the
definition of the Well pairing [AEC III §8]. we see that

————

eplr.y) =eg{d.g) for all r,y € Te(E). (iii)
We now take x.y € Tp(£)) and compute

——— e

e, (%, §)e® = e (z.y) from (iii)
=e Ez@;;’ﬂy) from (i)
= eéz{r};r.‘._ (;,:) from (iii}
= cp, (OF. ¢7)
= ez (&, gytes ? fromn (ii}.

This equality helds for all =,y € T¢(E)), hence for all ,4 € T{(El), The
non-degeneracy of the Weil pairing on Ty (E,) now implies that degé =
deg . a

Proor (of Proposition 4.2). We know that ELL( ) is finite from (1.2b)
and that every curve in ELL(R k) can be defined over Q from (2.1¢), so
we can choose a finite extension field L/K and representatives Ep,..., E,
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defined over L for the distinct K isomorphism classes in ELL(R). Further,
using (2.2¢) we may replace L by a finite extension so that every isogeny
connecting every pair of E;’s is defined over L. We now let S be the finite
set of rational primes satisfying any one of the following three conditions:

(i} p ramifies in L.
(ii) some E; has bad reduction at some prime of L lying over p,
(iii} p divides either the numerator or the denominator of one of the
numbers hﬁ(}(ﬂ) — j{Ex)) for some i £ k.

Notice thal condition (iii) means that if p € S and if P is a prime of L
dividing p, then F, # E; (imod ). since their j-invariants are not the same
modulo P.

Now let p ¢ § be a prime which splits as pRyx = pp’ in K, and let
he a prime of L lying over p. Also let A be a lattice for E, so B(C) = C/A.
Choose some integral ideal a © Ry relatively prime to p such that ap is
principal. say

ap = (ax).

From [AEC V1.4.1b] there are isogenies connecting E. p+ E, and @+ p + &
corresponding to the natural analytic maps as indicated in Lthe following
diagram:

C/A —— Clp7'A —— Cja7lp'A C/Ha YA —— C/A

Iz

| | | K |2

{(a)«F -——m FE

i

E —rp—+ p*E -—-—> g*px K

Next we choose a Weierstrass equation for E/L which is minimal
at P (see [AEC VII 4§1,2]) and let
du
Ww=——-
2y +apx+ ag
be the associated invariant differential on E. The pull-back of w to T/ A will
be some multiple of dz. Since the map along the top row of our diagram is

simply z — &z, we see that dz pulls back to d{az) = adz. Tracing around
the commutative diagram, we conclude that

{Aowed) w=au.

As usual, we will use a tilde to denote reduction modulo P. Since the
equation for E/L is minimal at 98, we obtain an equation for £ by reducing
the coeflicients modulo ‘B, and s0 the reduced differential

B dx
N iy + apx + g

1

il
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is a non-zero invariant differcntial on E. Further, since (o) = ap and
since P divides p, we find
(Aeoe)a={) om)*w =aw =0
It follows from [AEC 11.4.2¢] that
Ao oo is inseparable.

On the other hand. using (4.4) and {1.5a}, we see that

deg é = deg é = ng =p,
degyr = degy = Ngm

degi =degh=1.

Since N&‘_’a is prime to p by assumption, both ¢ and A are separable, so we
conclude that o o

d FE—px K
must be inseparable. Now any map (such as @) factors as a ¢ -power
Frobenius map followed by a separable map [AEC WII.Q.I'Z], s0 the fact
that & has degree p and is ingeparable implies that ¢ niust “be”™ the }_J‘h—
po“ﬂ‘rohenil_ls map. More precisely, there is an isomorphism from £
to p* E s0 that the composition

E P -power B >, WE
Frobenius
equals ¢.
In particular, we find that

J(P¥E) =i (E7) =By
50
HP+E) = J(EY = jE)NG? = j(F)™r = j(E™) = j(F(op)xE) (mod ).
But from the original choice of excluded primes 5, we have
FHE) = J(Ey) (mod P) if and only if E; = E\.

Hence p + E = F(op) + E, and the simplicity of the action of CL(Rg)
o ELL{R) (1.2b) gives the desired conclusion

Flap)=p.
O
We also record for later use the following fact which we proved during
the course of proving Proposition 4.2.
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Lemma 4.5. Let E be an elliptic curve with complex multiplication
by Ry, and suppose that F is defined over a number field L. Theu for all
but finitelv many degree 1 primes p of K, the natural map

E—prE

has degree p, and its reduction

———

E—p+E

is purely inseparable. (Here we reduce modilo some prime B of L lying
above p.)

45, The Maximal Abelian Extension

Let E be an clliptic curve with complex multiplication by a quadratic imag-
inary feld K. In this section we are going to describe the field generated
by the points in E(C ). Much as we described the feld generated by j(E)
in the last section. Qur goal is to use the torsion points of £ to generate
abelian extensions of K.

Before beginning, we briefly recall the analogous (bul situpler) case of
cyclotomic extensious. In this case the elliptic curve E{C} is replaced by
the mulitiplicative group G, (Cy = C*. Let

pw = ker (@?,,_(cc*) — Gm(cc*))

be the group of N-torsion points of G, as usual; that is, g is the group
of N".roots of unity. As is well known, the extension Q{un)}/Q is an
abelian extension that is ramified only at primes dividing N. Let p he a
prime with p { ¥, choose a generator ¢ for gy, and let oy, € Gal{Q(¢)/ T}
be the Frobenius element associated to p. Also let P be a prime of Q(¢)
lving above p. Then by the definition of &), we have

¢ =" {(mod ).

But 1.£.¢2%,.. .. ¢! are distinet modulo 93, since our assamption P+ N
implies that X — 1 is separable in characteristic p. Hence the congruence
is an equality,

¢ = (h

and so we conclude that

g,=1 == p=1limod N}.
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Therefore Q(¢) = Q{pex) is the ray class field of Q@ of conductor N. (Ac-
tually, it is the ray class field of conductor Noc. Since the base ficld £ is
not totally inaginary, we have to also consider ramification of the infinite
place.)

Now let L/Q be any abelian extension, and let N be the conductor
of L. Then class field theory (3.2) says that L is contained in the ray class
field of canductor N, so0 we recover the following famous result.

Theorem 5.1. (Kronecker-Weber Theorem) Every abelian extension of
Q iIs contained in a cyclotomic extension; that is, given any finite abelian
extension L/Q, there is a root of unity ¢ such that L C Q{¢).

Thus the ray class fields of (@ are generated by the values of the analytic
function
dmiz __ (2miz)"
D P
=)
evalunated at points of finite order in the circle group R/Z; that is, they
are generated by numbers of the form e274/V with a. N € Z. Further, the
action of a Frobenius element ¢,, on the value e2™/V ig given explicitly by
the formula,

(e').ﬂ.m/N) ?_ 2miap/N provided p1 N.

Thus the Galois action of 7, is transformed inte a multiplication action on
the circle group. The reader who has a good understanding of this cyclo-
tomic theory will have no trouble seeing how all of its main elements are
reproduced in the theory of complex multiplication as described in this sec-
tion and in §8, albeit with a number of additional technical complications.

As usual, we let Ry be the ring of integers in a quadratic imaginary
field A, and let E be an elliptic curve with complex multiplication by Ry .
We will always assume that the isomorphism [-]: Rg = End(E) is nor-
malized as in (1.1}.

We begin with an important lemma which tells us when an endomor-
phism of the reduced curve £ (mod®f) actually comes from an endomor-
phism of E.

Lemma 5.2. Suppose that E is defined over the muinber fleld L, let P
be a prime of L at which E has good reduction, and let E be the reduction
of E modulo B. Let

¢ : Eud(E) — End(£)

be the natural map which takes an endomorphism to its reduction mod-
ulo . Then for any + € End(E),

v € Tmage(f) <= v commutes with every element in Image(#).
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Int other words. Image(#) is its own comnmtator inside End(E).

Proor. One direction is trivial, sinee if ¥ € Image(#}), then + certainly
comimites with elements of Image(#). This is iminediate from the [act
that End{E) = Ry, which implies that Image(f) is a commmutative ring.

For the other direction, we first note that # is injective from (4.4},
From [ARC HL9.4]. End{£) is an order in either a ¢quadratic imaginary
field or in a guaternion algebra. If it is an order in o quadratic imaginary
field, then # is an isomorphism, since, by assumption, End{F) & Ry is the
maximal order in K. S0 in this case we are done.

Next we consider the case that End{f) is an order in a quatertsion
algebra J{, Then Linage(@) 2 @ is a quadratic subfield of 3{, call it X.
{(Note X = K| but it is possible for H to contain several distinet subficlds
each isomorphic to K.) We start, by choosing a Q-basis {1.a} for X such
that ¢ € € and then we extend it Lo a Q-basis for 7 of the lorm

H =0+ Qo + QI+ Qad
satisfving
o 3P (e e and a3 = —n.
{Sec the proof [AEC I11.9.3].) Now it is casy to find the commutator of K

in H. For any ~ € H. we write ~ = d + aa + b7 + ca3 with a.b.c,d €
and compute:
A4 commuies with K
Y=
(d + aa + bi + caidyo = afd + ace + b3 + o 3)
da + aa? + bda + coda = do + an® + bad + ea?3
—bevid — ea® 3 = baid + ca®3  since a = —da
b=¢=10

sinee o € Q and {1. 0. 3, )} is a @-basis for H
— v=d+aneQ+ Qo =K.

1rtet

Finally, let § € End(£) commute with Image(). Then & commutes
with K, so from what we have just done. & is in K. But we also know that é
is integral over Z and that Image(#) = Ry is the maximal order in X = K,
hence 4 € Image(#). This completes the proof of Lemma 5.2 ]

As usual, let E be an elliptic curve with complex multiplication by Ry
In the last section (4.3a}) we proved that

H=K (j(E-'))
is the Hilbert class ficld of K. Since j{E) € I, this means we can find an
cquation for E with coctlicients in H, so we may as well assume that E i

defined over H. The next proposition says that we can lift the pt
Frobenius map £ — E®} to a map in characteristic 0.

-prower
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Proposition 5.3. Let K be a gquadratic imaginary field. H rhe Hilbert
class field of K, and E/H an clliptic curve with complex wnltiplication
by Ri. Let 0y € Gyyp be the Frobenius element associated to a prime p
of Ry, and let B be a prime of H lying over p. Assmune that p has degree 1
aud is not in the finite set of primes specified in (4.5), so in particular £
hias good reduction at *B. Then there exists an isogeny

ALE— E
whose reduction modulo L,

A e B,
is the pth-power Frobenius map.

Remark 5.3.1. In general, there is no reason to expect an elliptic curve
to be isogenous to one of iis Galois conjugates. Of course. there are always

maps
E Err

| |

th =
B

- P opower

E

Frobetins
where the vertical inaps are “reduction modulo 8.7 The content of Propo-
sition 3.3 18 that there is an isogeny A 0 L7 — E7¢ which makes this piciare
inte a commutative square. Thus A lifts the Frobenius map [rom charac-
teristic p to characteristic 0.

ProOOF (of Proposition 5.3}, To ease notation. we will write ¢ in place
of of . From (4.5} there is an isogeny £ — p* E whose reduction £ —

p* b+ I is purely inseparable of degree p. Cowmnposing this isogeny with the
isomorphism p+ B = E7 provided by (4.3}, we get an isogeny A : E — E
which is purely inseparable of degree p. It follows from [AEC II1.4.6 that A
factors as

o

E 2L B0 5, Fo

where ¢ is the pM-power Frobenius map and degz = 1. But, by definition,
the reduction of E7 is precisely £, so ¢ is an automor p}nam of £7. If we
cain show that < is the reduction modulo B of some 2p € Awt(E7}, then we

can replace X by £! o A and be done. So we need to prove the

Claim: £ lies in the image of Ant{E7) inside Allt(g‘_5),
From (5.2}, it suffices to show that & commuules with the image of End(£7)
inside End(E”). {This will allow us to lift « to an gy in End(E7), and
then (4.4} will imply that g has degree 1, so it is in Aut{E£7}) Reeall that
we have normalized isomorphizsms

[']E < HK l’ Elld(E) and [']H" : RK - FJII(J(EH)‘
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and that from (1.1.1) Lhese isomorphisms satisfy
Acla)g = |o]ge o A for all o € Ry.
Nexl we look at the reduction of [¢] modulo P. In general, suppose
that f : V' — W is any rational map of algebmlr varieties over a field &
of characteristic p, let ¢ : V — VI and ¢y : W — W be the pth-

power Frobenins maps, and let o € Aut(k) be the p'-power Frobenius
automorphism of k. Then 7 : VI WP ig a rational map and

gwof=f"odv.
To see that this is true, write f = [fo...., f] (locally} as a map given

by homogeneous polynomials. The desired result then follows from the
observation that for a polynomial f{x} = f(z1.. ..2) = 3 a;x". we have

7(o(x)) = S alx® = (Z aix?)p = 6(F(x).

We now apply this general fact to the map [o ]E E — E. Note that

[+)% = [l

from {2.2a), since o € G,k fixes o« € K. Thus we get

[,

cpo[ E-[a]"oqﬁ: [o-]anqﬁ,

Using this, we compute

————

[(1]Eoo~oo—[0]5«o/\ since £ o = A

= Ao [a] £ from above,
=cogolalr

=zolalpr o from above.

Therefore [a]pn oz = ¢o [a]gs, which completes the proof of our claim and
with it the proof of Proposition 5.3. O

An important special case of Proposition 5.3 occurs when the ideal p
is principal, in which casc o, = (p, H/K) = 1. Then A is an endomorphisin
of E. We can identify that endomorphism quite precisely as follows.
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Corollary 5.4, Let K be a quadratic imaginary field, H the Hilbert class
ficld of K, and E/H an elliptic curve with complex multiplication by B .
For all but finitely many degree I prime ideals p of K that satisfy

(p. H/K) = 1,

there is a unique w = wp € Ry such that

E E
p= 7Ry, and l l
_ P power -
Frobenius
is a commutative diagram. (Note thai the condition (p, H/K) = 1 is

eqitivalent to p being a principal ideal.)

Proor. Let P be a prime of H lying over p. Having cxcluded finitely
many p's, including those for which E (mod P) is singular, we may use (5.3)
Lo obtaln @ comnmitative diagram

E 2 Ev

l !

E = Bim

Here oy = (p. H/K), A is an isogeny, ¢ is the p™-power Frobenius map,
and the vertical maps are reduction modulo .

Our assumption that (p, H/K) = 1 means that I27» = [, 50 A is really
an endomorphism of E, say A = [7]. It also implies Lhat EW = E  Thus
we have a commutative diagram

i,

E E
E . B
Now we compute
N.gp =p since p has degree 1
= deg ¢ since o is pth power Frobenius
= deg [n] from {4.4), since [?r] =¢
= |N.§'?T| from (1.4b).

Since p is a prime ideal in the quadratic field K, this means that either

p=aRg or p=m'Ry.
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where 7' is the Gal{ K /Q}-conjugate of m. We can use the fact that (E.{-])
is normnalized to check which one it is.

We take an equation for E/H with good reduction at P and let w € $2g
be a non-zero invariant differential whose reduction & is a non-zero invariant
differential on E. Then the normalization (1.1} says that [7]*w = 7w, so

ot J—

v=nw=[rrw=F'e=e"Dw=0

=

The last. equality follows from [AEC [1.4.2¢], since the Frobenius map ¢ is
inseparable. Now 1 is a one-dimeusional vector space generated hy &,
so 7 =0, In other words,

m=0 (mod P).

sow € PN K — p Since we saw above that p equals either s By or 7 Ry,
we conclude thalt p = mRy. This finishes the existence half of {5.4}.

To sec that 7 is uniquely determined, we need merely observe that the
composition

Ry L End(E) — End(E)

is injective. Since w is required to satisfy [r] = ¢ € End(f)), there is at
most one such 7. a

Our goal Is to show that the lorsion points of an elliptic curve E with
complex mulliplication by Rg can be used Lo generate abelian extensions
of K. Tt would be nice if the torsion points themselves should generate
abelian extensions of K, but unfortunately it turns out that they only
generate abelian extensions of the Hilbert class field H of K. In order io
pick out the correct subfield. we take a model for E defined over H and fix
a {finite) map

h:E — E/Aut(E) = P!

also defined over H. Such a map h is called a Weber function for E/H.

Example 5.5.1. If we take a Weierstrass equation for ¥ of the form
v =x'4+ Ar+ B with A, B e H,

then the following is a Weber function for £E/H:

r M AB #0,
RP)Y=h{z.y) = {3'2 B=90
@ i A=0.

So in essence, except for the two exceptional cases § = 0 and j = 1728, a
Webor function is just an r-coordinate for the curve.
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Example 5.5.2. 1t is also possible to define a Weber function analytically
in such a way that we don’t have to worry about fields of definition. For
example, if we choose a lattice A and an isomorphism

f:C/A —= E(T), z— {p{zA) p'(z. M),

then the following is a Weber function for E:

%pb A) il H(E) £ 0.1728,

£ A 2 5 P "
h(f(z)) = <“Z&A§sﬂz,Ar if j(E) = 1728,

Z‘Ri oz, A’ it j(E)=0.

Here A{A) = g2(A)2—27¢4(A)® # 0 is the usual modular discriminant. The
reader may easily verify that this Weber function is model independent:
that is. it does not change if we take a new lattice for E, or equivalently
a new Weierstrass equation for F. Since we know from (4.3a} that it is
possible to find an equation for F defined over H, it follows from the mmodel
independence that this Weber function b : E — P! is defined over H.

To generate abelian extensions of K, we will use the values of a Weber
function on torsion points, which essentially means we will take the w-
coordinates of ithe torsion points. Recall from §1 that for any inlegral
ideal ¢ of Ry we defined the group of c-torsion points of E to be

Ele]={PeE: [y|P=0foral~yec}
The reader is advised to compare the following theorem with the eyclotomic
theory discussed at the beginning of this section.

Theorem 5.6. Let K he a quadratic imaginary field, let F be an ellipfic
curve with complex multiplication hy Ry, and let h: E — P! be a Weber
function for E/H as described ahove. Let ¢ he an integral ideal of Ry..
Then the ficld

K (§(E). h(E[d]))
is the ray class field of K modulo ¢.
Corollary 5.7, With notation as in Theorem 5.6,

K™ = K (j(E). h{Euors))-

In particular, if j(E) # 0, 1728 and if we take an equation for E with cocf-
ficients in K (j(E}), then the maximal abelian extension of K is generatod
by j{E) and the x-coordinates of the torsion points of E.

Proor {of Theorem 5.6). Let

L= K(j(E). h{E[d])).
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Then L O K{j(E)}, and from (4.31) we know that K{j(E)) = H is the
Hilbert class ficld of K. In order to show that L is the ray class field of A
module ¢, we need to prove that

(p.L/K) =1 <= pe Plc.
As usual, it suffices to prove this for all but finitely many degree 1 primes
in i
Suppose first that p is a degree | prime of K with p € P(c). This
means that

p=puRg for somne g € Ry with g = 1 (mod ¢).

In particular, p is principal, so (p. H/ /) = 1. Hence we can apply (3.1}
(alter excinding finitely mauy p's) to get some 7 € Ry such that

g L oE
p=nlk and l l commutes.

Since Ry = p = pRy. there is aunit § € R} such that m = u. Notice
that [£] € Aui{E), so [7] and [g] differ by an automorphism of E.

We already know that (p, L/K) fixes H = K{(J{E)), so in order Lo
show that it fixes all of L, we must show that it fixes A({E[c]}. Let T € E[¢]
be any e¢-torsion point. Then the commutative diagram gives

TRLIK) = o(T) = [x]T.
On the other hand, [AEC VIL3.1b] tells us that the reduction map F — E
is injective on torsion points whose order is prime to p. So if we exclude from
consideration the finitely many p’s which divide #FE][c], then the reduction
map
E[q] — E]d

is injective. Thercfore
THLIR) = (r]T.

Now we compute
R(T)P-HH) =, (T("‘L-”"}) since (p. H/K) =1 and
h: E — P! is defined over H

= h{[#]T) from above
= h{[g] o [p]1) since m = £4t
= h{{p1) since b is Aut{ E)-invariant and

[£] € Aut{E)
=N(T) since T' € E¢] and g =1 {mod ¢).
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This completes the proof that
pe P{t)= (p.L/K} =1

In order to prove the converse, we take a prime of degree 1 satisfy-
ing (p,L/K) =1. Then

(0. H/K) = (b L/K)] =1,

so {excluding finitely many p's) we can apply (5.5) as usnal to get am € Ry
such that

)

E E
p=nRy ancl J L COMUTUtes.

We also choose some ¢ € G, whose restriction to K*" is (p, K**/K).
Then in particular o|p = {p. L/RK) =1, and also o|y = 1 since H C L.
Now let T" € E[¢] be any c-torsion point. We compute

= h{a(T)) from the commutative diagram

=h (’1‘”) since & reduces to pt" power Frobenius

= h(T}‘; since oy = 1 and # is defined over H
= h{T} since AT e Land ojp =1
}

Next we observe that the reduction of & modulo R is the map

- - —_

h:E— F/Aut F = EKHE
(N.B. The image is uot E/ Aut E, since Aut £ may be larger than Allt(E).)
It follows from this and the equality f?([?r]i"") = h(T) proven above that
there is an antomorphisin '€] € Aut{ £’} such that

(1T = [€I7

Again using the injectivity of the torsion E[¢] — E[c) from [AEC VIL3.11j,
we find that [m — £]T = O.

A priori, the particular £ for which [r — £]T = O might depend on 7.
But from (1.4b) we know that Eft] is a free Ry /c-module of rank one.



138 II. Complex Multiplication

Henee there is a single £ € Ry such that [ — £] annihilates all of Ec].
which implies that # = £ (mod ¢). Therefore

v =1 {mod o).

and of conrse we have p = 7Ry = (€7 ) Ry since € iv a unit, This proves
thal p & £2(c). which cowmpletes the proof of Theorem 5.6, 0

Proor (of Corollary 5.7). Let L/K be any finite abelian extension and
let ¢ ;5 be the conductor of L/K. By class field theory (3.2¢). L is con-
tained in the ray cluss ficld of & modulo ¢p 5. Using (5.6), this means
that '

LC KGR A Fep ).

Taking the compositwn over all conductors gives L © K (§(E). A{Eiore)).
and then taking the union over all L's gives K" C K(_;}'(E}._h(ﬂ_m.h.))
But (5.6} says that K (_)'(E-‘).h.(l«?m,.ﬂ}) is a compositin of abelian exten-
sions, lience it is abelian, hence it equals A", This completes the first part
of (5.7,

The second part. of (5.7} is then immediate from (5.5.1). which says
that if J{F) £ 0,1728. then the r-coordinale on a Welerstrass equation
for E/Q(G{E)) is a Weber imetion for E. |

i

Example 5.8. Corollary 5.7 raises the obvious question of what happens if
we adjoin all of £ to K, rather than just the values of a Weber funetion.
In general one does not get an abelian extension of K, although we have
seen (2.3) that E. gencrates an abelian extension of H. (The reader
might try to use (5.4) to construct another proof of this fact.} Suppose
now we look at the special case that A has class number 1, 50 H = KA.
Then we have inclusions

K = H (I Eion)) © H(Euw) © H™ = K™
Thus
K has class number 1 = K™ = K{r{(Eie)) = K{Frs)-

The j-invariants of these curves will he in @@, For a complete lisi of all CM j-
invariants in @@, together with representative Welerstrass equations, sec
Appendix A 53,

Example 5.8.1. We will illustrate (5.6} and {3.8) with the curve
E-yt=a"+ur

which has complex muliiplication by the ring of Gaussiau integers Z{i| in
the field K = (i), Clearly

E2) = {0. (0.0}, (£i.0)},
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so K(E[2]) = K. One can easily check that the ray class field of K mod-
ulo 2 is K. so this confirms (5.6}
Next we look at points of order 3. Letting T = (r.y) € £, the dupli-
cation formula reads
2T — (3:4 - 2:1I.'2 + 1‘ a® + 6zt - Sr? — 1) '
4’,3}2 Sy“

So setting x{2T) = x{T). we find (after some algebra} that
BT =0 = 327+ 627 ~1=0.

The four roots of this cquation are

1 1
Vel V3o
Since the Weber function on £ is A(r.y} — 22, this gives K (h(E[3])) =
K (v3). which the reader may verify is indeed the ray class field of K
module 3.

Substituting these four values for & into y* = z* + x and solving for y,
we find the y-coordmates of the points in £[3]. If we let

B 3 B3 - 12 2ex
4= — /
T V 9 N \ \/3 )

then the nine points in E[3] are

; . . ' 2 -1 24

Sinee K = (i) has class mnnber 1. (5.8) says that the feld K(;3) is an
abelian extensicn of A but it is nol necessarily a ray class field. We leave
it for the reader to check directly that A{F)/K is abelian.

Next, T = {(x,y} is a point of exact order 4 if and only if 4(2P) = 0.
Using the duplication formmla given above, if we let » = (\/§ — 1} 4, then
the z-coordinates of the points of order 4 satisfy

fk, —(¥,

0=2% 452" - 522 = 1 = (& — D{xr + Dz - V(e + )z -5z 4+~

Hence K (h(E[4])) = K(+%) = K (v/2). which is the ray class field of I
modulo 4. Finally. if we let § = {1 +#) (/2 - 1), then we find that

E[M] = {o, (0.0). (£i.0). (L. £v2). (v.£6).
(=~ £i8). (7t by 28), (=~ J_-é'}-_zé)}.

So in this case K{E[4]) = K (v.6) = K (v2) is equal to K (h{E[4]}).
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56, Integrality of j

We have seen (2.1b) that the j-invariant of an ciliptic curve E with complex
multiplication is an algebraic number. In this section we are going to
prove that j{£) is in fact an algebraic integer or, equivalently. that £ has
everywhere potential good reduction. The results of this section will not
be needed until §10. so the reader primarily interested in the relationship
between complex multiplication and class field theory may wish to skip
directly to §7.

Theorein 6.1. Lot E/TC he an elliptic curve with complex muitiplication.
Then j{E) is an algebraic integer.

We are going to give three proofs of this iinportant fact, two in this section
and a third in (V.6.3). In order to help the reader understand the different
approaches used in these three proofs, we will start with a brief description
of each.

The Clomplex Analytic Proof

Let A; and Aj be lattices corresponding to elliptic curves £y /T and E,/C,
and suppose that E) and Fy are isogenous, Then we will show that (£
and j{E2) are algehraically dependent over (¥ by explicitly constructing
a polynomial F(X,Y) € Z[X.Y] with F(j{E1).j(E2)} = 0. If E has
complex multiplication, then by taking £y = E» = F we will gbtain a
monic polynomial with §{E} as a root. Thus we show that j(E) is integral
over Z by explicitly constructing a monic polynomial with j{E) as a root.
This proof has the advantage of being very cxplicit, amd the disadvantage
that it does not generalize to higher dimensions.

The é-adic [Good Reduction) Proof

This proof, which is due to Serre and Tate [1], readily generalizes to abelian
varicties of arbitrary dimension. The idea is to use the criterion of Néron-
Ogg-Shafarevich [AEC VIL7.3] to prove directly that £ has potential good
reduction st all primes, which implies by [AEC VI1.5.5] that j(E) is in-
tegral at all primes. Thus let L be a local field and E/L an elliptic
curve with complex multiplication. We have seen {2.3) that the action
of Gal{L/L} on the Tate module Ty( E) is abelian. (For another proof of bis
fact that uses nothing more than a little linear algebra. see exercise 2.6.)
In other words. Gal{Z*?/L) acis on Ty(F). Next we use the description
of Gal{L*P /) provided by local class field theory to show that the action
must factor through a finite quotient of Gal(Z* /L), which allows us to
apply [AEC V1L.7.3}.

The p-adic (Bad Reduction) Proof
For this proof, which is due to Serre, we assume that 3 E) is not integral at
some prime p oand prove thai £ has no non-trivial endomorphisms. Let L
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be a complete local field with maximal ideal p, and let E/L be an elliptic
curve whose j-invariant is non-integral at p. We will show (V' §§3,5) that
after replacing L by a quadratic extension, there is an clement ¢ € L* and
a. p-adic analytic isomorphism of groups

L /¢" = E(L).

Using this isomorphism, we construet {V.6.1) an element of Gal(L/ L) which
acts ou the Tate module of £ via the matrix (6 % (relative to a suitable

basis). Then the fact that endomorphisims commute with the action of Ga-
lois will allow us to conclude thai there are no non-trivial endomorphisms,
s0 E does not have complex multiplication.

It is worth remarking that the second and third proofs are local; one
shows that 7{E) is integral by working one prinie at a time. The first proof,
on the other hand, is more global in nature. We are going to give the first
two proofs in this section. For proof number three, see (V.6.3).

Example 6.2.1. Note that the three clliptic curves in (2.3.1) possessing
an endomorphism of degree 2 all have j-invariants in Z, as they should
from (6.1}, since the corresponding quadratic imaginary fields have class
number 1. More generaily, iff K has class nunber 1, then j{Rg) will be a
rational integer.

As is well known, there are only nine quadratic imaginary felds of
class number 1, a fact conjectured by Gauss and proven by Hecguer [1].
{See also Baker (1] and Stark [1].) These fields are

Q(AT). ©(vI). Q(vB). oK), @(/II).
Q(V-19), Q(V-43}. Q(v-67). Q(V-163).
A list of the corresponding j-invariants is given in Appendix A §3. It follows
for examiple that
1+ +/—163
j ("7) e 2.
2
Recall (I.7.4b) that 7(r) has the g-expansion

1 .
) = T4+ 106884g + 21493760¢° + - - .
i

where ¢ = ™. If we substitute 7 = {1+ /=163) /2, then

g=—e VI8 o _3800.107!8

is very small. Thus the main term in §{g) will be 1/¢, which mmeans that 1/¢
should be “almost™ an integer. Computing 1/ to 40 significant digits we
find that

VI3 _ naoc: ; 1T
e = 262537412640765743.999999999999250072597 . . .,



142 1T, Complex Multiplication

163

50 & is an integer to 12 decimal places. Of course, we kuow o priori
that V1% is not an integer and in fact is not even an algebraic mumber,
since the Gel'tond-Schneider theorem sayvs that €™ = (—1)7'% i5 transcen-

dental whenever ia is algebraic of degree at least 2 over Q.

Example 6.2.2. Now let’s look at an example with class number larger
than 1. For example, cousider the field & = Q (v/-15) and its ring of
1+ =15 It

is not hard to check that By has class number 2 and that a nonvtri%!ial ideal
clags is given by a = 22 + aZ. Further, one can check that the field H =
K (\/5 A3 ) is everywhere unraified over K. so it is the Hilbert class
field of K. {Sec cxercise 2.11.) It follows from (4.3) that H = K (j{Rx))
and that Q(j(HK}) is a quadratic extension of ¢ contained in H and
disjoint from K. Hence Q{j(Rg)) is cither @ (v5) or Q@ (v=3). We will
see in a moment that j{Ry) € R, so we must have Q(j(Rx}) = Q (/5 }.
(This also follows from exercise 2.9, which says in general that f{¢) € R if
and only if ©? = 1 in GL(Rg).)

It remains to compute j{ 7 ) explicitly as an element of ) (\/F) ) Let A
and B be rational nunbers so that

integers Ry = Z[a], where to ease notation we will write o =

H{Ri)=A+ BVS.
From {1.3¢) we see that j{a) is the Gal{ K/ K )-conjugate of §{Rx), so
jla)= A~ BV5.
Solving these two equations for A and B gives

_iBx)+ie o gl Ik - gl

A .
2 25

In order to compute the two _\-'a,lues of 7 numerically, we can use the g-
series (1.7.4b), where ¢ = ¢*™'" is the parameter for the normalized lat-
tice Z + Z&T:
He) = 1 + 744 + 196884q + 214937604% + 8642999704° + 202458562564
i
+ 333202640600¢° + 4252023300096¢" + 44656904071935¢" + - - - .

Thus tor By we find that

J(RK) = J{Z—F (.}'Z} = _')'I (gl‘z"r”*) = j(__c— anr.')
22 j (—5.19748331238 - 107%) ~ —191657.832863.
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(Notice in this casce that ¢ = —e V5T 2 R 50 j(Rg) € R.) Similarly for a
we calculate

- 1 N _"'r-" .
Ha)y =422+ aZ) =} (Z+ EQZ) = .}(P_‘““" 25

= 7 (227979896315 - 107 %1) ~ 63283286254,

Using these values gives {to 12 significant digits) A = —-95512.5000002
and B = —42007.5000001, so

J(Rg) =~ —95512.5 — 42997.5v5 = —52515 — 85095

| T v
1+ 5 ez |LEV5l

2
Thus j{Ry} is {at least approximately) integral over £, which gives a nu-
merical verification of Theorem 6.1 for this example.

The Analytic Proof of Theorem 6.1

Befarc heginning, we give a few words of motivation. It is not hard to see
that an elliptic curve F has complex multiplication if and only if there is
an endemorphism E — F whose degree is not a square. This suggests that
woe take an arbitrary elliptic curve E and a positive integer n and study
the set of all elliptic curves £’ for which there is an isogeny E — E' of
degree n. We took this point of view in (I §9,10) when we studied Hecke
operators. What we are going to do is show that in this situation j(£") is
integral over Z[j(E)]. We will do this by explicitly constructing a monic
polynomial ¥, (j{E). X) with coefficients in Z [j{E}] having j(E’) as a root,
Finally, if £ has complex multiplication, then for an appropriate choice of n
we can take E' = E. This means that £, (j{£}. j(E)} = 0, which we will
show implies that j{FE) is integral over Z.

We now begin the analytic proof of Theorem 6.1. We fix a positive
integer n and recall the sets of matrices D, and §,, defined in (I 9):

D, = {(: 3) € M{ZY . ad —be = n} .

8, = {(; 3) EMNE):ad=n, d>» 0, 0<h< d},

We also recall (1.9.2), which says that 8, = SLy(Z)M\D,. For any ma-
trix o = (‘(‘L 3) € Mp(R) with deto > 0, we define the function j o a as

jou(f):j(a?%—b).

usual by the formula

cT +d
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Of course, if & € SL2(Z), then j o = j. We are going to study the
polyvnomial

FuXy= [[(x-jomy =3 s,xm

wEdy, It
whose coefficients s, = $,,(7} are holomorphic funciions on the upper half-

plane H. More precisely, s, is the m™ elemeutary symmetric function in
the o a’s. We are going to prove several claims concerning the s, 's.

Claim 10 8, (v7) = 85 (7) for all » € 81.3(Z) and all 7 € H.

Let v < 8Lu(Z). For any o € 8, we have ay € D, so {L.9.2) says that
there is a (unique) 8, € SLy(Z) such that é, a7 is back in §,,. Further,
if fay = &3 for some 3 € 8, then 7 = {6;16,}_)(1, s0 {1.9.2) implies
that & = ;3. In other words, the map

8, — 8., a— O,

is one-to-one, hence ts a bijection since §,, is a finite set.
Now we ohserve that

{j ofay) i ae S,,_} = {j ob lo(80m) € S“}
= {jo(fav) 1 n €8,} since jis SL2(Z)-invariant

= {j oS Sn} since 8, = {f,a7 1 o € §,,).

Hence any symnietric function on the set {jon o € §,,} will be invariant
under 7 — 7 for v € 8Ly(Z). In particular, this applies to the s,,(7)’s.
which completes the proof of Claim 1.

Claim 2: s, € C[3].

In other words, we are claiming that there is a polynomial f,,,{X) € C[X]
sich that s,,(7) = fi (](T]) for all ¥ € H. From Claim 1 we know that s, is
holomorphic on H and is 8L, (Z}-invariant. In particular, s, (741} = s,.(7).
50 Sy, has a Fourler expansion in g = 27T We want to study wliat bappens
as T ~= o, or equivalently as ¢ — 0. Recall (1.7.4b) that j has the Fourier
expansion J = ¢~ + 3, ., exq" ., 80 7 has a pole of order 1 at ¢ = 0. Now

if o = (8 3) & 8,,. then
LT +h ac nT+h

i —dmi ] 2qmik 1
joufr)=¢ + E e
k=0

so in particular ¢"T(joa){7}) — 0 as g — 0. Tt lollows from the definition
of the £,,’s that there is an integer N such that q‘i\rsf,,_(T) — D as g — 0.
This means that each s,,(7) is meromorphic at x (see I §3). so s, is a
wodnlar function of weight 0 which is holoworphic on H. Now (1.4.21) says
that s,, € C[j], which completes the proof of Claim 2.
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Claim 3: The Fourier expansion of s, has coefficients in Z.
To ease notation, let ¢ = e¥/" and Q = ¢¥/" = 2™/, For any « =
(ﬁ 2) € 8, we have
gy 2T ED .
goalry=e 7 =(PQY.

(Note that ad = n.) Using the g-expansion of j(r) (I.7.4b}, we find as
above that j ¢ o has the Q-expansion

o
joalt) =¢THQ™ + 3 (MU
ke=t}
where ¢y, ¢y, ... are integers. In particular, the Fourier coefficients of jon
lie in Z[¢]. and so the same is true of the s,,'s.
Let ¢ € Gal(Q(¢)/Q). and write (¢ = ("7 for some integer (o)
relatively prime to n. If we apply o to the -Fourier coeflicients of j o a,
we get the series

(_? o O_)U —_ C—‘r(a’)uhQ_u? i Z Ckgr{a)akauzkl

k=0

Comparing the series for jo o and (7 o )?, we see that

Go o 2)) = (6 73")

In general, the value of jo (3 2) only depends on b {mod ). since

1 ENfa bY _fa b+Ad
01 0 a4/ \0 d

and 7 is SLy(Z)-invariant. Further, if v is any integer prime to n = ad,
then the set {rb : 0 < b < d} is a complete set of residue classes modulo d.
It follows that for any integer r relatively prime to n we have

{jO(g ":f) : (8 3) esn}={joa C o € 8}

Applying this with v = r(¢) for o € Gal(Q(()/Q), it follows that
{(joa)" g Sn} = {joa e 8,,}.

Now consider the @-Fourier coefficients of the s,,(7)'s, which we know
from above lie in Z[¢]. Since s,,(7} is a synunetric polynomial in the
functions {j e e : & € 8, }, we see that its Q-Fourier coeflicients are lixed
by Gal(Q(C}/@] and so lie in ©Q. Hence the Fourier coeflicients of s, {7}
are in Z[¢]N{} = Z. Finally, we note that g, (7+1) = o, {7) {rom Claim 1,
S0 oy, 15 10 fact represented by a Fourier series in g = ¢, This completes
the proof of Claim 3.
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Claim 40 s, (1) € Z[J)].

We already kunow from Claim 2 that s, € €[] and from Claim 3 that s, €
Zlg.q '], We will show that

CHINZle.q '] = Z[}).

which will give the desired result. Let ,f'(;') e ] n Zﬁq, ¢~ '] be a polyno-
nial of degree d, and write () = agj! + a1+ -+ aq with ; € C.
Substitnting in the g-expansion of § (1.7.4b) gives

a4 + Tdddey,

f: }F ! qrf—'l -

s0 the fact that f € Zlg.¢7'] implies that ay € Z. Now

f- a[}j”{ = ("-ljd_l +-tar e 'CU] n "5[[(1 q_l]]-

so repealing the above argument gives a; € Z. Continuing in this way, we
find that every coefficient of f in Z, which comnpletes the proof of Claim 4.

Combining Claims 1. 2, 3, and 4. we have completed the proof of the
first half of the following important result.

Theorem 6.3. {a) There is a polvnowial F (Y. X) € Z]Y. X] s0 that

[T (X-joa)="F0.X)

(rEl B,
(by Let 3 € M,(Z) be a matrix with integer coeflicients and det 3 > 0.
Then the function jo 3 is infegral over the ring Z[j)].
{¢}) Ifn is not & perfect square, then the polvnomial H,(X) = F{(X. X}
is non-consfant and has leading coefficient £1.

PrOOF. (a) The four claims proven above say thar

[[ (X —doe)=>"suX"  withs, €Z[j].

SFES,, Hl
(b} Let n = det 3, s0 4 € D, Using ([.9.2), we can find a matrix vy €
SLofZ} sneh that 3 € 8,,. The SLa(Z}-iuvariance of § says that jo 3 =

o {~3), while the definition of F,, shows that X = jo [(v4) is a root

of F, (4, X). Since F, is monic by definition and hﬂ.b coefficients in Zj]
from {a}, it follows that j o 3 is integral over Z[j].
(¢) Let v = { & by ¢ §,,. Then using the {-expansion of j o o described
above during the proof of Clalm 3. we sec that the (J-expansion of j — joor
is

" ab i
}_}O(}_(Qr?+z(;‘(2 lR)_( aerJZ—i_ZcQ kQ )

A=l f=0)
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(Here we are again writing ¢ = 2™/ and @ = ¢'/".) Since n is not a
square, the leading terms cannot cancel, so 7 — j ¢« has a pole as @ —
0 and the coefficient of the leading term is necessarily a root of unity.
(Precisely, the coefficient is } if » > @, and it is —(™"" otherwise.) It
follows that F,,(4.7) has a pole as @ — 0 and that the leading Q-coeflicient
is a root of unity. But the Q-cxpansion of F,{j. j) has integer coefficients,
50 the leading coefficient is a root of unity in Z: hence it must be £1.
Further, F,,(/,7} is actually a series in ¢ = Q. so we have proven that

o . ]' —TiL
F?,l_j.jl)::tq—m+‘--€q Z{q]

for some m > 1. But we also know that F,,(4.7) € Z[4] and that j has a
simple pole at ¢ = 0. Hence F.(j.j} = £5™ + -+ € Z[4). which proves

that F,(X, X'} is a non-constant polvnomial with leading coeflicient +1.
a

It is now a simple matier to complete the proof of Theorem 6.1,

Corollary 6.3.1.  (Theorem 6.1). Let E/C be an elliptic curve with
complex mulitiplication. Then j(E) is an algebraic integer.

ProOOF. Let B = End{F) be an order in a gquadratic imaginary field 5. We
consider first the case that R = Ry is the ring of integers of K. Choose
some element p € R such that n = |N;$p| is not a perfect square. For
example, if K = Q(i). take p = 1+, and if K = Q{v/=D) with square-
free D = 2, take p = /= D. Then {1.5b} says that the isogeny [p] : & — E
has degree n. Fix a 7 € H with j{r) = j(E). Then multiplication by p
sends the lattice Zr + Z to a sublattice of index n. say

pr=ar+4 )
for some w. b, e, d € Z with ad — be = n.
p=cr+d

Soifwelet o= (? 3) € D, then

iy far+b . _
jtor) = (5 = itn) = i(E)

By definition, j e is a root of F,{(j. X), so if we substiiute X = j oo and
evaluaie at 7, we get

0= F,{j(7).j(aT)) = F,(4(E). J(E)) = Ha(3(E)).

From (6.3¢), the polynomial H,(X) has iuteger coefficients and leading
coeflicient £1. This proves that j{E) is integral over Z.
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Now we deal with the case that R is an arbitrary order in K. Let A =
Zwy + Zwy be a lattice for E. From [AEC VI.5.5] we know that K =
@{wn /we). Hence replacing A by AA for an appropriate A € C*, we may
assume that A € Ry. We also choose a 7 € H so that Ry = Z7 4+ Z. Then
we can write
wy =ar+b
! for some o, b, ¢, d € Z.
we =T + d
Let n = ad -~ bc. Switching w; and w; if necessary, we may assume
that n = 1. The matrix o = (g g) is in Dy, so {6.3b) says that the func-
tion j o a is integral over the ring Z[7]. Taking the equation F,(j, X) =0
which gives that integrality and evaluating it at v, we find that j{a7) I8
integral over Z[j{7)|. But j(ar) = j{E), and we already know that j(r) is
integral over Z because it is the j-invariant of an elliptic curve with complex
multiplication by Ry . Therefore j{E) is integral over Z. wj

Example 6.3.2. The polynomials Fi,(Y, X) € Z[Y, X] and H,({X} € Z|X]
described in (6.3} can be extremely complicated. For example,
B, X)=-(XYP+ X +Y*+2'.3-31- XY(X +Y)
+34.5%.4027 - XY - 2030 53 (X 4+ YY)
+28.37 . 55(X +v) -2 .37 . 5%
Hy(X)=-X"472.1489- X3+ 3% .5 .17 . 47- X*

4+2%.387.5%. x —212.3%.59,

According to [AEC IIL4.5], the elliptic curves E : 42 = 1 + az® + bz

and E' : ? = 2% — 2a2? + (a® - 4b)x are connected by an isogeny F — B
of degree 2. It follows from exercise 2.19 that
, , 256{a” — 3b)® 16(a? 4+ 12b)°
v X Y] X = }'1 - R - = 0
Fo((E), J(£Y) 2( b2(aZ — 4b) ' b(a? — 4b)

a fact that the interested reader can check by a direct computation {prefer-
ably with the assistance of a symbolic calculator).

The f-adic Proof of Theorem 6.1

We now begin the £-adic proof of Theorem 6.1. If E/L is an elliptic curve
with complex multiplication, then we know from (2.3) that the action
of Gal(E/L) on Ei.,. 18 abelian, so in particular the action on the Tate
modile Ty( E) is abelian. (For another proof of this result which uses only
a little linear algebra and is valid even if End{E} is not a maximal order,
see exercise 2.6.) We now use Proposition 2.3, local class field theory, and
the eriterion of Néron-Ogg-Shafarevich to prove that E has everywhere po-
tential good reduction. Although somewhat involved, this proof has the
advantage that it generalizes to abelian varictics of arbitrary dimnension
{see Serre-Tate [1]).
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Theorem 6.4. Let L be a number field and E/L an elliptic curve with
complex multiplication. Then F has potential good reduction at every
prime of L.

Proor. (Serre-Tate) Every endomorphism of R is defined over a finite
extension of L (2.2b), so replacing L by a finite extension, we may assume
that Endp{FE) is strictly larger than Z. Fix a prime v of L. We set the
following notation:

L. = the completion of L at v,
R, = the ring of integers of L,
M, = the maximal ideal of R,
p = char R, /M, = the residue characteristic of &,,
£ = a rational prime not equal to 2 or p,
I, = the inertia subgroup of Gal(L, /L,),
Lzb = the maximal abelian extension of L,
I%% = the inertia subgroup of Gal(L2/L,).

By assumption, Endp{E} # Z, so certainly Endg, (E) is strictly larger
than Z. Applying (2.3), we see that the action of Gal(L,/L,) on T¢E) is
ahelian. In particular, I, acts through the quotient J2P.

Local class field theory says that there is an isomorphisin

Ry,
(See, e.g., Lang [5], Serre [4, XIV 86, Cor. 2(ii) to Thm. 1], Serre [5].) This

gives us a very good picture of 12", since we can decompose R using the
exact sequence

1 — R, — R — (R,/MM,) — 1
LS — e e’
pro—p ETOUpP ”2 finite

ab
k4
Here R, | is the group of 1-units,
si={ue R, u=1(mod M,)}.

There is an isomorphism from the formal multiplicative group G {9M,)
to R, given by

Gml{M,) — R, t— 14t
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Hence R} | is a pro-p group; that is, it is the inverse limit of finite groups
of p-power order (sec [AE(C' TV.3.1.2} and [AEC IV.3.2]).

Similarly, if we fix an isomorphism Aut T (E) = GL2(Z,) corvespond-
ing to some basis for T:( £}, then there is an exact sequence

1 — GLQ{Z{-‘)L — GLQ(ZF} — GLZ (ZXFZ) — 1L
| T

Pro—4§ group ||E I|I

AT {E) —  Aut E[f
S e

finite
Here GLa(Z6) is the group of matrices congruent to the identity matrix
modulo £, and it is not hard to see that this is a pro-£ group. More precisely,
the logarithm map gives an isomorphisi

. . (_]Jﬂ.+1£n‘4n
GLy(Z)1 — Mo(#Ze), L+ eAr—log(l+6A) =y im0
n
n=1

where M3 (Z¢) is the group of 2 x 2 matrices with cocflicients in £Z, under
addition. This isomorphism is the GLy analogue of [AEC IV.6.4b]. (See
also exerciszes 2.22 and 2.23.)

It follows from the above discussion that the map

I, —— Aut T, (E)

fits inte the following diagram:

1 — R, — R: — (R,/M) — 1

1 — Gla(Ze)) —— AwIHE) — GL:(Z/2) — 1

Nexi. we observe that since £ # p. then there can be no nen-trivial ho-
momorphisms from a pro-p group te a pro-f group, so the images of R}, ;
and GlLa(Z: ) in Ant Tp{E} have trivial intersection. Therefore there is an
injection

Inage( R — Awt T{E)) — GLz (Z//Z).

Since also (R, /9M,)" is finite. it follows that

Image{R?, — AuwtTH(E)) is finite,
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since it consists of finitely many cosets of Image( Ry, — Aut Ty{E)).
This proves that the image of I,, in Aut T¢{E} is finitc. Now the crite-
rion of Néron-Ogg-Shafarevich (specifically [AEC VIL7.3]) says that E has
potential good reduction at v, which concludes the proof of Theorem 6.4,
t

It is now a simple matter to decduce (6.1) from (6.4).

Corellary 6.4.1. (Theorem 6.1}). Let E/C be an elliptic curve with
complex multiplication. Then j{E) is an algebraic integer.

Proor. The elementary result (2.1b) says that §(E) is an algebraic nun-
ber, so we may take an equation for E with coefficients in the number
field L = Q(j(E}). Then {6.4) says that E has potential good reduction
at every prime of L, so [AEC VIL5.5] implies that j{E) is integral at every
prime of L. O

87. Cyclotomic Class Field Theory

In this section we are going to formulate the class field theory of  in
terms of special values of analytic functions, specifically special values of
the exponential function. This is analogous to the way we will later be
describing the class field theory of quadratic imaginary fields via the theory
of complex multiplication. We hope that studying the simpler cyclotomic
case first will aid the reader in understanding the more intricate proofs
required in the complex multiplication cage. However, the results in this
section will not be used later, so the reader who already feels comfortable
with class field Lheory may wish to skip directly to §8,
We begin with the multiplicative group

Gn(C) =C"

The exponential map provides a complex analytic parametrization of the
multiplicative gronp,

fio CZ =5 Gu(C)

{ v E.??rr'i"

Sitting inside of G,,,(C} is its torsion subgroup

[U’m((c}l.ors = f (QKZ) .

The elements of G, (Clors are roots of unity, so they generate abelian
cxtensions of (7. Our aim is to give an analytic description of the action

of Gal{@*'/Q} on G (Cius-
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From class field theory (see §3) we have the reciprocity map, which is
a surjective homomorphism

— GRQY/Q), s [5.Q]
Each idele s thus defines an isomorphism

Gm((c)tor:-e _ [Gm ('C)tors_&e
¢ — C[-*-Q]‘

The algebraic action of Gal{Q®®/Q) on G, (C)iu is determined by these
tsomorphisms.

In general, il € Ay is any idele, we want to define a subgroup 2Z C Q
and a multiplication-by-r map

Q/Z = Q/aZ.

The definition of xZ is easy; it is just the ideal of x, which we recail is the
fractional ideal of Q@ given by

;}jZ = (J‘) = l_‘[-pordTr e Z = g'\'rIZ.

&

For convenience, we will write [V, as indicated for a rational number gen-
erating the ideal #Z. Later we will pin down N, precisely by requiring
that sign(N,) = sign{r. ).

In order to defiue the multiplication-by-x map, we decompose G/Z
into its p-primary components and multiply the p-component by x,,. Note
that

(p-primary component of Q/Z) = Zp~ ' |/Z2 = Q,/Z,.

The first equality is immediate, since if + = ¢/n € Q/Z has p-power order.,
then noanust be a power of p. For the second equality, we clearly have an
injection

Zp™"V/Z — Qu/Zy.

1o check surjectivity, let £ € (,/Z,. We can write £ = a/p* for some o €
Z,, and some integer ¢ > 0. Choose an integer ¢ € Z with ¢ = o (mod p*Z,,).
Then a a e
4 _ a _ o .
13: c Zlp /2 and il Ein Qu/Z,.

Similarly, we observe that for any N € %, the p-primary part of G/NZ is
isomaorphic ta Q,/NZ,,.

It is a general fact that an abelian group whaose elements all have finite
order is the direct sum of its p-primary components. {See (8.1) and (8.1.1}

for something stronger.} Hence
QL= PQ/Z,.
I!

and for any idele x € Ag,
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Q/2Z = Q/N.L= P Q/N:Zp = P Qy/ay L,
P P

The last equality follows from the fact that ord,{N,) = ord,(z,), so the
ideals N, Z, and x,Z, are the same. Now we can define the muitiplication-
by-z map to be multiplication of the p-component by z,; in other words,
multiplication-by-x is defined by the commutativity of the following dia-

Tart:
g T

QL - QT

| [
@ /Ly — @ Qp/xplp
P r

{tp) — (rptp)
We are now ready for the main theorem of this section. The reader
should compare this cyelotomic result (7.1} with the corresponding complex
multiplication theorem (.2}

Theorem 7.1, Fix the following quantities:
o € Aut(C), an automorphism of the complex numbers,
s € A, an idele of Q satisfying [s. Q] = o|ga..
Further, fix the complex analytic isomorphism
f:C/Z =5 GL(0), F(t) = e*™t,
Then there exists a unique complex analvtic isomorphism
FC/s™'Z = Go(T)
s0 that the following diagram comimntes:

Wz - Qs 'z

L s

Gm(C) = Gn(C).

Remark 7.1.1. Theorem 7.1 says that
FOFY = f(s7)  forallt € Q/Z.
Of course, f* depends on 5. We will see during the proof of (7.1} that
f’(t} - EQ‘.IT‘iNst.
where N, iz a certain non-zero rational number. Thus written out explic-
itly, (7.1} says that
(6271'?:3)1"‘-@} - 62171:.-'\-’,.{5_1!} forall t £ @/Z

This formula makes it very clear how the algebraic {Galois) action of {s, Q]
is transformed into the analytic (multiplication) action ¢ — Ngs~'t. Later
we will have more to say about N, see (7.2}
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ProoF {of Theorem 7.1). Let ¢ € Q/Z, say { = a/n(mod Z) as a frac-
tion in lowest terms. To ease potation. let ¢ = (£} be the corresponding
primitive n'"-root of unity. Suppose first that our idele  has the property

sp =1 (modnZ,) forall primes p, and further that s, > 0. ()

In particular, s, is a unit lor all prines dividing ». and we know that Qi)
is ramified only al these primes, so by (3.5) the action of {5, Q] on Q{¢} is
given by the Artin symbol

({s).Q)/Q).

Qe
For any idele s, we will wrile N, € Q* for the unigque rational nmmber
satisfying

NZE ={s5) = sZ and sign{N,) = sign(s.. ).

Then {{s), Q{(¢}/Q) = (NZ.Q(¢)/Q), from which it follows that ¢ =
N or equivalently

FOPE = f)he

Next we decomnpose # {mod Z) into p-primary components,

b= : Z L ¢ @QW‘Z

Py
Then

—1
5y, N . T -
sl = E —i—(-—?- & @przp by definition of multiplication by 571
» P »
a, . .
= E p‘! from (). which says that s;! — 1 € 27, = pvZ,

L.

This suggests that we should take {7 to be the map fo defined by
foiCfsTIZ == GulZ),  filt) = TN
Then for any idele s satisfying {*}, we have
Fuls™h) = f(t) = & = )Y = fald,
To recapitulate, we have proven that

FOlE = 5 (s provided £ = :—i € /7 and & satisfies {x).
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Now let s € Ay and t € Q/Z be arbitrary, and as usual write ¢ =
a/n{mod Z). Using the weak approximation theorem, we can find a ratio-
nal mumber r € * so that rs satisfies (+}. From the definitions, it is easy

to check that
N.,=+N, and (rs) "t =r"s""t).

Notice that the requirenient sign( V) = sign{s.. } ensures that N,., = r N,
cven when r is negative. Using these equalitics, we compute
Fls@ = p(g)lrsa] since [rs, Q] = [« Q]
= f.«({rs)7t)  from ahove, since rs satisfies ()

i N (rsy T

=e from the definition of f.,
= g2miNasTh since N, = rNy and (rs)~ 't = v~ (s7'4)
= f.(s71%) from the definition of f..

This completes the proof of the existence half of (7.1}, with the additional
information that f' is given by the map f/{t) = f.(¢) = #™ N As for
unigqueness. we need merely obscrve that the commutative diagram deter-
mines f° ou /s 1Z, which is a dense subset of G,,{C), so there is at most
one possibility for f*. m]

As an alternative version of (7.1}, we conld use only the single analytic
parametrization f and replace the mmltiplication-by-s—1 map s0 a5 to make
the following diagran commute:

YL ———— Oz
l ¢ l.f
Gl — 1 Gun(D).

We can (try) to do this becanse every o € Aut{TC} maps G,,{(C) to itself,
In the case of an elliptic curve £, this will only be possible for those #'s
such that £7 = E. For the clliptic analogues of our next two resuits (7.2)
and (7.3), see {(9.1) and (9.2).

Theorem 7.2. Lets e Aj, be an idele. With notation as in (7.1}, there
is a unique rational mumber N, € " such that the following diagram

COMMMmutes: Nyx~?
: Q/Z

C/Z

[ |
Gu(C) - Gu(T).

More precisely, N, is the unique rational number satisfying

NLZ = (s) = sZ and sign{Ny) = sign{s..). (%)
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PROOF. During the proof of {7.1) we showed that f' is the map f'{f} =
€2 Nt where N, is as specified in {#). The commutative square in {7.1)
then says that

AR = ety = 2T p(n s,

This proves that the square in (7.2) is commutative with N, chosen to
satisfy (*). It remains to prove that this commutative diagram uniquely
determines N.. DBut if N] also makes the diagram commute, then we
find that multiplication by N7!N! induces the identity map on Q/Z.
Hence N, = N.. a

From (7.2) we have a well-defined map
An — Q" CC, §— N,

and it is clear that this map is a homomorphism. Further, the explicit
description of N; given by (#) in (7.2} shows that the map is continucus.
Recall that for any number field L. a homomorphism

x: AL —

is called a Gréssencharacter of L if it is continuous and satisfies y(L*}) = 1;
that is, the kernel of x must contain the image of L* in A}. It is easy to
see that our map s — N, does not have this property. In fact, if s is the
image of some a € L*, then clearly N, = a. We can get a Gréssencharacter
by making a small modification to N,.

Theorem 7.3. For any idele s € Ag, let sx. be the archimedean compo-
nent of s. Define 2 map

X Ap — R x(8) = Ngsit,
where N, € Q* is the unigue rational number satisfying
NZE = (5) = sk and sign{N,} = sign(s..}.
Then x is a Grassencharacter of (J.
PRrROOF. It is clear that both of the maps
3 — N and & 8o

are continuous homemorphisms from A&, to C*. Further, they clearly take
the same value on the image of Q7 in Aj. Hence x 1s a continuous homo-
morphism that is trivial on Q7; that is, it is a Grossencharacter.

a
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48. The Main Theorem of Complex Multiplication

Let K be a quadratic imaginary field with ring of integers Ry as usual.
For each prime ideal p of K. let K, be the completion of K at p and let R,
be the ring of integers of K. Similarly, if a is any fractional ideal of K,
let ap = aRy be the fraciional ideal of K, gencrated by a.

Let. Af be an Rp-module. The p-primary component of Af, which by
definition is that part of Af annihilated by some power of p, is denoted by

Mp™])={mec Al : p'm = (0) for some ¢ = 0}.

We begin with an elementary lenuna about p-primary decompositions.

Lemma 8.1. {a) Let A bhe a torsion Ryc-module; that is, for everym € M
there is a non-zero o € Ry such that oo = 0. Then the natural summnation

map
S:EPMPp*] M. S =
P P

is an isomorphism. Here the suns are over all prime ideals of Ry, and p,
denotes the p-componernt of .

(b} Let a be a fractional ideal of K. Then for eacli prinie ideal p of K. the
inctusion K — Ky induces an fsomorphisin

T (K/a) [p™] — Kp/ny.

(¢) Again let n be a fractional ideal of K. Then thore is an fsomorphism

Kja= P Ky/a,.
[

Remark 8.1.1. As our proof will show, Lemma £.1 is true more gen-
erally for any Dedekind dotnain £ with fraction field K. For example,
taking R = Z gives the decomposition of a torsion abelian group into p-
primary components as discussed in §7.

Proor {of Lemma 8.1). {(a) Suppose first that u € ker(S). For each
prime p. let e(p} = 0 be the smallest integer such that ]:l"("),up = ().
Note that e(p) exists, since py € A [p™]. and that all but finitely many
of the e{p}'s are zero since u has only finitely many non-zero components,
Now fix a prime ideal g and let

0= H pf'[P)‘

s
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By construction, we have dyp = (0} for all p # g. On the other hand.
since S{t) = 0 by assumption, we have

(=05 =0 Z‘”‘P = Z Dip = Oty
P p
But @ is relatively prime to g, so 0 + g9 = (1). Hence

{pq) = (B + q"(q]) tq = Vg + q"(q]pt.q = {0) + (0} = (0},

which proves that 1 = 0. Since q was arbitrary, we have proven that g =0
and hence that § is injective.

Next we check surjectivity, Take any element m € Af. and choose a
non-zero ¢ € Ry with am = {§. Factor the ideal o Ry as

g =pi'ps’ o pir.

Then we can find £1,...,2, € Ry satisfying

1 ; _ f 1{mod p*),
- 4z, = all 5 = a (IIIOd pjj) for jF#i.

[Proof: Let ¢; = ap™“. Then ¢;+---+e, = {1}, so it suffices to take z; € ¢,
with €] +---+&, = 1.] Notice that pc; C oRp. 50 pem C amBRy = (0).
Hence e;m € M{p?], so if we set

o fem ifp=yp, forsome | <i<r,
By = 0 otherwise,

then g € &M(p™~] and S(p) = Y pp = sym + -+ + 2,m = m. This
completes the proof that S is surjective.

{b} First, suppose that & € {K/a)[p™] is in the kernel of T. Choosing a
representative ¢ € K for ¢, this means that p©a C a for soie integer ¢ = 0
and that o € ap = aR,. These two inclusions imply respectively that

ordy{a) = ordg(n)  for all q # p and  ordp(e) > ordp(a).

Therefore «wR g < a, 30 ¢ £ a, which means that & = 0. This proves that T
is injective,

Next, let 3 & Ky /ay and choose a representative 3 € Ky for 3. By the
weak approximation theorem {essentially the Chinesc Remaiuder Theorem)
we can find an o € K satisfying

ordp (o — ) 2 ardy(a) and ordg(er) = ordg{a}  for all g # p.
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The first inequality says that o = J(inod a,}. so T'(a) = 3. Let € be a non-
negative integer greater than ordy(a) — ordy{a). Then ord,(p®a) > ordg{a)
for all primes q, including q = p, so p®a € a. Hence & € (K/a) [p™], which
completes the proof that T is surjective.

{¢) This is immediate from {a) and (b}. 0

Let x &€ A}, be an idele. Recall that the ideal of & is the fractional
ideal
(if,‘) — Hpurdp[:p}‘
I
If ais any fractional ideal of A, we define xa to be the product (z}a. Using
the equality (r)p = (2} Rp = & Ay, we see thal
(xa}p = (x)aRy = rpaR, = rpap.
Now {8.1c) gives natural isomorphisms
Kjaz= @ Kp/a, and K/raz @ Kofrpap.
P P

We define the multiplication-by-z map on K/a to be multiplication
of the p-primary component by r,. In other words, multiplication-by-z is
defined by the commutativity of the following diagram:

K/a = K/za

| |
@Kp/ap — @I\’p/zpup
P p
(p) L {Tptp)
We also recall from §3 that the reciprocity map for K.
e — Gal( Kb /K0y, 5 — |5, K.

is surjective and its kerncl containg K.

We are now ready to state and prove the main theorent of complex
multiplication in its adelie formulation. At the risk of making the statement
overly long. we include a summary of our notation and assumptions.

Theorem 8.2. (The Main Theorem of Complex Multiplication) Fix the
following quantities:

K/Q  a guadratic imaginary field with ring of integers Ry,
E/C  an elliptic curve with End(E) = Ry,



160 II. Complex Multiplication

a € Aut{C), an awomorphism of the complex numbers,
s € A}, an idele of K satisfving [s. K| = &| .
Further, fix a complex analytic isomorphism

f:Cla — E(Q),

where a Is a fractional Ideal of K. Then there exisrs a unigue comiplex
analytic isomorphism

fC/sta == E7(C)
{depending on [ and o) so that the following diagram commutes:

Kfa 2 Kjs'a

lf lf’

E(C) 2 E7(C).

Remark 8.2.1. The statcinent of Theorem 8.2 remains true for elliptic
curves whose endomaorphism ring is a non-maximal order of K. Of course.
one first must explain how to multiply K/a by an idele  when a is an
arbitrary lattice in K. For details, sce Shimura {1] or Lang (1, Ch. 8, 10].

Remark 8.2.2. Notice how Theorem 8.2 transforms the algebraic action

of ¢ on the torsion subgroup f(K/a) = Eyy. into the analytic action of
multiplication by s~1;

£(8) [*K] = (s for t € K/a and s € A},

Compare with (7.1.1).

I*roGoF {of Theorem 8.2). Clearly, there is at most one f', since the
(’ommuratnc diagram determines f' on K /s 'a, which is a dense subset
of C/s7 !

Suppob‘e that £,/C is an elliptic curve that is isomorphic to B and
that f1 : €/ay — E{C) is an analytic isomorphism. We are going to
begin by proving that if Theorem 8.2 is true for (E,, f1), then it is also
truc for (E. f). This will allow us to reduce to the case that E is defined
over Q{F(E))} and a is an integral ideal.

S0 we are assumning that there is an analytic isomorphism

5 €5 ay < E(C)
and a commutative diagram

=—1
Kja A K/b'_la

E |# |

E(C) -5  ET(C).



§8. The Main Theoretn of Complex Multiplication 161

Since E and E; are isomorphic, we may fix an isomorphism i : B, 5 E.
Further, the lattices for E and E; are homothetic [AEC VL.4.1.1], so we
have a; = ~a for some v € K*. Then each of the squares in the following
diagram is commutative;

Kj/a = K/s'a

L |

Kla;, 2= K/sla

|n E

E(©) 5  E(©)

| &

By 5 EC).
Hence (8.2) is true for (E, f) if we take for f' the map
£t/ S ENC), (=) =i fi(2).

We are now reduced to proving (8.2) under the assumptions that E
is defined over Q{j(F)) and that a C Ry is an integral ideal. Fix an
integer m = 3 and let L/ K be a finite Galois extension satisfyving

#EYeL and  Elm|C B(L).

We note that (5.6) implies that L contains K,,,. the ray class field of &
modulo . We are going to begin by proving that (8.2) is true on the m-
torsion points of E. As nsual, our main tool will be reduction modulo a
suitable prime.

Let B be a prime ideal of L satisfving the following five conditions:

(i} ol = (B, L/ K); that is, the restriction of ¢ to L is a Frobeniuse-
lement for 5.
(i) p = PN K is a prine of degree 1; that is, p = ng is a rational
prime.
(iii) p is unramified in L.
{(iv) p is not one of the finitely many primes excluded in (4.5).
{v) P does not divide m.

Such an ideal always exists, since the Tchebotarev Density Theorem (Lang
(5, Ch. VIIL, Thm. 10]) says that there are infinitely many primes satis-
fying (i} and (ii}, whereas each of (ili}, (iv), and (v) excludes only finitely
many primes.
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Using the fact that L contains K. we find

[5. K|, =0l since [s, K| = oo by assumption
(R

[his

= (p. Wi/ K) from {i}) and (ii).

This last. map is the Frobening element associated to p. Let = € A} be an
idele with a uniformizer at the p-compouent and 1's elsewhere. Then (3.5¢)
says that [7. K] also equals (p.KUn]fK), Henee [sw! K] acts trivially
on K,y s0 the idelic characterization (3.6) of the ray elass field K,y says
that the idele sm! factors us

sl = o
Here e € K*. and for each prime g, u € A satisfics
g € Ry and g = 1{mod mHAy).
Next we use (5.3} to find an isogeny

A E— E7

whose reduction modulo P is the p*M-power Frobenius map. Note that
since L contains K (j(E}), (i) implies that

“ih’(;(sn =(P.L/K)

KiHE) {p. K(H(EYN/K).

Since £ is defined over (B(j{E)). we see that the isogeny described in (5.3}
is indeed from £ o E7.

We claim that on m-torsion points, A acts like #. To see this, let T €
F[m)] and use tilde's to denote reduction modulo PB. Then

MT)=MT) =17,
since both A and ol = (P.L/K) act on the residue field modulo P as
the p''-power map. Now P { e from (v), so [ARC VIL3.1b] says that
on m-torsion points the reduction map E7 [m] — E7[m} is injective. Hence
AMTYy=1" for all T' € Em].
In other words, we have produced a commutative diagram

E[m)] =, E7m]

| |

E(C) = E(C).
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(N.B. This diagram describes a deep mathematical relationship, becanse it
trangforms the algebraic action of ¢ on m-torsion points into the geometric
action of A. Notice that for general points P € F{K). A{P) and P7 will
not be equal.}

We also note from (4.2) that E7 is isomorphic to p+ E, where p* E
is an clliptic curve associated to the lattice p~'a. Using the given analytic
isomorphism f @ C/a — E{C), this mcans there is an analytic isomaor-
phism f7: C/p~ta — E7(C) so that we have a commutative diagram

c 4 c
| 4,
C/la — C/p~la (%)
A

E(C) 2. E°(C).

Recall that we factored the idele s 43 & = oy, Since every component
of u is a wnit, and every compouent of 7 is 1 except for a unifovmizer in
the p-component, we have
(s) = (a)(7m) = (a)p. andso  sTla=a"'p7la

Thus multiplication by a~! gives an isomorphism
=1 ! S|
C/p7a— C/s a

50 we can extend {=) to fonn the larger commnmtative diagram

1

o T R C
| | |
C/la -— Clp~la — C/s'a {xx)

I L lr

E(C) = EYC) L g

Here f': C/s71a = E?(C) is the unique analytic isomorphism making (+#)
commute. We claim that f7 satisfies

FY = fi(s7t) for all t € m™'a/a.
To verify this claim, we note from above that

F)7 = A(f(1))-
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Combining this with the commutativity of (+«), we must check that

fla~l) < f(s7)  forallt € m'a/a;
and sinee f' is bijective, this is equivalent to showing that

o -5t EsTa for all t € m™Ya.
Recalling that s7' € Kfs_'a is defined by multiplying the g-primary
component by sq. we must prove for each prime q of K that

o tt—s Mt es;tag forall t € mTlag.

Now multiplying through by s, and using the decomposition sq =
armgitg from above. we must check that

Tquqt —t €0 for all t € m~lay;

or equivalently that
2
(mqitg — LYoy C rnog.

By construction, ug s in Ry and satisfies ug = 1(mod mRy), so we are
reduced to proving

i
(mq — LJag C may.

There are two cases to consider. First, if g # p, then my = 1, 50 we are
done. Second, if = p, we know that mp, s a uniforinizer, so (7, —1)ap = a,.
Further. we know from (v) that p { 7, s0 m is a p-adic unit and hence map =
ap. This proves the desired inclusion for all g, thereby completing the proof
ol our claim.

To recapitulate, for each integer m > 3 we have produced an analytic
isomorphism

o Cfs™ha == E7(C)

and a commutative diagram

-1
m~laja I mlsTla/sTla

|1 |
EC) 5 E7(C).
To conplete the proof of (8.2) it suffices to show that all of the f;, maps

are the same, since then these commutative diagrams will fit together to
give Lhe desired result on all of K/a.
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So let n > 1 be an integer, and let . : C/s la =5 E7(C) be the
corresponding analytic isomorphism. Note that the composition f/,, 0], =
is an automorphism of E”, say f,, o f,,~' = [£] € Aut(E”). Then for

any ¢t € m~'a/a we have
(Elo fl (s 1)y=f (s7't) by definition of &
= fty” from construction of f,,,

= fl(s710) from construction of f)

T

This holds for all 1 € m™!a, s0 we conclude that
gTr=rT for all T € E7[m)].

Since = 3, this can only happen if [£] = [1], since for [£] # [1] the kernel
of [1 — £] coutains at most six points. (If j{E) # 0.1728, then £ = +1,
and in the two exceptional cases, €' = 1 or £% = 1. Sec [AEC II11.10.1].)
Therelore f;.,, = f/,. which concludes the proof of (8.2). |

59. The Associated Groéssencharacter

In this section we will use the main theorem of complex multiplication
to define a Grodsencharacter associated to an clliptic curve with complex
multiplication. Recall that a Grossencharacter on a number field L is a
continuons homomorphism

v A — O

with the property that «:(L"} = 1. Our first result describes a map A} —
C* which, with some small modifications, will be the desired Grissencha-
racter.

Theorem 9.1. Let E/L be an elliptic curve with complex multiplication

by the ring of iutegers Ry of K, and assume that L O K. Let » € A}

be an idele of L, and let s = NL.z € A}, Then there exists a unique o =

apyp(r) € K* with the following two properties:

(i} aRx = (s8), where (s) C N Is the ideal of 5.

(if) For any fractional ideal a C K and any analvtic isomorphism
[:C/a— E(C),

the following diagram cominutes:

K/a ™5 K/a

I I

ﬁ_‘(Ldb) {r_'!J E‘(Lal").
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Before beginning the proof of (9.1}, we should make a few remarks,
First, from {2.3) we know that K (j(E) Eias) is an abelian extension
of K{j{£}). Further, since E is defined over L, we know that j(E) € L,
and so we see that L{E\ ) € L*. This shows that the images of the verti-
cal maps in (i1) do lie in E{L*"). Second, since K (j{E)) is the Hilbert class
field of X from (4.3), we know that N4 2 is principal for any ideal 2 of L.
Since (s} = (Ni\x) =Nk ({z)), we see that there always exists an @ € K~
satisfying (i), and (i) determines o up to a unit of K. Tt then remains
for (ii} to pin e down precisely. Third, we note that (i) gives

as la=als) 'a=na,
%0 the top row of the diagram in {ii) is well-defined.
Proor {of Theorem 9.1}. Let

L' = L(Ett)r.-;)-

Since j{E) € L. it foillows from (5.7} and (2.3) respectively that there are
inclusions
K** L' c L*.

Choose an automorphism o € Aut{C) such thai
a|pa =[x, L]
A standard property of the reciprocity map (3.5b} says that
ol = [, L]| o, = [5. K.
so applying the main theorem of complex multiplication (8.2}, we find an

analyvtic isomorphism f': C/a — E{C) and a commutative diagram

-1
» 1

Kfa — K/s57'a

| Ir

E(C) = E(Q).

Now E” = E. since o fixes L. Hence a and s~ 'a must be homothetic, so
there is a ;3 € K* such that s 'a = a. Our commutative diagram then
hecomes

Hst

K/a 25 K/a

l I

P(C)y = E(C).
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Note that f” o f~! is an automorphism of E, say f” = [¢]o f. Tf we
set o = £3 and use the facts that o] = [x. L] and Euore © E(L7Y), we

get
|"l-<:_1

K/ja — K/a
|+ I
E(Lab) [v’_‘{_”] E(Lﬂh}-
which is exactly (ii}. Further, we have an equality of ideals
as”la=@s"la =, s0  aRyg =(s).

This proves that o satisfies both (i) and {ii). which completes the proof of
the existence of part of (9.1].

Next we check that o is unique. Suppose that of € K™ also has prop-
erties (i) and (ii). From {ii) and the fact that f and [z, L] are somorphisins,
we get a commutative triangle

K/a
I / \‘ T
[\—{"’a pr— K’Xu

Hence multiplication by a’a~! is the identity map on K/a, s0 o = a.

Finally we must show that e is independent. of the choice of f. Suppose
that f' : C/a’ — E(C) is another analytic isomorphism. Then a = ~a’
for some v € K*, and f'o f~! is an automorphism of £, so there is a
unit £ € R} such that f/{z) = f(£vz). Then (ii} for f gives

Pt = pestyot = flas™evty = flas™'t)  forallf € K/a,
so (i} remains true if f is replaced by f/. Honce a is independent of f.
O
Theorcm 9.1 gives us a well-defined map
app A — KT CCh

and it is clear that gy 18 a homomorphism. However, it {5 easy to see
that ag, (L") # 1, s0 ovgyp is not o Grissencharacter. More precisely.
ifdeL*and x4 € A3 is the corresponding idele, then [x4, L] = 1. So (9.1}
says that @ = ag;p(x3) is the unique clenient of K such that oRyx =
N% () Rre = N& (3R and such that multiplication by oNEz;' in-
duces the identity map on K/a. Clearly, the required o is just N};-,.'i. In
other words, we have proven that

ag L (ray=NE3  forall 3e L*.

which is the first step in proving the following important result.
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Theorem 9.2. Let E/L be an elliptic curve with complex multiplication
by the ring of integers Ry of K, assume that L D K, and let agy : A} —
K™ be the map described in (9.1). For any idele s € A}, let s, € C*
be the component of s corresponding to the unique archimedean absolute
value on K. Define a map

Yp Ay, — C*, Yrlr) = ap/(@NE (7).

(a) ¥g,p is a Grdssencharacter of L.

(b} Let P be a prime of L. Then g, is unramified at P if and only if E
has good reduction at B. (Recall that a Gréssencharacter ¢ : A} — C* Is
said to be unramified at P if Y(Ry) =1.)

ProOOF. (a} It is clear that v, is a homomorphism. We saw above that
if 3 € L”, then ag,/(x3) = NZ3. On the other hand, untwisting the
definitions we find

Ni(zslw = J] & =Nk8.
ot

Therefore 1g, 1 (x3) = 1. This holds for all 3, so ¢g,,(L*) = 1.

Next we are going to verify that a gy, : A — C is continuous. Fix an
integer m > 3. We know from (2.3} that L(E[m]) is a finite abelian exten-
sion of L. Let By, € A} be the open subgroup corresponding to L(E[m]);
that is, B,, is the subgroup so that the reciprocity map induces an isomor-

phism
Ai/Bn — Gal(L{E[m]}/L)

=, L] |L(E[m])'
Let

Wm={scAk:scR, and s,=1(modmRy) forallp},
and let
Up = B n{r €A} : Nz € Wy}

We note that U, is an open subgroup A}. We are going to prove the
Claim: agy{x) =1 forallz € Un.
Let x € U,,, and to ease notation let o — agyp(x}. Also fix an analytic

isomorphism
f:C/n = E(C)
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as in (9.1). Then for any ¢t € m™'a/a we have f(t) € E[m], so

f(t) = f()l=t] since & € B, so [z, L] fixes L(E[m])
= f(aN{z~'t) from (9.1ii)
= flat) since t € m~la/a and

(Nkz), € (1+mRy) N Ry for all p.
Hence multiplication by o fixes m™'a/a or, equivalently,
{a~1Dmlaca

This inelusion of fractional ideals means that (o — 1) Rx € mRx, so

o€ Hy and a=1({mod mRg).

On the other hand, for any prime p of K we have
ord, o = ord, (I\IE;—:.,-*)p from (9.1i)
=1 since the p-component of NLx € W,, is a unit.

This holds for all p, so & must be a unit, &« € £}, But @ = 1 {mmod mRAg)
from above, so the only possibility is « = 1. This proves our claim.
It follows from the claim and the definition of 45, that

g (z) = NE(z s for all z € U,,.

From this formula it is clear that g, is continuous on Uy,. But U, is
an open subgroup of A} . Therelore ¥g,; is continuous on all of A7, which
completes the proof that ¢z, is a Grissencharacter.

{b) Let I%b C Gal(L*® /L) be the inertia group for 3. The reciprocity map
sends Ry to I%b,

* b
[Rf[}v L] = ‘.?3 )
where we embed Ry, into A} in the usual way,
R;Bf—>AE, w—s .. 1 1u,1,1,...]
l

T — component

Let m be an integer with P { m. We know from (2.3) that E[m] C
E(L*®), so I3 will act on Em|. We want to characterize when this action
is trivial in terms of values of the Grdssencharacter 1 g,,,. Thus

ah R P

Iy it}t[;:}la‘“y < f(t)°=f(t) foralloecli andalltcm 'a/a
== f(t)l"8 = f(t) for all z € Ry, and all t € m~'a/a
= floag;(c)(NEz=1)t) = f(#)

forallz € Ry and all t € m~la/a,



170 I Complex Multiplication

where for the last cquivalence we have used (9.1). We make two observa-
tions. First,
vpp(r) = apyp(a) for all > € Ry,
since the archimedean components of & € fg; are all 1. Second, mudtipli-
cation by N&r~!induces the identity map on me™'a/a. This follows from
Lemina 9.3 (see below} and the assumption that B m. Hence we find
I3 acts trivially
¥ Y= flep(a)t) = flt
on E[m) flep(a)t) = £(1)
for all x € Ry and all ¢ € m ™ 'a/a
= ppyp(r) = 1{mod mRy)

for all x € R, since f mlaja -5 E[m].
Next we apply the criterion of Néron-Ogge-Shafarevich, which relates

the action of 73" on Elm} to the veduction of £ mudulo B, More pre-
¢isely, [AEC VIL7.1] says that

I%" acts trivially on Efm] for

CE . <= F has good reduction at .
infinitely many m prime to 9P & ks

Combining this with the equivalence proved above, we obtain the desired
result:

E has good there are infinitely many m with P m such that
reduction at P dg () = Hmod mBy) forall € Ay
= wpylr)=1 forallx e Ry
= g, is unramified at P
' O
[t remains to prove the elementary result used in the proof of (9.2b).

Lemma 9.3. Let a he a fractional idenl and b an integral ideal of K.
Let s £ A} be an idele with the property that

sp=1 for all primes p dividing b.

Then the multiplication-by-s map s : K/a — K/a induces the identity map
o b~ 'aja. In other words,

st=t for all t€ b 'a/a.

ProoF. From (8.1}, the decomposition of b~ !a/a into p-primary compo-
neuts is

b~ 'a/a —= 5 (b7 a/a), = P oy apiap = @b ap/ay.

n P plb
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Here the last equality follows from the fact that b, = R, for all p § b.
so the only nom-zero terms in the direct sim are those with p|b. The
multiplication-by-s map ou b_laja is now defined by the comrmutative
diagrani

b~ ta/a = b~

I |
Po; ey — Poylay/a,

8lb plb
(tp) L— (Sptp}
But by assumption, s, = 1 for all pjb. so multiplication-by-s is just the
identity map. m]

$10. The L-Series Attached to a CM Elliptic Curve

The L-series attached to an elliptic curve is an analytic function that is
used to encode arithmetic informmation about the carve. One then hopes
to deduce further arithmetic properties of the elliptic enrve by stodying
the analytic properties of its L-serics, much as one nses the Rismnann zeta
function to study the set of rational primes. In this secltion we will deline
the L-series of an eiliptic curve B and show that if £ has complex multipli-
cation, then its L-series can he expressed in terms of Hecke [-series with
Gréssencharacter.

Let L/Q be a unmber field. and let £/L be an elliptic eurve. For each
prime P of L, let

Fq = residue field of L at P,

gy = NEP = #Fq.
It I has good reduction at P. we define
aq = gp + 1 — #E(Fg).
Ly(R/L.Ty=1—aqpT + gpT*.
The polynomial Lg( £/ T is ealled the local L-series of E af B I F has

bad reduction at P, we define the local L-sertes according to the [ollowing
rules:

1 -7 if E has split nwltiplicative reduccion at P,
1+ 7 it E las non-split multiplicative

reduction at 33,
1 if £ las additive reduction at .

Ly(E/L.TY =
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Remark 10.1. [n the case that E has good reduction at 8, we can give
a more intrinsic definition of the loeal L-factor iu terms of the action of
Frobenius on the Tate modnle. Thus let ¢y : E — E be the gg-power
Frobenius map, and let

dype: Te{EY — TH{E)

be the associated map on the Tate module of E {sce IAEC III. §7]), where
we take some £ relatively prime to the characteristic of Fq. I we choose a
hasis for the Tate module, so T,{E} = Ze x Zy, (hen g is represented by
a 2 x 2 matrix with coefficients in Zy. The characteristic polynomial of the
linear transformation ¢ 4 is

det( ~ dq 1) = 1 — (trop. )T + (det oy T2 € Ze[T],
and this polynomial is independent of the chosen basis for T:{ E).
In fact, [AEC V.2.3] says that the characteristic polynomial of ¢g »

has coefficients in Z and is independent of £, More precisely, we find that

troqp, =1+dege — deg{l — @) from [AEC V.2.3]

=1+gq. — #E(Fy) from [AEC 11.2.11¢| and [AEC V §1].
Similarly,
det o p = dege  from [AEC V.2.3]
=, from [AEC 11.2.11¢].
Hence

For a general diseussion of this material in terms of f-adic cohomaology, see
Hartshorne [1, App. €.

We now picce together thie local L-factors to form the global L-scries
of E.

Definition. The {globul) L-series of E/L Is defined by the Euler product

L(E/L.s) =[] Ly(E/L.q3") ",
P

where the product is over all primes of L.

Using the estimate |agp| < 2/Fp from [AEC V.2.4], it is not hard to

show that the product converges and gives an analytic function for all s

satisfying Re(s} > :f Conjecturally, far more is true.
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Conjecture 10.2. Let E/L be an elliptic curve defined over a nuni-
ber field. The L-series of E/L has an analytic continuation to the entire
complex plane and satisfies a functional equation relating its values at s
and 2 — s.

We are going to verify this conjecture for elliptic curves with complex
multiplication by showing that L{E/L,s) is a product of Hecke L-series
with Grossencharacter. In general, suppose that

v A — CF

is a Grossencharacter on L; that is, 9 is a continuous homomorphism which
is trivial on L*. Let B be a prime of L at which 4} is unramified, so
Y(Ry) = 1. We then define ¥(P) to be

1;’)(‘13) = 'IJ")(_ e l‘ 1'!“’: 11 1! .t ')1
)
T — component

where 7 is a uniformizer at *P. Note that since ¥ is unramified at B, ©(P)
is well-defined independent of the choice of 7. For convenience, we also set

WP} =0 if 4% is ramified at 3.
Definition. The Hecke L-series attached to the Gréssencharacter
YA, —C
is defined by the Euler product

Lis,9) = [J(2 - v(Baz?) ™

k&

where the product is over all primes of L.

Hecke L-series with Grossencharacter have the following important
properties, whose proof we will omit,

Theorem 10.3. (Hecke) Let Ls, ¢7) be the Hecke L-series attached to
the Grossencharacter 1. Then L{s,) has an analvtic continuation to the
entire complex plane. Further, there is a functional equation relating the
values of L{s, %) and L{N — s,%) for some real number N = N(3).

ProoF. This was originally proven by Hecke. It was reformulated and
reproven by Tate |8] using Fourier analysis on the adele ring A; . D

The key to expressing L(E/L, 5) in terms of Hecke L-series is to express
the number of points in E{Fy) in terms of the Grossencharacter attached
to E/L.
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Proposition 10.4. Let E/L be an elliptic curve with complex multipli-
cation by the ring of integers Ry of K, and asstine that L © K. Let *B
be a prime of L at which E has good reduction, let E be the reduction
of E moduio B, and let ¢ : B — E be the associated gg-power Frobenius
map, Finally, let gy, : A} — C* be the Grissencharacter (9.2) attached
to E/L. Then the following diagram commutes:

e L {B)]

FE —— — FE
| |

where the vertical maps are reduction modulo .

Proor. Before we begin the proof, two remarks are in order. First, ¢rg,;
is unramified at P from (9.2b), so ¥wg, (P) is well-defined. Second, since
WY1, (B) is the value of 41y, at an idele with 1's in its archimedean com-
ponents, we have g, {('B) = ag/ (B} € Rk, so it makes sense to talk
about [#g,, ()] as an endomorphism of E.

Let x € A} be an idele with a uniformizer in its P-component and 1's
clsewhere. Then as we just remarked,

Ve (B = Yu(T) = agsrlz) € R

The commutative diagram (9.1} used to define ag, tells us that

FEE = (g ()] f (Ngz~Y)  forallt € K/a.

Fix some integer m with 8 { m. Then (9.3) says that NLz— 1t =t for
all t € ™ 'a/a, so we get

S = [, (2)] f(£)  forall ¢ € m™'a/a.

Now consider what happens when we reduce modulo . We have [z, L] =
(B, L* /L) from (3.5), so [z, L) reduces to the gp-power Frobenius map.
Hence

op(FO) = FOFH = [go(@)] () forall t € m~'afa.

Since this is true for all 7 prime to B, and since an endomorphism of E
is determined by its effect on torsion (or even on f-primary torsion for a
fixed prime ¢ [AEC II1.7.4]), we conclude that

e

pp = [Ye/L(T)].
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Corellary 10.4.1. With notation as in (10.4), we have

(a) qp = Ném = NS (e, (P)).
{b) #E(Fp) = NGB + L — vp, 0 (B) — ¥, (B),
(c) ap = Ye,(P) + e, (B)

(The bar indicates complex conjugation of elements of K.)

ProoF. (a) We compute
NEP = dex by from [AEC I1.2.11¢]

= deg [wm, By from (10.4)
= deg ¥y, (B)] from (4.4}
= NQ {ve/L(B) )) from (1.5}

(b} Similarly, we compute

#E(F) = # ker(1 - by)
= deg(1l — ¢y} from [AEC IIL.5.5]
and [AEC II1.4.10¢]

=deg [1 —‘1:);:(?}3)] from (10.4)
= deg[1 — g, (P)] from (4.4)
Ng(l — gL (P)) from (1.5)
= (1 - g/ (P)(1 - e (B))

=1 - gy (PB) — by P+ NGB from (a).

{c) Immediate from (a}, (b}, and the definition of ap.
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We now have all of the tools needed to relate the L-series of F to
the L-series attached to its Grossencharacter, at least in the case that the
field of definition of E contains the CM field. We will leave the proof in

the other case to the reader.

Theorem 10.5. (Deuring) Let E/L be an elliptic curve with complex

multiplication by the ring of integers Ry of K.

(a) Assume that K Is contained in L. Let ¢g;1 : A} — C* be the Grés-

sencharacter (9.2} attached to E/L. Then

L(E/L.s) = L(s,¥/L)L(s, $&/1)-



176 I1. Complex Multiplication

{b) Suppose that K is not contained in L, and let L' = LK. Further
let ¥p, 10 0 AL, — C* be the Grdssencharacter attached to E/L'. Then

L(E‘/L‘ 5) = L(S, 'L{}E/L!).

Using Hecke’s theorem (10.3), we immediately deduce that the L-series
of a CM elliptic curve has an analytic continuation and satisfies a functional
equation. A more careful analysis yields the following result. We will leave
the proof to the reader.

Corollary 10.5.1. Let E/L be an elliptic curve with complex multiplica-
tion by the ring of integers Ry of K. The L-series of E admits an analytic
contimiation to the entire complex plane and satisfies a functional equation
relating its vahies at s and 2 — 5.

More precisely, define a function A(E/L, s} as follows:
(iy IfK CL,let

A(E/L, s) = (N§(®r/ge0)) (@) T(s) Y L(E/L, ),

where ¢, is the conductor of the Gréssencharacter ¥y, Dy, Is the dif-
ferent of L/Q, and T'(s) = [, t*~ et dt is the usual I'-function.
(i) FK ¢ L, let I/ = LK and

A(E/L,s) = (N§ @1 0¢,))"  (2m)~*T(s) “ U L(E/ L, 5),

where ¢, is the conductor of the Grdssencharacter Yy
Then A satisfies the functional equation

ME/L, 8) =wA{E/L,2 — s},
where the quantity w = wg,, € {£1} is called the sign of the functional
equation of E/L.

ProoF (of Theorem 10.5). We know from (6.1) and [AEC VII.5.5] that E
has potential good reduction at every prime of L, so [AEC VIL5.4(b)] tells
us that E has no multiplicative reduction. Hence

J1—apT +gpT? if E has good reduction at P,
La(B/L.T) = {1 if £ has bad reduction at .

Now suppose E has good reduction at 3. Then

Lp(E/L,T)=1—apT +qgT? by definition of Ly,

=1— (Y. (B + v (BT + (N e, (P)T?
from (10.4.1)

= (1 = 9e/(PIT)(1 — e, (P)T).
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On the other hand, (9.2b} says that g, is unramified at P if and only
if E has good reduction at B, and the same is true for ¢, . Thus

WL (PB) = e (B) =0 if £ has bad reduction at 93,

50 the formula given above for Lp(E/L.T) is also true for primes of bad
reduction, since it reduces to Lg{E/L, T} = 1. Therefore

L(E/L,s) =] Lp(E/L.q5") "
P

-1

. a1 e
= H(l - ﬁ’E,-’L(m)‘kp") (1 - "ﬁ’E;’L(m)Qm')
gy
= L(S, ﬁ';'E.;'L)L(S, ?,'!.’EJ.,JL).
(b) See exercises 2.30, 2.31, and 2.32. ]

Example 10.6. Let D € Z be a non-zero integer, and let £ be the elliptic
curve
E: i =5+D

having complex multiplication by the ring of integers Ry of the field K =
Q (\/—_3) Let p be a prime of Ry with p { 6D, Since Ry is a PID. we
can write p = (w}, and one can check that there is a unique 7 generating p
which satisfies # = 2(mod 3). It is then a moderately difficult exercise
using Jacobi sums (see Ireland-Rosen [1, 18 §85.7]) to show that

- 4D 4D
#E(F,) =Nfp+1+ (—) T+ (—) 7
L] G

I w

" - th

where (;)b. is the 6'"-power residue symbol; that is, (;_}6 is the 6
unity satisfying

-root ol

PO &
aNEp—11/6 (#) {mod ).
T/

Using {10.4.1), we see that the Grissencharacter attached to E is given
either by

) 40 40
YE/k(p) = — (-—-) s or elge by e r(p) = — (__) .
m 5 A

w

To determine which one it is, we use (5.4) to find a root of unity £ €
R such that the reduction of [€7] modulo p is N,{i‘_’p—power Frobenins.
Note that (5.4) says this is possible for almost all degree 1 primes of A
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But. {10.4) says that [qﬁl'EJ”\—{p}] also reduces to Frobenius, We conclude
that
4D
vepn(p) =~ -~ )= where p = (7) and 7 = 2 (mod 3},
6

at least for almost all degree 1 primes p of K. By the continuity of 3 and
the reciprocity law for {;){J we see that this formula holds for all p.

Using {10.5) and h.f-“rl = @i, we find that the L-series of £ over K
and over @ can be written explicitly using residne symbaols as

— —i
LE/K s = ] (H(?)W;-Hﬁ_s)
PG

wE g primne
-1
40
% ('1 + (——) ﬂ—“frl“‘) :
T /e

w®=2 (il 3}
4D\ B
LIE/D, 5} = 1 Nty I l—.ﬁ'?—r—s )
e H (+(’T)ﬁq )

mi Ry prime
T=2 [l 4}

KXTRCISES

2.1, Let A/} be a quadratic field with riug of integers Ry, and let < K be
an order in K. Prove that there is a uniyue inteper §f > 1 such that

R=Z+f R

The integer f is called conductor of the order R,

2220 *Let A = Z[¢] be the lattice of Gaussian integers, and let A be the clliptic
intepral
! dt

A = 1'-_-:'
" vi1—#d
{a}) Prove that
ga{A) = 61

(hb) More generally. prove that for all integers = 1, Gan(A) is a rational
number multiplied by A",

2.3, Let K/ be a quadratic imaginary field, and let /T be an elliptic curve
with End{E)} %} = KA. Let £/ be another elliptic curve. Prove that £
is isogenous to £ and only if End{E Y0 @ & K.
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2.4

2.6

2.8

Let £ be an elliptic curve defined over a nnnber field L with complex
multiplication by /. and let P be a pritue of L of characteristic p at which F
has good ordinary reduction. Prove that Iy, contains a subfield isomorphic
o K.

Let E/Q be an elliptic curve with complex multiplication by the ring of
integers in (\.«'—_T ) . Without using an explicit Welerstrass equation for £,
prove the following two facts:

{a) Tf ¢ : £ — E 1 an endomorphism of degree 2 and P is the non-zero
point in the kernel of ¢, then 2 ¢ E(Q) and P € E (Q (\/—_7))

(b} E{Q) coutains exactly one point of order 2,

{Hind. Use (2.2a).)

(a} Let F be a field, let G be a subgroup of GLz(F), and let C{C) be the
centralizer of G5 that is,

G ={a € GLy(F) : ay =~a for all v € G}.

Prove that one of the following two conditions is trie.

) CG) = {({‘] f}) ce F‘}.

(i1} ¢ 15 abelian.
{Hint. If C{Q) contains a non-scalar matrix n. make a change of basis to
put « into Jordan normal lorm and then caleulate Clad.)
(1) Let L be a perfect field, let £/L be an elliptic curve, and let £ be a
prime with £ £ char{ L), Suppose that End {£) is strictly larger than Z.
Use (a) to prove that the action of Cal(Z/L] on the Tate module T:(E) is
abelian.
The following fact {2.5.1) from commutative algebra was used in the proof
of Proposition 2.4. Let B be a Dedekind domain, let a be a fractional ideal
of R, and let Af be a torsion-free B-module. Prove that the natural map

o: a'Af  —  Tomgle, Af)
T — (g oo ar)

is an isomorphism. { i Prove that it is an isomorplism after vou localize
at any prime p of B, Note that the localization Ry is a principal ideal
domain. )

Let L/K be a finite abelian extension of number fields.
{a} Let 2 be a non-zero tractional ideal of L. Prove that

(NEU LK) =1,

{b) Prove that an unramificd prime p of K splits comnpletely in L if and
only if {p, L/K) = 1.
Let a be atractional ideal of K. and let E be an elliptic curve corresponding
to the lattice a.
(a) Prove that j{FEY € R if and only if &% = 1 in CL(Rx).
{b) Prove that the following are equivalent:

{1) Q{EY) is Galois over .

{17} Q(G{EY) is totally real.

{ui} Every element of CL{R ;) has order 2.
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2.10.

2.12.

2.13.

2.14.

2,15,

II. Complex Multiplication

Let K be a number held, Ry its ring of integers, and ¢ an integral ideal
of Rg. Prove that there is an exact sequence

Ry — (Rx/fe)* — I{t)/Pi{c} — CL(Rk) — 1
a(modc} — ()

. Let K = Q(w—l&), and let Ry be the ring of integers of .

{a) Prove that CL{Rx) = Z/2Z.

(b) Let L =@ (\/—3, \/5) Prove that L/K is everywhere unramified, and
deduce that L is the Hilbert class field H of K.

(c) Let K = Q(v/=23). Prove that the Hilbert class field of K is given
by H = K(a), where a satisfies 6® — a - 1 = 0.

Let E/C be an elliptic curve such that End(E) is an order in the quadratic
imaginary field K,

(a) Show that there exists an elliptic curve E'/C and an isogeny ¢ : E — F'
such that End(E’) = Rk.

(b) *If E is defined over the field L, prove that it is possible to choose E’
and ¢ in (a) so that both are defined over L.

Let K = Qi) and let Kx be the ray class field of K modulo N.

{a) Prove that

K:=K, K3=K(V3), Ki=K{(V2)

(b} Verify directly that the field

f8/T 12
K(V“—_g_)

is an abelian extension of K, and compute its Galois group over K.
(This exercise verifies some of the statements made in {4.9.1).}

Let E be the elliptic curve y° = 2* + 1, and let K = Q (\/ -—3). For each
integer N > 1, let Ky = K(h{F[N])} and Ly = K(E[n]).

(a) Calculate Kz, K3, and K, explicitly and in each case verify that K
is the ray class field of K modulo N.

(b) Calculate Lz, L3, and L4 explicitly and show that they are ahelian
extensions of K.

Let E be the elliptic curve E : ¢° = =¥ + 42 + 22, and let K = Q (v=3).
From {2.3), this curve has complex multiplication by K. Redo the previous
exercise for this curve E and field K.
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2.16. For each of the quadratic imaginary fields in the following table, verify that
the given a gencrates the Hilbert class field of K, and calculate the value
of j{Rx) cxplicitly as an element of A'{«). (We have filled in the first row
for you, see Example 6.2.2.)

Disc K/Q hy o a root of F(Rx)
(a) ~15 2 -5 —52515 — 85995142
(b) —20 2 |
(<) —23 3 e |
(d) —24 2 2 +3
(e) —31 3 P +x-—1

2.17. Let D% and 8, be the sets of matrices defined by

D:; = {(: 3) € M’z(z) : ad_bc:nv ng(avbrc!d) = 1}3

3;:{(3 z) e D, :d>0,(}gb<d}‘

{a) Prove that the natural map 8}, — SL2{Z)\D;, is a bijection.

{b) Prove that
- ]
8n =1 1+-7].
w5 (1+2)

pin
{Notice that if n is squarefree, then T}, and §;, are just the sets T, and 8,
considered in §6.)
2.18. Let 8, be as in the previous exercise, and define

(X)) = J[(x-joum.
e 50

¢, is called the modular polynomial of order n.
(a) Prove that &, € Z[§][X]. We will write ®,,(7, X'} to indicate that &,
is a polynomial in two variables.
(b} Prove that ®,, is irreducible over C(j).
{c} Prove that ,{Y, X) = &,(X, V).
{d} Prove that if n is not a perfect square, then &,,(X, X} is a non-constant
polynomial with leading coeffcient +1.
(e} Let Fio{4. X} be the polynomial from (6.3}. Prove that

Fuis Xy = [ @i x).
dé|n,d=1
in particular, if n is square-free, then F, = ¥,.
{f) “*Let |®,1] denote the magnitude of the largest coefficient of ®,.(Y, X).
Prove that
lirn _log|®.]
n—oo (deg O, ){logn)
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219,

2.20.

2.21.

222,

2.23.

I1. Complex Multiplication

Let F,(Y, X) be the polynomial from (6.3), and let &,(¥, X) be the poly-
norial from the previous exercise. Let By /T and E2/T be elliptic curves.
(a} Prove that F,(7{E ), j{E:)) = 0 if and only if there is an isogeny
E1 — E5 of degree n.

(b) Prove that &,(j(£)}. j(£2)) = 0 if and oaly if there is an isogeny
E, — E2 whose kernel is cvclic of degree n.

Let p he a prime. Prove Kronecker's congruence relation
F¥, X} ={X - V"X - ¥ (od pZ[X. Y],

where F,, is the polynomial defined in {6.:3),

Let f(7] be a madular function of weight 0 that is holomorphic on H and
that. has the q-expansion f = Za,.q . Let A he a ring containing all of
the a,’s. Prove that f € R[f]. where j = j{7) iz the modular j-lunction.
This strengthens (1.4.2h), which says that f e Tl5L

Let £ > 3 be a prime, let

GLZ(Z;}l = {A = (-}LQ(Z{-} A= (é T) (II]EJLI f}} .

aud let A {(£Z:) be the adiditive group of 2 x 2 matrices with £Z~-coefficients.
Prove that the map

fe

r|+l ] _11.1
Gla(Zudi — Ms(f7), 14 24— log(1 4 £4 Z cal

H=

is & well-defined isomorphism.

This exercise generalizes the previous one. Let [ be a finlte extension of (s,
let. R be the ring of integers of L, and let M he the maximal wdeal of R,
For each integer r = 1 define a subgroup G, of GL, {£) by

G, ={4cGL(F): A=1, (modM"}}.

where £, is the n x n identity matrix.
{a) Prove that for every r > 1, the quotient G, /Gy i3 a Hnite group
whose order is a power of
{b) Prove tha
G = hm G /G

and deduce that 7, is a pro-£ group.

{c) Prove that if v is sufficiently large. then G is isomorphic to the additive
group of n x n matrices with coefficients in 2. (Aent. Tor the case n = 1.
see [AEC IV.G.4b])
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2.24.

2.25.

2.26.

2.27.

Let E and E’ be elliptic curves given by Weierstrass equations
E: v =2 + a:d® + auz + 08, E Y =X*4+ab X+ ai X + ag,
and let ¢ : £ — E’ be a non-zero isogeny.

(a) Prove that there is a rational function A{z) and a constamt ¢ such
that ¢ has the form

d(z,y) = (R(I),cydfjix)) :

{ Hint. Look at the invariant differentials.)
{b) Prove that there is a commutative diagram

C/A  — C/N

w—e— 1z

! !

ET -5  E(©

where the vertical maps are complex analytic isomorphisms and ¢ is the
constant from part (a).

Let E/L be an elliptic curve defined over a number field L with com-
plex multiplication by the ring of integers of K, and assume that K C L.
Let x € H'(Gp,r.Aut(E}), and let EX/L be the corresponding twist
of E. {See [AEC X §5] for basic facts about twists.) If we identify Aut(E)
with g [AEC II1.10.2}, then x gives a homomorphism

x: Gal{L* /L) — p, CC",
and we can extend x to a homomorphism on the ideles by the rule
x:AL —C, x(x) = x{[=, L])-

Prove that
’ -1
YexiL =X  YE/L-

Let I7/L be an elliptic curve defined over a number field {not necessar-
ily with complex multiplication). Prove that the infinite product defin-
ing the L-series L{E/L,s) converges absolutely and uniformly in the half-
plane Re(s} > %

Let £/L be an elliptic curve defined over a number field {not necessarily
with complex multiplication), let *B be a prime of L at which E has good
reduction, and let Fy be the residue field at P. For each integer n > 1,
let Fp.n be the extension of Fy of degree n. Recall [AEC V §2] that the
zeta function of E/Fy is the formal power scries

2B, T) = exp(3 #EFy0) ).
=1
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2.28.

2.29.

2.30.

II. Complex Multiplication

{a} Prove that

¢ Ly(E{Fg, T)
Z(E/FyTh= — 1 _¥1° 7 _
B D)= TV - goT)
where Ly is the local L-series described in §10 and g = Néﬂl
(b} The zeta funciion of the field L is given by the usual Enler product

AOEN | [[EX ™S
P

and the {global} zeta function of E/1 is defined by the product

(E/L,s) = | ] Z(E/Fp.03°).
P

Find the *correct” definition for the factor Z{E/Fy,T) in the case that E
has bad reduction at P, and prove that

C(B/L,s) = Cul8)Se(s — DL(E/L,s) ™"
With notation as in §10, prove that

_ #Eu{Fp)

Loyp(E/Fyp.a5") .

Here E.. is the non-singular part of E. Note that we do net assume F has
good reduction at B. (See [AEC III §2] and [AEC exer. 3.5].)

Prove the functional equation {10.5.1} for the L-series of an elliptic curve
with complex multiplication. { Hini. Use the functional equation for Hecke
L-series with Grossencharacter as described, for example, in Tate [8].)

In the next three exercises we sketch the proof of Theorem 10.5(b}. We
sct the following notation: Let E/I be an elliptic curve with complex
multiplication by ihe ring of integers Rx of K, and asswme that [ does
not contain K. Let L' = LK, so L' is a quadratic extension of £, and let B
be a prime of L. From (9.2} there is a Grossencharacter ¢ g, 5 1 AL, — C*.
l.et gq, ag,. .. be the quantities described in §10.

Assume that £ has good reduction at .

(a) Prove that P is unramified in L.

{b) Suppose P splits in L' as PRy = PR, Prove that

gp = g = gy~ anc] flgy = '{.lr)Er,aLt ("]3“) + '3,'5'1_.;#;;" (m”),
() Suppose P remains inert in L', say PRy = P'. Prove that
5 )
gp = gqpey ayp = 0, Wepre (ﬁpj) = —4p.

() Let E be the reduction of E modulo T, and let p be the residue
characteristic of P. Prove that

n
I b

. ordinary if P splits in L" and p splils in K,
is
supersingular if B is inert in L” and p does not split in K.
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2.31. We continue with the notation and assumptions from above. Let P’ be a
prime of L' lying over P.
fa) If P ramifies in L', prove that E has bad reduction at .
(b} If B is unramified in L', prove thai

E has good reduction at P <= E has good reduction at P’

2.32. We continie with the notation and assurmptions from above.
{a) Prove that the local L-series of F at [ is given by

(1 —¥p 0 (P)THL — g, 0 (PBT)

if PR = PP splits in L',
1w g {(PIT i PR = P iy inert in L,
1 if PR = q3’2 ramifies in L'

L‘I‘(E/{L\T) =

(b} Prove that the global L-scries of E/L is given by
L(E/L,s) = L{s,¥g/1)-
2.33. Fix a non-zero integer ) € Z and let £ be the elliptic curve
E:y =2* - Dx.

Let p € Z be a prime with p 12D,
(a) If p =3 (mod 4). prove that

#E(Fp,) =p+1  and  #E(F,:) = (p+1)°

(b} If p=1{mod 4), factor p in &[i] as

p=7 with w=1 {mod2+2i).

HEF)=p+1— (2) T — (9) 7,
w 4 T 4

where (—) , 1s the 4" _power residue symbal.

Prove that

T
2.34. Continuing with the notation from the previous exercise, let p C Z[{] be a
prime ideal with p { 2D. Write

p = (m) for an element 7 € Zff] satisfving = = 1 (mod 2 + 24).

Prove that the Grissencharacter associated to /(1) is given expheitly

by the formula
. D
Ve (P) = (?) .
3

Here g, 50(p) equals the value of @ at an idele with a uniformizer at
the p-component and 1's elsewhere.
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2.35. Let E/L be an elliptic curve with complex multiplication by the ring of
integers Ry of K, and assume that K C L. Let p be a degree 1 prime
of K, let p = ng, and let R, be the completion of Rx at p. Notice
that R, = Z,.

Fix an integer 2 > 1 so that p* is principal, say p* = 7Ry . We make
the collection of groups Flp"], rn = 1,2,..., inte an inverse system using
the maps

(]
E[p"t* — Ep"), n=12,....

The p-adic Tate module of E is then delined to be the inverse limit

To(E) = lim E[p"™].

{a) P’rove that T,(FE)} is a free Ky-module of rank 1. Deduce that Aut T, (E)
is isomorphic to Ry =2 Z7,.

(b) Let L, Dbe the compositum of the fields L{E[p"™]) for all n > | or,
equivalently, the field defined by

Gal(L/ 1) = ker{Gal{L/L} — Aumt T,(E}}.
Prove that there is a finite extension L'/L contained in L, such that

Gal(L, /1)) = Z,.
(c) Let I'=Z,, and define a ring Z[['] to be the inverse limit
def . yom
Zy[T) = limZy |l /p"T).

{Note that Z,]['] is not the same as the group ring Z,[['].}) Prove that
Re{Gal( L/ 1)] = Z,[T],

and hence that T,{E) is a Z,[[J-module.

{d} Prove that Z;[['] is isomorphic to the power series ring Zp[T]. { Hint.
Let v € T be a topological generator, send 4™ to (1 + T}™, and show that
this extends to an isomorphism.} Z,[]-modules are often called Fwasawae
maodules.

e} Let L, be the field of definition of T,{E} = lim E[p"]. Prove that therc
is a finite extension L /L contained in f; such that

Gal{fp/L" ) 2 2y x Ty,

( Hint. Write pflx = pp’. Show that L, = LpL,s, and that Ly N Ly is a
finite extension of L.)
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Elliptic Surfaces

Elliptic surfaces appear in many guises. They are one-parameter algebraic
families of elliptic curves, they are algebraic surfaces containing & peneil of
elliptic curves, and they are elliptic curves over one-dimensional function
Helds. In this chapter we will sec elliptic surfaces acising in all of these
ways. Since our emphasis in this book is primarily on arithmetic questions.,
we will concentrate on those properties of elliptic surfaces which resemble
the arithmetic propertics of elliptic curves defined over inber fields. This
means we will neglect many of the fascinating geometric questions raised by
the study of elliptic surfaces over algebraically closed fields. especially the
classical theory of elliptic surfaces defined over €. The interested reader will
find a nice introduction to this material in Beauville [1], Griffiths-Harris [1.
Ch. 4, §5] and Miranda [1].

We will also find it necessary to restrict attention to fields of character-
istic zero. We do this in order to apply the results from [AEC], especially
Chapters I, II, and 111, to elliptic curves defined over the function field &(C)
of a projective curve £'/k. All of the main theorems in [AEC] were proven
for elliptic curves £/ under the assnmption that the field K is perfect; if &
has characteristic p > 0. then the field A(C) will certainly not be perfect.

However. we must in all honesty point out that elliptic curves defined
over non-perfect fields such as F (1) are also extensively studied. {(Equiv-
alently, one wonuld study elliptic surfaces £ — P! defined over F,.} In fact.
since the rings F,{T) and Z share the property that all of their residuc
fields are finite, olliptic curves defined over F,(T) behave aritinnetically
very much like elliptic curves delined over @. Thus conjectures about el-
liptic curves defined over @@ are often first tested and proven in the casicr
setting of elliptic curves over Fy(T). Naotice that £(7) does not have this
property if char(k) = 0. so we will find that the theory of clliptic surfaces
in characteristic zero diflers in some respects from the theory of clliptic
curves over number helds.

The main resnits proven in this chapter sre the MMordell-Weil theo-
rem for elliptic surfaces (6.1}, lwo constructions of the canonical height
pairing (4.3, 9.3), and specialization theorems for the canonical heighr
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(11.1, 11.3.1} and for the homomorphism from sections to points on fibers
{11.4). Unfortunately, it will not be possible to prove ali of the background
results we need from algebraic geometry. However, we will give a pre-
cise statement of the results we use and give at least some indication of
the proofs. Briefly, we will use abelian varieties and Jacobian varieties in
£2, rational maps between varieties in §3. intersection theory and minimal
models of surfaces in §87 and 8, and divisors on varieties in §1¢. Much of
the material we need is contained in Hartshorne [1], but in any case, we
will give references for all assertions that we do not prove.

§1. Elliptic Curves over Function Fields

One way to define an elliptic surface is as a one-parameter algebraic family
of elliptic curves. In this guise we have already secn numerous examples
of elliptic surfaces. For example, during the proof of [AEC 111.1.4(c)] we
wrote down the elliptic curve

36 1
Jo—1728" " jo— 1728

E:ytfaoy=2°-

with j-invariant j,. In reality, E is a family of elliptic curves, one for
each choice of the parameter jy (except that E is singular or non-existent
for jo = 0 and jp = 1728). Similarly, in [AEC IX §7] and [AEC X §6] we
locked at the elliptic curves

v=r'+D and =1+ Dz

for varying values of D). Again these are families of elliptic curves, in this
cage parametrized by D, and each value of It other than D = 0 gives an
elliptic curve.

More generally, if & is any field {of characteristic not equal to 2) and
it A(TY, B(T) € k(T") are rational functions of the parameter T, then we
can look at the family of elliptic ¢urves

Er ¢" =2° + A(T)z + B(T).
For most values of t € k we can substitute T = ¢ to get an elliptic curve
B y? =14+ Al)z + B{1).
Precisely, E; will be an elliptic curve provided
Al #00, B(t) #oc, and A(t) = —16(4A(t)’ + 27B(1)%) # 0.

Later in this chapler we will pursue further this idea of an algebraic
family of elliptic curves. But for now we want to alter our perspective a
bit. Rather than considering the equation

E: vy =2+ ATz + B(T)
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as defining a family of clliptic curves, one for each value of T, we will
instead view E as a single elliptic curve defined over Lhe field &{T). As
long as the discriminant

A(T) = =16{4A(TY + 278(TY) £ 0 in k(T),

E will be an elliptic curve defined over the field (7). So we will be able
to apply much of the general theory developed in [AEC] to the elliptic
curve I1/k(T), at least provided that the field &(T} is perfect. For this
reason we will henceforth mnake the assumption:

[£ is a held of characteristic zero.]

{For further commments about this assumption. see the introduction to this
chapter.)

Example 1.1.1. Consider the elliptic curve E/Q{T} given by the Weier-
strass equation
Eiyf? =22 - Tlr 4+ T2

with discriminant
A = 16T7H4T? — 27).

This curve has the rational point
P=(T.T) € E(Q(T)).

and one can easily use the addition law to compute

P = (1?27, —T* 4372 - T),

3P — (T3 -2T% - 3T +4 3T - 151"‘_’ +21T% - EJT+8) '

(T — 3)2 ' (T —3)¢
If we substitute T = t for some ¢ € @, then we will obtain an elliptic
curve E; unless t =0 or £ = i%\/ﬁ
Example 1.1.2. The elliptic curve
Eof =24+ 17 - a+T7

hias many rational points defined over Q(T'], such as the point (=1.0) of
order 2 and the point (0.7} of infinite order. However, if we replace
by @ (v/2}, we find a new point of infinite order:

(1.vV2T) € E(Q(V2 (T)).
In general, if E/Q(T) is a nou-constant elliptic curve (i.e., j{E) ¢ Q}, then
there exists a finite extension &/{} so that

E(k(T)) = E{C(T)).

In practice it is often difficult to find k. See Kuwata [1.2] and exercise 3.17.
Shioda {1] has constructed an interesting example for which the action
of Gal(k/Q) on E(k(T)) is a representation of type Es. so [k : Q] may be
quite large.
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We have been taking the coefficients A and B of the elliptic curve
E:y=2*+Ar+ B

to lie in the field of rational functions &{T). This is unnccessarily restrietive.
We observe that &{7T'} is the function field of the projective line P!, 50 we
might consider choosing A and B from the function field of some other
eurve. Thus we can take a non-singular projective curve C/k and look at
elliptic curves E defined over the field &{C').

Example 1.1.3. Let /O be the {elliptic} curve

that is, €' is the projective curve corresponding to this affine equation.
Then the equation

E:y? +(st+t -8y +s(s = s = )%y = 2% + 5(s — 1)(s — t)ta?
defines an elliptic curve E over she function field Q{C) of 7. Notice that E
contains the rational point

P =(0.0) € E(Q(C)).

It is not hard to verify {at least if you have access to a computer with a
symbolic processor) that

[11]P = O.

80 P is a point of order 11.

In fact. E iz in some sense the universal family of elliptic curves cou-
taining a point of order 11, This means the following: Let A be any
elliptic curve and ¢ € A a point of order 11. Then there is a unique
point (sy. ) € € such that if we substitute (s,t) = (s, {s) into the equa-
tions for E and P, we will obtain an elliptic curve £y and a point Fj € Ey
of order 11 such that there is an isomorphism ¢ : A — Ey with o{(Q)} = F.
Iu the literature, the curve (7 is called the modular eurve X7(11}), and F is
usually denoted F,(11). For further details, sce exercise 3.2.
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§2. The Weak Mordell-Weil Theorem

Qur task in this section is to prove the following weak Mordell- Weil theorem
for elliptic eurves defined over function fields. We emphasize again our
assumplion that the constant ficld & alwavs has characteristic .

Theorem 2.1. ({Weak Mordell-Weil Theorem) Let & be an algebraically
closed fleld, let ¥ = E(C) be the function field of a curve, and let E/K be
an elliptic curve. Then the quotient group E{K)/2E{K} is finite.

The theory of function ficlds of curves is analogous to the theory of
number felds, and the proof of the weak Mordell-Weil theorem is similar
in both cascs. In other words, we could save space here by merely quoting
the proof given in [AEC, VIII §1] with the words “number field” replaced
by the words “function field.” However, there are enough differences that
we feel it is worthwhile giving the prool. We will place our main eniphasis
on highlighting the differences between the two cases.

Recall that the proof for munber fields has two main steps. The first
step [AEC, VITT.1.5] depends on properties of the elliptic curve E/K. Tt
says that the extension field L = K ({mJ7'E{K}) is an abelian extension
of K, has exponent m, and is unramnificd outside a certain finite set of
primes 5. This step carries over word-for-word to the function fiekd case
once one has developed the theory of valuations. We will give a slight
variant of the argument in [AEC, VIII §1], wsing divisors supported on a
finite set of points, but the reader will have no trouble seeing that this is
merely a matter of nsing geometric langnage to deal with the same ideas.
We will also cousider ondy the case i = 2. since this allows us to work
maore directly with the equation for £/ K.

The second step [AEC, VIIL1.6] has nothing to do with elliptic curves.
Instead, one nses Kummer theory o show that the maximal abelian ex-
tension ol K of exponent wn unramified outside of § is a finite extension.
The proof of this proposition is not hard. but it ultimately relics upon the
two fundamental finiteness theorems of algebraic number theory, namely
the finiteness of the class group and the Anite generation of the unit group.
In general, neither of these last two results is true for function fields.

For example, tf K = &{C) is a function field, then the *unit group”
in K* is the constant field &*. To sce that this is the right analogy. note
that for a number ficld K. the nnit group can be described as the set of
elements e € K* salisfying vf{a) = 0 for sll discrete valuations on K™
But the discrete valuations on a function field K = &{C) correspond to the
points of C{E) (at least if & is algebraically closed). Thus if a function f € K
has valuation 0 for all valuations, then it has no zeros or poles on ¢, s0
by [AEC, IL1.1.2] it is a constant. Hence the “unit group™ of K will be k¥,
and in general £ will not be finitely generaled.

Similarly, we will see during the proof of the weak Mordell-Weil theo-
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remt that the “ideal class group” of a function field K = &(C) is the Picard
group Pic( (7}, that is, the group of divisors modulo linear equivalence. The
Picard group need not be finitely generaled; see (2.6) below.

However, all is not lost. A closer examinatiou of [AEC. VIIL.1.6] shows
that it does not require the full strength of the finiteness theorems. In-
stead we used the facts that the ideal class group has only finitely many
elements of order m and the unit group R* has the property that the quo-
tient R*/R*™ is finite. These weaker results arc true for function fields
under appropriate assumptions on the constant field & of K. For exam-
ple, if k is algebraically closed, then k*/&*™ is certainly finite, since it is
actually trivial.

Similarly, the Picard group Pic{C) has ouly finitely many clements of
order m. Unfortunately. the proof of this last statement requires results
from the theory of Jacobians and abelian varieties which we will not be
able to develop in full. So we will just state here the proposition that we
need and postpone until the end of the section a sketch of the proof. For
the proof of the weak Mordell-Weil theorem (2.1), we will only need to use
the m = 2 case of the following proposition.

Proposition 2.2. Let C be a non-singular projective curve defined over
an algebraically closed field k. Then for any integer m > 1, the Picard

group Pic(C) has onlv finitely many cleneuts of order .

PROOF. See (2.7} at the end of this section for a complete description of
the torsion subgroup of Pic{(7). In particular. if € has genus g, then (2.7)
implies that Pic(€)[m] is isomorphic to (Z/mZ)*. |

Proor {of Theorem 2.1). Our first observation is that if L/K is a fi-
nite Galois extension and if we can prove that E(L)/2E(L} is finite, then
it will follow that E(K)/2E(K) is also finite. This is the content of
[AEC. VIIL1.1.1]. and we gave auother proof wsing Galois cohomology
in {AEC. VIIT §2]. We leave it to the reader to verify that these proofs
made no use of the assumption that the field K is a number ficld, so they
are alse valid in our case. Note that [A EC, 11.2.5] ensures that any such L
will be the function field of a curve over &,

Replacing K by a finite extension and € with the corresponding curve,
it thus suffices to prove (2.1) under the assumption that E{K} contains
all of the points of order 2. Equivalently. we may assume that I has a
Weierstrass equation of the form

E:iy?=(x—e ) — e —es) with 1,639,653 € K.
Cousider the map

b E(K)2E(K) — (K*JK*%) x (K*/K*?)
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defined by

(x —e1,&—e3) if x #£ e, €0,

({e1 —e3)(e; — ez} er —e2)) ifz =y,

(ea —ey.(e2 —es)ea — 1))  ifz = e,

(1,1} ifx =o0c (P =0).

¢ P=(ay) —

In the case that K is a number field, we proved in [AEC, X.1.4] that ¢
is an injective homamorphism, and the same proof works for an arbitrary
field K.

The map ¢ can also be defined using group cohomology. We briefly
sketch the proof. Taking &g /p-cohomology of the exact sequence

2]

0— E2] — E(K) = E(K)—0
gives an exact sequence
- (2] b
E(K) — E(K) — HY(Gg,k. E[2).
Now our assumption that £(2] C E(K) implies that there are isomorphisms

HYGgk E[2]) = HUG gk (Z/22)%) = Hom(G g . (Z/2Z)?)
= Hom(G g, Z/22)* = Hom(G g p2)* = H' (G gy, pa).

Finally, the Kummer sequence for fields and Hilbert’s theorem 90 give an
isomorphism [AEC, VIIIL.2.2)

K /K™ 2 HNGryxobia).
Combining the above maps, we obtain an injective homomorphism

E(K)/2B(K) = IYGg k. El2]) = HY(Gg k. ttz)’

6_35;1 (K*/K*z) w (Kt/KxQ)‘

Of course, one still needs to unscramble the connecting homomorphisms
and check that this map is the same as the map ¢ defined above. See
[AEC, X §1] for the details.

We will prove that E(K)/2E({K) is finite by proving that the im-
age ¢(E(K)/2E(K)) is finite. The basic idea is to show that for any P €
E(K}, the two coordinates of ¢(P) are almost squares in K. The following
lemma quantifies this assertion.
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Lemma 2.3.1. [Let k be an algebraically closed field, fet K = k{C) be
the function field of a curve. let E/K be an elliptic curve, and suppose
that E has a Weicrstrass equation of the forin

E: gy’ =(r—e)lr— e —ex) with e1.60. 09 € K.
Let § C O be the set of points where any one of e¢).e5. 63 has a pole,
together with the points where A = {e] —e9)?(e] —ea)?(es — €3)7 vanishes.
Then for any point PP — (x.y) € E(K) with v # ¢.

ord;{x — e} = 0 (mmod 2) forall t e C withi g 5.

Herc ovd, : MY — Z is the normalized valuation on k(C) which measures
the order of vanishing of a function at t [AEC II §1].

Proor. Lett € € with f ¢ 5, and let #n = ordg{e — ¢ ). Our choice of $
implies that ordi{e;] = 0. We consider three cases. First, if # = 0. then
clearly ordi (s — ¢y} = n = 0 (mod 2).

Second, il nn < 0, then # must be a pole of & and n = ord; (x}. It follows
that

n = ords(x — ) = ordy {z — e2) = ordy (o — ey,
Using the Welerstrass equation {or £, we find that
2ordi{y) = ord (y*) = r)rdr((;r — el —e){r — eg)) = 3n.
which proves that ord; {o: —¢1) = # = 0 {mod 2},

Third. snppose that v > 0. This weans that .o — ¢ vanishes at £, We
claim that & — e and 2 — ¢y do not vanish at £, To see this, we let i = 2
or 3 and use the iriangle inequality to compute
Illill{OI’df(.’I.‘—(fl ),{;:1‘(1,(;1‘—6,-)} < Urdf({;x:—(-l}—(J:—f-',}] = ord{e;—ey) = O
The last equality follows from the assunplion that €. 9. ¢3 do not have
poles at ¢ and A does not vanish at £, But ordy{z —e1) = n = 1. 50 we
get ordi(a — e2) = ordy(x — ey) = 0. Therefore

Zord y) = ord, (7) = ord, ({x ¢} — e2){x — e)) = ordg(r — 1)

Henee ordg (e — &) = 0(mod 2}, which cotpletes the proof of {2.3.1).
;]

We now resume the proof of (2.1). Lei § be as in the statement

of (2.3.1), and define a subgroup of K*/K*? by
K(5.2)=1{f¢ K*/K% 0 ordi(f) = 0 (mod 2) for all ¢ ¢ St
(Compare with [AEC, X.1.4].} Then (2.3.1) tells us that the inage of ¢
lies in K(S,2) x K(5,2). so we have an injective homomorphism
¢ BE(K)2KE(K) — K{§8,2) x K(5,2).

In order 1o complete the proof of (2.1}, it suffices to prove that the group
K(S,2) is finite. Note that the finiteness of K(S5.2) is an asscrtion abont
the curve ¢7; it has nothing to do with the elliptic curve K. We record this
statement in the following lemima, whose proof also comnpletes the proof of
the weak hMordell-Weil theorem {2.1).
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Lemma 2.3.2. Let k be an algebraically closed field, let K = k(C) be the
function field of a curve, let § C C be a finite set of points, and let m = |
be an integer. Then the group

K(8,m)={fe K/K*™ : ordy(f) =0 (mod m) for allt ¢ S}
is a finite subgroup of K* /K=™.
ProOOF. Let s = #5. Then therce is an exact sequence

0 — K@m — K(Sm) — (Z/mZ).
P (orddlf) o

It thus suffices to prove that
K®,m)={fe K*/K*™ : ordy(f) = 0(mod m) for all t € C}

is finite.
Let f(mod K*™) € K(0,m). Theu div(f) has the form

div(f) =mD; for some Dy & Div(C).

Notice that if we take some other representative fg™ for the coset of f
in K*/K*™, then Dy = Dy | divig) changes by a principal divisor.
Thus the divisor class of Dy in Pic(C') is independent of the choice of
representative. Further, mD; = div(f) is itself principal, so we get a well-
defined homomorphism

K{¥,m) — Pic(C)[m], f {mod K*™) +—— class(Dy),

where Pic{C)[m| denotes the elements of Pic(C} of order dividing m.

Now suppose that f (mod K*™} is in the kernel of this homomorphism.
Then Dy is principal, say D; = div(Fy) for some function Fy € K™, which
mecans that

div(fF;™) = div(f) — mdiv(Fy) = div(f}) - mDy = 0.

Thus fF;™ has no zeros or poles, so [AEC, I1.3.1] tells us that it is con-
stant. Using the assumption that £ is algebraically closed, we can write this
constant as ¢, so f = (cFy)™. In other words, f = 0(mod K*™). This
proves that the homomorphism K(®,m) — Pic{C)[m] is injective. Finally,
we use the fact (2.2) that Pic(C)[m] is finite to conclude that K(0,m) is
finite. 0

In the remainder of this section we briefly discuss abelian varicties and
Jacobians, including a sketch of the proof that the Picard group of a curve
has only finitely many elements of a given order.
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Definition. An abelian variety consists of a non-singular projective vari-
ety A. a point (} £ A. and two morphisins

prAxA— A it4A— A,

which miake (he points of A into an abelian group. In other words,

(i) (O Py =p(P. Oy =Ploral Pec A4,

(if) (P i(P)) =0 forall P e 4,
(iil) p(p(P Q). R) = p(P. p(Q. R)) for all P.Q. R € 4,
(iv) p(P.Q) = p(Q. P for all P € A.

It A, je. and i are defined over a field £, aud O € A{k), then we say that 4
is defined owver k. Basic references for the theory of abelian varieties are
Griffiths-Harris [1. Ch. 2. §6], Milne [2]. and Mumford [1], but we will need
very little of the general theory.

Example 2.4.1. An elliptic curve is an abelian variety of dimension one,
The fact that the addition and negation operations on an elliptic curve
satisfv (i} {(iv) is [AEC, [1.2.2], and the fact that rhey are morphisms
is [AEC. IIL.3.6]. Conversely, every abelian variety of dimension one is an
elliptic curve, see axercise 3.5.

Example 2.4.2. Let A be an abelian variety of dimension ¢ defined over C.
Then one can show that there is a lattice A < C7 and v complex analytic iso-
morphism A{C) = C7/A. By lattice we mean a full sublattice, that is, a free
subgroup of €4 of rank 2d which contains an R-basis for €. The isomor-
phism A{C) 2 T*/A is an isomorphism both as complex manifolds and as
abelian gronps. For elliptic curves, the existence of this isomorphism is the
essential content of the uniformization theorem [AEC, VI.5.1.1]. Further,
in the oue dimensional case every lattice A € C corresponds to an elliptic
curve [AEC, VI.3.6]. But in higher dimensions, a complex torus C4/A will
only be isomorphic to an abelian variety if the lattice A satisfies the Rie-
mann conditions (see Griffiths-Harris [1. Ch. 2, §6]). In other words, there
are certain restrictions on the lattice A in order for there to be a complex-
analvtic embedding of C4/A into projective space P*(C). Just as in the
case of elliptic curves. this coniplex uniformization of abelian varieties is
very useful in analvzing the group structure of A(C).

Remark 2.5. A more succincl way 10 define abelian varieties is to say that
an abelian variety is a group variety in the category of projective varieties.
[t turns out that the group law forces A to be non-singular. Further, the
completeness of the variety A forces the gronp law to be commutative, so
we actually did not need o include property (iv) in our definition. See
Mumford [L pp. 1, 41, 44] for three proofs of this fact.

The next proposition tells us that the Picard group of a curve is es-
sentially an abelian varicty, called the Jacobian variety of the curve. Its
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dimension is equal to the genus of the curve. Sowne general references for
Jacobian varieties include Griffiths-Harris [1, Ch. 2, §§2, 3, 7], Milne [3],
and Mumford [2].

Proposition 2.6. Let (' bhe a non-singnlar projective curve of genus g
defined over an algebraically closed Held k.
(a) The degree miap deg : Div((} — Z induces an exact sequence

cleg

0 — Pic(C) — Pic(C) =S 2 — 0,

where Pi(:“((..'} is the gronp of degree O divisor classes on €.
(b} There exists an ahelian variery Jac(C') of dimension g and a natural
isonorphism of groups

Pic () == Jac(C).

(For the mieaning of “natural”, sce (2.6.1} helow.}) Jac{(7) is called the
Jacobian variety of C.

Proor. (a) The exact sequence merely defines the subgroup Pic“((?), 80
all we need to do is verify that the degree map is well-defined on Pie{C').
This follows immediately from the fact that every principal divisor has
degree 0 [AEC, HL.3.1].

(B} (Proof Sketch) We start wilth the two easy cases. First, il g = 0, then
every divisor of degree 0 on € = P! is principal [AEC, IL3.2]. Tt follows
that Pic’(CY = 0, which is the desired result in this case.

Next suppose that ¢ = 1. Fixing a point O € C{k), we turn O/k into
an elliptic curve, so £ is an abelian variety (2.4.1). Then there is a natural
group isomorphism Pic’ () 5 ¢ as described in [AEC, 111.3.1]. Hence C
Is its own Jacobian variety.

For curves of higher genus, one can construet the Jucobian varicty
analytically if & = ©C or algebraically in general. We briefly describe both
approaches.  For the algebraic method, we fix a bascpoint Fy € ¢ and
consider the map

by 1 0% — Pic(C). (P, B)— (P)+ -+ (P) - g(Po).

Let the symetric group 5, act on C¥ by permuting the coordinates. The
map ¢, is clearly invariant under this action. o it induces a map on the

. g B ey e - . .
quotient Clor = /8,. One checks that €% is a non-singular variety,

that ¢, @ C¥ — Pic?(C) is surjective, and that the s injective off of a
Zariski closed subset of C'). Further. the group law on Pie™(C) induces
an algebraic (i.e., rational) map C@ x ¢t — ¢ Unfortunately, this
rational map is not defined everywhere, 50 one takes certain “group chunks”
and glues together enough translates to form a group variety. This idea
of gluing togeiher group chunks is due to André Weil [3] and works in all
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characteristics. We refer the reader to the discussion in (IV. §6) for further
details. See also exercise 4.29.

The analytic approach to constructing the Jacobian [or curves over C
is meh older. The Riemann-Roch theorem [AEC, 11.5.3, I11.5.5a] says that
or a curve of genms g, the space of holomorphic differential forms has di-
mension g. Let wy, ... w)y, be a basis for this space. Next, a curve ' of
genus g over T is a Riemann surface with g holes, so there are 2g inde-
pendent cyveles on ¢ Let T, ... Tz, be a basis for the space of eveles:

that is, I'y...., Tz, is a basis lor the first homology H((C, Z). We fix a
basepoint Iy € C' and cousider the map
P P
o — 7, Pr— f Wians / wy
“ o4 By

Here the integrals are to be computed along some path from Fy to P
Unfortunatelv, the value of the integrals is not path-indepenclent! {See
[AEC. VL. §1] for a discussion when g = 1.)

In order to salvage this idea, we consider the subgroup A © C7 defined
1o be the inlage of the map

H((C.Z) — Y,  [— (/.‘,‘,‘l.‘.., /;.-,'g).
r ST

Then the integrals give a well-defined map ¢ : C — C4/A, since A eolim-
inates the path dependence of the integrals. Next one proves that A is
a lattice which satisfies Riemant's conditions (2.4.2), s0 T%/A is complex-
analytically isomorphic to an abelian variety. Denoting this abelian variety
by Jac(C'), one verifies that the map ¢ : ' — Jac{C'} is a morphism of al-
gebrajc varieties.

Extending ¢ by linearity gives a nap

o DIVIC) — Juc(C). D n (7)) — D [n]e(F).

In other words, use ¢ to map the points in a divisor to points of Jac(7), and
then vse the group law on Jac(C) (o add them up. Finally, the theorems
of Abel and Jacobi say that the map ¢ : Div'(C) — Jac(C) is a surjective
Liomomorphism whose kernel consists of precisely the principal divisors.
Hence ¢ induces the desired isomorphisin Pic?(C) = Jae(C). For further
details, sec Griffiths-Harris [1, Ch. 2, §52.7). O

Remark 2.6.1. What do we mean in {(2.6b) when we say that the isomor-
phism Pic’(C) — Jac(C) is “natural®? Recall TAEC. 11.3.7] that a mor-
phismm ¢ : ¢, — € of curves Induces a homomaorphistm ¢* Pi(’“(C;g) —
Pic" (¢} of their Picard groups. Then one can prove that the corresponding
map ¢* : Jac{(} — Jac(C?)) 1s & morphism of varieties. In fancy language,
the association € — Jac((’) i1s a functor from the category of (non-singular
projective] enrves to the category of abelian varieties.
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Remark 2.6.2. If  is defined over an arbitrary field &, then its Jacobian
variety Jac(C) will be an abelian variety defined over £. Further, the group
isomorphism Pic®(C') — Jac{C") will commute with the action of the Galois
group g .. This is another way in which the Jacobian is a natural object.
For examble, if €7 s a curve of genus 1 with C{k) = Q. then ¢ cannot be its
own Jacobian variety. However, we can always find an elliptic curve E/k
so that C/k is a homogeneous space for E [AEC, exercise 10.3]. Then
[AEC, X.3.8] says that there is a group isomorphism Pic’(C) 5 E, so E is
the Jacobian of C.

Remark 2.6.3. For hyperelliptic curves, it is possible to construct the
Jacobian variety quite explicitly, see Mumford [3. Ch. IITa, §§2,3]. In this
case one can also precisely deseribe all of the elements of order 2 in Pice{C),
see exercise 3.38.

The following corollary of (2.6) and (2.4.2) is a strengihened version
of (2.2).

Corollary 2.7. Let C'/k be a non-sinigular projective curve of gents g
defined over an algebraically closed field k. Thoen

Pic(Clias = (@Kzz)%‘

In particular, for any integer m = 1, Pic(C)[m] = (Z/mZ)*?. so Pic(C) has
only finitely many clements of order dividing m.

Proor. The field & has characteristic 0 by assumption, so the Lefscheiz
principle [AEC, V1 §6] says that we may take & to be a subfield of C.
Let J = Jae{C) be the Jaceobian variety of €. Then (2.6} tells us that
Pie(Cors = T—’ic“((?)tf_,.-S = Jiars-  On the other hand, (2.4.2) implies
that there is a latlice A C €7 and a complex-analytic group isomor-
phism J{C) = C7/A. {Sce also the proof of (2.6) for a concrete description
of the isomorphism Pic"(€) 5 C¥/A.)

As abstract. groups, C¢ = R% and A = Z%, and if we use a Z-hasis
for A ag our R-basis for £, then we obtain a group isomorphism of the
quotients C?/A = (R/Z)%¥. Hence

Pic(Cors & rors 2 HChrors = (T4 Ahrons = (B/Z)Z,, = (Q/2).

This proves the first assertion of (2.7), and the other assertions are an
immediate consequence. O
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§3. Elliptic Surfaces

We now return to the idea that an elliptic surface should be a one-parameter
family of elliptic curves. For example. we might consider a family

Er:y'=r*+ ATz + B(T)

with ratiomal functions AT}, B{T} € k(7). Or, morc generally, we could
fix a non-singular projective curve C'/k and take

E.y=2+Az+RB

for some A, B € k{C) with 44% + 2787 # 0. Then for almost all points t €
C(k) we can evalnate A and B at t to get an elliptic curve

Byt =2+ Al + B(Y).

Suppoese now that we do not evaluate A and 5 at particular points
of C'. but instead we treat t as a variable just like 2 and y. In other weords,
we look at the subset ol F? x  defined by

€= {([‘X?}/‘-Z]\t) ceP % YiZ=X%+ A((}XZZ +B[!'.)ZS}.

Note that £ is a subvariety of P? x €' of dimension two; it is a surface
formed from a family of clliptic curves.

Remark 3.1, Actually, in defining € we need to take a little more care
with the points ¢ € ¢ where A or B has a pole. Here's one way to handle
this problem. Cousider the set

{([Y Y.Z.t) e B2 2 C - A or B has a pole at t, or }

Y2Z = X3 + ANX 22+ B(1) 2

This set will consist of a number of irreducible components, all but one of
which will look like
]PQ' X {f.n}

for a pole ty of 4 or B. We take £ to be the one compouent not of this
form. Equivalently, € is the Zariski closure in P2 x (¢ of the set

{([X Y. Z)t) € P2 x t is not a pole of A or B, and } '

TY2Z = XV 4+ ANXZE + B()Z°
Since € is a subvariety of P? x (7, projection onto the secand factor

defines a morphisni

T & — (7,
([X,Y,Z].t) — f.
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And for almost every’ point t € €, the fiber
Er=n"t)={Pc€& n(P)=t}

is the curve E; that we considered earlier. Further, since we have assumed
that
A = —16(44% 4 27B%) # 0 in k{C),

it will e true that almost every fiber £; is an elliptic curve. We just need
1o choose poitts ¢ € € such that A() # o B(t) # >, and A{t) # 0.

However, our family of elliptic curves € has one other imporiani prop-
crty. Recall [AEC HI %3] that au elliptic curve is really a pair (E. O},
where £ is a curve of genus 1. and Q is a peint of E. The equation we
used Lo define € gives a one-parameter family of elliptic curves. This means
that for alinost all values of ¢ we get an elliptic curve &,. which we should
really write as (£,. ) to emphasize that each & comes equipped with a
zero element (3, € &;.

The family € is an algebraic family. which is a fancy way of saving
that it is given by an equation whose cocflicients A and B uare algebraic
functions, in our case functions on the eurve C'. The additional property
that & possesses is that the collection of zero elements Oy is an algebraic
family of poinis. In other words, we claim that the coordinates of Oy arc
algebraic functions of #; the coordinates of Oy are in the function field of C.
Using the definition of £ given above, we see that

O, ={[0.1.0Lt) e & C P x C.

S0 the coordinates [0, 1.0] of €}, are actually constant functions.
We can describe this property in another way. Since each fiber &; is
an elliptic curve with zero element O,. we gev a map

[£X VI & — E.
Eo— Oy

Clearly, this map has the property that

wlou(t)) =1t for all ¢ € C'(k).
Further, the fact that O, is an algebraic family of points is equivalent to
the fact that the map oy is a rational map of varieties. (In fact, since C' is

a non-singular curve, gy will be a morphism [AEC 11.2.1].) This prompts
the following definition.

! The phrases “for almost cvery” and “for alimoest all” are contractions of the
expression “for all but finitely many.”
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Definition. Let 7 @ V' — ¥ be a morphism of algebraic varieties. A
section to w is A morphisn
a: BV — U
snch that the commposition
Tam: B — W
ts the identity map on H™
Example 3.2. Consider the surface given by the equation
E:YZ=X"-TXZ*+T*Z%.

(See {1.1} for our original discussion of this equation.} More precisely, let £
he the projective surface in P2 x P! corresponding to this equation. The
projection m s the map

7:8& — P, (iX.Y.Z],T) — T,
This map has o section

eI L — T— ({T.T.1}.7).
To avoid excessive notation. one often says that o 1 & — P las the sec-
tion ¢ = [T. 1. 1]; one can even use the inhomogeneous equalion

¥ =0t - TP+ T

for £ and say that @ = (7.7} Is a section to «

We are now ready for the forinal definition of an elliptic surface.
Definition. Let €7 be a non-singular projective curve. An elliptic surfoce
over C consista of the following data:

(i} asurface £, by which we mean a two dimensional projective vari-
ely,

(ii) a morphism

& —

such that for all but Rnitely wany poims § € C(k), the Aber
& =7 M)

is a non-singular curve of genns 1,

(iil} a section to m,
[eX T  — £
Let £ — (7 be an elliptic sarface. The group of sections of £ over C i3
denoted by
E(C) = {sections ¢ : 07— £},

Note that any rational map ¢ — &€ s antomatically a morphism, sinee ©
is & non-singular enrve and € is a projective variety [AEC, 11.2.1], so overy
section is o morphisin. We will see later (3.10) that £{C’) is a group with
zero clement oy,
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Remark 3.3.1. Since all but finitely many fibers of an elliptic surface
have genus 1, one can show that any fiber which is a non-singular curve
will automatically have genus 1. See Hartshorne [1, HL9.13]. These non-
singular fibers are often called the good fibers. The fibers £, which are
not. non-singular curves will be called the singular fibers or the bad fibers.
Of course, when we refer to the non-singular fiber £;, we really nean the
elliptic curve consisting of the pair (€;.o4(¢)}.

Remark 3.3.2. Our definition of elliptic surface is non-standard in two
ways., Iirst, most books require that £ be a nou-singular surface. In such
a case we will call £ a non-singulor elliptic surfoce. Second, most algebraic
geomelers would define an elliptic surface to be a (non-singular) surface
satisfying properties (i} and (i1} of our definition; they would not reguire
thar there be a section. This leads to many imteresting geometric guestions,
such as the possible existence of multiple fibers. {See Griffiths-Harris [1,
p. 564).) Tt is only our emphasis on guestions witll an arithinetic flavor
wlhich prompts us to require the existence ol at least one section.

Remark 3.3.3. The classical theory of elliptic surlaces deals with surfaces
defined over the field & = C. or more generally over an algebraically closed
fleld. We will also want 1o Jook at other flelds, such as & = . We will say
that an clliptic surface £ over C' is defined over k if the curve O is defined
over k, the surface & is defined over k. amd hboth of the maps

T — and o O — K
are defined over k. In this case we write
E(C/E)Y = {sections 7 : €' — & such that & is defined over &}

for the group of sections defined over k. For example, the elliptic sur-
face {3.2} is defined over Q. and the seetion ¢ = (7.7 is in E(C/Q).

Let & be an elliptic surfuce over ¢ defined over k. We would like
to associate to £ an elliptic enrve E/A(C). Conversely, to cach ellipiic
eurve E/R(CY we will assizn a biratioual cquivalence clags of elliptic sur-
faces. In this way we will be able to apply our earlier results to study
clliptic surfaces.

We begin by recalling some general definitions and basic facts about
rational maps. For more details. see Hartshorne {1, 1 §4], Harris [1, Lec
ture 7]. or Griffiths-Harris [1, 4 §2].

Definition. Let V' and W be projective varieties. A rational map from V
50 W is an equivalence class of patrs (U7, ), where U7 is a non~empty Zariski
open subset of V and ¢ - 15 — W is a morphism. Two pairs (U7, ¢ )
and {7, ¢p:) are deemed equivalent. il ¢y; = e on U7 v I ¢ is repre-
sented by a pair (17 o), we say that o is defined on U
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The fmage of a rational map ¢, denoted (V). is defined as follows:
Let 7 C V be an open subset on which ¢ is defined. take the Zariski closure
in V x W of the graph

) e VW uel}

and take the projection to W, (N.B. Since ¢ is not actually defined at
all points of V., this “image” of ¢ may not agree with vour intuition. Tor
example. there may be poinls w € @V} which are not equal to &{v) for
any v € V.) L

A rational map ¢ : V. — W is dominaent if o{V) = W. Equivalently, ¢
is dominant if for one (hence every} open set U on which it is defined, the
image ¢{U7) is Zariski dense in T4,

The domain of definition of a rational map ¢ : V' — 1V, which we de-
note by Dom({a), is the largest apen subset of V on which ¢ is a morphism.
{Such a largest set exists. see Hartshorne (1. 1 exercise 1.2].)

A rational map ¢ ¢ V. — W ois a birational isomorphism if it has a
rational inverse & : W — V', that is, ¢ and » are dominant and

dop: W — W and ooV —V

arc the identity maps at all points for which they are defined. Tf there
is a birational isomorphisin from V to W, then V and W are said to be
birationally equivalent. It V', W, & and & are all defined over a field A,
then we say that V oand W oare bivationally equivalent over k.

Remark 3.4. In [AEC. I §3] we defined rational maps more naively using
coordinates on P". The reader will easily check that the two definitions
are equivalent. For examples of rational maps thal are not morphisms.
see [AEC, 1.3.6 and L.3.7]). Notice that [AEC, 1.3.7] gives an example of non-
isomorphic varicties that are birationally equivalent. Another important
example of this phenomenon is provided by the process of “blowing-up™;
see Hartshorne [1, I §4] or Ilarris [1, Lecture 7].

Proposition 3.5. Let ¢ : V — W be a rational map of projective
varieties.

(a) The image o{V) is au algebraic subset of W, If V is irreducible, then
s0 is (V).

{b) Suppose that V' is non-singular. Then ¢ is defined except on a set of
codimension at least two. In other words, every component of the comple-
micnt of Dom{é} in V' has codimension at least two.

Proor. (a} Sec Harris [I, Lecture 7, p. 75| or Griffiths-Harris [1, 4 52
p. 403] for the first part. The second part is inmediate from the definition
of irreducibility; see oxercise 3.7.

{b) See Griffiths-Harris [1. 4 §2. p. 491]. m]
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Proposition 3.6. Let V/E and W/k be projective varicties. The follow-
ing are equivalent.

(1) V and W are birationally equivalent over k.

(i) The function fields k(V') and E{W) are isomorphic as k-algebras.

(iit) There are non-empty Zariski open sets U) C V and Uy C W defined
over k such that Uy and Uy are isoniorphic over k.

Proor. This is a standard {and clementary) result in algebraic geometry.
See, for example, Hartshorne [1, £.4.5) or Harris |1, exercise 7.10). O

Let ¢ : V — W be a dominant rational map, and let f € k(W)
be a rational function on W. Then f is defined (i.e., regular) on a non-
empty open subset of W, and ¢{Dom({@)} is Zariski dense in W, so the
composition fo¢ is a regular function on a nen-empty open subset of V. In
other words, fo¢ Is a rational funetion on V', so we obrain a homomaorphism
of k-algebrasg

E(W) — k(V),
f s fod.

The next result says that the theory of varieties up to birational equiv-
alence is essentially the same as the theory of their function fields. (See
Hartshorue [1, [.4.4] for a mnore precise categorical statement.)

Proposition 3.7. Let V/k and W/k be projective varieties. The associ-
ation

{domfna-nt rational maps} k-algebra homomorphisms
V — W defined over k E(W) - k(V)
5 — (f = foo)
is a bijection.
Proor. See Hartshorne [1, 1.4.4]. O

We are now ready to apply the theory of rational maps to study elliptic
surfaces. Recall that according to our definition. an elliptic surface consists
of three pieces of data:

(i} a projective surface &,

(ii} a projection map 7 : & — (',

{(iil} a zero section oy : C — £,

Given two elliptic surfaces £ and £ over the same base curve ¢, it thus
makes scnse to consider the rational maps € — £ which commne with
projections and/or zero sections. This pronipts us to make the following
definitions.
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Definition. Let # : £ — C and 7 1 & —  be elliptic surfaces over C.
A vabional map from £ to £ ower Cis a ralional map ¢ : & — & which
commules with the projection maps. «° o ¢ = 7. The clliptic surfaces £
and &' are birationally cquivatent over C if there is a birational isomor-
phism ¢ : £ — &' which commuties with the projection maps. If the elliptic
surfaces and rational maps are defined over a field k, we will say that £
and £ are L-birationally equivalent over C.

The next two propositions explain precisely how the iheory of elliptic
curves over k{(7} is the same as the birational theory of elliptic surfaces
over {.

Proposition 3.8, {a) Fix an elliptic curve E/R{C). To eacli Welerstrass
equation for E,

E:y =2+ Axr+ B, A.B € k().
we associate an efliptic surface

EAB)={{(X.Y.Z.5) e P* x C : Y*Z = X" + A() X Z* + B(t)Z*}

as described in (3.1). Then all of the E(A. B) associated 1o E are k-bira-
tionally equivalemt over C.
(b} Let £ be an elliptic surface over C defined over k. Then £ is k-bira-
tionally equivalent over €' to E(A. B) for some A, B € k(C). Further, the
elliptic clirve

E y=s'+Ar+ 8

over k(7Y is unigriely determined (up to k{C)-isomorphisin} by €.
(¢} Let E/RCY be an elliptic curve and £ — (' an olliptic surface associ-
ated to E as in (a). Then

EEY= BCHE) as M(()-algebras.

Here the projection map « : € — (7 indices an inclusion of fields k{(C') —
k(&) which makes k(£) into a k{C)-algebra.
We say thar E/E{C) is the generic fiber of € — C.
PROOF. {a) Suppose we take another Welerstrass equation for E/&(C), say
.2

E:y’ ="+ A7 +B, A B k)

Then there is o 4 € E(C)* such that v'4' = A and «¥B’ = B [AEC 111.1.3].
Now the map

E(A'.B'y — £(A,B). (XY, 21y — (X Y Z).8)

shows that £(A4. B) and £(A", B') are k-birationally equivalent over €.
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(b.¢}) The projection map 7 : &€ — € induces an inclusion of function
fields &(C) — k(€)} in the usual way. f — f ow. Further, £ is a surface
over k, and & is a curve over k, s0 A(£)/k has transcendence degree 2
and k(C)/k has transcendence degree 1. It follows that k{E)/A{C) has
transcendence degree 1. so there exists a curve £ /A{C), unique up to E{(C)-
isomorphism, whose function field A(C){£) is isomorphic to (€} as k(C)-
algebras [AEC [1.2.5].

We claim that £ is a curve of genus 1. To see this, we write E as a
subvaricty of P*, so E iy the set of zeros of a collection of homogeneous
polynomials {f{x) : 1 < ¢ < 7} with coefficients in A{(). Note that for
almost all # € (7, we can evaluate the coeflicients of the f;'s to get polyno-
mials with coefficients in £ To indicate the dependence of the f,'s on ¢ we
will write fi{t.x). Then we can consider the algebraic variety in P" » '
defined by

Ve x ) eP" xC: fi(t.x) —0for L <i<r}.

Projection onto the second factor gives a map V' — " which makes &(17)
into a k{C)-algebra, and by constrmction we see that &(V) is isomorphic
to RO E) as b(C)-algebras. Hence (V) is tsomorphic to k{E) as A(C)-
algebras, so {3.6) tells vs that V¥ and £ are birationally equivalent over €.
In particular, for almost all ¢ € (' the fibers V; and £, are isomorphic. so
alrost all of the Vi's are curves of genus 1.

Now suppose that w € Qe is a differential form on £, {Sec
[AEC, 11 §4) for genreral properties of differential forms on curves.) Any such
differential can be written as a sum w = > «, dv; with w;. ¢, € MC)(E).
For almost. all £ € ' we can evaluate the u,’s and «,’s at { to get a differ-
ential form wy; = w{t. x} on V. Further, if w is a holomorphic differential
form on £, then wy will be a holomoerphic differential form on V; for almost
all t e C.

Let wiwa € Qpppen be non-zero holomorphic differential forms. We
clain that they are £(C)-linearly dependent. To prove this. we observe
that for almost all 1 € €, the forms wi(t. x) and wo(t,x) are holomor-
phic differentials on the eurve Vi of genus 1. so they are k-linearly de-
pendent from [AEC, I15.3.11.5.5a). In other words, there are non-zero
constails aq, &y € k such that

afwl(t,x} + bfu.;z(i- X) =10

But this means that the function wy(Lox)fws(t.x) € (V) is constant;
that is, it s In & It follows that the nnetion w) fios € A(V) = (YW E) is
actually in A{C7), which proves that wq and wy are B(C)-linearly dependent.

To recapitulate. we Lhiave proven that the vector space of holomorphic
differential forms in Qg ey has &(C)-dimension at most one. It follows
from [AEC, TL5.3.11.5.5a] that E has genus al most 1. Suppose that E/k(C)
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has genus 0. We will see below that E(k(C)) is non-empty, so we can
assume that E = P' and V = P! x (7. But then the fibers ¥, = P! are
all curves of genus 0, contradicting the fact that ¥, = £; has genus 1 for
almost all #. This contradiction shows that E/A(CY does not have genus 0,
s0 the only possibility is that E/E{C") has genus 1.

Further. the section g @ € — € correspounds to a point £ € E(k{(*)).
To sce this we nse the fact that V' oand £ are birationally equivalent over ¢
to get a section o : " — V. This scetion is a map of the lorm o, =
thy. ... k) for certain functions Ag..... k, € B{C}. which is the sane as
saving that Py = [ho. ... by € P (k(@)) is a point in E(A"(CT)]. Taking F,
to be the identity element. £ becomes an elliptic curve defined over A(C).

We have now proven that E/R{C) 1s an elliptic curve. so we can take
a Welerstrass equation for it. say

Ey=r+Ar+8 with 4, B € k{C").

Then the corresponding surface V' is precisely the elliptic surface £(4, B)
described in (&), and we have already observed above that Vs birationally
equivalent to € over €. This completes the proof of the first part of (b)
which asserts thal every elliptic surface is birationally equivalent over O
to some £{A, B). Further, we showed above that there are isomorphisms
of k(C)-algebras

REY = E(V) = E(CYUE).

whicl completes the proof of (c).

[t remains to prove that B is determined up to &(C)-isomorphism by .
Suppose that € is also birationally equivalent to £(A’, B'). Then £(A. 13)
and £{A’. B") arc birationally equivalent over . This means that for al-
most all € ¢ there is an isomorphisn on the fibers

[ =2+ Ahx+ B} = (P ="+ A (e + B'(1)}.
From general principles [AEC, TTT.3.1h). we know that this isomorphisin is
given by a map of the form (&, y} — (cer, Sry) for some oy, % € k. But the
hirational equivalence £{A. B} — £(A’, B’} is an algebraic map, so we see
that ¢ and 3 are functions on £(A, B) which depend only on . In other
words, . 3 € #(C), whieh proves that the corresponding clliptie curves
W =at 4+ Ar + B and VW= Ae+ B
are isomorphic over k{C'). ]

Proposition 3.9. There is a natural hijection

. - . b, . - . aF
{domnmnr rational maps} {HOIH onstant maps £ — L }
& & over C defined over (')
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where we identify the sct of elliptic curves defined over k{C'} with the set
of (hirational equivalence classes} of elliptic surfaces over € as described in
Proposition 3.8.

PROOF. Let ¢ : £ — £’ be a dominant rational map over . Choose
Weierstrass equations for € and &', or equivalently for E and E',

£yt =2+ Az + B. &yt =P+ A+ B
Then the map ¢ will have the form

@ ((w.w) 1) — ((f{t. 2. 9). glt 0 )) 1)
where f,g € ME) = K(CHE)Y = E{(C)(x,y). Hence F = (f.g) defines a
map F: E — £,

Supposc that F is a constant map from E to B’ over E{C}). This
means that f,g € k(C}. so o{(x.y). £} = ({f(£). g(£)).t) depends only on ¢,
independent of x and y. It follows thal the image of @ has dimension at
most one, since it is the image of a map € — &', s0 in particular ¢ is not
dominant. This proves that if ¢ : &€ — €' is dominant, then the associated
map F : F — E’ is non-constant.

The proof going the other direction is similar. Fix Welerstrass equa-
tions for £ and F' as above, and let F': E — E’ be a map defined over £{C).
Then F has the form F = (f.g) for some f.g € M(CHE) = (&), and wo
can define a map ¢ : £ — & over C by

0 ¢ ((wayt) — ((F{L o) gt y).0).

If ¢ is not dominant, then its nage nst consist of a curve. since ©
maps the image #{€) onto . But this means that if we fix {alnost any
point) ¢ € C and vary x, y ou the fiber &;, then ¢{{x. y),t) can assume only
finitely many values. ln other words, the map &(-, £) : £ — P! takes on
only finitely many values, so it is constant [AEC 11.2.3]. Hence f and g do
not depend on x,y, s0 f,g € B{(C)and F = {(f.g) - E — E' is a constant
map. This proves that if F: F — E’ is non-coustant, then the associated

map ¢ & — & is dominant, which completes the proof of Proposition 3.9.
O

Our final task is to explain how the set of sections £(¢7) has a natural
group structure. Recall that for almost all points + € €, the fiber £, s an
elliptic curve (3.3.1}, so given any two points on &;. we can add ihem or
take their inverses. Let o, o2 € E(C) be two sections to €. We define new
sections a1 + g2 and —op by the rules

(o) +aa){t) = a1 (#) + a2t} A (—a}(t) = —(o1(2)).
valid for all £ € € such that the fiber &€, is non-singular. We will verify
below (3.10) that o 4+ o2 and —o; define rational inaps ¢ — £, so0 in fact
they define morphisms since C' is 4 non-singular curve [AEC, 11.2.2.1]. The
next proposition says that this “fiber-by-fiber” addition makes ("} into a
group.
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Proposition 3.10. Ler & —  be an elliptic surface defined over k.

{a) Let o,y € E(C/R) be sections defined over k. Then the maps o) + 0q
and —as described above are in E{C/k).

(b} The operations (o1, 02) — oy + 72 and 0 — —o make E(C/k) fnto an
abelian group.

() Let E/k(CY be the elliptic curve associated to € as described in (3.8).
Then trere is a natural group Isomorphism

1{k(C1) — E{CRY,
P={rp.yr) — {op:t = {(rp{t)hyr(f).t}).
ProOoOF. {a) Take & Weierstrass equation for £ — ' as described in (3.8),
Eff =+ Ar+ B A B e k{C).
Then a section o, @ ' — £ is given by a pair of functions
o b (i () ()
which satisfy tie given Welerstrass equation for (almost all} ¢ € €. Eqgniva-
lently iy, € k{C) are functions satisfving y? = ¥ + Az, + B as elements
of k(€. By defiuition. {oy + &2){¢} is the sum of the two points o ()
and o () nsing the addition law on the elliptic cnrve
&yt =2+ Alt)x + B().

So the usual addition formula [AEC 111.2.3] says that if @ (£} # 22{f). then

(y + o)ty = a () + o2 () = {ri(8). g () + (ealt)ya(8))

L — () \

(We leave it to you o fill in the y-coordinate.} Tn other words. if 1y # 1o
in &(€7), then the map a7 + oy is given by the formuda

2
2 — W
T Ty = — RS it 5 IR
g =)

which shows that oy 44 s a rational map [rom C to £ defined over k. Simi-
larly. if &y = a3 and y, # 2. the duplication formula [AEC I11.2.3{d}] yields
the swme conclusion. Finally, the map —g) is given by —ay = (1. -1,
s0 —a) also gives a rational map C — € defined over k. But €' is a non-
singular curve, so all of these rational maps are morphisms [AEC 11.2.2.1].
which completes the proof that oy + &, and —oy are in E{C/k).
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{b) This is clear from the fact that the points on almost every fiber form a
group. For example, for any three sections o, 05.03 € £{C/k) and almost
all points t € C, we have

{((7y +o2) + o3)(t) = {01 + o2){t) + o3(i}) = {o1(t) + o2(t)) + os(t)
=1 {t) + (02(t) + 03(t)) = o1 {t) + (o2 + 03)(t) = (o1 + (72 + 03} (1)

Henee ({01 + 02) + 03) = {71 + {02 + &3)) as sections, which verifies
the associative law., The other group axioms can be verified in a similar
faghion.

{¢}) Fix a Welerstrass equation for & — C as in (a). It P = {xp,yp) €
E(k(C)), then xp and yp satisly the given Weierstrass equation as cle-
ments of the function field &(C), so {zp(t). yp(t)) € & for almost all t €
C. This shows that op is a well-defined element of E(C/k). Similarly,
any @ € &{C/k) has the form ot} = ({2,(1).y.()).{) for some rational
functions z,, ¥, € E{C') satistying

Yo (1) = 2,(8)% + Alt)xr,(¢) + B() for almost all t € C.

It follows that P, = (r;.},) satisfies the given Welerstrass equation,
so P, & E{k{C)). The identifications P +— op and o — B, are clearly
inverse to onc another, so they define bijections E(k(C)) — £(C/k). Fi-
nally, for any 7. I, € E(k{C)) we have

({TP] + (TPZ)U} = (.]’_."pl (fJ.. ", (f}) -+ (.I.'pz(f,),'ypz(f)) = {FpP p_z(f,).

Similarly, —op = g..p, which shows that the map E{k(C")) — E(C/k)is a
homomorphism. hence an isomorphisin. a

Remark 3.11. It is important to observe that we can only add points
on &£ if they He on the same {non-singular) fiber. This enables us to add
two sections together. but it does not make the surface € itself into a
group. Another way to say this is to use the notion of fiber product {(Hart-
shorne [1. II §3]). The fiber product € x¢ € of & with itself velative to the
map ® : & — s the set of pairs {z). 22) in the ordinary product £ x £
with the property that m{z1} = 7m(22); that is. £ x¢ £ consists of all pairs
ol poiuts on £ which lie ou the same fiber over ¢ Tt is a variety, and the
“group operation” is then the rational map

Exe € — &

defined by addition on each (non-singular} fiber. One might say that £
is a group relative to the projection map = : £ — . We will see this
construction appearing in a much more general setting when we discuss
group schemes in the next chapter.
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t4. Heights on Elliptic Curves over Function Fields

Let E/K be an elliptic curve defined over a function field. We have
proven (2.1} that the quotient E{K)/2E(K) is finite. We would like to
use the Descent Lemma [AEC VIIL3.1] to prove that E{K} is a finitely
generated group. This means we need a height function on E{K) Lhat sat-
isfies certain properties. We begin by defining a height function on K and
then use it to define a height on E{K).

Definition. Let K = k(C) be the function field of a non-singular algebraic
curve C/k. The height of an element f € K is defined 1o be the degree of
the associated map from C to P!,

h(f) = deg(f : C — P').

In particular, if f € k, then the map is constant and we set &(f) = 0.
Let E/K be an elliptic curve given by a Welerstrass equation

¥+ aray + aay = 20 + apx? + aar + as.

The height of a point P € E(K) is defined to be

0 if P=0,
h(P) = {h(.r) it P={z,y).

{Note that A( f) is really the height relative to the field K, and h{ P} depends
on the choice of a Weierstrass equation for E, although our notation does
not, reflect this. See [AEC VIII §5].)

Remark 4.1. For each t € C, let
ord; : kK(C)* — Z

be the normalized valuation on &{C') [AEC II §1]; that is, ord,{f} is the
order of vanishing of the function f at the point . Then [AEC I1.2.64]
implies that

hifl=degf = Z max{ord(f},0} = Zlnax{— ords( f),0}.

teC [{=194

This definition of the height as a sum of local values is analogous to the
definition of the height for number fields described in [AEC VIII §5]. Notice
that we can count either the total mimber of zeros of f or the total number
ol poles.
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The properties that we want the height to possess are of two very
different sorts. First, we want the height to satisfy certain transformation
properties relative to the group law on . We will be able to prove this
below by a straightforward calculation that is very similar to the proof in
the number field case. Indeed, there is a theory of height functions for
a wide class of fields which includes mimber fields and function fields as
special cases. (Sec Lang {4] for details.)

The second property we require of the height is a finiteness property,
namely that a set of bounded height should contain only finitely many
points. In the case of a number field K, we first showed that this was true
of K itself; that is, a number field contains only Anitely many elements of
bounded height [AEC VIIL5.11]. This immediately implied the same result
for E{K). Howevet, matters are more complicated for function fields, since
a function ficld may have infinitely many elements of bounded height. For
example. the elements of height 0 in k{T} are precisely the elements of the
field A. More generally. the elements of height at most 4 in 4(T) are the
rational functions of the form

ag + a1 T+ {12T2 + -+ {I-de
bo+b T+ b,T2 - 4 b, T

Thus it is not clear whether E{K) might possess infinite subsets of bounded
height. We will postpone firrther discussion of this question until the next
section.

The following proposition sunmarizes the principal georetric trans-
formation properties of the height.

Theorem 4.2. Let £/K be an elliptic curve defined over a function
field K.

{a) A{2P) =4h(P)+ OQ1) for all P € E{K).

(b} R{P + Q)+ h(P — Q) =2h(PY+ 2h{Q) + O(1) for alt P.Q € E(K}.
{The O{1) bounds depend on the curve E and can be given explicitly; see
exercise 3.11.)

Remark 4.2.1. We will prove Theorem 4.2 using Lthe triangle inequality
and elementary polynomial computations. Later we will give another proof
using intersection theory on a non-singular mode! for the elliptic surface &;
see (3.3).

Proor {of Theorem 4.2}, Fix a Weierstrass equation for F of the form
E:y*=x*+Ax+ B

For any ¢ € (7, we write ord;{(f) as usual for the order of vanishing of f €
k(C'} at . To ease notation and avoid the inevitable confusion caused by
repeated minus signs, we will also write

me(f) = (order of the pole of f at ) = —ord, ().
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Nate that the {non-archimedean) triangle inequality for m, has the form

mlf+ f) < max{m (f), m ()}, with equality unless =, (f) = m(f).

(a) Let PP = (a,y) € E(K). The duplication formula [AEC I11.2.3d] says
that z(2P) = /v, where
p=olr)=a'— 240" 8B+ A% and v = w(e) = 4 + 4Ax + 4B,
We compute
(2P)) definition of height

{ c)/g‘;).{]} from {4.4)

hiz
Z
tec
Z max{m (&) m(w)} since Zm('ﬂf)) = 0.

ted ted
S0 we need to show that nlax{?rt(c'))\f.',(-w}} and 4111&}{{?7?(:1:),0} Are ap-
proximalely equal. If x has a large order pole at #, this is fairly clear,
since @ = ! + -+ will then have a pole four times larger than . On
the other hand, if x does not have a large pole, we will be in good shape
provided ¢ and # den’t both have large order zeros at £, [n order to make
thiese vague comments precise, we define a quantity

de 1 o1
i = (E) = < 11‘-3-’({5‘*‘?:{51}.- ?t‘t(B)fO}

and consider the following two cages.

|ﬂ-,(;r} > pr (@ has a large pole at a‘.)‘

The definition of gy shows that in this case we have strict incqualities
ety > nmx{*r,()fl J.m (8Bx). ™ (12)}
m(2?) > max{m{Ax). m(B)}.

It follows from the trisngle inequality that m,(¢) = m{x?) and 7, (x) =
m{x?). We also have m,(2) > , = 0, which proves thar

max{m (¢). m{w}} = m(x?) = 4max{m,{2).0}.

I'rr,_(:r) < by “(TE% a small pole at t)—‘

The triangle inequality gives s trivial upper bounds

T (o) < 111;13({7.',(34]._ m(2Ax%). T, (8 Br). m(z‘iz)}
< max{él;;,.. Tl AY + 2400, (B) + pis, 2:‘7,,{.4}}
< Aptg sinee m(A) < 24y and 7 (0 < 3y,

P

and
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mi{w) < max{m (2°). 7 (Az), 7 (B)}
< max{3ue, 7 (A) + .7 {B) }
< Sli.ff
Hence
ma.x{Trt(c-‘)). :l'r,(i,-i'})} < dpy < dpep + 4 max{m{:r),()}.
In order to get a lower hound, we need to know that ¢ and ) cannot
both vanish to high order at {. We define functions
@ = 1207 + 164, U = 32% -~ 54r ~ 27B, A =4A% + 2787,
and ohserve that there is an identity

oo — ¥ =4A.

{We've used this identity many times before, for example [AEC VI11.4.3].)
Note that the discriminant A = 44% + 278% ¢ k() is not identically zero,
since ESE(C) 15 asswmed w0 be non-singular. Intuitively, our assumption
that 7 (x} < gy implies that € and ¥ have bounded poles at ¢, and then
the identity says that ¢ and w cannot hoth have high order zeros at £, More
precisely, we start with the upper bounds

T @) < max{m(1227), {16 4) } < 244,
7 (W} < max{m (3r%) 7 (5AT). T (2TB)} < 3u,.

Next. using the above identiry, we find that

ord, (A} = ord (P — Tep) = 111111{Urd¢((.-5). ordf(w)} - m;.tx{m(@). ?Tf(l:[’)}
min{ord, {&).ord, (%)} — 3u,.

I

Now multiplying by —1 and using - ord, = 7; vields

ma.x{?n(c_b), e [L,)} = =3 — ord, (A)
—3ue — orde (&) — 4 (pr — max{m{z).0})
since gy > max{f.’,(,t:},{]}

=Tty — ord (A} + dmax{m (). 0}.

I

Combining the upper and lower bounds in this case, we obtain
—7pe —ord(A) € max{a (@), m(¥)} ~ 4max{m (x).0} < 4y,
In both cases we have now proven bounds of the form

ar{t) < max{m (&), m (¥} — dmax{m (x).0} < o2(t).
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where the quantities ¢; () and e2(t) have the property that they are inde-
pendent of the point P = (z,y) and are equal to zero for all but finitely
many £ € C. Summing this inequality over ¢ € € gives the desired estimate

) < R{2P) — 4h{P) < g

for certain constants ¢; = ¢;(E) which do not depend on P.
(b} If P = or @ = O, the assertion is trivial, and if P = ¢}, then (b)
reduces to {a). So we will assume that P,Q # O and P # 1. We write

P:(xhyl)a Q:(a:21y2)‘ P+Q:(I"31y3)1 p_Q:(x‘hy‘l)'

The condition that P # +£¢} ensures that the coordinates are all finite. The
addition formula [AEC I11.2.3d] on the elliptic curve gives

2
- Atz £2) + 2B — 21,
25 = (yz yl) Cr = (A4 zi2o)(zy +29) + mye

Xa — I (IZ — 371)2

v+ ) {A+za)(z) + @) + 2B+ 2y
Ty = —_— — X — ¥e = 5 .

1y — 1 (z2 — 1)

Next we compute
P+ Q)+ (P — Q) = h{xs) + hixy)
= Zmax{rr[(:rg,(}} + ma.x{?rt{:t:f;).O}

teC
< Zmax{m(ng‘;), m{xy +24),0},

teir

where the last inequality needs some justification. In fact, for any func-
tions a, b, ¢,d € R{C)* we have

max{m (a), (b} } + max{m (c}), m(d)} = max{mi(ac), 7 (ad + bc), 7 (bd) }.

This is easily verified using the triangle inequality and checking the various
cases. For reasons which will become apparent in a moment, we will add
0 =3 m((z1 — z2)?) to both sides of this inequality, which yields

MP+Q)+h(P-0) < Z max{?r; ({(x; — :17-,3)2:1331‘4).

teC
me ({2 — 22)? (s + z4)), m (21 — 22)°) }-

Next we use a little algebra and the fact that the peints P; and Py lie
on E to compute

{xy — ::22)23:31..; = (z1mp — 14)2 — 4B{z + x3),

(xy — :.‘3‘2)2(5(.‘3 +r1) =2z + :I.'Q)(A +uxyag) +48.
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Substituting in above and using the triangle inequality yields

h{P+ Q)+ h(P - Q)
Z max{:rrf((;rl;rz — A4)° —~4B(x, + x3)),
e 1 (2(x) + T2HA + 2132} + 4BY, M ({21 — 22)%) }

Z max{m, (2223), me{ A @p) e (A% ) m( Bz, ), m( Bay),
ree

1

[

m(Axy), m(Axa). e (afas), me(m 23).
7 (B)mi(wl) w122 we(23) )

2(2 max{m(}:l),ﬂ} +2 max{m{;rg).ﬂ}

tee +2max{ﬂ',(z'l).0} +r1'1ax{7r;(B},D})

= 2h(x1) + 2h{zo) + 2R{A) + A(B)

= 2h{P) + 2R(Q) + O(1).

(A

It remains Lo prove an inequality in the opposite direction. Tt is possi-
ble to do this directly, as is done, for exainple, in [AEC V1IL6.2]. Bur we
will instead use the following clever trick whicli is due to Don Zagier. We
have proven that the inequality

2h(F) + 2h(Q) = W(P + Q) + h(P - Q) + O(1)

holds for all P.Q € E(K}. Given two points P Q' € E{K). we apply this
identity with P = P/ 4 ' and @ = P’ -- Q' and then use (a) to obtain

(P 4+ VL 2P Q)

I

R(2P') 4+ h{(2Q") + O{1)
dh{P") + 4h(Q") + O(1).

Dividing by 2 gives the opposite inequality, which completes the proof
of (b). O

Just as in the number field case, we can construct a canonical height
which is a quadratic form on the group F(K}. However, in order to prove
that the canonical height is non-degencrate, we need to know that scts of
bounded height are finite. The exact conditions under which this occurs
will be described in Lhe next section. We have included the construction of
the cunonical height here, since it seems to fit in better witl the material
in this section. We hope the reader will excuse this Lextual non-linearity.

Theorem 4.3. Let E/K be an elliptic curve defined over a function
fleld K = k().
(a} For every point P € E(K), the limit

h(P)= 2

1
lim —A{2"P)
41’!,

F—
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exists, The quantity h(P) is called the canonical (or Neéron-Tate) height
of P.
(b} The canonical height has the following properties:

(i) h(P) = 1h(P) + O(1) for all P € E(K).

{ii) f.l.{n'i..P) = m2f1.(P) for all P € EF{K) and all m € Z.

(i) #(P — Q)+ k(P — Q) = 2h(P) + 2h{(Q) for all P,Q € E(K).
(¢} The canouvical height is a quadratic form on E(K). In other words,
h{—P) = h{P), and the pairing

(-, )t E(K)x B(K) —R
(P.Q) = h(P + Q) ~ h(P) ~ h(Q)

is hilinear. (N.B. The pairing is normalized so that h(£} = 3{P,P})

(d) Assume that E does not split over k. (This means that E is not K-
isomorphic to an elliptic curve defined over k. See §5 for more details.)
Then h(f‘) = (), and

R(P) =10 if aud onlv if P is a point of finitc order.

{e) Any funcfion E(K)Y — R which satisfies (b)(i) and (b}ii) for some
integer m = 2 is equal to the canonical height.

Proor. We will just briefly sketch the proof. since it is exactly the same
as in the munber field case [AEC VIIL9.1, VII1.9.3]. For any integers n >
m = 0 we have

n—1
|4_.”h(2n_p} . I__I_-”Lh{Qnr_PJl — ‘Z __]_4-_1}1{2;_'_1[3} _ I:I—fh.(g-;.}:,)

==t

n—1
< ST 4T B2 27 P) — An(2 P
f=rn
-1
Z 37710(1)  from (4.2a)
1.._;:'1?

< Y 47700y £ 04T

i=1rt

(AN

This shows that the sequence 4 "h{2" 7} is Cauchy, hence couverges, which
proves (a). Further, taking e = 0 and letting n — o6 gives

[2R{P) — H{(P)] £ O(1),

which is {b}(i).
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Next we apply (4.2b) to the points 2" P and 2"} to obtain
R{(ZVP+ @)} +h(2°(P — Q)} = 2h{2"P) + 2R(2"Q) + O{1).

Dividing by 4”7 and letting n — x: gives (b){iii}. Evaluating (h){iii} at P =
m(} vields the identity

B{m + ne) + j?-(('n& —1)Q) = 2h(mQ) + 2h(Q).

Taking m = 0 gives h(—Q) = fr.((;}}, and then an easy induction (up and
down) on me gives (b)(ii). This completes the proof of (b).

It is a standard computation to show that a function satisfying the
parallelogram law (b)(iii} is a quadratic form: see for example the proof
of [AEC VI11.9.3¢]. This gives {c).

If P € E{K)} has finite order, then 2" P takes on only finitely many
values, so il is obvious from the definition that 2(P) = 0. Conversely,
suppose that #(P} = 0. Then for all m € Z we use (b)(ii} and (b)(i} to
compute

h(mP) = 2h(mPP} + O(1) = 2m>h(P) + O(1) == O{1).

[i follows that {mP ;. m € Z} is a set of bounded lheight. We will prove in
the next section (5.1) that il F does not split over A, then scts of bounded
height are finite. Hence P is a point of finite order, which completes Lhe
proof of (d).

Finally, suppose that § @ E(R) — R satisfies (b}i} and (b)(ii} for
some e = 2. Then we compute for every P e E(K) and every i = 1,

2h{P) — 2¢(PY=m™ % (2:?7(111"10) - ?,ﬁ{m’-'n”])
=m~#{(h{m' P} + O(1)) — (R{m' P) + O(1)))
= O(m~).

Letting i — oo shows that A(P) = (). d

Remark 4.3.1. [t is also possible to construet the canonical height using
intersection theory on the minimal elliptic surface associated to E. See 39
for details, especially (9.3). One consequence of the geometric construction,
which is not at all evident from the definition, is that for function fields
the canonical height A{F} is always a rational number. This is (probably)
false for number fields, where it is conjectured that h{P) is transcendental
for all non-torsion points.
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5. Split Elliptic Surfaces and Sets of Bounded Height

We proved in the last section that the height function h : E(K) — K
behaves nicely with respect to the group law on E. In order to prove
that E(H') is finitely generated, it remains to show that sets of bounded
height i E{K') arc necessarily finite. The reader will recall that in the
case of numbecr fields, this was comparatively casy to do. Unfortunately,
for function flelds it is casy to construct a counterexample to this assertion!

For exawmple, let £y /k be an clliptic curve, let £ = Enx (7 be the elliptic
surface with £ — € being projection onto the second factor, and let I/ K
be the corresponding elliptic curve over K. Then every point + € Ey(k)
gives a section

gy O €= Eyx C. oa(t) = (1.1).

and this scetion corresponds to a point P, € E(K). Clearly, distinct s
give distinet F,’s, and just as clearly the map

Eo(k) — E(K),  +— P,

is a homomorphism. It follows that E{(K) cannot possibly be finitely gen-
erated, since the fact that & is algebraically closed means that Ey(k) is not
finitely generated. (For example, if & = C, then Ey{k) = C/A for some
lattice A < T}

It will turn out that this is the only way in which E(K} can fail to be
finitely generated, which suggests that we make the following definition.

Definition. An elliptic surface & — C splits {over &} il there is an elliptic
curve En/k and a birational isomorphism

fig;EnX(:'

such that the following diagram commutes:

c —!> I‘;(] x €

=N\, / projz
c

There are several other ways of characterizing split elliptic surfaces.
The following one will be used later in this section. For others, see exer-
cises 3.9 and 3.10.

Proposition 5.1. Let £ — O be an elliptic surface over k, and Jet E/K
be the corresponding olliptic curve over the function field K = k(C'). The
following sare equivalent:
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(i) The elliptic surface &€ — C splits over k.
(ii} There is an elliptic curve Ey/k and an isomorphism E — Ey defined
aver K.

Proor. Suppose first that 7 : &€ — ' splits. This means that there is a
birational isomorphismn i 1 £€ — Ey x €' so that proj, oi = 7. A dominant
rational map induces a corresponding map on function ficlds (3.7}, so we
obtain an isomorphism k{€) = &{ £, x € which is compatible with the
inclusions

E(CY — KE(E) and E(CY — k(Ey x C).

In other words. if we let K = k{(") as usual. then the fields k(€) = K (E)
and k(Ey x 7Y = K(Ep) are isomorphic as A-algebras. Each of them is
a ficld of transcendence 1 over K. so cach corresponds to s unique noi-
singular curve defined over K (see [AEC, T1.2.5] or Hartshorne {1, 1.6.12]).
In other words, there is an isomorphisty E 2= Fy, defined over K. This
completes the proof that (i) implies {ii).

Conversely, suppose that we are given an elliptie curve Ey/k and an
isomorphisin E —— FEy defined over K. Then K(E) = K(Fy) as K-
algebras, which is the same as saying that A(E) = k(Ey x ) as E{C)-
algebras. Again using (3.7}, this isomorphism of fields induces a birational
isomorphism of varieties £ — Ey x C' conmmmting with the maps to €, which
shows that £ — € is split over &, Henee {i1) implies {i}, which completes
the proof of (5.1). i

Example 5.2. Note that the isomorphisin in (5.1i1) is not required to be
defined over the constant feld k. In fact, since £ is only defined over K,
it really only makes sense to talk about mnaps being delined over X . For
example, take C = P! and K = &(T), and consider the elliptic surfaces

St =24+ 1, oyt =2 + TV,

Eq:yi=ua+ T, gyt =4+ T
Also let Ey/k he the elliptic curve

2 :

Ey: =2+ 1.
Then £, is clearly split over &, since it. is precisely Ey x €. The surface &,
also splits over k. as can be seen from the isoinorphism

&y~ By x O ((z.y)t) — (70t 73y 1),

The elliptic siuface £ does not split over &, although it will split if we
teplace the base field £(T) by the larger lekd k(T"/%). Finally, £4 does not
split over k; and since its j-invariant is non-consiant, it will still not split
even if we replace A(T') by a finite extension. See exercises 3.9 and 3.10 for
general statements.
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Remark 5.3. For a number ficld K| it was not hard to show that there arce
only finitely many elements of K having bounded height [AEC VIIL.5.11],
which immnediately gave the same result for E(A). Unfortunately, this
assertion is clearly false for function fields, since there may be infinitely
many maps CC — P! of any given degree. In other words. for number ficlds
we proved that a set of bounded height

{Pz E(K): h(P)<d}

is finite by recucing to an assertion about elements ol bounded height in &
But for function fields we will nead a new sort of argument which makes
wse of the fact that the coordinates of P = (. y) satisfy the equation of
an elliptic curve. Further, we need to rule out split elliptic carves, since
they will have infinitely many points of hounded height. All of this will
help to explain why the proof of the following result is far from trivial and
requires techniques different from those used when stadying number fields.
The prool will take us the rest of this scetion.

Theorem 5.4. Let & — ' be an elliptic surface over an algebraically
closed Reld k, let E/K be the corresponding elliptic curve over the function
field K = k{C'}. and let d he a constant. If the set

{PeE(K): h(P)Y<d}
contains infinitely many points, then & splits over k.

PrOOF (of Theorem 5.4). We will divide the proof of Theorem 5.4 into
two steps. The first step savs that if £ has infinitely many sections of
bounded degree {i.e., E(K} has infinitely many points of bounded height),
then there is o one-parameter family of such sections. The second step says
that if there is a one-parameter family, then € splits. We begin with the
existence of the family.

Proposition 5.5. Under the assumnptions of Theorem 5.4, there is a {non-
singular projective) curve I' /k and a dominant rational map ¢ : I'x € — &
such that the following diagram commutes:

i

[ _ £
projz \ / ™
CY
PROOF. We fix a Weierstrass equation for £'/K of the form

F:y=z'+Ar+B with A, B ¢ K == k{C),



§5. Split Elliptic Surfaces and Sets of Bounded Height 223

and we define a sct
E(K.d) € {PecE(K): h(P)<d}.

Our assumption is that E{K.d) is infinite, and we wish to nse this fact to
find an appropriate curve T’ and map I’ x {7 — &

The first siep is to parametrize the set of maps from €' to P2, Recall
that if I7 is a divisor on ', then L{D) is defined to be the space of rational
funetions

D)_{fek (Cy : div(f)y+ D =z 0}.

This is a finite dimensional vector space whose dimension is denoted by
£(D). (For basic facts about L{ D}, see [AEC, 11 §5].) Taking three functions
from L(D) will define a map from C to P2, so we get a natural map

LDy~ o) — Map{C, F?),
(Fo. Fr.Fa)  w—  {E— [Falt), Fa(t), Fa(0)]).

Multiplying { Fo, £1. F3) by a scalar clearly gives the same map ' — P?, so
we actually have an association

prio-t o LD ~ {0}
kn

The key here is that we have taken a collection of maps in Map(C, P?)
and have parametrized this collection using the points of the algebraic
variely P31, where to ease notation we will write ¢ for £{D). Some of these
maps C — P? will actually correspond to elements of E{K}. The next step
is to show that the maps corresponding to E(K) form an algebraic subset
of H:olif—l‘

For simplicity, we will assiune henceforth that D = 0, and we fix a
basis fi..... fe for L{D). Further. we choose a divisor [ > 30 large
enough so that 1, 4. B € L{D' — 3D). and we let k..., h, he a basis
for L{D’).

Every element in L{D)3 can be written nniquely in the form

= (Fo, Fy F,) = (Za f“Z:b i Zcifi),

i=1 =1 =1

— Map(C', P?).

Such an F will give an element of E(K) if and only if F,, F,. ;. satisfy the
homogeneous equation of F,

FPF. = F}+ AF,F? + BF2.
In other words, F' will give an element of E{K) if
(Z b-aff.)z (Z‘-fr'ff.) = (Z Gr‘f:‘):j +A (Z ﬂa‘fs) (Z f-‘a'ff)E
+ 3 (Z C-‘Ifj):%



224 111 Elliptic Surfaces

Multiplying this out gives a sum involving monomials of the form fi f; fi
and Af:f; fi and Bf:f; fv. Our choice of D' ensures that each of these
monornials is in L{D'}. hence can be written uniquely as a linear com-
bination of Ay.. .. k.. So finally we end up with an equation that looks
like

> dia b chh; = 0.

i=1

where each ®, Is a homogeneous polynomial in the coordinates
[a.b.c]=|a;..... T T beocl. .. e € P!,

Now the maps ¢ — P? from above which correspond 10 elenients of E(K)
are associated to the points of the variely

Vp E {lab.c] e PPl g abe) = Oforall 1 <i<r}.
Example 5.5.1. We briefly interrupt the proof of Proposition 5.5 to pre-
sent an example. If we take € = P! and K = &{T), then E/K has a
Welerstrass equation of the form

v’ =27+ ATz + B(T)  with A, B € k[T].
We let 17 = n{oc), which means that L(D} is the set of polynomials in k(7]

of degree at most n. (Here £(D) = n + 1.} The corresponding family of
maps P! — P? is parametrized by P*"*2 as described above,

E}Jin+2 _ R-Iap(ﬁ”]?flﬁ),
ri. L e
[a[}”' '-.a'n-bU-- : '-.bn-.ct}-” ".C'H] — [Z af.TistiTl-.an.TJ}-
il =10 Fe [}

Writing A(T) = 5" A, 7% and B(T) = 3 BT, this map P! — P? will give
an element of E{K) if it satisfies the equation

(Zor) (Zer) = (o) ,{
+ (Z A;T‘*) (Za.,-T"-) (}: (.-,-T'*') + (Z BJ*’) (Z cf-;T'*')‘ .

Multiplying this out and writing it as a polynomial in T gives a formula
that looks like N

> @ia.b,o)T =0,

i=0
and the system of homogencous equations &g =€, = .- = &, = 0 defines
thie variety Vp,.
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To illustrate how this procedure works in practice, we will consider the
elliptic curve
E:y =o' 4+T% - 1.

We will find all poiuts of degree at most 1 by setting
P = {(l{} + a1l by +0T 0 + C.'IT]

and substituting P into the (homogenized) equation for E. Multiplying
everything out, we obtain the equation

alchS + (2ay6001 + (1(;(3%)T4 + (a? + alcﬁ — b%cl + 2agepc) — C‘E)TS
+ (3(1[}(1% - b%C(} + an(,‘?} - 250()1 1 — 300(’.?)?‘2
+ {3a2a; — 2bgbicy — bier — 3cie )T + {af — beo — ) = 0.

Setting the coefficients equal to () gives six homogeneous equations for the
six variables ag,.... ¢1. These six equations define the variety Vp < P5.

After some work one finds that Vp consists of the 3 lines
{[0, 0,u,v,0,0]} U {[0,0, fu, iv, u, 2] } U {[0, 0, —iw, —iv.u, 'U]}
and the 22 isolated points

{10.61.6.0,1,0] : ¢f = ¢F = -1} U {[p%,0,0,p,1,0] : p° =1}
U {[-20%,¢,3¢p" 20,1,0] : (*= -1, p° = 1}.

Note that although Vp itself is not zero-dimensional, its image in E{K)
consists of a finite set of points, namely

0,1.0], [0.¢.1), [OT,¢ 1) [p% T 1. [=2p° + (T, 3¢p” + 25T, 1),

where {, {1, (2, and p satisfy (? = (} = (2 = ~1 and g = 1. For
example, all of the points on the line {0,0,%u,iv, u.v] in Vp are mapped
to the single point [0, #u + ivT, 4 +vT] = [0,4,1] € E{K). We also ohserve
that of these 24 points in F{K}, only the 3 points [0,1,0] and [1, +7, 1] are
in B(Q(T)).

We now resume the {regularly scheduled) proof of Proposition 5.5.
Recall that we have constructed a variety Vp and a map Vp — E(K). The
following lemma shows that if deg{D) is sufficiently large, then the image
of Vp in E(K) will contain E{K, d}.

Lemma 5.5.2, Let g be the genus of the curve C. If

deg D > g+ gd-l— %(degfl + deg B},
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then the image of Vp in E{K) contains E(K.d). (For a more accurate
esfimate, see exereise 3.13.)

ProoF {of Lemma 5.5.2). This is an exercise using the Riemanu-Roch
theorem. Let P = {rp, yr) € F{K.d), s0, by definition, deg{zp) = h(P} <
d. Using the Weierstrass equation for E, we can check that deglyg) is also
bounded.

Z2deg(yp) = deg(;r:f; + Are+ ) < ddeg(ip} + deglA) + deg( B).

deglyp) < gd + = (deg{ 1) + deg(B}).

In order to prove the Jemma, we need to find functions Iy FyUF, € LD)
such that {ep.ypl = (Fo/Fa. F1/ ).

Recall that any function §f € K defines a map f : ¢ — P!, and the
divisor of f has the form

div(f) = dive{f) — divae () = FH{0)) + f*{{oc)).

where divg( ) and divo (f) are the divisors of zeros and poles of f respee-
tively. {See [AEC 11.3.5].) We also note from [AEC, 11.3.6(a}] that

deg{ f) = deg ((livn(f)) = deg (di\-’x(f)),
We are going to apply the Riemanu-Rocli theorem to the divisor
DY D~ diva(ze) — dive (yp).
whose degree we estimate as
deg{D") = deg(D) — deg{zp) - deg(-ﬁ;p)
= deg{D) - ( 3d + - 5 (deg(A) + deg( B))) >y
The Riemann-Roch theorem [AEC, I1.5.4] then tells us that
(0" = deg(D"y -g +1 21,
so0 there exists a non-zero function F € L{D"). We claim that the three

functions
Fy=Fup, Fy = Fyp. B =F

arc all in L{D)}. which will complete the proof of the lemma.
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To check this last assertion, we use the fact that div(F) + D" > 0 and
compute

div(Fzp) + D = div(Fzp) + D" + diveelzp) + dives (yp)
= div{F) + D" + dive(zp) + diva(yp) = 0,
div{Fyp) 4+ D = div(Fyp) + D" + diveo(ap) + dive (¥p)
= div(F) + D" + diveo(zp) + dive(ype) = 0,
div(FY+ D = div{F) + D" + diveo (zp) + divee(yr) = 0.

This completes the proof of Lemma 5.5.2. O

Continuing with the proof of Proposition 5.5, we fix a divisor D > 0
whose degree is large enough so that we can apply (5.5.2). Then (5.5.2)
and our assunption that E(K,d) is infinite tell us that the image of Vp
in E{K) is infinite.

We now change perspective a bit and consider the associated elliptic
surface &€ — . We have assigned to each point v € Vp a point P, € E(K),
and {3.10c) says that the point. P, corresponds to a section o, : € — &. In
this way we get a natural rational map

d: Vo xC — &, ("}f,t)l >0'..>.(t).

It is clear that ¢ is an algebraic map, since using notation from above, we
see that ¢ can be written as

¢([a,b,c,t) = {Z aifi(t), ST £, Y cifi(t)] .

If there exists an irreducible curve T" C Vp such that the map
p:Tx(C — &, (¥, t) — o, (t)

is dominant, then the proof of Proposition 5.5 will be complete. So we
assume that ¢ : ' x C — £ is not dominant for every irreducible curve I' C
Vp and derive a contradiction.

Let I' < Vp be an irreducible curve. We are assuining that ¢ : I'x C —
£ is not dominant, so the image ¢{I' x '} has dimension at most one.
However, we know that 7(o,(¢)} = ¢, which shows that 7 maps &(T" x C)
onto C. It follows that the image &{' x C) must have dimension exactly
one. Further, the product I' x C is irreducible, so ¢{I" x ) is also irreducible
by (3.5a). Therefore ¢(I' x C') must consist of a single irreducible curve. On
the other hand, for any given - € I' the map o, is a section ton : &€ - C,
so we have

d({1} x C)=a,{C)=C
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is already an irreducible curve contained in ¢(T x ). Hence qﬁ({'y} X C)
must be equal to ¢{I" x C) for cvery v € T'. Equivalently, every v € T gives
the same section ¢, which means that the image of T" in E(K) consists of
a single point.

We have now shown that every irreducible curve I' € Vp maps to a
single point in E{K). But any two points in any connected component
of V) can be linked by a connected chain of irreducible curves. (In fact,
on any irreducible compenent of Vi, any two points can be connected by
a single irreducible curve; see exercise 3.14.) Since Vp has only finitely
many connected components, it follows that the image of Vp in E(K)
is finite. This contradicts the fact shown above that the image of Vp
contains E(K,d). Hence there exists an irreducible curve I' ¢ Vp with
the property that ¢ : T x ¢ — £ is dominant. Replacing I' with a non-
singular model for T' (see Hartshorue (1, 16.11]) completes the proof of
Proposition 5.5. |

The following proposition, taken together with {5.5), completes the
proof of Theorem 5.4.

Proposition 5.6. Let n: £ — C be an elliptic surface over k, let T'/k be
a non-singular projective curve, and suppose that there exists a dominant
rational map ¢ : ' x C — £ so that the foliowing diagram commutes:

r=x¢C . g
proja N\ o
C

Then £ splits.

Proor. The fact that ¢ is a dominant map of varietics of the same di-
mension means that there is a non-empty Zariski open subset £% of £ over
which ¢ is a finite map, say of degree m. Let t3 € C be a point such that
the fiber €, is non-singular and such that ¢ is well-defined at every point
of F x {ty}. Note that the set of such #3s is a non-empty Zariski open
subset of O, since &, is non-singular for all but finitely many ¢t € C, and ¢
is well-defined except at finitely many points of I' x C by (3.5b). To ease
notation, we let Ey = &4,. Notc that Eg/k is an elliptic curve.
We define & map

P £ h— Eo x C,
((.’L‘, y),t) —_ (Zﬁb(’h»tﬂ)st)

where the points v; are determined by the formula

I

¢*((z,y),8) = (% t).

i=1
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In other words, 2 takes a point on £%, pulls it back by ¢ to get a collection
of m points on I' x C (counted with multiplicity), changes the ¢-coordinate
to ty to get a collection of points on I' x {ty}, uses ¢ to push them forward
to a collection of points on Ey, and finally uses the group law on Ey to add
them up.

Note that the map ¥ is a well-defined rational map on £%. This is
true despite the fact that the definition of ¥ involves applying ¢!, since
ultimately we take a symmetric expression of the points in q.‘)‘l((:rr, y}?t),
so the resulting point can be expressed as a rational cotnbination of z, ¥, t.
This is clearest for those points ({x,¥),t) € £° for which ¢~'({xx,¥),t)
consists of m distinet points, which suffices for our purposes since we only
nced to define ¥ on an open subset of £°,

(Aside: An alternative description of ¥ is as follows, Let I'™ be
the m-fold symmetric product of I'. Then the map ¢ defines in a natural
way a morphism from £° to '™ x € which sends a point in £° to the
collection of points in its inverse image. Next we use the map ¢(-,4g) : ' —
Eotomap '™ x ¢ — E,gm) x . Finally, the summation map ES“’ — By
using the group law on Ej gets us to Ej x €, and the composition of all
these maps is v : £€° — Ey x C. For information about the symmetric
product, see Harris (1. Lecture 10, especially 10.23].)

Note that if ¥ were a (birational) isomorphism, we would be done.
Unfortunately, there is no reason that this should be true. We begin our
analysis of the map ¢ by computing it on the fiber over ;.

p((z.y) o) = ( Z ¢'>(q«,tﬂ),t0) = (m{z,y). to).

{7t Yeo*((x,u).4a)

Thus ¥ : €, — Ey x {to} is just the multiplication-by-m map on Ej.
In particular, since the multiplication-by-rm map is surjective, we see that
P{€Y) contains Ep % {t}. This implies that the rational map & — Ep x C
is dominant, since otherwise the irreducibility of #/(£%} would imply that
P(E%) = Ep x {o}, contradicting the fact that ${£°) maps onto C (i.e,
L#'J(EO) must contain at least one point on each fiber on I' x € — C).

We now consider the elliptic curve E/K associated to the elliptic sur-
face £. We also take the elliptic curve Ey/k and think of it as the el-
liptic curve Ey/K associated to the split elliptic surface Eg x €. Then
the dominant rational map % : £ — FEy x C defined above corresponds
to a non-constant map E — Ej of clliptic curves over K (3.9). Any such
map can be written as the composition of a translation followed by an
isogeny [AEC, [11.4.7], so we obtain a non-zero isogeny

AME-— Ey

defined over K. Taking the dunal isogeny [AEC, 111 §4) gives a map MA: By —
E defined over K, and this induces an isomorphism [AEC, 111.4.11,111.4.12]

A Eo/ker(3) 5 E.
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Now ker(A) is a finite subgroup of En(K). so the fact that Ep is defined
over & implies that ker(A) C Ey(k). To see why this is true. take a Weier-
strass equation for Ep with coeflicients in k. Then the n-torsion points of F
have coordinates which are roots of certain polynomials having coefficients
ik, so Eln] C E(k). (For explicit formnlas, see [AEC, exercise 3.7} Note
we are assuming that £ is algebraically closed.} It follows that the elliptic

curve Fj det Ey/ k(.‘r(;\) is defined over k.

We have now produced an elliptic curve E;/k and an isomorphism of
elliptic curves E) — E defined over A", It follows from (5.1) that F/K splits
aver k. This completes the proof of Proposition 5.6 and, in conjunction with
Proposition 3.5, also completes the proof of Theorem 5.4 (]

t6. The Mordell-Weil Theorem for Function Fields

We have now assembled ail of the tools needed to prove the following im-
portant resalt.

Theorem 6.1. (Mordell-Weil Theorem for Function Fields) Let & —
be an elliptic surface defined over a field k, and let E/K be the correspond-
fng elliptic curve over the function field K = k{C'). If &€ — " does not split,
then E{HK'} is a finitely generated group.

PROOF. Suppose first that & is algebraically closed. The weak Mordell-
Weil theorem (2.1} tells us that the quotient group E(K}1/2E{K} is finite.
Next let fr 0 E(K) — Z be the height function defined in §4. This height
function satisfies

(i) R(P + Q) = 2h{ P} + 2R{Q)} — h{(P — Q) + O(1)

< 2h(P)+Op(1)  forall P.Q € E(K),
(ii) R(2P) = 4h(P) + O(1)  for all P € F(K),
(iti) {Pc E(K) : h{P) < C} s finite.

N

The first two statements are (4.2a.b}, whereas the third statement is (5.4)
and uses the assuinption that € — C docs not split. We now have all of the
bypullieses needed to apply the Descent theorem [AEC, VIEL3.1), which
completes the prool that E{H} is finitely generated under the assumption
that & ts algebraically closed. Finally, for arbitrary constant fields k, it suf-
fices (o observe that E(K) = E{k(C)) is a subgroup of E(k{C")), so B(X)
is fiuitely gencrated. n

Retnark 6.2,1. If £ — ' splits over &, then the group E(K) need not be
finilely generated. More preeisely, if £ =2 By = (7, then each point = € Eg(k)
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is also a point in Ey(RY = E(K). Thus there is an inchision En(k) —
E(K). So for example, if & = €. theu Ey(k) will certainly not be finitely
gencrated, and the same is then true of E{(K). However, the guotient
group E{K)/Ey(k) will be finitely gencrated. This relative version of the
Mordell-Weil theorem is due to Lang and Neéron: see exercise 3.15.

Remark 6.2.2, 1f & is a number field. or more gencrally if & s a finitely
generated extension of @, then the Mordell-Weil (heorem (6.1) is true re-
gardless of whether or not £ — € splits. This generalization of the original
Mordell-Weil thearem for number fields is due to Néron: see exercise 3.4.

87. The Geometry of Algebraic Surfaces

All of our previous work in this chapter has dealt with the birational ge-
ometry of elliptic surfaces. In order to investigate the finer struciure of
elliptic surfaces. we will need to study them up to isoworphism. This sec-
tion reviews Lhe basic theory of non-singular algebraic surfaces, including
cspecially intersection theory and ininimal models. Our main reference will
be Chapter 5 of Hartshorne [1], specifically 51 for interseetion theory and
section 5 for the theory of minimal models, although we will also need a
[ew additional facts {rom other sources concerning minimal models. For
wore information about surfaces, the reader might consult Beanville [1]
and Griffiths-Harris [1, Ch. 4].

Let §/k be a non-singular surface defined over an algebraically closed
field & of characteristic 0. A divisor on S is a formal sum

where ¢, € £ and the T'; C § are irreducible curves lving on the surface 5.
The [y's that appear in the sum are called the components of the divisor 1.
The group of divisors on 5 is denoted Div(5).

Recall that the local ring of S at @ point P € § is defined to be

Osp = {f € ki(8) : fis defined at P}_
Similarly, for any irreducible civve I C S, the local ring of § @t T s

Ogr = {f € k(S) : fis defined at some point P&} = U Og p.

Pel

Our assumplion that S is non-singular implies that each Qg is a discrete
valuation ring. We denote its valuation by ordr. since intuitively ordp( f)
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is the order of vanishing of f along T'. We extend this as usnal to a homo-
morphism
ordr : K(5)" — Z,
and then use this to define a homomorphism
div: k(SY —— Div{S}.
! — E ordp{ f)T.

res
A divisor is principel if it 1s the divisor of a function div(f). Two divi-
sors I, Dy € Div(S) are bnearly equivalent it their difference D) — Dy is
principal, in which case we write [} ~ Do, Linear equivalence is an cguiv-
alence relation on the divisor group Div(S). and the Pieard group of § is
the corresponding quotient. group.

Pic(S) = Div(S}/ ~ .
Example 7.1. Cousider a divisor D = ¥ «,T; € Div(P?) in the projective
planc. To each irreducible curve Ty © P? we can associate its degree. and
hy extending linearly we obtain a homomorphizm

deg: Div(P?) — zZ

Z(LI; — Za; deg(T;).
If D = div(f) is principal, then it is easy to check that deg(D) = 0. so the
degree map induces a horomorphisw
deg : Pic(P?) — Z.

We will leave il to yvon {exercise 3.18) to verify that this last map is an
isomorphism, so Pic(P?) = Z. This is the analogue for surfaces of [AEC.
IT.3.1b]. Tt says that a rational function on P? has the “same nmnber” of
zeros and poles.

In order Lo sindy the geometry of a surface. we will look at the curves it
contains and how those curves intersect. For example, a curve of degree m
and a curve of degree nin P? will “usually™ intersect in ma distinet points,
and they will always intersect in rem points if we count tangencles and
singularities with the correct multiplicities. This famous result is known as
Bezout's theoremn: see (7.3) below. Qur next step is to define an intersection
ldex for curves and divisors on arbitrary non-singular surfaces.

Let 'y and 'y be irreducible curves om 5. and let 7 = I') n Ty, Fix
local equations fi. fo € &(5)* for [, Ty around P; that is. choose f, € Oz p
so that ordp, (£} = | and ordp{f;] = 0 for every other irreducible curve T
containing *. We say that T’} and Ty intersec! tronscerselly ot P if fi
and f, generate the maximal ideal of the local ving Qg . (See excreise 3.19
for the intuition behingd this definition.)

I T and I'y are irreducible curves that meel everywhere transversally,
then it is natural to define the intersection ') - I's Lo be the number of
intersection points. The next theorem says that this definition can be
extended tn a natural way to all divisors,
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Theorem 7.2. There is 2 unique syninetric bilinear pairing
Dl\[}{) > Di\-’(){) — Z. (D].Dg) — Dl 4 Dg,

with the following two properties:

(i} IfT) and [y are irreducible curves on S that meet everywhere transver-
safly, then ' Vo = #(T') N Ta).

() IfFD.Dy. Dy € Div(8) are divisors with Dy ~ Dy, then D-Dy = D-Ds.

ProoF. (Sketeh) Given divisors [y, Dy € Div({5), one uses ampleness and
a Bertini theorewn to find divisors D, 1Y), € Div(5) with D] ~ Dy, D), ~
Dy, and such that D) and DY, are sums of irreducible curves that meet each
other transversally. Then DY - D is defined nsing linearity and (i). One
then checks that the answer is independent of the choice of D} and Dj.
For details, see Hartshorne [1. V.1.1]. a

Example 7.3. We have scen ((7.1) and exercise 3.18) that the degree
map defines an isomorphism Pic(PF?) & Z. Let I';,['» C P? be curves of
degrees 7. 7y respectively, and let H,, Hy < P2 be {distinct) lines. Then

deg(T)y =n, = deg(n;H;}.  which implies that T, ~n, H,.

Farther, Hy - IT; = 1. since distinet lines in P? intersect transversally in a
single point, s0 we can compute

[y Ty = (nyHy) - (npHa) = nyne(Hy - Ha) = mine = deg(T) deg(T2).

The equality Ty - Ty = deg(T; )} deg(I"s)} is called Bezout’s theoremn for the
Pane.

Theorem 7.2 is a powerful existence theorem. but it does not give a
very practical method for computing the intersection Dy - D22, In principle,
one can find divisors D} ~ Dy and DY, ~ D, which intersect transversally
and then count the number of points in D] M Dj, but in practice it is
better to assign multiplicities to the points in £y N D5, This is done in the
following way.

Let I} € Div(S) be a divisor, and let £ € 5. A local equation for D
at P is a function f € k(S)" with the property that

P ¢ D —div{f).

Notice that if D =T is an irreducible curve, then this is equivalent to the
cordition that ordr(f) = 1 and that ordy-(f) = 0 for all other irreducible
curves [ containing P.

Now let Dy. Dy 2 Div(S) be divisors, and let P € § be a point which
does not liec on a common component of Dy and Ds. Choose local equa-
tious fi1. fo € K(S)* for Dy, Dy vespectively. The flocal) intersection index
of Dy and Dy at P is defined to he the quantity

(D - Dy)p = dimgy, 0,5,'_P/{f]~f2)'
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Notice that (D - in)p =0t P ¢ Dh 1Dy, sinee if P ¢ Dy then f, =1
will be a local equation for D; at P. The next result explains how the
local intersection indices can be used to calenlate the global intersection
wunber Dy - D,

Proposition 7.4. Let Dy, Dy € Div(S) be divisors with no common
componenits.  Then the local infersection index (Dy - Ds)p is finite for
all P 8, and

D]_‘Dg: Z (D] 'D2}p.

Pen Dy
Proor. See Hartshorne [1, V.1.4]. m|
Example 7.5. The local intersection indices are comparatively easy to
caleulate. As illustration, we will compute the intersection index of
I :Y?Z=X*  and Ty:¥Z=X?
in P2 at the point £ = [0,0.1]. (See Figure 3.1.) We dehomogenize + =
X/Z,y=Y/Z, so the local ring at P is
Oce.p = Kfralion = { L € ko) s 900,00 £0}.

Then

k[r.y](“_[,) e E[e]o o klxlo
(y? - xty- 22)  (xt—23) T (&%)

2 b4k 4 ka4 k2t

where the widdle equality follows from the fact that 2 — 1 is a unit- in k[z]g.
Hence
Rl oyl : TR N
(I'1-Tolp = ding ———=—== = dimg (b + b + ke + e’y = 4

{y Yl
Notice that Ty is singular at P, but it has a unique tangent line there which
is the same as the tangent line to Ty at P. This explaing why (I'y - Ta)p is
50 large.

Remark 7.6. Proposition 7.4 gives a method for compuating the inter-
section muutber £ - Py when the divisors D) and Dy have no cominon
components. However, one frequently wants to compuie the intersection of
divisors with components In common. An important example is the self-
intersection D? — D - D of a divisor D. This cannot be calculated directly
nsing (7.4). One approach to caleulating D? is to find a 1’ ~ O such
that I} and I have no common compouents, and then compute I - D7,
For example, if ' € P? is a curve of degree n, then the computation in {7.3)
shows that T2 = 2. The argument in (7.3) works for self-intersections be-
cause I' ~ nH for any line H ¢ P?. In general, it may be difficult 1o find
an appropriate 1. Another approach to computing seli-intersections is to
use the adjunction formula; see Hartshorne [1. V.1.5].
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The Curves Ty ¢ = c% and Ty © y = 22 Near 2 = (0,0)
Figure 3.1

If € is a (possibly singalar) curve, then there is a unique non-singular
projective curve (' such that € is birationally equivalent to €7, {See
[AEC, 11.2.5] or Hartshorne {1, L.6.11.1.6.12].) The situation for surfaces
is more complicated. Tt is true that every sinface is birationally equivalent
to a non-singular projective surface. However, i 5 i3 a non-singular pro-
jective surface. we can always blow up a point P € S to produce a new
non-singular surface §7 that is birationally equivalent te S but not isomor-
phic to 5. The blown-up surface has the property that there is a birational
morphism 5" — 5 that is, the map 8" — 5 is a morphism, and it has an
inverse S — 5 that is a rational map. This leads us to make the following
definition.

Definition. A surface S is relatively minimel if it has the following two
properties:
{i) § is a non-singular projective surface.
{ii) If 5" is another non-singular projective surface. and il ¢ : § — 8§
is a birational morphism, then ¢ ix an isomorphism,

Theorem 7.7. Every surface Sy is birationally equivalent to a relatively
minimal surface S, If the original surface Sy is non-singular, then there is
a birational morphism 5, — 5.

PrOOF. This theorem is really an amalgamation of iwo hinportant results
in the theory of algebraic swrfaces. Iirst, resolution of singularvities tells
us that every surface is birationally equivalent to a now-singular projective
surface. See Hartshorne [1, V.3.8.1] for a discussion of resolution and a
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history of its proof. Second, cvery non-singular projective surface is hira-
tionally equivalent to a relatively minimal surface (Tlartshorne [1. V.5.8]}.

We will not prove either of these results but will content ourselves with
a few brief remarks. In order 1o prove resolution of singularities. one starty
with the surface Sy and continually blows up points and curves until all of
the singularities disappear. Of course. the hard part is to show that after
each blow-up. the singularities have become quantitatively better.

A curve C C S is called exceptional if ¢ = P! and C% = —1. Castol-
nuove's eriterion (Hartshorue {1, V.5.7]} says that if ¢ is an exceptional
curve on Sy, then there s a non-singular surface 5 and a birational mor-
phism ¢ : Sy — 57 with the property that ¢ is an isomorphisin away from €
and ¢ sends €' Lo a point Py € 5. We say that ¢ is the hlow-down of the
curve O, since ¢ is the blow-up of 5 al P. 1f S has any exceptional
curves, we choose one and blow it down. Continning in this fashion, we
obtain a sequence of surfaces Sp. .51, 52.. ... The hard part is to show that
this process terminates with a non-singular surface S which contains no ex-
ceptional curves. Then one shows that sucli a surface is relatively minimnal.
See Hartshorne {1, V.5.8] for details. This also proves the Jast part of (7.7).
since the blow-down maps S — 51 — 82 — -+ are all morphisms. a

£8. The Geometry of Fibered Surfaces

An elliptic surface 7 : £ — 7 is an example of a fibered surface: that is, a
surface that is described as a collection of fibers &, = 771(#) parametrized
by the points ¢ of a eurve 7. Other examples of Gbered snrfaces include
ruled surfaces, which are surfaces whose fibers are all isomorphic to Fl
{Hartshorne [1. V §2]). and products €y x 5. which can be made into
fibered surfaces in two ways by using the projections onto either the first
or second factor. In this section. we will prove some geometrie properties
that are true for all fibered surfaces. In subsequent sections, we will apply
these results to our study of elliptic surlaces.

Definition. A fibered surface is a non-singular projective surface S, a non-
singular curve , and a surjective morphism 7 : .5 — . For suy f € C,
the fiber of 5 lying over t is the curve 8, = m~1{t). Note that Sy will be a
non-singular enrve for all but finitely many f € 5.

The irreducible divisors on a libered sarface naturally divide into two
different sorts, those that lie in a single fiber and those that cover C. More
precisely, let T' C S be an irreducible curve lying on a fibered surlace = @
5 — €. Then 7 induces a map ol curves m: T - - € that 13 either constant
or surjective [AEC, 11.2.3). If it is constant, say #(T'} = {£}. then T les
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d/ x
C
A Fibered Surface with Hortzontal and Fibral Curves
Figure 3.2

entirely in the fiher S, and we call T fibral. If not, then = : ' — Cisa
finite map of positive degree, and we call I' horizontal. See Figure 3.2,

Definition. A divisor I? € Div{5) on a fibered surface S is called fibral if
all of its components are fibral. D is called horizontal if all of its components
are horizontal. Note that overy divisor can be uniquely writtew as the sum
of a horizontal divisor and a fibral divisor, since every irreducible curve is
cither horizontal or fibral,

Let # : 8 —  be a fibered surface. If # € | then the components
of #=1{#) are irreducible fibral divisors. We assign multiplicities to these
components in the following way. Let uy € A{C'} be a uniformizer at ¢, that
is, ordy (1) = 1. Then u, o 7 is a tunction on S, so we can take its divisor,
or more precisely that part of its divisor lying in the fiber 5;. Extending
linearly, this gives us a homotmeorphism from Div(C) to Div($).

Definition. Let = : 5§ — C be a fibered surface, and for each ¢t € {7, fix a
uniformizer u; € k() at . We define o homomorphisin

7" Div(C) — Div(.5).

Z e {F) — Z Th: Z ordp{u, o 73,

tec te  I'CS
where the inner sum ou (he right is over all irreducible curves U contained in
the fiber 5y = 7~ '(t). Tt is easy to see that 7* is independent ol the choice
of uniformizers we, since il w} is another unilormizer, then (uy /o] )(1) # 0.0
at & Hence (uy/uy) o m is not identically 0 or o on any component ol Sy,
80 ordr{wu o m) = ordr{u} o ).
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It is clear from the definition of 7 that the divisors in == (Div{C})
are fibral. We begin by showing that they have trivial intersection with all
other fibral divisors.

Lemma 8.1. Let 7. 8§ — ' be a fibered surface, let & € Div(("}, and
let D € Div(S) be a fibral divisor. Then D) - x*§ = (.

ProoF. Using the linearity of the intersection pairing and the fact that 7*
is & homomorphism. we may assume that I is an irreducible fibral divisor
and that & = {1} consists of a single point. Then w( 1) consists of one point.
If that one point is not 4, then D and 7 (#} have no points in conmnon, so
clearly 7. 7*8 = 0.

We have reduced to the case that «{D} = {t}. To complete the
proof. we will move & = (¢#) by a lincar equivalence. We can choose a
nou-constant function f € A7) by applying the Riemann-Roch theorem
for curves [AEC, 11.5.5¢] to the divisor (2¢ + 1){(t) € Div(("). where ¢ is
the genus of C. Riemanu-Roch then says that #((2¢ + (1)) = g+ 2. 50 in
particular there exists a non-constant funetion f whose only poles are at 1.

Let ord, (f) = —n, and consider the divisor

77 (nd 4+ div(f)) = nx* 6 + div(f o 7).
The peint 1 does not appear in the divisor néd + div(f}. so the left-hand
sicle has no poines in comnmon with 5, and hence it has trivial intersection
with D. Ou the other hand, div(f o 7} is linearly equivalent to 0, so it has
trivial intersection with every divisor on S, Intersecting both sides with D,
we Hnd Lhat

B=D -x"(ns+div(f})) =D (nx ¢ +div(fom)) = nD - 7%&
Henee D wtéd = 1), O

We now show that the infersection pairing is negative semi-definite
when il s restricted to fibral divisors, and we calenlate its null space.

Proposition 8.2. Letw: 5 — C be a fibered surface. and fet {) € Div(5)
be a fibral divisor ou 5.

fa) 172 <0,

(by D% =0 if aud only if D € 7 (Div(C) & Q). In other words, 1)? =0
if and only if there is a divisor & € Div(C

non-zero integers a, b € 4.

v

Y} such that aD = bn™é for some

Proor. {(a) Write D = Dy + --- + D, where each D, is contained in a
different fiber. Then Dy - D2; = 0 for i # j. since they have no points in
cornmon, which implies that D? = Df + -+ D2, It thus suffices to prove
the proposition for each D;, so we may assume tlhat [ is contained in a
single fiber, say D C 5.
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Write
cicf
P Yo,
V=)

as a sum of irreducible divisors. [t is clear from the definition of #* that
the n;’g are all positive. Qur assumption that D C 5 means that D has
the form

.
D= E a;[';  for some integers ;.
i=N

We rewrite D and define another divisor D’ by the formulas

» T 2

{1 frin
D= E —(n,17}), and D= E — {n;1).
e r;r.;( ) patt -nf{‘ '

Proposition 8.1 tells us that D' - /7 = F - D" = 0. We use this to
compute

—eDt=p 2Dt F. D

-

a7 ) €0
- Z ﬂj(nira’J nyly) -2 Z —L (;T3) - (T )

Py iy
A
+ E n—-z('fh'rd'('”_;l\;}
ij=0

Z (:—i—: —_——) (r;T) - (n L)

=0

The terms with ¢ = 7 in this last sum are zero, so we find that

. 1o (o e \*, -
D=1 (— - T) () (1,7,
i. =i} 7 o’

Ly

For 7 # j, the divisors I'; and T', are distinct irreducible divisors,
so [y -1y = 0. Further, as noted above, the multiplicities ng, . .. . 71, are all
positive, 5o

() - (05} 20 foralli # .

This immediately implies that D? < 0, which completes the proof of (a).
{b} Suppose now that D? = 0. Then the formula for D? shows that

@y i

== for all i.j such that I, T, > 0.

7 1 ;
In other words, the ralios ¢;/n, and a;/n; will be the same if the divi-
sors I'; and T'; have a point in common. On the other hand. it is a general
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fact that the fibers of a fibered surface are comnected. This is a special
case of Hartshorne [1, TTL1L.3}, or see exercise 3.21. So given any two
compenents I'; and ';, we can find a sequence of components

I

LR

[-‘_‘_ — F;'“. [wiz s 111”' — l‘J

with I, -Ty,,, > Oforall b =01, .. .m —1. Hence a;fn; = a;/n, for

all i and j. Let a = ap/ng € @ be this common ratio. Then

D= ZGF—Z-—HF—GZ??F-—M e m (Div{(7) & Q).

=} F=l =l

which completes the proof of Proposition 8.2, a

Remark 8.2.3. With notation as in the proof of (8.2), consider the inci-
dence matrix
I= (rl ) Fj}l]i:f--.}‘g"'

which describes how the components of the Bber S, iutersect one another.
Then (8.2) may be restated as follows: The guadratic form

" — 0, a— 'ala.

is negative semi-definite. with one dirmrnsimml mlll space spanned by the
vector {my, . ... n.). In particular. det{f} = but. every det{f;} # 0.

where [;; is the minor obtained by deleling the r“' row and J“‘ column of .

Next we show that for a large elass of divisors it is possible to add oun
a fibral divisor so that the suun will have trivial intersection witly all fibral
divisors. We will use this construction in the next section to describe the
canonical hieight in terms of intersection theory.

Proposition 8.3. Leftx: 5 ~ (7 hea fibered surface. and let I € Div(S)
be a divisor on S with the property that

D-w"(f) =0 for some {every) t € O
{The guantity - «¥(#) Is independent of §; see exercises 3.22 and 3.23 or
Hartshorne [1. exercise V.1.7L} Then there exists a fibral divisor ®p €
Div{S5) & G such that
{(D+ ®p)-F =4 forall fibral divisors F € Div(5).

If @y, is another divisor with this property, then

&, - B € 7 (Div(C) 2 Q).
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In other words, ®p Is uniquely determined by D up to divisors that come
from C.

PRrROOF. We are going to try to write ®p in the form 3 arl” and solve for
the coefficients ar. More precigely, for every point ¢t € ', write

LK}
‘?T*(f_') = Z ?‘?.H]_—‘f.!-

i=0

as a sum of irreducible components. We set a;p = 0 for all ¢, Further,
when r; > 1 we cousider the following system of linear equations:

T
D il Ty ==D-Ty.  1Zi<n.

i=1

Note we are discarding the 0"-component I'ys, so this is a svstem of v,
equations in the r; variables ag,. Proposition 8.2 says that the incidence
matrix

(T Tijhvcigzr

has non-zero determinant (see also (8.2.3}), so this system of equations has
a unique solution in rational numbers a,; € Q.
We claim that the divisor

Pp = Z i ae e

e =0

has the desired property. Note thal this is a Onite sum, since r, = 0 for all
but finitely many t, and ayy = 0. To check that &5 works, it suffices by
linearity to show that {D+®p)- F = 0 for every irreducible fibral divisor F.
Each irreducible fibral divisor has the form F = [y; for some ¢ € € and
some 0 < 7 < r,. We consider three cases.

First, if r; = 0, then F = [y = a*{t). Using (8.1) and the assmnption
that I - w*(t} = 0, we find that

(D+®p)- F=D-7"(t) + ®p - 77(¢) = 0.

Second, suppose that r, = 1 and F' =T, with 7 = 1. Then the fact

that the a;,’s give a solution to the systemn of linear equations allows s to
compute

iy
(D+®p) F=D-Ty,+3 3 auls Ty =0.

FE(T i=1
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o C
t

A Reducible Fiber on a Fibered Surface
Figure 3.3

Finally, we consider that case that vy = 1 and F' = T'y5. Then
0={D+@p)-n*{t) from (8.1}

= Z n (D +Bp) Ty since 7°(t) = 3 ny Ly
=0
=mpf{D + ¢p)- Ty  from the previous case.

This completes the proof that (£ + &p) - F =0 for all fibral divisors £.

It remains to show that ® 5 is unigque up to addition of a divisor from €.
Suppose &4, is another divisor with the same property. Then for every fibral
divisor F we have

(D, —®p) F=(D+®p) - F—(D+®,) F=0

But ®, — 2, is itself fibral. so {(®,, - &5} = 0. It follows from (8.2b)
that &, — &, is in 7 (Div{C) % Q). (]

Example 8.3.1. Let 70 8 — (7 be a fibered surface. and suppose that
the fiber S, consists of four compouents arranged in the shape of a square
with transversal intersections, as ilhustraled in Fignre 3.3, In other words,

1 ifi—j==+1(mod4q},

() =Fa+T +T2+Ty with 1. T;= {(l ifz -3 ; 2 (mod 4).
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We can use {8.1) to compute the self-intersections of the components.
For example,

UZI“U'?T‘(”:F?}-FF(]'F]+rn'r“3+1—‘[}'l—‘;;:Iﬁi}‘i‘l‘i‘o‘i‘l‘

so T3 = —2, and similarly I'Y = —2 for the other 's. Thus the incidence
matrix for this fiber is

-2 1 0 I
I={i-Tiozijzn = 5 | _y |
1 0 1 -2

Suppose now that I € Div(5) is a (horizontal) divisor with
D‘]—‘[}Z—'l. DT1=l Drg—':[]\ DF;Z[}

For example, D might consist of two curves D = Iy — Dy each of which
maps somorphically =« Dy — €. with 1) going through ') and Dy going
through Ty, To find the part of ®p lving over ¢, call it ®p,. we take
oy =l baele +asly 50t (D4 Ppyd T =0 for i = 1.2,3, and solve
for the a;'s. Doing this gives

3 1 1
i) =-T T, —I.
0.t i =+ Hh2 + ak

The reader can check that (D+®p ) T, = 0for 0 << ¢ < 4, Similarly. if D
were to sarisfy

II.)‘]—\U:—11 1{)]11

0. D-Uy=1. D-I'y=40

iLhen
2t 5 |+]Q+‘];5,

See exercise 3,24 lor a generalization to the case that the fiber is an n-gon
with transversal intersections.

The final topic for this section is minimal models of fibered sorfaces.
These will be minimal models which respect the fact that the surface is
fibered. AMlore precisely, we might say that a Lbered sarface § — O is
relatively minimeal if for every fibered surface & — (7, every biralioual
map S — 5 commmuting with the maps to € s a morphism. In the casc
thai the non-singular fibers of § — € have gens at least 1. then it turns
out. that there is a unigue relatively minimal model. Further, this model
will have the stronger minimality property described in the next theorem.
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Theorem 8.4, Let 5 — C be a fibered surface with the property that
its non-singular fibers are curves of genus at least 1. Then there exists
a fibered surface S™ — ( and a birational morphism ¢ : § - Smin
commuting with the maps to C with the following property:

Let 8" — € be a fibered surface, and let ¢' : 8" — 5 be a birational
map conimuting with the maps to C. Then the rational map ¢o ¢ cxtends
to a morphism. In other words. the top line of the commutative diagram

o
& L s 5 __qf_’ Suin

N oL
C

extends to a morphisni.

ProoF. The basic idea is as follows. For any given 8, let §™" be obtained
fromn S by blowing down all of the exceptional curves on the reducible
fibers. Next, given an S birational to S, take the resulting birational
map S'™" — ST and factor it into the smallest number of guadratic
transformations

TR .
S-’ = SO ——% Sl -—-3 52 L3 e ——3 Sn — Smm‘

Then by studying the behavior of the exceptional curves on these quadratic
transformations, one shows that it is pessible eliininate one of the “blow-
up- blow-down pairs.” In other words, if » > 1, then one shows that §™"
and S™™ are connected by a smaller chain of quadratic transformations.
Hence S™" and §™" are isomorphic, which gives the desired result.
Unfortunately, we do not have at our disposal the tools needed to turn
this brief sketch into a rigerous proof. We refer the reader to Lichten-
baum [1, Thm. 4.4] or Shafarcvich [2, p. 131] for the complete proof of
Theorem 8.4. O

Definition. It is clear that the surface §™" described in (8 4) is uniquely
determined up to a unique isomorphism commuting with the maps to C.
A fibered surface & — C is called a minimal fibeved surface {over C)if it
is equal to S7UR,

Corollary 8.4.1. Let 7 : § -— (7 be a minimal fibered surface over C,
and let 7 : 8 — § be a hiratiopal map commuting with the map to ©
(ie., toeT =mn} Then 7 is a morphisn.

PRrROOF. By assumption, § is minimal, so the map ¢ : 5§ — S™" in (8.4} is
an isomorphism. Now applying (8.4) with § = 87 and ¢ = 7, we deduce

that the composition s

S_T‘_)‘g___’smiu

is a morphism. Hence the same is true of 7 = ¢~ o (¢ o 7). a
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9. The Geometry of Elliptic Surfaces

Let 7 : &€ — C be a minimal elliptic surface, and let E/K be the associated
elliptic curve over the function field K = &{C} of € (3.8). Recall {3.10¢)
that each point P € E{K'} corresponds to a section ap 1 C — £, We define
a translation-by-P muap

p: & — L

on £ hy using the translation-by-cp(t) map on each non-singular fiber &,.
It is clear that 7p is a birational map, since it is certainly given by rational
functions and it has the rational inverse r_p. The minimality of € then
implies that 7p extends to a morphism. We record this important fact in
the following proposition.

Proposition 9.1. Let 7 : & — (7 be a minimal elliptic surface with
associated elliptic curve £/K.
{a) For amyv point P € E(K), the translation-byv-I? map

Tp2£—>8

extends to an automorphism of £.
(b} Let

Aut{E/C) = {avtomorphisms 7: £ — € satisfring ro1 =1},

Then the map
E(K)Y — Aut{E/C), Pr— Tp.

is a homomorphism.

Proor. (a} This a special case of Corollary %.4.1, which says that any bi-
rational map of a minimal fibered surface to itself extends to & morphism.

(by If the fiber &, Is non-singular, then 70 maps &£; to itself by definition.
It follows that 7 o 75 = 7 on all non-singular fibers. But the non-singular
fibers are Zariski dense in £, and a morphism is determined by its values
on any Zariski dense set (Hartshorne [1, 14.1]), so mo7p = 7 on all of £.
This proves that 7p € Aut{€/C). Similarly, the identity e = rpoTo I8
¢learly true on all non-singular fibers, so it is {rue everywhere. Finally, mo
is the identity map, which completes the proof that E(K} — Aut{E£/C) is
a homomnorphisim. a

Let PP € E(K) with corresponding section ap : ' — £. The ium-
age op{C) of op is a curve on the surface €, which we can think of as a

divisor on &, We will write

(P} € Div(€)
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for this divisor. 1t is important to note that the divisors
(PY+ () and (P+a)

are very different. The former is the sum of the two divisers (P} and (¢}
in Div(&), whereas the latter is the inage of ihe section opro =op +0g
which is defined using the group law on £. The following proposition shows
how they are related.

Proposition 9.2.  With notation as above, lot Iy.....F. € E(K) he
poinits, and let ny.--- . n. € Z be integers such that

[lPr+- -+ [ ] B = O,
Let n =y + -+ + m. Then the divisor

{4+ -+ A0 — n(0O) £ Divig)

is lnearly equivalent to o fibral divisor.
In particnlar, for all P.Q € E{K), the divisor

(F+@)—(P)— (@) + (0)
is linearly equivalent to a fibral divisor.

Proor. If P e E(K). onr notation {P) is potentially ambiguous, since we

could mean either the divisor on the curve E/K consisting of the point P.

or the divisor on the surface £ consisting of the curve op(C'). To resolve

this difficulty, we will denote the former by (P}p and the latier by (P)e.
Fix a Weierstrass equation for E/A, say

E:yf=a"+ Ar + B, A BeK,
and consider the divisor
D=mi{Prg+ -+ i) —n(Og € Div(E).

By assmuption, I has degree 0 and snms to the zero element of E{A).
Applying [AEC, 111.3.5] to the divisor D on the elliptic curve E/ K, we find
that D is linearly cquivalent to (0. Thus there is o function f € K{£) such
that

D = (div f)r € Div(E).

The relationship {3.8) between E and € says that K{EF} = K&}, so
we can consider f as an algebraic function on the surface £, When we
compute its divisor on £, we find that

(lli\" f)t. angl ?'E]I_(Pl}g + -+ 'H,-{P,-Jéj — T.’.{())gj
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are almost the satne. To see this. note that f € K(E) = &(C){x.y) i5 a
rational function in x and y with coefficients in k(). Hence for all but
fnitely many ¢ € €, we can evaluate those coefficients to get a function f; €
k(£,) whose divisor will be preciselv

mop () 4+ + . {op.(t)) — n{op(t)) € Div{&,).
This proves that the difference
(div fle = (ni(Pr)e + - + (P e — n(0)g)
is contained in finitely wany fibers, hence it is fibral. O
For any point P € E(K), the divisor (P} —~ () € Div{&) satisfies
({(P)y—{0})) =" {h=0 for all ¢t € .

This is true because the image of a section will intersect a Rber «*{t}
exactly once. {See exercise 3.22.) This shows that we can apply (8.3) to
the divisor {P) — (O), as in the following definition.

Definition. For each point P € E{K), let &p € Div(E) £ Q be a fibral
divisor so that the divisor

satisties

Dp-F=0 for all fibral divisors F € Div(£).
Such a divisor exists by (8.3) and the remarks made above. Then we define
a pairing on E(K') by the formla

() E(K) x E(K) — Q.
(P =—-Dp- Do

The next result shows that this geometrically defined pairing is equal
to the canonical height pairing (4.3), which justifies our use of the same
notation for the two pairings! This geometric construction of the canonical
height is due to Manin [1]. See also Shioda [2] for a more detailed analysis
of the induced Euclidean structure on the lattice E{K )/ E{K }ipen-

Theorem 9.3. ({Manin [1)) Let 7 : £ — 7 he a miniinal elliptic surface
with associated elliptic curve E/K. The pairing

() B(K) x £5(K) — Q. (P.Q)=—Dp- Do,

defined above has the following two properties:
{a) (-.-} is bilinear.
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(b} (P P) = h{P)+ O(1) for all P € E(K), where we recall from 84
that R(P) = h{zp) is the degree of the map xp : ¢ — P,

Henece this pairing agrecs with the canonical height pairing defined
in (4.3). In particular, h{P) = ${P.P)cQ tfor all P € E(K).

PROOF. (a) Let P.Q. R € E{A) be any ihree points. Applying (9.2), we
choose a fibral divisor F such that

(Q+R)—(Q)—(RY+{O) ~ F.

Then using standard preperties of the intersection pairing (7.2, we com-
pate
(PQ+ R} —(P.Q) - (P.R)
==-Dp-Doyn+Dp-Dyg+Dp-Dp
=-Dp - {(Q+R)—{O)+ @g4r) + Dp- ({(Q) — {O) + Py)
+ Dp - {{R) - {0) + ®g)

=—Dp-{{Q+R)—(Q)— (R)+(O)+Doen - Doy — Pr)
=-—Dp (F+®gin— 0y — 0p)
= {).

The last line follows from the fact that Dp has trivial intersection witl all
fibral divisors. Hence

{(POQ+R) - ({PQY-{(P.R) =0
It is also easy 1o check that the pairing is syuunetrie,
{(P.Qy=—-Dp-Dg=—-Dg - Dp=1{Q.F}.

This completes the proof that the pairing is bilinear.
(b) Directly from the definition we find that
(P.P}=-Dp Dp
~{(P} - (O} +®p} - Dp
~{{(FP) - {0}) - Dp since Dp - (fibral) = 0
= 2(P) (0) -~ (P)* = (O)* + (P} = (0) - ©p.

Our first claim is that {F)? does not depend on P. To see this, consider
the translation-by-F map
e & —= E.

We know from (9.1a) that 7p extends to an antomorphism of £. It follows
that 7o Dy - 75D = D) - Dy for any two divisors D), Dy € Div({£). Hence

(P} (P) =7p(F) mi(P) = (O} - {0)
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is independent of re. Alternative approach: first show that the canouni-
cal divisor on £ has the form 776, and then use the adjunction formula
(Hartshorne {1, V.1.5]) to compute

(PY? =29(C) - 2— (P)- 776 = 2g(C) — 2 — degé.

Onr second observation 18 that although 5 depends on P, there are
essentially only finitely many choices for & p. More precisely, for cach ¢ € O,

write
LS
ﬂ*(t}= E 'Rf'.;].—‘f.;
=0

as a swn of irreducible components. Note that v, = 0 for all but finitely
many t € €. Looking back at the proof of (8.3). we see that ®p can be
written in the form

1.
®p = Z Z au Ly + 75 (8)

1o =1

for some & € Div(C), where the integers a; are uniquely determined by
the finitely many intersection indices

((P) = (0)) -Ty;. teC 1 <j<r.

But every {P)-Ty; is either 0 or 1, so as we take different points P € E(K),
there will be only finitely many possibilities for the a;;"s. Further,

{((P) = {0Y) - m*(8) = (P} - 7"(6) — (0) - n*(8) = deg(s) — deg(8) =0

from exercise 3.22(b}, so we find that

(P) = (0)) - @0 = ((P) = (0)- (3 el

teC =1

can take on only finitely many values as we vary P ¢ BE(K).
Combining these two observations with the calculation from above
vields

(P.Py=2P)-(0)+0O(1)  for P e E(K).

It remains to calculate the intersection index (7} -{O0). Adjusting the O(1)
if necessary, we may assume that [2]P # O. Fix a Welerstrass equation
for E,

E:y* =2+ Az + B,

and write P = {xp,yp). Changing coordinates if necessary, we may as-
sume rp and yp have no poles in common with the poles of A and 3.
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Let t € . We will compute the local intersection index of (P)
and (O} at the point 5o(f). We denote this local intersection by (- (),
If ord,(xp} = 0, that is. if wp(t) # oc. then (P) and (O) do not intersect
on the fiber €, so (£ -O); = 0. Suppose now that ord;(xp) < . s0 the
equalion for E tells us that

Jordi{uwp) = 2ord (yp).

We make a change of coordinates w = x/y, 2 = 1/y. so E now has the
egylat lon
Fiz=uw"+ 4w:? + B2",

and P = (wp.zp) = (rp/fyp. yp) Also let uw € B(C} C A(E) be a
uniformizer ar . 5o we are looking at the intersection of (P} and (O at
the point (w. 2z, «} = (0.0.0). The local ring of £ at this point is

kw2, u)00.0)
(z—w? — Awz? — Bz3)

IFurther, in this ring, (P) has the local equation w — wp = 0 and {O) has
the local equation w = 0. so by definition the intersection index {P, (3}, is
equal to the dimension over & of the vector space

o }1.’[?1.‘. s TI-]((;_[}_U} ~ k[Z, H]([J.U} ~ A’{“}{J
(z —wd — Awz? — BzS w — wp.ow)  (z— Bz¥.wp) ~ (wp)

Note the last equality follows from the fact that z — Bz? = z{1 — Bz?)
and 1 — B32% s a unil in k:[z.'u]u]_{]}, If we write wp = u“w)h for some
function wi that is neither 0 nor > at ¢, then we have

. k‘['u]n . k‘[u-]u
lim, 2% A e Y
diimy, for) dimy, ) ¢
and also :
e =ord; wp = ordi{xp/yp) = —3 ord, (xp).

This proves that

o J0 if ord;(wp) =0,
(F-0) = { “Lordy(ep) ifard,(zp) < 0,

Adding over ¢ € 7 gives

(P){O) =Y (PO) = 3 —% ord, (i p) = %(leg{.['p) = %h(P).

tECT fed ol {zpl<i
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Henee

(P,P) = 2(P)- (0) + O(1) = h(P) + O(1).

which completes the proof of (b).

Let g(P) = 1{P, P) be the quadratic lorm associated to our pairing.
Then ¢(P) = %h.{;P) + O(1) from (b}, whereas Lhe bilinearity in (a) tells
us that (2P} = 4¢(P). This shows that g salisfies properties (i) and (ii)
of (4.3b), s0 by the uniqueness {4.3e) of the canonical height, we have g = h.

O

‘Theorem 9.3 shows that the canonical height on E{(K) can be com-
puted using inlersection theory. Our next goal is to define a natural pair-
ing ou a certain subgroup E(K) of E(A). This pairing takes its values
in Pic{C"), and the composition '

dug

E(RK)ox E(K )y — Pic(C) — 2

will be the canonical height pairing, We begin by describing E{/ )y.

Let P € E(K) be a point and 7p : £ — & the translation-hy-P auto-
morphism. We know from {9.1h) that 7p gives an antomorphism of each
fiher €. In particular, it must permute each of the components of &,

Definition. Define a subset (R} of E(K) by
E{K}y={Pe K(K): 7p{I'} =1 for all fibral curves T C £}.

Lemma 9.4. E(K)y is 2 subgroup of finite index in E{K).

Proor. Let P.¢ € E{(K)y. From (9.1b} we kuow that 7pyo = 7p o 1),
so for any fibral curve I we have 7po(T) = 7p(m{l}) = 7p(I') = T.
Therefore P+ @ &« E{A'}y. Similarly, I = 70(0) = 7_ppp([") = 7_p(['),
s0 —F ¢ E{K)y. This proves that E(K )y is a subgroup of E{K).

For the second part, we observe that if &; is an irreducible fiber. then
clearly vp(&€;) = &;. Let {['}.....T+} be the set of all components of the
reducible fibers of €. It is a finite sct, since £ has finitely many reducible
fibers, and each reducible fiber has finitely many components. Then E{KR)
acts on this set by

E(K}Y — Au{l,.... I} =38,

P — (T, — 7p(C:)).

In other words, there is a homomorphisin from E(K) into the syunnet-
ric group 8, on r letters. From ihe delinition of E{K )y, the quotient
group F(KY/ (K Yy injects into 8., which proves that E(K), is a sub-
group of finite index.

|
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Remark 9.4.1. There is another way to characterize E{K )y in terms of
the sections gp : & — & associated to points P € E{(K). Let oy : C — £
be the zerc-section. Then a point P € E(K) is in E(K )y if and only if
the curves op(C) and on((} hit the same component of every fiber of &.
We will study the group E{K}, and the quotient E{(R)/F{K ), in greater
generality and detail in the next chapter: see (IV.6.12), (IV.9.1), (IV.9.2)
and exercise 4.25.

For any two points P, & € E(K}, Proposition 9.2 tells us that there is
a fibral divisor & € Div{E) salisfying

(P+Q)—(P)—(Q) +(0) ~ Ppyg.

Clearly, ® ¢ is determined by P and @ up to principal divisors, so its
class in Pie(€) is well-defined. This gives a pairing on E{K) with val-
ues in Pie(€). The next result shows that this pairing iz quite nice when
restricted to the subgroup E{K ).

Thearem %.5. Let w: & — C be a minimal efliptic surface with associ-
ated elliptic curve E/K.
{a) Let P,Q) € E(K)p. Then there exists a divisor [P, Q] € Div(C'} such
that

(P+Q) = (P) = (Q) +(O) ~ = ({P,Q)).

The divisor [P, ()] is determined by P and () up to linear equivalence.
{b) The pairing
E(Ky x E(K)y — Pic((), (P, Q) — class[P, Q).

is a well-defined symmetric bilinear pairing. (See also exercise 3.26.)

(c)
{P.Qy =deg[P,Q] forall P.QQ € E{KY),.

In particular, h(P) = 1 deg[P, P] for all P € E(K)s.

ProoF. (a) For any two points P, Q € E(K), let ®p o € Div(E) be a fibral
divisor satisfying

(P+Q)—(P}—(Q)+{0)~Ppyg
as described in (9.2). Then for any fibral divisor F € Div(E},
Qpo F=(P+Q) F—(P} F-(Q)- F+{O) F
=70({P) - F—(P)- F~10(0)- F+{0O)-F
=1({P)—(0) - F-((P}-(O))- F

=({(Py— (D)) - 1_g(F) - ({(P) = (D)) - F
=0 since @ € E(K) implies 7_g{F) = F.
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Bul ®p; itself is fibral, so we deduce that ®% , = 0. It follows from (8.2D)
that there is a divisor [P, Q] € Div(C) & Q such that ®pg = = ([P, Q]).
This will suffice for our purposes in this chapter, so we will leave it for the
reader (exercise 3.28¢) to show that [P, €] is actually in Div{(’).

The divisor @z ¢ is clearly determined by P and @ up to linear equiv-
alence on €. In order to show that [P, Q)] is determined up to linear equiv-
alence on ', we will prove that if 6 € Div(C") satisties 778 ~ 0, then & ~ 0.
Write 7w°8 = div(f) for some f € k(£). For all but finitely many t €
we can restrict f to the fiber & to get a rational function f; € k(&;). By
assumption, the poles and zero of f lie on finitely many fibers, so for almost
all £ € C we see that fi € k{&;) has no zeros or poles. Tt follows that f
is constant. Lel ¢ : ¢ — & be any section, lor example the zero section.
Then the fact that f is coustant on almost all fibers means that the func-
tion f — foromis identically 0 on those fibers. But a rational funetion
is determined by its valies on any non-empty open set, 30 f = fooom.
Therefore

76 =div(f) = div(foogonm) = a"(div(f o 7)).

so & = div(f o) is a principal divisor on C. Notice that what this resuit
really says is that the natural map #* : Pie{C') — Pie(£) is injective.

{b} The pairing is well-defined from (a}, and it is clearly symmetric. To
see that it is bilinear, we let P, @, R € E{K}n and compute

Ppo+r ~(P+Q+R)— (P} - (Q+ R)+1{0)
={P+OQ+R)-(P+R)-{(Q+R)+(R)
+(P+RY—(P)—(R)+{0)
=7mr{(P+Q}—(P)—(Q)+(ON) + ((P+ R}~ (P) = (R) + (0))
~Tp(®pg) +Ppn
=®po+ Pri.
Note that the last equality is true beeause It € E(K)g, so 74 fixes the fibral
divisor ® pr.- Now write each @y v as 77 ([X . Y]) and use the fact proven

above that 7* : Pic{(") — Pic(€) is injective. This vields the desired result,

(P.Q + R~ [P.Q] + [P.R].

{c} Let. P € E{K}y. Then for every fibral divisor F € Div(£) we have
(P)-F=71p(0)-F=(0)-7.p(F)=(0)- F.
In other words,

(P —{(02)) - F =0 for all fibral divisors F € Div(&),
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s0 in the notation of {9.2), Dp = (P) — (). Note ihat this is only valid
for points in E{K)y. Let P.@ € E{K};. We compute
—{P.Q}=Dp- Dy by definition of {-, -}

= ((P)—(O0)) - (1Q)— (0)) from ahove
= (P} {Q)— (P)- (0) = (Q) - {0} +(0) - (O)
=7_p(P)-7_p(Q) — 7_p(P} 7_p(O) = {(Q) - (O) + {0} - {O)
= (O} (=P+Q)—(0)-(=P) - (Q) - (O} + (0} - {0)
={(=P+Q)—(-P) = (Q}+ (D)) - (O}
=" ([~-P.Q]) - (D) by definition of [-. -] in (a)

deg[-P. Q] from exercise 3.22(1)
= —deg[P. Q] by linearity of [-. -] from (b},

This proves that (P, @) = deg[l. Q] for all P.Q € F{K),. Putting P = @

gives f:.(P) = é(P Py = %deg[P\ P]. which completes the proof of Theo-
rem 9.5.

O

Remark 9.6. Theorem 9.5 says that the canonical height pairing -, -} en-
dows F{K}q with the structure of & Euclidean lattice whose inner product
takes integer values. Similarly, the height pairing gives E(K) a Euclidean
structure with an inner product taking rational values having severely lim-
ited denominators. It is an interesting problem to classify the possible lat-
tice structures on E(K )y and E(A). In aseries of papers, T. Shioda [1.2,4-
7] has investigated these Mordell-Weil lattices and proven many interesting
results, including the construction of examples for which E(K)y is isomor-
phic to a root lattice of type Ly, F7, and Eg.

Remark 9.7. Let £ — ' be a non-split minimal elliptic surface, and
let E/K be the associated elliptic curve. The Néron-Severi group of £, de-
noted by NS(&). is the group of divisors modulo sigebraic cquivalence. (For
the definition of algebraic equivalence, sec Hartshorne [1, exercise V.1.7].)
One can prove that NS(&) is a finitely generated group and that the inter-
section pairing on Div(E} gives a well-defined pairing on NS{&}. It is thus
an interesting question to relale NS(€) and its intersection pairing to E{K)
and its height pairing. Shioda [3, Thn. 1.1] has shown how to find genera-
tors for NS({€) by using generators for £{X’) and fibral components of £. In
particular, he proves the fundamental rank relation (Shioda [3, Cor. 1.5])

rank NS{E) = rank E{K) + 2 + Z(n — 1)
el

where r, is the number of irreducible components in the hber &,. He also
gives a formula relating the intersection regulator of NS{£) to the canonical
height regulator of E(K).
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§10. Heights and Divisors on Varieties

Let £ — C be an elliptic surface defined over a number feld k. For each
point { € C(k} such that &, is non-singular, there is a canonical height
function A : €(k) — E on the elliptic curve £, In the next section we
will investigate how the canonteal height varies from fber to fiber. espe-
clally for points lyving on the image of a section ¢ : € — £, To carry out
this investigation, we will need to develop more fully the theory of height
funetions on varieties.

For our purposes in this chapter, it would suffice 1o consider only
curves and surfaces, but the theory is hardly more difhicult for general
varieties. We will, however, need to assume that the reader is familiar
with standard properties of divisors on varieties, as covered for example
in Hartshorne [1, IT §§6.7]. Some of the proofs in this section are fairly
technical, 5o some readers may want to read the definitions and statements
of the main results (10.1, 10.2, 10.3) and then proceed directly to the next
section.

For this section, we set the following notation:

k a number field, with algebraic closure k,
V/k  a non-singular projective variety defined over £,
Div(V}) the group of divisors on V.

h= the (absolute logarithmic) height fanction kg : PT(k) — R on
projective space as defined in [AEC, VIII §5].

A morphisn ¢ V. — W between non-singular varieties induces a
homomorphism of their divisor groups ¢* @ Div(H") — Div({V) in the fol-
lowing way. Let I' € Div(H’) he an irreducible divisor and fix a function ur
which vanishes to order 1 along I'. Equivalently. ur is a generator for the
niaximal ideal in the discrete valnation ring Oy . Then

&' = Z orda(ur o @A,

AEDiv{ V)

where the sum is over all irreducible divisors A € Div(V'} and we are writing
ords : B{(V)* — Z lor the normalized valuation on the local ring Oy . Of
coursc, we have cheated a little bit. The divisor ¢°T will only be delined il
the image ¢{V'} is not contained in T, since otherwise ur o ¢ is identically
zern. However, ¢* sends principal divisors to principal divisors, so it induces
a map ¢ : Pic{W) — Pile(V} which is well-defined on all of Pic(W), since
we can always move I' by a linear equivalence so Lhat it intersects ¢{1)
properly.
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The following theorem is oflten called the “Height Machine™ It is the
main result of this section. The Height Machine associates a height function
to each divisor on V', or, more precisely, it associates an equivalence class
of height functions to each divisor class on V. The power of the height
machine is that it takes geometric relations involving divisor classes on V
and translates them into height relations between points on V. Tt is thus
a tool for transforming geometric information into arithmetic information.
We have already seen this machine in action in [AEC. VIII §6], where
the geometric group law on an elliptic curve was transformed into the
arithmetic statement 2(P + Q) + A(P - Q) = 2h{P} + 2A(Q) + O{1}.
The general formulation of the Height Machine is due to André Weil. For
further details and additional properties of heights. see Lang [4], Hindry-
Silverman [1], and exercises 3.31 and 3.32.

Theorem 10.1.  (Weil's Height Machine, Weil [2]) Let V be 2 non-
singular projective variety defincd over a nmnber fickt k. There is a map

B Div(V) — {functions V{k} — R},

uniquelv determined up to bounded functions on V(k), with the following
two properties:

(a) (Normalization) Let ¢ : V — P be a morphisin, and let H € Div(P")
be a hyperplane with the property that ¢{V} ¢ H. Then

hogy(P) = he(p(P)) + O(1)  forall P C V{k).

(b) (Additivity) Let D, D' € Div(V'). Then
hD+Df(P} = hD(P) + f.’.[)t{P} —+ C)(l} forall P e 1’(K‘J

The height mapping has the following additional properties:
(¢} {Equivalence) Let D, D' € Div(V) be linearly equivalent divisors. Then

hp(PY=hp (P + O{D for all P € V(k).
{d} (Functoriality) Let 2 : V — W bhe a morphism of non-singular projec-
tive varieties over k, and let D € Div(W). Then
By np(P) = b p(0(P)) + O(1)  forall P € V{k).

Remark 10.1.1. Another way to formulate Theorem 10.1 is as follows,
For every V/{} there is a unique homomorphism

{functions V(@) — R}
{bounded functions V(@) — R}

hy : Pie{V) —

such that Ape is the usual height on projective space [AEC, VIII §3] and
such that fy - pp = By pp 048 for every morphism #: V. — .
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Example 10.1.2. Let E/k be an elliptic curve. Consider the divisor re-
lation [2]* () ~ 4(0), which follows from [AEC, 1I1.3.5] and the fact that
the four points in E[2) sum to zero. Then (10.1) gives the height relation
This is one of the properties of the height that was used in the prool of the
Mordell-Weil theorem [AEC, VIILE.7).
Example 10.1.3. Two divisors D, D’ € Div(P!) on the projective line are
linearly equivalent if and only if they have the same degree. It follows from
the additivity and equivalence properties {10.1b.c) that

deg(DYhp(P) = deg(DYhp (P) + O(1) for all P € PL(k).
In particular, (10.1a) implies that kp (P} = deg(DVhe(P) + O(1).

For curves of higher genus, the identity {10.1.3} will not be true, since
divisors of the same cdegree need not be linearly equivalent. However, a
slightly weaker result is valid, as described in the following result. For a
generalization to varieties of arbitrary dimension, see exercise 3.32.
Theorem 10.2. Let C be a curve, let D, DY € Div(C)y be divisors
with deg(D) £ 0, and let hp, hp be associated height functions. Then

lim h-[y(P) _ deg(D’)
PeC(R) . hp(P)— Rp{P) deg(D)

The last theorem that we will be proving in this section is a finiteness
result. Recall [AEC, VIIL.5.11] that in projective space P {k), there are only
finitely many points of bounded height. Of course, here height means hp,
the standard height on projective space. It is clear that this result cannot
he true for every height 2 p on every variety. For example, if V(&) is infinite,
then it cannot be true for both hAp and A_p, since h_p = —hp + O(1).
In order to give the correct statement, we need one definition.

Definition. A divisor D € Div(V} is called very ample if there is an
embedding ¢ : V' — P" and a hyperplane H £ Div(P"} not containing ¢{1')
s0 that D = ¢*H. (To say that ¢ : V — P7 Is an embedding meaus that ¢
maps ¥ isomorphically onto its image.) The divisor D is called ample if
there is an integer n > 0 so that nD is very ample.

Theorem 10.3. Let I € Div(V} be an ample divisor on V. and let hp :
V(k} — R be an associated height function. Then for all a,b > (), the set
{PeV(k): hp(P)<a and [k(P):k]<b}
is finite. In particular, the set {P € V{k') : h{P) < a} is finite for any

finite extension k' /k.

Example 10.3.1. Let € be a non-singular curve of genus g, and let D €
Div(CC) be a divisor. Then D is ample if deg(D) > 0, and D is very
ample if deg{D) > 2¢ + 1. See Hartshorne |1, IV.3.2, IV.3.3] or [AEC,
exercise [11.3.6].
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Example 10.3.2, Let 5 be a non-singular surface. The criterion of Nakai-
Moishezon (Hartshorne [1, V.1.10]) says that a divisor D € Div(5) is ample
if and only if D? > 0 and D T > 0 for all irreducible curves T C .

As mentioned above, the reader may at this point wish to proceed
directly to the next section, where we will apply the Height Machine to
study the specialization map on elliptic surfaces. The remainder of this
section is devoted to proving Theorems 10.1 10.3.

Definition. Let ¢ : ¥V — P™ be a morphism of V into projective space. A
divisor I € Div(V') is said to be associated to ¢ if there is a hyperplane H €
Div(P"), not containing ¢{V'), such that D = $*H. Note that the divisor
class of I} is uniquely determined by ¢, since any two hyperplanes in P7
are linearly equivalent.

The height on V associated to ¢ is the height function

ho  VIE) — R, ho(P) = he(6(P)).

Our ultimate goal is to associate to every divisor D on V a height
function Ap with the properties described in (10.1). In particular, we will
want the heights attached to linearly equivalent divisors to be essentially
the same. The following important proposition will be crucial for this
construction,

Lemma 10.4. Let p:V =P and ¥ : V — P* be morphisms which are
associated to the same divisor class, Then

ha(?) = hy (P} + O(1) for all P € V(k).
Here the (J{1} depends on ¢ and v but is independent of P.

Proor. Let D be any positive divisor in the divisor class associated to ¢
and . This means that on the complement of D we can write ¢ and v in the
form ¢ = [fo...., fr] and % = [gg....,g.] with rational functions f; g; €
k(V) satisfying

div(f;)=D; - D and div(g;) = D} — D for divisors D;, D} = 0.

Further, the fact that ¢ is a morphism means that the £3;’s have no points in
common, and similarly for the D’s. (For gencral facts about the relation-
ship betwecen morphisms ¢ : V — P and divisors, see Hartshorne [1, II §7],
especially the section on linear systems.)

Now fix some j, let V, = V ~ D} be the complement of D}, and
let F; = fi/g; for 0 < i <r. Notice that

div(Fi} = div(fi/g;) = (D; - D) - (D; - D)= D; - Dj,
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so F is a regular function on V. Taken together, the F;'s define a morphism
F=(F ... F)y:V; — ATHL

We also observe that the F;’s have no common zeros on V. since any
commaon zero would lie on all of the Dj's.

We need to recall how the maximal ideals in the ring R = k[Fy, ..., F}]
correspond to the points of ¥V,. If M C R is a maximal ideal, then /9N
is a finitely generated k-algebra which is also a field. Tt follows from
the weak Nullstellensatz {Atiyah-MacDonald [1, 5.24, 7.10], Lang [7, X §2
Cor. 2.2]) that /M is isomorphic to k. More precisely, the natural in-
clusion & — MR/ is an isomorphism. This means that there are unique
elements ag, ..., € k so that F, = ay; (mod M), and then there is a
unique point Py € Vj(k) with F(Pm) = (a¢.....a:). Equivalently, the
point. Py is determined by the congruences

F; = Fy(Pom)  {mod M) for0<i<r.

Now consider the ideal 3 — (Fy, ..., Fy) © R generated by the Fi's.
We claim that ¥ must be the unit ideal. To prove this, we assume that J
is not the unit ideal and derive a contradiction. LEvery non-unit ideal is
contained in at least onc maximal ideal, so we take a maximal ideal 9T
with 3 C 9. Then ™ corresponds to a point Py € V; as described above.
On the other hand, we have F; € 7 C M from the definition of 3, so

Fi(Pmy=F, =0 (mod M.

Hence Fy(Pay) € kNN, so F.{Pm}) = 0. In other words, Pox is a common
zero of Fy, ..., Fy, which is a contradiction. This completes the proof that J
is the unit ideal.

We can rephrase this last argument in slightly fancier language. The
scheme Spec(M) is isomorphic to V;, and by the weak Nullstcllentsatz,
maximal ideals in Spec{M) correspond to k-valued points in V;. But then
any maximal ideal 9 containing 3 would correspond to a point P in the
zero set of 3, contradicting the fact that the Fi's have no common zero.

The fact that 7 = (Fy, ..., F,.} is the unit ideal in 98 means that we
can find a polynomial A,(Ty,.... T} € k[Ty...., T} with no constant term
such that

1=A4;(Fy,... F).

For any finite extension k’/k, any point P € V;(k'), and any absolute
value v on &', we evaluate this identity at P, take the v-adic absolute
value, and use the triangle incquality to get an cstimatce of the form

1 < ey max{|Fo(P)lv, ..., |F (Pl }.



26U [11. Elliptic Surfaces

Here o1 = ¢ (v, D, A4;) > 0 is a constant that does not depend on P.
Further. for all but finitely many absolute values on &%, we can take ¢; = 1.
(See the proof of [AEC, VIIL5.6] for a similar caleulation.)

Recall that F; = fi/g;. so if we multiply both sides by
obtain the estimate

g3 (P we

g (P < e max{|f6(P)a, - [f{ P}

Notice thar this bound is still valid if g; (7} = 0. so it holds for all points at
which the fi's and g; s are defined. that is, at all points on the complement
of D). Taking the maximum for 0 < § < s gives

mac{go(P)l. g (P)l} € e2 max{ [fo(P)lo. .. |- (P},

where o = ey{v.0,4. D) is again positive and is equal to 1 for all but
finitely many v. Now we Ltake the logarithin of both sides, multiply by the
local degrees (K : @]/ (k" : Q). and sum over all absolute values on &' to
obtain

R([go(P), - gu(PY]) = R([folP). . F(P)]} 4 ca.

where e = oy, . D) 1s independent of P. In other words, we have shown
that

h(w(P)) < h({o(P)) + ¢z forall P e (V ~ D)(k).

The divisor D was chosen to be any positive divisor in the divisor
cluss associated to ¢ and 4. In other words, we can take I to he ¢*H
for any hyperplane H < P7 not containing (V). Let Hy,.... H,, P he
hyperplanes not containing ¢(V) with the property that H,n---NH,, =
. Then the corresponding divisors &*Hy..... ¢* H,, have no points in
common, so their complements cover V. Applying the above estimate to
each of these {75 and letting ¢4 be the maximum of the e3's gives

h(w(P)) < h((a(P)) + 4 for all P € V(k).

This is one of the inequalities we are trying to prove, and the opposite
incquality follows if we interchange the role of ¢ and . a

If e Div(V} is a very ample divisor, then we can choosc an cm-
hedding ¢ @ V' — P associated to D and attach to I the height func-
tion kp = k.. For arbitrary divisors D, we will write D = D, — D, as a
difference of very ample divisors and define b linearly by fiy = hp, —hp,.
The following lemma shows that every divisor can be decomposed in this
way.
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Lemma 10.5. FEvery divisor on V can be written as a difference of two
very ample divisors.

Proor. This is a basic result [rom algebraic geometry., Befure pgiving the
general proof, we consider a special case. Suppose V' is a curve of genus g.
Then a divisor on V" is very ample if it has degree at least 2g + 1 {10.5.1).
So for an arbitrary divisor I € Div(V]), say of degree d, we can write 2 as
a difference of very ample divisors

D={(D+n{P)) =n(P)

by choosing n = 2g + 1 + |d|. Similarly. let V he a surface, D € Div({}V)
an arbitrary divisor, and H € Div(V) an ample divisor. Then one can use
the Nakai-Moishezon eriterion (10.2.2} to show that nH + I is ample for
all sufficicntly large n, after which it is casy to write D as a difference of
very ample divisors. We will leave the details to the reader (exercise 3.30)
and go on Lo the general case.

Let D € Div(V) be an arbitrary divisor, and fix a very ample divi-
sor H ¢ Div(V). Serre's theorem (llartshorne [1, I1.5.17. I1.7.4.3]) says
that there is an integer n > 1 so that 1) 4+ nH is ample. {Note we have
translated from the language of invertible shicaves into the language of divi-
sors, as explained in the last part of Hartshorue [1, II §6].) It follows from
Hartshorne [1, [L7.6] that m{ D+nH) is very ample lor all sulficiently large
iutegers m. Further, nH is very ample, so nH +m{D +nH) is very ample,
since it is the sum of two very amples. Henee

D=(m+ 1)(D+nH)- (nH +m{D+nH})
is a difference of very ample divisors. O

Lemma 10.5 lets us decompose a divisor D into a difference D) — I, of
very ample divisors. In partienlar, Iy and D, are associated to morphisins
from V into projective space. The next result gives some basic properties
of height functions associated to such morphisms.

Lemma 10.6. Lot ¢ : V — P and &z : V — P° be morphisins, and
fet Dy and Dy be divisors associated to @1 and ¢y respectively,

{(a) There exists & morphisin ¢y : V. — P+ agsaciated to D) 4 D,
(b} If ¢ : V — P" is any morphism associated to D) + D, then

ho{P) = by (P) + he, (P)+ O(1) for all P & V(k}.

ProOOF. (a) The Segre emhedding {Harlshorne |1, exercise 1.2.14] or Har-
ris [1, 2.11-2.29]) is the map

I — Protr+s
([I{]- . .rr]'. ['9‘111 e qu]) — [I!}y(] ..... T!'.y,f‘ . ':"rv"y.-s]-
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It 1% clear from this definition that if we pull a hyperplane hack by the Segre
ambedding, we will get H x P* + P" x JI. where the H's are hyperplanes
in the appropriate projective spaces. Hence [y 4+ Da is associated to the
morphisin

v rii;\i)cmal VvV qimﬂ_-':ng P x P ‘1_:'1.,_[: [FD?._“._H._'_\“..
(b} Write
o1 = [fo. ... ]V - P and By =[g0.....q4] ¥V = P*
with rational funetions fy. ... s € k(V} Lemina 10.4 says that it suffices

to prove (b} for any one morphism ¢ associated to D + 3. w0 we will
Lake ¢ to be the map using the Segre embedding deseribed in (a). In other
words,

& = [fogos- - Figge oo Frgel s V = PEE

Let £ € V(k) be any puint. Replacing & be a linite extension, we may
assume that P € V{k}). Then directly from the definition of the height on
projective gpace we have

ho(P) = h{a(P))
= h{[fogo(P). . ... Figi Py frgsl 7))

ko0 4,
= 3 e (oo, S 1)

R _
et oy (g 4] g o P

I
=
cle

e AT,
- 3 T (e (slomt) + s (oo o))
([fﬂ(P ---- F(PY)) 4 h{[g0(P).. ... g PY]).

O
After these lengthy preliminaries, we are finally ready to tackle the
proof of the Height Machine.

Proor (of the Height Machine {10.1)). Take each divisor D € Div(V}
and write it as a difference 2 = D, — Dy of divisors with the plopert}_
that there are morphisms @, 1 V. — P7 and @5 : V' — P* associated to I,
and Dy respectively. Note that (10.5) assures us that this is possible: in
fact, (10.5) says that we can even choose D) and Iy so that ¢y and o, are
embeddings. Tu any case, having fixed D). Dy, 8. ¢u, we define Ap to be

ho(PY = ho (P) = hoy(P)  for all P e V(i)
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Our first. observation is that if the Height Machine exists, then up to a
bounded function, this is the only choice for Ay, This follows from (10.1a)
and (10.1b), which let us compute

}ID = th_D'l = h-DJ - }lD:, + O(]) = h.‘..-',l{P) - hq;,?(P) + O(l}

This gives the uniqueness assertion in Theorem 10.1.

Next we show that up to bounded functions, A p is independent. of the
choice of D, Dy, ¢, ¢2. Once we have proven this independence, the rest
of (10,1} will follow very easily. So suppose that D = D} — D}, is another
decomposition, and let ¢ : V' — P and @y V — P+ be morphisms asso-
ciated to D} and D) respectively. Then D) + D, = Dy + D;. Lemma 10.6
says thar there exists a morphism ¢ : V' — P* associated to this divisor,
and then two applications of (10.6b} viclds

Therefore

R (P) = bigy (P) = hyy (P) = by (P) + O(1),

which proves that up to beunded funcrions, the definition of kp is inde-
pendent of the choice of Dy, Dy, 1. .

{a} The divisor D = ¢*H is already associated to a morphism, so we can
write 2 as D = ) — (. Note that the divisor 0 is associated to the trivial
morphism 7 : ¥V — P which maps V to a point. Then

hp = hs — hy + O(1) = hg + O(1),

since hy(P) = hp (1;1'(}3)) is a constant.

(b} We decompose cach of the given divisors into a difference of divisors
that are associtated to morphisms, say D = Dy — Dy and D/ = D] — Dj.
Then 1 + D} and D, + D% are also assoclated to morphisms {10.6a). and
their difference is D+ ¥, s0 we can use (a) and (10.6b) to compute

hpip = fi-;)|+.{3-1 - h(J2+DL + ()(1) = hD-. + f.’.D!l - th - ]’LD; + ()(]}
=hp+hp + ()(1)
{¢) Write D — D' as a difference of divisors associated to morphisms,
say D — D' = D) — D;, with D) associated to ¢, and Dy associated to ¢s.

Notc that ) and I3, arc lincarly equivalent by assumption, so (10.4} tells
us that by, = hs, + O(1). Now using (b) we obtain the desired result,

hp — ko = hp_p + O(1) = hy, — hy, + O(1) = O(1).
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{d} By the linearity proven in (b}, it suffices to prove (d) for a divisor D
associated to a morphism ¢ @ W — P, Then the divisor ©* D is associated
to the morphism ¢ o4 : V' — ¥ — P". Using (a) twice, we find

Ay = Avgey + O(1) = hw.o o+ ()(1) =hwpotr+ O{1).

Note thut the middle equality is trivial, since fiz, = Apodoid by definition.
0O

ProOOF {of Theorem 10.2). Let d = deg{D) and ' = deg(D'). Replacing P
by —D if necessary, we may assume that d > 1. For any integer n we
consider the divisor

H,=Q2¢+ 1D +n{dD —dD).

Notice that deg(H, ) = d{2g + 1), 50 (10.3.1) says thal H,, is a very ample
divisor on €. In particular, there is an embedding ¢, : ' — P associated
to H,, s0 (10.1a) gives

hi (P) = hp(9n(P)) + O(1)  forall # € Cik).

Now wusing the definition of H,, the linearity property of height func-
tiong (10.1b), and the fact that the height on projective space is non-
negative [AEC, V111.5.4b], we obtain the estimate

(2 + Vhp(P) = nd'hp(P) = ndhp (P) = hy, (P) + O(1) 2 —¢,.

Note that the constaut ¢, depends on », but it is independent of P. As-
suming kp(F) = 0, a little algebra then gives the inequality

{_ hD'(P) >_29+] _ “n
T T Ep(P) )T d dhp(P)

Tuking the liminf as Ap(P} — >0, we obtain

.. d' }E-Df(P.} 25} +1
o A .
P({t’..-‘[%—lll.riif}g’)—:fx. " (rf hplP) / — d

This is true for every value of n {positive and negative}, which gives the
desired result,

lim (d— - h”J(P)) =0

PECRY, hp(#]—ou & O hn(P)

Proor {of Theorem 10.3). Replacing D by n.D aud using the fact (10.1b)
that h,p = nhp + O(1), we may assnmne that D s very ample. Let ¢ ¢
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V — I be an embedding and H € Div(P™) a hyperplane with ¢*H = I},
Taking a finite extension of & if necessary. we may assume that ¢ is defined
over k. Then {10.1a} irplies that there is a constant ¢ so that

hp(P) = he-g{P) = he(¢(P)) — ¢ for all P € V(k).
It follows that ¢ maps the set
IPeVik): hp(Py<a and [k(P):k] <b}
injectively into the set
{QeP (k) : hpiQ) < a+c¢ and [R(Q): k] <h}.

This last set is finite from [AEC, VIIL5.11], which proves the first part
of {10.3). The second part follows by setting & = 1. m|

§11. Specialization Theorems for Elliptic Surfaces

In this section we will prove a theorem of Tate which describes how the
canonical height fz(o;.a(?.)) varies as one moves along a section of an elliptic
surface. As a corollary we obtain a theorem of Silverman, strengthening
carlicr results of Néron, Derm'janenko. and Manin, which says that the
specialization homomorphism E{K) — £;(k) is injective for all but finitely
many £ & C{k}

Let 7 : € — € be a minimal clliptic surface with corresponding elliptic
curve E/K . and let P € E(K). To ease notation, we will write

Py = ap(t)

for the lmage of & point £ € C by the section op 1 C — € assoclated to P.

Theorem 11.1. (Tate [4]) Assume that the elliptic surface &€ — C s
defined over a number ficld k. For each t € C(k) such that the fiber &, is
non-singitlar, let

(oo e Eo(R) x 8u(R) — R

be the canonical height pairing on the clliptic curve €, [AEC, VI §9].

Fix two points P Q € E(K)s, let |[P.Q] € Div(C) be the divisor
described in (9.5), and let hjpy) @ Clk) — R be an associated height
function on ¢ (10.1). Then

(P Qiye = hppo(t) + O(1} forallt e C'(k) such that £, is non-singular.
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Note that the O(1) bound depends on I’ and @ but is independent of t.

Remark 11.1.1. Putting 2 = Q in {11.1) gives he (P} = fp (£} +O(1).
where

Jil.&:’ : Ef{;'_') — E

is the canonical heiglit on & [AEC. II1 §9]. In other words, for any point £ €
E{K )y, the map
Cky — R. t— ke (F).

is a height function on C'(k} corvesponding to the divisor [P, P]. Silver-
nian [6] shows that it is possible to choose the height fip p in such a way
that the difference hg () = hyp pi(t) varies quite regnlarly as a function
of . For example, consider the elliptic surface and seetion

E:yf =x% =121 — t%)e. P=( )

Then there is a power serics f{z) € Rz} with f{() = O so thar for all
sufficiently large integers t € 2,

1 1
he AP = Eh(_f) + 1 log2+ f (é) .

For details. see Silvermau [3,6].

Before beginning the proof of Tate's theorem (11.1), we need to de-
seribe how to use a height function on the surface £ to compnte canonical
heights on the individnal fibers. For any integer 7 and any non-singular
fiber £;, wo will write

[7]; 0 & — &

for the multiplication-by-rn map on £,. These maps clearly fit together to
pive a ralional map on the surface €,

[n]: & — E. ey 8) = ([nl (e y). 8.

(N.B. Even if the sinface £ is minimal, the rational map [n] © £ — € will
generally not extend to a morphism.}) With these preliminaries completed,
we are ready for the following lemma.,

Lemma 11.2.  Let 7@ € — O be au elliptic surface defined over a number
field &, and let fug 10y © E(k) — R be a height function ou € associated to the

divisor (0) € Div(€). Then for all £ € C(k) such that &, is nou-singular,
and all points (. y) € £,(k),

X 1 o
he (2y) = T —he o))y ).
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Proor. Fix a Weierstrass equation for £,

E:yl=ud+Ar+ B, A Bck(C)
For the moment we will restrict attention Lo points t € C{k) such that A
and B are defined at f and A{t) # 0. Then &, is obtained by evaluating A

and B at ¢

For each such ¢ we let py be the map

[ a— pelr.y) = r.
This z-coordinate function on &; has a double pole at €y, which means
that
pi{x) = 2(0 ).

We also write ¢ @ €; — & for the inclusion of the fiber &; into the surface €.

Now let (x.y} € E:(k) be any point on s non-singular fiber. We use
standard properties of the Heighe Machine (10.1) to compute

he oy, 4, 1)

= he oy (or(y)) definition of ¢
= he¢, ooz y) + O(1) functoriality of height (10.1d)
=he, joptey) + 001 sinee @7 () = ()

1 .
She, 2oy} + O1) additivity of height (10.1Db}
1
= §h.gr.,,f-fﬁ_,¢;,(.r‘_ ¥} + O(1) sinee p; {oc) = 2{(0%)
1

= E’l['r‘l_[._-,(,.}(p;(i-'.y)) + 01} Tunctoriality of height {10.1d)

1
= Bh.{_x) + (1) definition of p;.

It is important to nete that in this computation the (1) bounds will
depend on f. This dependence arises because we have used the mor-
phisin @ @ & — &, and the O{1} in the [unctoriality property (10.1d)
depends on the morphism. However, for a given ¢, the O{1)'s are indepeu-
dent. of the point {z,4) € &,(k}. To make the dependence visible, we will
write

. 1 . _
he joy{roy.t) = ah(a:) + O(1) for ail {x,y) € E,(k).

For any point (x.y) € & (k) and integer n. write [n]¢(r.4) = (2. ).
Then standard properties of the canonical height [AEC, VIII.9.3b.e] allow
us to conpute

1 - . .
— lim Eh(%) = lim n—g{hé:,([n]t(x,y)) + 0u(1)}
1 -
= lim —; {-n.zh..g:,(ﬁ?- yr+ O,(l)}
w— 1}

=he (z.y).
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Now combining these two formulas gives the desired resuli,

1 1
lim _-_h&‘_ O]([n] U r)} = li]ll _-h'ﬁ.i:()}(‘ru‘.yurt}

TE—+

T— 0 n _.n—v'x:?

1 1
= lim —( h{r”}—l-();(l}) = lim wl—h ) -—hz {z.y)

[t is instructive to note that the O,(1) disappears in the limit because the
“i-coordinate™ of [n](x, ¢, ) is independent of n.

This completes the proof of {11.2) for all points ¢ € ('(k} such that 4
and B are dehined at ¢ and A(¢) # 0. But by choosing different Welerstrass
cquations for £, we can cover {t € C'(k) : & is non-singular} by finitely
many such sets. a

Proor (of Theorem 11.1). The divisor [P.Q] is determined up to linear
equivalence by the relation (9.5a),

(P +Q) - (P)—{Q) + (O) ~ =" {[P.Q)).

For any point z € E(k) lying on a non-singular fiber £,, we use standard
properties of the Height Machine (10.1) to compute

hipol(t) = hipg{m(z))  since z € &
= hoe(pglz) +001) functoriality of height (10.1d)
= h-(p_!_Q)_(p)_{_Q)+((_)J(Z) + ()(1) equi\-'aleu(:c of heights (]_U].CJ
= h(p_'_Q)(?} — h.{p)(?,} — ;.‘[Q)(ZJ + !3.((_}](2} + ()(1]]
additivity of height (10.1k)
= hre o 02} = B L0y(2) = e 0)(2) + hioy(z) + O(1)
where T : £ — &£ is translation-by- i
= oy {Tor_(2)) — hioy (= p(2)) — Ryoy (7o 0(2)}
+ hioy(z) +O{1)  functoriality of height (10.1d)
=hioy(—F — Qi + 2} — Aoy (=P + 2) = hion(=Q; + 2)
+ hioy[2)+ Q1) since 2 € £4(k). s0 TR(2) = R + 2.

Note that the (X1} constants appearing in this calculation depend on P
and Q. but they are independent of z and ¢ = #(z). To indicate this
dependence, we will write Op (1), For each pair of integers 1 < i, j < n
we evaluate at the point z = iF} + 5 € &(k) to obtain

hipg)(t) = hioy (= P + (7= 1DQ4) — hioy (0 = P +5Qr)
—hoy (10 + (G — 1)Q4) + Aoy (P + §€) + Op (1)
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Summing this identity over 1 < ¢, j < n, we find that most of the terms
telescope, leaving

TLQII-U:!\Q][T.) = }E(O](T?.Pr_ + ??.Q,) - h-{O_] (??.-P.'.} - h[o){'ﬂ-Qg_)
+hen (O} + Opoin®).

Now dividing by n°, letting n — oc. and using {11.2} vields

. 1 . 1
hipqif) = m <zhio)(rPr Q) = lim —hoy(nPi)

) 1 -
— lim Eh{())[nQr} +Opoll)

= f?.a,(Pg + ) - ftgt(P;) — "ifé'.f.(Qr) + Opg(l)
= (F.Qihr + Opp(l).

This completes the proof of Theorem 11.1. a

Taking the limit of {11.1) as the height of ¢ goes to infinity, we can re-
cover the following result of Silvernman which will be used below to prove the
injectivity of the specialization map. In the special case that the elliptic sur-
lace € — € iz split, this result had earlier been proven by Dem’janenko [1]
and Manin {2].

Corollary 11.3.1. (Silverman (1], [7]) Let £ — € be an elliptic surface
defined over a number fleld £, fix two points P, € E{K), and let (P, )
denote the canonical height pairing (4.3, 8.3) of P and  on E(K'}. Further,
let hy : C(k) — R be a height function on C corresponding to a divisor & €
Div(C} of degree 1, and for each t € C(k) such that £, is non-singular
fet {-. % be the canonical height pairing on (k). Then

Ly i

L Qi ={P.Q}.
teCiRY. hatth—x  falt)

Notice that (11.3.1) applies to all points in E(K), not. just those in the
subgroup E(K }g. It is possible to improve (11.3.1) as deseribed in our next,

result, hut we will only give the prool in the case that the base curve
is P,

Corollary 11.3.2. (Tate [4]) Let £ — ', P.Q € F{K), hs, aud (-, -}
be as in (11.3.1).
{a) Supposc that the base curve € Is isomorphic to P!, Then

{Pr. Qi = (P.@QVhs(t) + 01} fort e PH(k) with & non-singular.

Notice that in this reslt we can take hy to be the usual height function
on P!,
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(b) For an arbitrary base curve ', we have
(PrQuyy = (P.Q3ha (1) + O(VVha(t))  fort € C(k) with & non-singular.

(Sec cxercise 3.34 for the case that € has genus 1.)

We will prove {11.3.1} and (11.3.2) simultaneousty,
Proor (of Corollaries 11.3.1 and 11.3.2). The subgroup E{K )y has finite
mdex in E{K) from (9.4}, so given any two points P,Q € E(K), we can
find an integer N such that NP, NQ € E{K'}y. Note that N depends ouly
on P and Q. Further, the canonical height pairings on F(K) and £,(k)} are
hilinear, so

(NPLNQ)Y, = NYP.Q:y and  (NP.NQ) = N2(P.Q).
Replacing I°.Q by NP, NQ and dividing each of the formulas in {11.3.1)
and (11.3.2) by N2, we see that it suffices to prove the two corollaries for
points P.(} € E(K ).

Assuming now that P and @ are in E{K ). (2.5¢) tells us that
(P.Q) = deg[P. Q.
Hence the divisor

4 =|P.Q} - (P.())6 € Div(C)

is a divisor of degree (). Using (11.1} and the additivity of heights (10.15)
vields the estimate

B Qe = hipgy() + O(1) = (P, Q3hs (1) + Bs(2) + O(1).

We consider three eases.
First, to prove (11.3.1}, we divide by by (#) and take the limit

Beg{t
lim \ Fr Qu): ={PQy+ lm (1)

Halti— oo hh(f frald)— o JII.»-(”
Now {10.2) and the fact that deg(:3) = 0 imply that

ha{ty degd

l' = =
r:m])rl.x hatt) deg &

whicl completes the proof of (11.3.1).
Next, suppose that ¢ = PL. Then 3 ~ 0, since two divisors in Div(P!)
are lincarly equivalent if and only if they have the same degree [AEC, 11.3.2].
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The equivalence property of heights {10.1¢) implies that kg(t) is bounded,
so the above estimate becomes

(P, Qee = (P Yhs(t) + O(1).

This finishes the proof of (11.3.2a).
We will not give the proof of (11.3.2b), other than to say that one uses

an estimate
ho(t) = O(Vhs(t)) + O(1),

valid for divisors 8 of degree 0. This in turn follows from properties of the
canonical height on the Jacobian variety of the curve €. For the complete
proof, see Lang [4, 12 corollary 5.4} or Tate [4]. The special case that C
has genus 1 is discussed in exercises 3.33 and 3.34. O

Let £ — C be an elliptic surface. Each point P € E{K') defines a
motphism gp : ' — £ which we have been denoting by ¢ — F;. Turning
this around, we can also say that each point ¢ € C(k} determines a map

407 .E(K)—-—»E,(I_c), Pl—'Pg?

called the specialization map of £ at t. If the fiber £, is non-singular, then
it is clear that the specialization map is a homomorphism,

a(P+Qy=(P+Qh=F +Q; =0, (P} + a{Q).

This follows from the fact that on a non-singular fiber £, the section apyg
is defined by the relation op;o(t) = op(t) + og(t). We now show that for
“maost” values of t the specialization homomorphism is injective.

Theorem 11.4. (Silverman [1], [7]) Let € —  be a non-split eliiptic
surface defined over a number field k, and let § € Div(C)} be a divisor of
positive degree. Then there is a constant ¢ > O so that

oy . E(K) — £,(k) is injective for all t € C(k) satisfving hs{t) > c.

{One says that the set of points where o, fails to be injective is a set of
bounded height.) In particular, the specialization map o, : E(K) — £:(k)
is injective for all but finitely many points t € C{k).

Remark 11.4.1. In the case that the elliptic surface is splil, there is a
version of (11.4) due to Dem’janenko (1} and Manin [2]. Both Dem’janenko
and Manin used their results to prove the Mordell conjecture (now Faltings’
theorem) for certain curves. See exercise 3.16.
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Remark 11.4.2. There is an earlier result, due to Néron [3] using a Hilbert
irreducibility argument., which says that if C'(4) is lufinite, then there are in-
finitely many ¢ € C{k} for which the specialization map o, : E(K) — &,(k)
is injective. This is sufficient for one of the main applications of {11.4},
namely the construction of elliptic curves of elevated rank over { or over
number fields £. The idea is to Aud an elliptic surfuce & — €7 over & for
which €'(&)} is infinire and such that F{K) has high rank. Then specializ-
ing t € C(k) gives elliptic curves over k of high rank. Néron [3] used this
procedure to construct infinitely many clliptic curves over @@ with rank at
least 10. More recently, Mestre [2] constructed an elliptic surface £ — P!
defined over @ so that F{Q(#)) has rank at least 12, and Nagao {2] extended
this result to get rank at least 13, By taking particular values for t € {J,
it is possible to find specific elliptic enrves over () with even higher ranks.
See Fermigier [1]. Nagao [1], and Nagao-Iouva [1] for examples with ranks
at least 19, 20. and 21. And the quest continues!

Proor (of Theorem 11.4}. Our assumption that £ — ' is non-split means
that the Mordell-Weil theorem {6.1) is valid. so the group E(&) is finitely
generated. In partienlar, the torsion subgroup E(K) . 15 finite.

let P & E{K) be any non-zero point. Then there are only finitcly
many # € (k) for which P, = O, since the two divisors (P) and ()
intersect. in only finitely many points. This holds for each of the finitely
many points in F{A Y, ., 30 we see that on torsion points. the specialization
map

o E{h’)turs - Ef(;:‘}

is injective for all but finitely many ¢ € C(&). (In fact, the specialization
map is injective on torsion whenever £, is non-singular, since the residue
field £ has characteristic (. This follows from the identification of the
kernel of the spedialization map with the formal group of the clliptic curve;
sce [AEC, IV.3.2b, VIL.2.2].)

Nexr let. P ... P" € E(R) be generators for the free part of £(K):
that is. P'.. ... P" give a basis for the free group E{K)/E{K ). Then
the non-degeneracy of the caunonical height pairiug on E(K) described
in (4.3cd) implies that

det({P'. P/)},_, ., #0.

{This is an clementary property of non-degenerate bilinear forms; see Lem-
ma 11.5 below.)

Next we specialize the PUs (o the fiber £;. take the height regulator
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of the resulting P}'s, and use (11.3.1) to compute

det (P, PHY),
lim (F YDI_)IJ"JET = det
ha{t}—oc fis(t)"

hm (P;:'- PfJ>L
heiti—oc hg(t) i

= det{{P", P*))
£ 0.

I<ijer

Hence there is a constant ¢ s0 that

det((F}. Pg’}f) #0 for all t € C(k) with hg(l) = c

L<i,jsr

It follows from (11.5) and the non-degeneracy ol the height pairing on &, (k)
[AEC, VIIL9.3 or VIILY.6] that the points P'. ..., P are linearly indepen-
dent provided that hs(t} > e

Adjusting ¢ if necessary to account for the finitely many poiuts in
the torsion subgroup E{K )ior. we have now proven that for all t € C(k)
with hs(t} > e, both of the specialization maps

E(K.}tt)rs I Et(;-')tors and E(}:\’)/E(}-{JLUTH i Ef (k)/gr('!“)lors
are injective. Now a simple diagram chase using the commutative diagram

0 — E(K)ow — E(K) — EEK)/E(Kho — 0

l I |

0 — Si‘-(k)mrhi — Ef(E} — Et(‘r‘)/ef(})tm- — ]

shows that E(K) — EL{E) is injective, which completes the proof of the
first part of (11.4).

The second part is then an immediate consequence of the first part and
of (10.3) once we observe (10.3.1) that on a curve, any divisor of positive
degree is ample. O

It remains to prove the elementary property of non-degenerate bilinear
forms used in the proof of (11.4).

Lemma 11.5. Let I’ be a free abelian group, let (-, -} be a positive
definite bilincar form on T with valies in @, and let &y, .., ay, €. Then

1., 7, are linearly independent <= det({z;.x;}), ., . #0.

Proor. Suppose first that the determinant is 0. This means that there
are integers aj....,a,, not all zero, so that

Zai((l:-,_,.fﬂj) =0 forall 1 <5 <.

i=1
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Multiplying by a;. stonming over j, and using the bilinearity gives

I i T
0= E “ E a gy = < E oy, E a_.],-;r:_}->.
=1

=1 i=1 i=1

Iy other words, y = > a0 € I satisfies (. i) = 0, 8o the positivity of the
bilincar form implies thar y = 0. Hence the .«,’s are linearly dependent.
Conversely, it the »;'s are linearly dependent, say > a,x; = (. then
the Hnoearity of the pairing implies that the rows of the matrix ({z;,z;}}
are linearly dependent, so the determinant is zero. O

§12. Integral Points on Elliptic Curves over Function Fields

There is a theory of S-integral poiuts on clliptie curves over fimetion fields
which is completely analogons to the theory over number fields as deseribed
in [AEC. Ch. IX]. However, for lhauction fields it is possible to prove much
stronger results using relatively elementary technigues,  In this section
we will give a short and elegant prool of the analogue of Siegel's theo-
remn [AEC. 1X.3.2.1] which asserts that an elliptic curve has only finitely
many S-integral points. We will also state and briefly sketch the proof of
an elfective version of Lthis result.

The sitnplest fuuetion field analogne of integral poines are “polynomial
points.” Tius let E/&(TY be an clliptic curve over arational lunction feld.
say given by a Weierstrass cquation

E: =0+ AT + By with A(T). B(T) € ¥[TY.
The the set of polvnomial poiuts of £ is the set
{P=(ry)e BT :r.yekT]}
For example. if
E =25 -Tir4+T° and P={1TT)

thew {1.1.1) savs that P and 2/ are polynomial points, but 37 is pot.

One way 1o characterize the polynomial ring k[T is 1o observe that it
is the subring ol #(T7) consisting of functions with no {Anite} poles. More

generally. we deline the ring of S-integers of an arbitrary function field in
the following way.
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Definition. Let K = k{C') be the function ficld of a curve, and let 5 C 7
be a non-crupty finite set of points of €. The ring of S-integers of K is the
ring

Rs={fe K ord{f)=0forallt ¢ S}

Here ord;( f) is the order of vanishing of f at #: see [ARC, II §2].

The following function ield analogue of Siegel’s theorem is a special
case of a result of Lang [8]. who proved a general finiteness theorem for
integral points on curves of arbitrary genus over function fields.

Theorem 12.1. Let K = k{() be the function field of a curve, lel § C C
be & non-cmpty finite set of points of C, let E/K be an elliptic curve that
does not split over k. and let F' € K(E) be a non-constant function on E.
Then

{P e FE(K): F(P)e R_q}
is a finite set.

Proor. Our first observation is that it suflices to prove (12.1) for the
special case that F'is taken to be the x-coordinate on some Weierstrass
couation for 2/K. 'The reduction from the general case to this special case
is given for number fields in [AEC. [X.3.2.2], bul the proof is the same for
[unction helds. So we are reduced to showing that

{PeE(K): «(P)c Rs}

is a finite set.
If I’ is a point in this set, then the Leight of P is a sum of local
contributions coming from the points in 5. hMore precisely. we have

R(P) = h{x{P)) definition of h(P)
= Z max{ —ord, {x(P)),0} from (4.1}
el
= Z nax{ — ordy (x(P)).0} since ord, (#(PH =0 for £ ¢ §
€8

< #S- IEILaSX{ —ordy (T(P)) }

Further. our assumption that £ does not split combined with (5.4) tells
us that E(K) has only finitely many poinis of bonnded height. Hence the
tollowing result (12.2} completes the proof of {121}, O

Theorem 12.2.  {Manin (3]} Let K = k(C') be the funcrion field of a
enrve. Jet t € C be any point of . and let EJ/K be an elliptic curve that
does not split over k. sayv given by a Welerstrass equation

E:yl=u+ Av+ B.
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Then the function ord,(z{P)) is bounded below as P ranges over E(K).

Before giving the proof of (12.2), we want to observe just how strong
a statement it is. For example, the number fleld analogue of (12.2) is
certainly false. Thus, if we let p € Z be a prime and E/(Q be an elliptic
curve with a rational point

P e E(Q) satisfying ord, (z(P)) < 0,
then consideration of the formal group of E{Q,) shows immediately that
ord,(z(p™P)) — —0 as n — oo,

The following short proof of {12.2), which is due to Voloch {1], uses
the formal group and depends crucially on the fact that the hase fleld &
has characteristic ).

Proor. (of Theorem 12.2, Voloch [1]} We may replace the constant field &

by its algebraic closure, since this will only have the eflfect of making E{K)

larger. Further, replacing x by ux for some u € K*, we may assume that

the given Weilerstrass equation is a minimal equation for the valuation ord,.
For each integer n = 1, let

E(K)={P e E(K) : ord;(z(P)) < ~2n}.

This is the standard filtration on the formal group of E, see [AEC, Ch. IV}].
The crucial facts to note here are that each E,(K} is a subgroup of E{(K),
and each quotient group E, (K)/Ey .1(K) is isomorphic to a subgroup of %.
To see this, let K; be the completion of the field K for the valuation ordy,
let R; be the ring of integers of &, let M, be the maximal ideal of I7;. and
let £ be the formal group of £/K,. It follows from [AEC, IV.3.1.3] that
E.(K;) = E(M}), and then [AEC, IV.3.2(a)] tells us that

E (K Epy1(Ke) = E(MPY/ E(MITY) = M3/ MPT 2 &,

(The last isomorphism uses K;/M,; = k.) Now the fact that E,(K) =
E(K)n E,(K,) inmediately implies our two assertions that E,(K) is a
subgroup of E(K) and E,(K}/E,+1({K) is isvmorphic to a subgroup of &
In particular, our assumption that &k has characteristic zero means that the
quotient groups E,(K)/E, +1(K} have no elements of finite order.
Suppose now that orde (z{P)) is not bounded below on E(K}. Then

we can choose a sequence of points Py, Pa, ... with
ord; (::-:(P,)) = —2n; and 0<y << By < e
We claim that the points Py, Fs. ... are linearly independent. which will

coutradict the Mordell-Weil theorem {6.1) and thus complete the proof
of (12.2).
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Suppose to the contrary that Py, P, ... are linearly dependent. Dis-
carding the first few I’'s if necessary and relabeling, we may assume that
there is a relation

mP+mel+- - +m.F.=0 with m £ 0.

Using the fact that ny < ny < -+ < n, and that the E,(K}'s arc nested
subgroups of E(K), we see that

m Py = —maFy — - —m,. P € B, (K). so Py e By, (K}

But as noted above. the quotient E, (K)/E, +1(K) is isomorphic
to a subgroup of k. and k is a field of characteristic zero. So the fact
that #2y P is zero in this quotient implies that Py itself is zero in the
quotient. In other words, Iy € E,,, +1 (&), which contradicts the fact that
ordi{z(P1}) = 2. Hence the P;’s are independent. m]

The proofs of (12.1) and (12.2} are ineffective because they depend on
the Mordell-Weil theorem (6.1). Notice that {12.2) is analogous to Siegel’s
theorem [AEC. IX.3.1], although (12.2) is both stronger and considerably
easier 1o prove.

Similarly, one can prove effective bounds for S-integral points in the
funetion field case which are analogous to the bounds provided by linear-
forms-in-logarithms methods for number fields [AEC, §5]. Again the fune-
tion field estimates are stronger and much easier to prove. A number of
people have given such bounds. including for example Schmidt 1), Ma-
son {1}, and Hindry-Silverman [2]. We will briefly sketch the proof of the
following version. The argument is the same for elliplic or hyperelliptic
curves, so we give the more general case.

Theorem 12.3. Let K = k() be the function fleld of a curve C of
genus g, let § € C' be a non-empty finite sct of points of C', let Rg be the
ring of S-integers of K, and let f(r) € Rg[x] he a monic polynomial with
discriminant A satisfying A € Ry, Suppose that x.y € Ry satisfy

¥ = flx).

Then
hy*/A) < dn(n — D max{2g — 2 + #S.0}.

(Recall from &4 that the height of an clement f € K is defined to be the
degree of the map f: ¢ — Pl Also note that the set § has to be chosen
farge cnough to contain all of the zeros and poles of A)

Remark 12.3.1. The bound in (12.3) is stated for y'/A because this
quantity is invariant under linear change of variables, However. it is easy
to use (12.3), the relation y? = f{r), and elementary properties of height
functions to give a bound for k(x) in terms of the coefficients of f. See
exercise 3.39 [or the particular case of an elliptic curve.
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Proor. (Sketch of Theorem 12.3) The first step is to reduce the problem
of S-integral puints on elliplic curves to the problem of solving the S-unit
equation

w4 v =1 ot € R,

This reduction procedure is due to Siegel and is described in [AEC, [X.4.3].
Next, one proves thai if «.v € RY satlsfy w4+ v =1, then

Alu) < max{2g — 2+ #5.0}.

This bound is the function field analogue of the abe-conjecture of Masser
and Osterlé. There are several elementary proofs available; see for exam-
ple Mason (1], Silverman [8]. or Vojta [1]. Tracing back through Sicgel's
argurment gives the estiinate described in (12.3). We leave the details to
the reader, or see Hindry-Silverman [2, Prop. 8.2]. ]

EXERCISES
3.1, For auy pair {(a,b), let £, be the curve
. 2 . . 2
E.p:y +arcy+by =1 +be”.

Notice that the point (0,0} is on ecach of these curves.

{a) Let E£/k be an elliptic curve, let PP € E(£) be a point, and assume that
P.2P 3F #£ 0. Prove that E las a Welerstrass cguation of the form E,
with P corresponding to (0,0). (Hint. Move £ to (0,0), rotale so that the
tangent. line at (0.0} is the r-axis, and make a dilation to get az = @y
(b) Prove that 5P = O if and only if o = 5+ 1. Conclude that every
elliptic curve E/E with a point P of exact order 5 is isomorphic to some
fiber of the elliptic surface

Ef +(t+ Ny +ty =2+t

by an isenorphism taking 7 to the point {1, 0} ou that fiber.

{c) More precisely, if E is defined over & and if P & E{k) ts a point
of exact order 3, prove that there is a unique point #p € PYk) and an
isomorphism ¢ E — &, defined over & such that () = (0,0).

() Using a similar construction, find an elliptic surface & — P' which
classifies elliptic curves with a given point of order 7.
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3.2

3.4

3.6

Let C/(} be the (elliptic) curve
s —s=1 — ¢,
let E/Q{C} be the elliptic curve
E g’ +(st+t— 8wy +s{s —1)s - Ofy =1t + sls — 1{s — t.)t:r‘z.

and let P = (0,3} € E{Q(C)}[11] be the point of order 11 as described
in {1.1.3).

(a} Let 4 be an elliptic curve and @ £ A a point of order 11, Prove that
there is a unique point (si.£1) € € such that if we substitute (s, £) = (sp. ty)
into the equations for F and P, then we obtain an ¢lliptic curve Ep and a
point Py € En of order 11 such that there i an isomorphism ¢ : 4 — Ey
satisfying H((Q} = Po.

{(bY U A is defined over & aud @ ¢ E(k}, prove that the point (so. o)
obtained in {a) will lie in &),

This exercise gives a function field analogue of [AEC, exercise 8.1]. Let C/k
be a curve of genus ¢ with function ficld K = &{C), and let £/K be an
elliptic curve which does not split over K

{a) Suppose that £/A has a Weierstrass equation of the form

E: y'z = {2 — e (e —exr - 3} with ¢ e¢2, 63 € A

Let & C " be the set of points where any one of €, e2, 3 has a pole together
with the points where the product {¢y -caHer  es){er  ey) vanishes. Prove
that

rank E{K) < dg + 245 — 2.

{b) Suppose that E/K has a Weiersirass equation of the form
E y=2"+Ac+ 8B with 4. B € K.

Let § <  be the set of points where 4 or B has a pole together with the
points where A = 44% + 2787 vanishes. Find an explicit bound for the
rank of E{K) in terms of g and #5.

Let &/ be a finitely generated field extension. that is. A = Q{ai.....a,)
for some ay, ..., € T Let C/k be a curve with function Held K = &{C'},
and let F/K he an clliptic curve. Prove that E{K) is a Anitely generated
group. In particular, this is true if & is a nunber field. {Hini. You may
find exercise 3.1% below useful for doing this problem.)

Let A be an abelian variety of dimension one. so in particular A is a non-
singular projective curve. (See 2 for the definition of abelian variety.)
Prove that 4 has genus L, so 4 1= an elliptic curve,

Let ¢ : ¥V — W be a rational map of projective varieties,

fa) Prove that the image ¢(17) is an algebraic subset of .

(b) Suppose that V' is non-singular. Prove that the set of points where @
is not defined has codimension st Jeast two in V.
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3.9,

3.10.
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Recall that a topological space X is srreducible if it cannot be written as a
union A = X, U X of non-empty closed subsets of X,
fa} Lel X be a topological space. and let Z C X be a subset taken with
the induced topology. If Z is irreducible, prove that the closure of Z in X
is also irreducible.
{(h) Let ¢ : X — Y be a continuons map of topological spaces. If X is
irreducible, prove that its image #{X)} is irreducible.
(¢} Use (a) and (b] to deduce the second part of Proposition 3.5(a),
Let £ - ' be an elliptic surface over k. Define a map

Je:C— P () =
More precisely, define j:(¢4) to be the j-invariant of the elliptic curve &,
provided that the fiber £, 18 non-singular, and for the moment leave it
undefined for the remaining points of €. Prove that j is an algebraic
map, and conclude that it extends to a worphism from ¢ to P
Let &€ — ' be an elliptic surface aver k, and let j. : € — B! be the
morphism defined in exercise 3.8
{a) If & —  splits over &, prove that j¢ 1s a constant map.
{b) Give ap example (with proef) of an elliptic surface £ — € that does
not split over & for which 7¢ is a constant map.
Let £ — (' be an elliptic surface over &, and let , : ¢ — P! he the
nworphisni defined in exercize 3.8. Choose a Welerstrass equation

Eiyt +airy agy =5 + aar b agr + ag

for £, where ay,. .., as € B{C"). and et ¢4, o5 be the usual associated quan-
tities [AEC TIT §1]. Prove that & — C splits over & if and only if one of the
following three conditions is true.

(i) 7e{C) = {0} and a4y is a sixth power in k(C).

fii} (€ = {1728} and s is a fourth power in k{(7),

{iii} 7:(€) = {a} with o # 1, 1728, and cs/cq is a square in £(C).

{Keep in mind we are assuming that char(k) = 0, although this excreise
remains trie if char{&) = 5.)

. Let E/A be an elliptic curve defined over a function field & = &{C"} by an

equation of the form

£ y2 =i + Ar+ 3.
Further define the “height of £7 (o be A{E) — h{A*) + R(B?).
{a] Prove that for all i € E{K),

AR(P) — 3R(E) < h(2F) < W(P) + K(E).

(b} Prove that for all 12,0 € E{K),
SR(E) < h(P + Q) + M(P — Q) - 2h(F) — 2h(Q) < h(F).

(e} Prove that for ali P € E{R},

: 1 1

ey - shpy < Sh(E).
fIn all threc parts of this problem, the constants in front of the A(EY's are
far from best possible. See how much you can improve them.)
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3.12.

3.4

3.15.

3.16.

Let E/C(T) be the elliptic curve
E =2 — (T + T+ T2
Find all points in E(C(T)) of the form
P ={ao+a1T,bo + 01T, co + &1 7]

by substituting P into the equation for E and solving for ag,...,c1. How
many of these points are defined over Q{T)7

. With notation as in the statement of Lemma 5.5.2, prove that if

deg D > g+ §(:!—i—ldegA—i- %degB,

2 2

then the image of Vo in E{K} contains E(K,d). This provides a strength-
encd version of (5.5.2).

Let V be an irreducible projective variety defined over an algebraically
closed field, and let 1, y2 € V be distinct points. Prove that there exists
an irreducible curve I' C V with 1, v € T,

This exercise describes the Mordell-Weil theorem (6.1} for split elliptic
surfaces. Let C'/k be a curve, let En/k be an elliptic curve, and let € =
Ey x (' be the corresponding split elliptic surface. Further, let Map, (C, Ej)
be the set of morphisms from C to Ep defined over k. We use the group
structure on £y to make Map, (C, Eg) into a group in the usual way, (¢ +
Py(t) = ¢(t) + (). Notice that the constant maps in Map, (C, Ep) form a
subgroup isomorphic to Eg(k).

(a} Prove that there is a natural isomorphism E(C'/k) = Map,(C, Ep). In
particular, the group of sections E{C/k) contains a subgroup isomorphic
to Eg(k)

(b) Prove that the quotient group £(C/k)/E(k) is finitely generated.

(c) If k is a number Reld, prove that £(C/k) is finitely generated.

Let k be a number field, and let C/k, Eo/k, £ = Ey x C, and Map, {(C, Eg)
be as in the previous exercise.

{a} Let é € Div({) be a divisor of degree 1, and fix a height function ks :
C{k) — R associated to 6. Prove that for any map ¢ € Map,(C, En),

lim by (6(2) (1))

= de .
teCR), hstt) o P5(t) 2

(b} Fix a basepoint ts € C'(k}). Prove that there is a constant ¢ so that
if £ € C(k) satisfies hs(t) > ¢, then the map

{# € Map,(C, Eo) : d(to) = 0} —  Eao(k)
¢ — (i)

is an injective homomarphism.
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3.17.

3.18,

3.14.

3.20.

I11. Elliptic Surfaces

(¢} Suppose that the quotient group Map, (€, Ey)}/ Eo(k) has free rank r,
say generated by the maps ¢y ... . ¢, 1 ¢ — Ey. Suppose further that the
group Fu(k) has rank strictly less than v, Prove that (k) is finite.

{d} Fix an cleament b€ kL and let O/k and En/k be the curves

CoXP 4yt =0zt Fuo vlz =2 402"

Prove that the group Map, {C, Fu}/ En(k) has vank at least two by showing
that the maps

;{[X. ¥, 2)) = [-X*Z.Y7, 27, (XY, 2]) = [-Y*Z, x*. ZF

give independent elements. Use this to prove that if rank Ey(k) < 1. then
C(k} is finite,

Let E be an elliptic curve defined over {7 that does not split over C(T).
(a) Suppose that &/ and &y /{J are Helds with the property that

E(k(T)) = E(TIT))  and  E(ka(T)) = B{T{T)).

Let k& = k1 Mk, Prove that E{&(T)) = EF{C(T}). Deduce that there is a
smallest field with this property. We will call this feld the field of definifion
for E(iC{T1) and will denote it by kg.

(b) Prove that kg is a finite extension of 4.

(¢} More precisely, find an explicit bound for the degree [ke @ €] that
depends only on the rank of E{T(T)}.

(d) *Fix a Weicrstrass cquation for E of the form

Byt =2+ ATz + B(T)
with AT B(TY € Z[T], and let AT} = 4A(T} + 27B{T)*. Prove that

the extension kg /Q s unramificd except possibly at 2, 3, and the primes
dividing the diseriminant of the polynomial A(7T) € Z[T)].
{a) Tet f € E{F?). Prove that deg{div(f}} = 0, and deduce that the
degree map deg : Pic(F?) = Z described in (7.1} is a well-defined homo-
morphism.
{b] Prove that the degree map deg : Pic{P?) — Z is an isomorphism.
(¢} Generalize {a) and (b} to P".
Let P = (0,0) € &%, and let fi. f2 € k(P?} be rational functions satisfying
FilFY = f(P) = 0. Let Ty and 'z be the curves fi = 0 and f» = 0
respectively. Prove that Ty and T’y intersect iransversally at P if and only
if the following three conditions are true:

{1y T} is non-singular at F:

{u) Ty is non-singular at f7;
(ifi} the tangent line to 'y at P is distinet from the tangent line to 'y at P,
For each of the following curves I'y. T2 € P2, calculate the local intersection
index (T, - Tz)p at the point P = [0,0,1]. (Hint. First dehomogenize by
sotting Z = 1.)
(a) I Y2 =X"4X?Z, I'y: ¥ =10,
by T - ¥Y?Z =X+ X2, r,:Y =X,
() T,:¥?Z=x" Ts:V = X.
fd) Ty :¥4Z =X% 4+ X?2 ,:Y*Z = X%,
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321

3,22,

3.23.

3.24.

3.25.

“Let w0 8 — C be a fihered surface. Prove that every fiber 5, is connected.
{You may want to take k& = C.)

Let w1 § — (" be a fibered surface, let T' < 8 be a non-singular irreducible
horizantal curve, and let & : ' — ' be the restriction of 7 to I

(a) Let PeT and # = ¢{ P} € €. Prove that

(' 7 (1), = erle),

where £ p{®) is the ramification index of ¢ : I' — (7 at. I (see [AEC, 11 §2]).
(b} Prove that T - x* {8} = degl(e) deg(d) for all divisors & € Div{C"}.

(¢} "Prove that I'- 7" (4] = deg{¢) deg(d) remains true even if the irve-
ducible horizontal curve T is allowed to be singular.

Lot w2 85 — € be a fibered surface, and et § € Div(C) be a divisor of
degree 0. Prove that DD - 7%8 = 0 for cvery divisor I € Div(5). (Hint.
Use (8.1} and the previous exercise.}

Generalize (8.3.1) as follows. Tet ® 0 8 — 7 be a fibored surface. and
suppose that the [iber 5 consists of 1 components arranged in the shape
of an n-gon with transversal intersections. In other words,

1 it i=j+1{modn).
rr»(t):F;J+1‘1+---+F,,_l with F*'FJ = .2 ir!=j.
0 otherwise.

(a) Draw a picture illustrating this fiber, and show that the self-intorsee-
tion values I'2 = —2 follow from the values of T, - T, for 4 # j.

(b} Let f = (I'; - ', }ozs,<n—1 be the incidence matrix of the fiber, and
let. fpo be the minor obtained by deleting the first row and column from 1.
Find the value of det{fy) in terms of .

{c) Let & be an integer hetween 0 and n - 1, and let D € Div{S} be a
divisor satistying

D-T'pn=~-1, . Ty=1, D T =0for¢z#k.

Find a fibral divisor

nm—1
Tp = Z(hl—', such that (D + @,y - I =0forall0<i<n~1;

i=}

that is, find an explicit formula for ¢, in terms of £, &, and ».

Let m: § —  be a fibered surface.

{a) Let T € Div(5) be an irreducible fibral divisor. Prove that there exists
an irreducible horizontal divisor D) € Div{8§) satistying £-T > (.

(b} Prove that there exists a horizontal divisor 12 € Div($) with the prop-
erty that I - T' = 0 for every irreducihble fibral divisor T' € Div(S).

(c) Let D € Div(S) be a divisor as in (b), and let £ £ (7. Use the Nakai-
Moisheson criterion (10.3.2) to prove that the divisor D + nx*{#) is ample
for all sulficiently large integers n.
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3.26.

3.27.

3.28.

328

3.30.

II. Elliptic Surfaces

Let 7 : £ — € be a minimal elliptic surface with associated elliptic curve
E/K. Define an action of E{K} on Div(&) by having P ¢ E{K)} send a
divisor 13 to the divisor te(D).

{a) Prove that the action of E(K) on Div(£) descends to give a well-defined
action of E{K) on Pic(&).

(b} For P, £ E{(R), let ®p € Div(E) be a fibral divisor with the
property (P + Q) — (P) — (@} +{0) ~ ®rg. (See (9.5).) Prove thal for a
fixed @ € E{K), the map

E{K} — Pic{&), P — class ® .0,

is a one-cocycle from E{K) to Pic(€), where Pic(€) is an E{K)-module as
described in (a). (See (9.5) for a stronger result for E{K ).}
Let P € E(K). Prove that P € E(K)y if aud only if (P)- F = (0} F for
every fibral divisor I € Div(£&).
Let w : 5 — C be a fibered surfacve,
{a) Let T C § be a curve with the property that # : I' = C' is an iso-
morphism. Prove that T'- 7°{t}) = 1 for all ¢ € €. Use this to deduce
that

[ 7' (8) = deg(8)  for all divisors & € Div(C).

{(b) Fix a point ¢ € ' Prove that the image of a section ¢ : € — §
intersects exactly one component of the fiber 5.

{c) Let F < Div(S) be a fbral divisor, and suppose that F = 7'4& for
some ¢ € Div((C)1%Q. Suppose further that there exists asectioneo : ¢ — §.
Prove that § € Div{C}.

{d}) Let & € Div{C) be a divisor such that #*& is a principal divisor on £.
Prove that & is a principal divisor on €. Deduce that 7 induces an injective
homomorphism 77 @ Pic(C} — Pief.5). [This is easier if you assume that
there exists a section ¢ 1 &' — 5.)

Let 7 : &€ — C be an elliptic surface, let E/K be the associated eiliptic
curve over the function field K = k{C) of C, and let #.... P € E{K).
Prove that if

m{ ) + -+ (B — n(0) € Divi(E}
is linearly cquivalent to a fibral divisor, then
[P+ -+ e £ = O

This gives the converse to Proposition 9.2,

Let S be a non-singular surface, let D € Div(5) be a divisor, and let A £
Div(5) be an ample divisor.

{a} Use the Nakai-Moishezon criterion (10.3.2) to prove that the divi-
sor nH + 0 s ample for all suffciently large integers n.

(b} Use (a) to prove (10.5) for surfaces: that is, prove that D can be written
as the difference of two very ample divisors on the surface S,
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3.31.

3.32,

Let V/k be a non-singular projective variety defined over a numbcer ficld,
let 7 € Div(V] be a positive divisor, and let hp @ V(k) — B be an
associated height function., (A divisor is positive if it can be written as a
sum ¥ n;D;, where the Dy’s are irreducible subvarieties of ¥ and the n,'s
arc positive.)

{a) Prove that there is a constand ¢ = (V. D hp) such that

hp(FP) 2 e for al Pe V(). P& D.

{Note that ¢ need not be positive.)

{b] Cive an example to show that {a) necd not true for all P ¢ V(k).
{Hint. Take D to be the exceptional curve on B2 blown up at one point. A
harder example is to let 2 be the diagonal in € x O, where C' s 2 curve of
grms g = 2.}

Let V/k he a non-singular projective varicty defined over a number field,
and let D, H € Div(V) be divisors with H ample and D algebraically
equivalent to zero {see Hartshorne [1, exercise 1.7]). Prove that

F;
lim 1n(F) =10
PeVikiig(B1—s ha(P)

{This generalization of (10.3) is due to Lang.}

. Let £/k be an elliptic curve defined over a number field k. For any divi-

sor 4= 3 h{P} & Div(E), we define the canonical height hy associated
to 3 by the formmla

ho(P) = Z b AP — P,

Thus the usual canouical height F is the height associated to the divi-
sor {(J).
{a) If the divisor 3 is symunetric, that 15, |- 1]"3 = 3, prove that

: , 1
ha{ P} = ,.-IHI:C ;r)h_;-j([n]P)_
(b} If the divisor 3 is anti-symmetric, that s, [—1]*3 = —3, prove that
- , I
has(F) = lim ;fa;;([n]P],

Also prove in this case that the map fr.,,- : E(K) — R is a homomorphistn,
{c} Let 3 € Div(E) be a divisor of degree 0. Prove that there is a con-
stant ¢ = ol £, 5) so that

. = _
[halPY < e\ R(P) for all P e E{k).



236

I Eiliptic Surfaces

3.34. Let £ — (7 be an elliptic surface defined over a number field k&, and fix two

3.35.

points I, @ € E{K). Suppose that the base curve 7 is an elliptic curve, and
let, Ag: be the canonical height on €. With notation as in (11.1} and {11.3},
prove that

(P Qi = (P QVhe(t) + (_)(\a’f:.p(t))
for all £ & C(k} with &, non-singular.
This is a special case of (11.3.2b}.
Lel & = k{C) be the function field of a curve over an algebraically closed

field &, let E/K be an elliptic curve, and choose a Weierstrass eguation
for E/K of the form

W'+ A+ B for some A, B € K.
Let A = 4A* + 278%, and for cach point ¢ € ¢ let

min{ord, (A%}, ord (B3}
12 ’

ne = ord:{A) — 12 [

(Here [r| is the greatest integer in ».) Define the minimal discriminant
divisor of E/K to be the divisor

Ve = Z ne(t) € Div{(").

1l

{This is the analogue of the minimal discriminant ideal for an elliptic curve
detined over a number field [AEC, VIEI §8].)

(a} Prove that Dg, g is a positive divisor and that it is independent. of the
choice of the Weierstrass equation for E/R.

(b} Let &€ — ' be a minimal elliptic surface associated to E. Prove that
the fiber £, is non-singular if and only if ord(Dg,p) =0

{¢) Prove that if Dg,;y = 0, then the j-invariant j(&,] is constant.

{d}) Prove that if Dp,p =0 and © = P', then & splits over (.

{c) Let C/k and E/A be given by

Ot zut— T4 fiu, E: y"! = 2% — 70t + B’

Prove that Dgy = 0 and that the associated elliptic swrface £ — O does
nol split.

{f} For the example in (). show that £ = (&®, wv) € E{K) is a point of
infinite order.
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3.36.

3.37.

3.8,

We continue with the notation from the previous exercise, with the addi-
tional assumption that £ does not split over K. Let g be the genus of
For each point f € 7, we Ltake a Weierstrass equation for £ that is minimal
for the valuation ord;, and we let E, be curve obtained by evaluating the
coefficients at ¢, We define integers fi by

0 il By is non-singular (good reduction},
fr =< 1 if Ey has a node {multiplicative reduction},
2 if E; has a cusp (additive reduction).

Then the conductor divisor of E/K is defined to be the quantity

fesx = Zf:(t) ¢ Div(C).

rel”

{For another description of the conductor, see (IV §10).)
(a2} Prove that ordi(fg;n} = ord (Dg; ) for all t € €, and deduce that

deg(fr, i) < deg(Deip ).

{b) Prove that
deg{Dg p) < bdeg(fe, )+ 12(g — 1).

This inequality is a precise function field analogue of Szpiro’s conjecture
(IV.10.6). Lt was originally discovered by Kodaira (see Shioda {3, Proposi-
tion 2.8]) long hefore Szpiro formulated his conjecture,
*This exercise is the function feld analogue of Lang™s conjectural lower
bound for the canonical height [AEC. VIIL8.9]. We continue with the
notation from the previous two exercises. Let g be the penus of €, and
let b : E(K) — R be the canonical height on £ (4.3, $.3).
{a} Prove that there is 2 constant ¢, (g) > 0. depending only on g, such that
if P € E(K)is a point of infinite order, then 2(F) = ¢ (g) deg Dein
(b} Prove that there is an absohite constant £z > 0 s0 that if deg Dy, >
2g—2and it P € F{/') s a poiut of infinite order. then ;ia(P} > eadegDyip.
Let 7 be a non-singular hyperelliptic curve of genus two given by an equa-
tion

Cry* =azx’” + b ver’ +do® +or +
let i: (" — (' be the involution iz, y) = (&, ~y). and let Fy, € C be the
point at infinity on C. (See [AEC. 11.2.5.1 and exercise 2.14] for basic facts
about hyperelliptic curves.)
fa) Prove that {{£,) = Py, Find all other points satisfying (P} = P.
(b} Let P.¢) € ' be any two points. Prove that the divisors (P + (i{P))
and {@) + {/{2}) are linearly equivalent.
{¢) Let D e DIv?{). Prove that there exist points P. €} € ¢ such that
D~ (P)+(Q) - 2(Fa).
{d) Frove that the poiuts PP and @ in (¢) are uniquely determined by D
unless P = ¢(Q).
(e} Prove that Pic{C)[2] is finite. More precisely, prove that it is isomor-
phic to (Z/27)*.
(f] Genceralize (a)-(e} to the case of a hyperelliptic curve C @ y* = f{x) of
genus g, where f(z) is a polynomial of degree 2g + 1 with distinct rools.
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3.39.

3.40.

II1. Elliptic Surfaces

Let £ = &(C) be the function field of a curve € of genus g. let § C C he a,
non-empty finite set of points of C, let By be the ring of S-integers of K,
and let E/K be an elliptic curve given by a Weierstrass equation

E:y =:"+4z+B with A, B € Rs and A = 44* + 278% € RL.

Let P € E(K} be a point. satisfying z{P), y(P) € Rs. Prove that
1, . .
h(P) = h(x(P)) < dmax{2g — 2 + #8,0} + g{h(;’&) + h{A*) + R(B*}).

{Hint. Use (12.3) and elementary propertics of height functions.)

Let £ — € be a minimal elliptic surface, let E/R be the associated elliptic
curve, and let E{K )}y be the subgroup of E( K} described in §9.

{a}) Suppose that £ has non-constant j-invariant: that is. the function
Je € — P defined in exercise 3.8 is non-constant. Prove that E{K ) has
no non-trivial torsion.

(b} For each integer m € {2,3.6}. give an example of a non-split cliiptic
surface {necessarily with constant j-invariant} such that E{K)y contains a
point of cxact order m. Prove that these are the only orders possible.



CHAPTER IV

The Néron Model

Let R be a discrete valuation ring with maximal ideal p and fraction field K,
and let E/K be an elliptic curve given by a Welerstrass equation

E: y2 + a2y + asy = ot + (JQ;L'2 + g + g,

say with coeflicients ap, a2, a3,a4, 06 € R. This equation can be used to
define a closed subscheme W C P%. An elementary property of closed
subschemes of projective space says that every point of E(K) extends to
give a point of W{R), that is, a section Spec(R) — W.

An important property of the clliptic curve E is that it has the strue-
ture of a group variety, which means that there is a group law given by
a morphisin B »x E — E. This group law will extend to a rational map
W xp W — W, but in general it will not be a morphisim, se W will not be
a group scheme over B. However, if we discard all of the singular points on
the special fiber of W (i.e., the singular points on the reduction of £ mod-
ulo p} and call the resulting scheme WP, then we will prove that the group
law on E does extend to a morphism WY x z W' — WC. This makes W°
into a group scheme over R, but, unfortunately, we mnay have lost the point
extension property. In other words, not every point of E(K) will extend
to give a point in WO(R).

A Néron model for E/HK is a scheme £/R which has both of these
desirable properties. Thus every point in E(K) extends to a point in £(R),
aud further the group law on E extends to a morphism £ x i € — £ which
makes £ imlo a group scheme over R, It is by no means clear that such
a scheme exists. Our main goals in this chapter are to construct Néron
models, describe what they look like, and give some applications.

The material in this chapter is of a more technical nature than most of
the rest of this book. We will assume that the reader has sormne familiarity
with basic scheme theory, as deseribed for example in Hartshorne [1, Ch. Il
or Eisenbud-Harris [1]. When we need more advanced material, we will give
atk least a brief explanation together with a reference for further reading.

We begin in §1 with a brief discussion of group varieties. This ma-
terial is not strictly necessary for the remainder of the chapter but may
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prove helpful for those readers who have not studied group schemes pre-
viously, Section 2 contains some hasic material on abstract schemes and
schemes over a base S, including material on fiber products, special fibers,
regularity, properness, and smoothness. In §3 we define group schemes
and describe some of their elementary properties. Section 4 is devoted to
the theory of arithmetic surfaces. An arithmetic surface € over a discrete
valuation ring R is a “nice” scheme whose generic fiber is a non-singular
curve C/K. We give several examples and prove that the smooth part €0
of a regular proper arithmetic surface € has the point extension prop-
erty C{K) = C%R). We also state the fundamental existence theorems
concerning minimal regular models of arithmetic surfaces.

In §5 we define Néron models and show that the smooth part WP
of a Weierstrass equation is a group scheme. In some cases, for example
when E/K has good reduction, this will imply that W is a Néron model
for E/K. The general construction of Néron maodels is given in §6, where
we prove that the smooth part £/R of a minimal proper regular mode! €/ R
for E/K is a Néron model. The proof is quite technical and may be omitted
on first reading. This is especially true for those readers who are mainly
interested in applications of the theory of Néron models. Frequently, it is
enough to know that a Néron model for E/K is a group scheine € over R
whose generic fiber is K and which has the property that £{(R) = E(K).
_ We next take up the question of what the special fibers £ (mod p} and
€ (mod p} look like. Section 7 contains a discussion of intersection theory
on general arithmetic surfaces, and then in §8 we apply this theory to give
the Kodaira-Néron classification of the special fibers of an elliptiec fibration.
Section 9 contains a description and verification of an algorithm of Tate
which gives an efficient method of computing the special fiber € (mod p)
from a given Weierstrass equation. In §10 we define the concuctor of an
clliptic curve and give some of its properties. Finally, in §11, we state
and mostly verify an important formula of Ogg which gives a relation he-
tween the conductor, the minimal discriminant, and the special fiber of the
minimal proper regular model of an elliptic curve.

In order to simplify the discussion in this chapter, we will make the
following convention:

All Dedekind domains and all discrete
valuation rings have perfect residue fields.

Notice this includes Dedekind domains and discrete valuation rings whose
residue fields are finite, which is the case that will mainly interest us,

§1. Group Varieties
A group variety is an algebraic variety that is also a group. In slightly

fancier language, a group variety is a group in the category of algebraic
varietics. This means that the group law is given by algebraic functions.
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Definition. A group veriety (or elgebraic group) is an algebralc variety G
and two morphisis

pGxG—G and i G

salisfyving the [bllowing gronp axioms:

(i) ‘There is a point 3 € & such that p(P.O) = {O. M =P

for all P € ¢

(it) w{Pi(P}) = p(i(P). P) = O fr all P € .

(i) p( P p(Q. BY) = p(j{ P. QY R) for all P.Q. R € .
G is called a commudative group voricty if it further satishes

(iv) (P Q) = p{Q. PY for all P.QQ € G,
The group varlely G is defined over K If & is defined over K| the mor-
phisms g and i are defined over K. and € € G{R).
Example 1.1.1. An elliptic curve £/K is a commutative group variety
defined over K. This follows from [AEC, 111.2.2] and [AEC, IT1.3.6].

Example 1.1.2. The additive group Gz, aud the multiplicative group G,
are the commntative group varieties

G, = at and Gu={rea' :r£0}
The group laws on G, and G, are defined by the fonmulas
Gy x G, — G, and j @y, % 0ay,, — Gy,
{r.y} —ux+y (r.y) — ay.
The additive group is clearly an afline varietsy. The inultiplicalive group is
also an affine variety, since there is an isomorphisim
G — {(z.y) € &7 1 2y =1}, r— {r. 1 r).
Example 1.1.3. The general linear gronp GL,, 13 delined by
x| R
F
GL, = ¢ A = : : e A" del{M)#£D
Tl MR AT

[t is a group variety with group law given by matrix multiplication. Note
that the inverse map ((Af) = Af~1 is a morphisin on GL,,. since the fue-
tion 1/ det{Af) is a regular function on GL,,. Just as with the multiplica-
tive group, we observe that GL, is an affine variety, since it is the com-
plement of a hypersurface in AT {In general, the complement of f = ()
in A™ is affine, since it is isomorphic to {{x.y) € A"+ @ yf(x) = 1}.) We
have GL, = G, and CL,, is non-cornmutative for n > 2.
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Definition. A homomorphism of group varieties ¢ : G — H is a mor-
phism of varieties that is also a homomorphism of groups; that is, ¢ is a
morphism, #{(0g) = Oy, and

(pc(P.Q)) = pun(e(P).6(Q)) forall P,Q € G.

Example 1.2.1. An isogeny E, — FE, of elliptic curves is a homomor-
phism of group varieties. This follows from [AEC, IIL.4.8], which says that
any morphism ¢ : E; — Ey satisfying ¢(QOp, } = O, is automatically a
homomorphism.

Example 1.2.2. The determinant map defines a homomorphism of group
varieties
det : GL,, — G,,.

The kernel of the determinant map is another affine group varicty called
the special linear group,

SL, = {M € GL, : det(M) = 1}.

In general, an algebraic subgroup of GL,, is called a finear group. It turns
out that every connected affine group variety is a linear group (Water-
house [1, §3.4]). For some other examples of linear groups, see exercises 4.1
and 4.2.

Proposition 1.3. Let & be a group variety defined over a field K. Then
the set of K-rational points G(K) Is a subgroup of G.

ProoOF. The identity eleinent O of G is in G(K) by definition. Further, the
morphisms ¢ : G x G — G and ¢ : G — G are defined over K, so G(K) is
closed under the group operations. Hence G{K) is a subgroup of G. |

Example 1.4.1, Let E/K be an elliptic curve. Then E(K) is the group
of K-rational points of E. If K is a number field, then E(K) is a finitely
generated group [AEC, VIIL6.7].

Example 1.4.2. For any field K we have G,(K) = K and Gu(K) = K*.
Similarly, GL,{K} is the group of n x n invertible matrices with coefficients
in K.

Proposition 1.5. Let G be a group variety.

(a) G is a non-singular variety.

(b) Every connected component of G is irreducible,

(¢) The connected component of G which contains the identity element is
a normal subgroup of GG of finite index.

Definition. Let G be a group variety. The connnected component of G
containing the identity element is denoted by G° and is called the identity
component of G. The quotient group 7/GP called the group of components
of G.
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Proor (of Proposition 1.5). (a) There is a Zariski open subset ¥ C (7
which is non-singular {Hartshorue [1, 1.5.3]). For any P € G, let 7p : G —
& be the translation-by-F map, 7p(Q} = p(FP, Q). Note that 7p is an
isomorphism from G to itself. Now 7 is covered by the non-singular open
sets Tp(U), PP € G. 40 every point of 7 is non-singular.

(b) Suppose that & has a connected component that consists of more
than one irreducible component. Then that connected component would
contain distinet irreducible components that have a point in commmon, and
the common point would be singular. This contradiets (a). Hence cvery
connected component of & is irreducible.

(¢} A varlety has only finitely many conneeted components, since it actu-
ally has only finitely many irreducible components (Hartshorne [1. 1.1.6}).
We label the connceted conponents of G as G G L . where G s the
connected component of ¢ containing the identity element. Let P & ",
The translatiou-by-P map 7p permutes the conuected components of G|
50 Tp{G") = GV for some j. But

P =1p(0) € Tp(G") = (V.

50 the connected components G and GV have the coonmon point P. Hence
G* = Y. This means that g{P.Q) = 7p(@Q) € G for all P.Q € G". Sim-
ilarly, O € GY N H{G"), s0 (G = G2 This proves that G is a subgroup
of (7.

Next, fix a point @ € & and consider the conjugation-by-Q map

@G — G O P) = pn({(Q) p{(£.Q)).

¢ 1% an avtomorphism of 7 so it pernites the components of . Fur-
ther, &) = (2. s0 as above we concinde thal (G"} = GY. Therefore GV
is a normal subgroup of G.

Finally, for each 0 < 3 < » we fix a point I G4, Then the maps

&, G — G o P) = (PP

permute the components of G and satisty ¢;(F;) = . from which we

conelude that ¢;{GY) = G, Hence Fy..... P, includes a complete set of

coset representatives for G/G". so ¢V Lias finite index in 6. O

We have seen above (L1 1.1.2) that the addilive group. the nniti-
plicafive group, and elliptic curves are group varieties. We will now prove
thal these are the ouly counceted group varieties of dimension one,
Theorem 1.6. Ler (¢ be a connected group variety of dinmension one de-
fined over an algebraically closed fiefd. Then either G =2 G,. G = G,. or G
is an elliptic enrve. (For non-algebraically closed fields, see exercise 4.13.)

dfore beginning the proof. we prove a lemma that gives conditions

Before begi v the proof 1 I that g lit
under which a curve has only finitely many antomorphisms.
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Lemma 1.7. Let " be a nou-singular projective enrve of genus g, let § ©
' be a finite set of points, and suppose that 8 satisfics one of the following
conditious:

() #S=3ifg=0 (i) #S=1ifg=1. (iil) §is arbitrary if g = 2.

Then
Aut(: 5) {f‘)c Aut(C?) - @l5) C }

is a fAnite ser.

Proor. Suppose st thal g = 0, so we can take (7 = Pl PFix three
distinet points Py . Py € 8. Every automorphism of P is given by a
linear fractional transformation (Hartshorne [1. I1.7.1.1])

e y]) = [ax + by. cr + dy).

An antomorphism ¢ will thus be deterinined by the images of Py, . Py,
which proves thai. the map {(of sers)

Aut(€: §) — 57, G (P}, o Pa), & Py))

s injective. But § is finite by agsumption, so Aut{C: 5]} is finite.

Next suppose that ¢ = 1. We make (¢ into an elliptic curve by taking
the origin {2 to be a point in 5. Then every isomorphism ¢ — C is a
translation followed by an isomorphism fixing € [AEC, III.4_.T], But there
are only finitely many isomorphisms €7 — (7 that fix O [AEC, TIL.10.1], so
the wap {of sets)

Ant{(" 8y — (7, o — GB(0),

is finite-1a-one. Sinee @{(} € 5 and § is finite. this proves that Ant{C" S)
is finite,

Finallv. we recall a theorern of Hurwilz which says that if a curve
has genus ¢ = 2, then it has ar most 84(g — 1} automorphisms.  {See
Hartshorne [1, exercises 1V.2.5. 1V.5.2, V.1.111} This completes the proof
of Lemua 1.7, O

Proor (of Theoremn 1.6, We know that the variety & is non-singular, irre-
ducible (1.5), and has dimension one, so we can embed it as a Zariski open
subset of a non-singular projective curve, say & C €' (Hartshorne [1. 1 §6}).
Let S = ("~ (7 be the complement of & in .

For every point P € (7. the translation-by-F wmap 7p 1 G — G is an
automorphism of G as a variety. Then rp induces a rational map rp : ¢ —
¢ whick extends to an isomorphisin since € is non-singular {AEC. 1T1.2.1}.
Clearly. we have 7p.(8}1 C 5, since (G} = (. Iu this way, we oblain an
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inclusion G — Aut{(C; §) given by P — 7o, where Aut{C: 5) is ag in (1.7).
But & is a variety of dimension one, so it has infinitely many points, It
follows from (1.7} that €' has genus less than 2, that 5§ = @ if " has genus 1,
and #5 < 2if 7 has genus (). There arve thus four cases to consider.,

Suppose first that ¢ has genus G and § = §. Then G = ¢ = P!, and
the group law on & i a morphism

i P x Pl — Pl

Such a map has the form jpix,y) = [f(x,y}.g(x._y)], where f and ¢ arc
billomogeneous polynoimials. The fact that g is a morphisin means that f
and g can have no commaon roots in P! x P!, which implies that g must
lock like either

pxy) = [fix).g(x)] or  pix.y)=[fly) 9(y)].

Bur then cither j{ €2 F) or {7 ) is constaut, so j¢ canuot define 1 group
law. This proves that it is not possible to have & = P!

Next suppose that € has genus 0 and that #85 = 1. Then we can
identify ' with P' in such a way that the point in § is the point at infinity
and the identity clement of G is the point 0. In other words, we have ¢ =
PG =AY and 0 € A is Lhe identily elenent of (7. The group law on &
i5 a morphisi

po A A — Al

50 ¢ is a polynomial map, gz .y} € K[r.y]. For every fixed valne of r.
we know that the map y — u(x,y) is an automorphism of &', so u(e.y)
miist be linear in y. Similarly for & — p{x, y). so plx.y) Is also linear in r.
Further, p{x.0) = & and p(0. y) = y. so we conclude that p has the forin

pley) = +y+ery for some € K.
Finally, we observe that if ¢ # 0. then ¢7! would not have an inverse,
since u{—c" Y y) = —c~! is constant. Tlence ¢ = 0 and p(x.y) = ¢ + .
which proves that G = G,.

The next. case Lo consider is a curve ' of genus 0 and #5 = 2. This
time we identify ' with P! so that the two points in § are 0 and o and
so that the identity element of ¢ i3 the point 1. Then the group law
on G = A~ {0} is a morphism

g (AN~ {0)) x (A < {0}) — (A~ {0}).
50 g is a Laurent polynomial, pfr.y) € Kle.o™ly,y~1]. As above. the
map y — p{x.y) is an antomorphism for everv fixed r. which means it

must have the form

. y) = alr) + b}y or . y) = ale) +blaiy™
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We further kuow that p{l.y) = y. which rules out the second possibility
and tells ws that a1} = 0 and #{1) = 1. In particular, &{x) # 0.
If afe} # 0. then we can find an a € K™ so that a(a) # O and 3{a) £ 0.

Then
( 4 e}y 0
s e, bia) =

which contradicts the fact that (G x &) € G, Therefore a{r) = 0. We
have now shown that p{e.y) = d{x)y. Reversing the roles of & and y
and 1sing the fact that 1{1.1) = 1. we couclnde that p(r.y} = ry. which
completes the proof that G = G,

It remains to consider the case that ¢ = (7 is a curve of genus 1.
The group variety ¢ has an identity element €. and we use this point to
sive (', 0] the structure of an elliptic curve. [t remains 10 show that the
identification (¢ aed €7 as curves is also an isomorphism of groups. In other
words, we need 1o prove that

pe{P Q=P+ atud ia(P)=-P,

where jie; + G < G — & is the given group law on G and 4+ is the group law
on the elliptic eurve {C, Q). Note that we do not assume, a priori. that G
15 counnutative,

Clonsider the map

G OxC—C AP.Q)=palP.QY-P -0

The point ¢ € {7 ix the identity eleent. for both group laws. s0 we find
that (P ) = O aud GO.Q) = O for all P.Q € . It follows from
an elementary rigidity lemma {1.8) which we will prove below that ¢ is
coustant. Hence

HP QY =(O0.0)=0. audso pe{P.Q)=FP+0Q forall P.QeC.
Finally. we observe that

P+ic(P) = po{Pic(P)) = 0.
which proves that i{P) = —F. This completes the proof of {1.6), subject

to our proving the following lemme. |

Lemma 1.8. ({Rigidity Lenuna) Let O Cy be irreducible projective
curves. and Jet

A () ox Oy —s (Y
be a morphism. Suppose that there pre points Py € ) and Py € Oy with
the property that esch of U = ) and o{C'| x Py) consists of a single
point. Then ¢ is a constant map.

Proor. We are given that o) x (%) consists of a single point., say

‘:'I){PJ. * C‘z} = i1
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Choose a point R € (!4, R’ # R. aud cousider the set

Uy = {Q cCy R g o(@Qx C.'Q]}.
Notice that the complement of ) in € is the set

€1~ Uy = proj, (67 (R).

where proj, : ¢y % € — 'y 18 projection onto the first factor, The pro-
jection map sends closed sets to closed sets. This follows from the fact
that ' is projective, hence proper (Hartshorne [1. 11.4.9]), and the defi-
nition of properness implies thar any projection V x C; — V is a closed
morphism.

Now the set ¢~ 1(R') is closed, so the smmne is true of proj, (6~ {{R')),
which shows that U7 1s an open subset of €. Further, it is clear that
that P, € 7. s0 U7y is non-empty. For any @ € U, we consider the
morphism

o — (T, S o(@.5).
The fact that @ & [/{ tells us that B is not in the image of this map.
In other words, this map is net surjective, so it follows from [AEC, 11.2.3]
that it is constant. In other words. if @ € L7, then ¢{Q..5) is independent
of § € Cy. Equivalently, @{Q »x C%) consists of a single point.

We now repeat the above argument using the fact that ¢(Cy x Fu)
consists of one poini. Doing so vields a non-emply open set Ly C Ch with
the property that lor all 5 € L, the sel ¢{Cy x 5} consists of a single point.

Combining these two facts, we find that oL = 7)) consists of one
point. Bat L) x 5 s Zariski dense Iy x (50 and a morphisin is deter-
tited by Us valies on a Zariski dense set. Therefore ¢ Is constant,

O

52. Schentes and 5-Schemes

In this scetion we are going to review some hasic notions aboul schemes,
especially schemes over a fixed base scheme. We assutne that the reader
has some familiarity with this material, as covered for example in Hart-
shorne [1, II §§2.3] or Eisenbud-Harris [1].
Definition. Let 5 be a fixed scheme. An S-scheme is a scheme X equipped
with a morphism X — 5. A morphism of S-schemes {or S-morphism} is a
morphism X — ¥ so that the diagram

X

v
N g
S
s commutative. IF 5 = Spec(ft). we will oficn refer 1o R-schiemes and R-
morphivmes instead of Spec{R)-schemes and Spec{ ) -morphists.
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[ntuitively. an S-scheme X — 8 ean be viewed as an algebraic family
of schenies, namely the family of fibers X, paramctrized by the points
s € 5. We have seen au exaniple of this in Chapter 111, where the elliptic
surface € — € is & C-scheme whose fibers &; form a family of clliptic
curves.

Two other important examples are provided by affine awl projective
space over a ring i, These are defined to be

= Spec Rlr.... ¢, anl P = Proj Rley. ...,
See Hartshorne [1. 11.2.5.1] for details.

In Chapter III we studied the group of sections ¢ — € to the clliptie
surface. Similarly. we can look at. the set of sections 5 — X of an S-scheme.
These are precisely Lhe S-morphisms from § to X. More generally, lor
any S-schenie I, we can cousider the set of S-morphisms from T to X

Definition. Let X and T be S-schemes. The set of T-valued points of X
is the set.

X1 = Homg(T. X} = {S-morphisms T — X}.

T = 5. we will sometimes call X (8) the sel of sections of the S-scheme X
Similarly, if § = 7" = Spec(R}. we will refer to the R-velued points of X
and write X (R},

Example 2.1.1. Let K be a Held, let § = Spec{K), and let X/K be an
aline scheme, say given by equations
h=fa=-=fr=0 with f)..... fo € Klry...o . )
Then
X{8) = { A-morphisms Spec(K) — X}
= {K-'ngebra homomorphisms M — K}
= {!J e K" fi{P)=---=fAP)= O}_

Thus X (5} agrees with our intuition of what X (&) should be. More geu-
erally, if B is any ring and X C A% is an affine scheme given by equations
fi=-=f =0with f; € R[z|....,x,], then X(R)} is naturally identified
with the set of n-tuples {#,,....2,) € R" satisfying the equations.

Remark 2.1.2. Bach S-schenmie X defines a functor Fy on the category
of S-schemes by assigning to an S-scheme T the set of T-valued points
of X. Thus

EFy : (S-schemes) — (Sets), T — X(T).
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It ¢ : T — T is an S-morphism of S-schemes, the associated map Fxy (d¢)
is given by composition,

Fx(e): Fx(T") — Fx(T). Fr—00g.

Notice that Fy is a contravariant {i.e., arrow reversing) functor. It is
a basic categorical fact {called Yoneda's lemma, see Eisenbud-Harris [1,
Lemma IV.1]) that the functor Fy determines the scheme X, Similarly,
inorphisms of functors Fvy — Fy correspond hijectively with S-morphisms
X — Y. We will not make use of this functorial approach. but the reader
should be aware that it is a convenient language which is in common usage.

Next we describe one of the most iniportant constructions of algebraic
goometry.

Definition. Let X and Y be S-schemes. The fiber product of X and Y
over 5 is an S-scheme, denoted X x5 Y, tegether with projection mor-
phisms
M X xg¥Y — X and pr i X xgY — Y
over 5 with the following universal property:
Let Z be an S-scheme, and let f: Z — Xandg: Z — ¥

be S-morphisms.  Then there exists a unique S-mor-
phism Z — X xg Y so that the following diagram comn-

utes:
Z
i ; o
A RN
X L XxgY Ay

The Aber product exists and is unique up to unique isomorphism; see Hart-
shorne [1, I1.3.3] or Eisenbud-Harris [1, 1.CL, [V.B]). If 8 = Spec R, we will
often write X xp V.

The liber product is the smallest scheme that fits into the commutative
diagrain '
XxsgY 5 X

o
Y — 5

In some sense, X xg Y should *look like” the set of ordered pairs (. y)
having the property that & and y have the same image in 8 This is
literally true in the category of sets. but care must be taken when applying
this intuition in the category of schiemes. In fact, X x5 ¥ will generally
be quite large, even when 5 consists of a single point: sce for example
Hartshorne [1, I1, excrcise 3.1].
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Example 2.2.1. Let s € 5, and let ¥ = {s} — 5 be the subscheme of &
consisting of the point s. More precisely, if we write k(s) = Qg /Mg, for
the residue fleld of the local ring at &, then Vs the scheme Spec kfs). The
fiber of X over s is defined to be the scheme

X, B X g {sh
It is a scheme over kis). In this case the underlying topological space
of X g {s} actually equals the set of points & € X such that the image
of v in § is s, see Hartshorne |1, II exercise 3.10]. Thus at the level of
points, this definition of the fiber X, agrees with our intuition of what the
fitrer should be.

Example 2.2.2. lLel R be a riug, let p be a maximal ideal of B, and let X
be an R-scheme. Then the fiber

)(p =N P
is the reduction of X modulo p. [t is a schene over the residue field R/p.
This agrees with our intuition, since an {affine) secheme X over R is defined
by a system of polynomial equations with coefficients in R, and X, is the
scheme defined by reducing the coefficients of the polynomials modulo p.

Example 2.2.3. Let B be an integral dowmnaiu, and let » = (0) € Spec ?
he the generic point of Spec B. Tf X is an R-scheme, then the fiber

‘X"F =X LS
is called the generic fiber of X. Tt is a scheme over the fraction field K
of B. In particular. if R is a discrete valuation ring with maximal ideal p,
then X has two fibers, its generie fiber X, /K and its special (or closed)
fiber Xp/k. where k = R/p is the residue field of R.

For example. suppose that X P4 is given by a single homogeneous
equation f{r.y. 2z} = 0 with cocflicients in R. Then the generic fiber X, C
P?% is the variety defined by the same equation f(x.y.2) = 0, and the
special fiber X, C P} is the variety defined by the equation f(‘r:._ i, 2} =0,
where f is obtained by reducing the coefficients of f modulo p.

Example 2.3. Let # 0 X — 5 be an S-scheme. In the definition of the
fiber product. if we take Z = X and f and g to be the identity map X — X,
then we obtain the dingonad morphism

v X — X xg X,
that is, éx is the unique map to the fiber product with the property that po
Ox and pe o dx are each the identity nmap on X

More generally, let ¢ : X — ¥ be an S-morphism. Then the graph

af ¢ is the unique morphism

byt X — X xqV
such that py o &, Is the identity map on X and p2 o &, = ¢. Notice the
diagonal morphisin is the graph of the identity map X — X.
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Example 2.4. Let # : £ — C be an eiliptic surface, say defined over
an algebraically closed field £. Then the fiber product € x¢ &€, or more
precisely, the set of k-valued points on the fiber product, is the set

(&€ xc &)k) = {(P,Q) : P,@ < &(k) and n(P) = 7n(Q}}.

Thus (€ x¢ E}(k) consists of pairs of points which lie on the same fiber.
In particular, if P and  lie on a non-singular fiber &;, then we can add
them using the group law on &;. In this way {most of) the fiber prod-
uct (€ x o E}k) becomes a group.

Example 2.5. Recall that every scheme S admits a unique morphism 5 —
Spec Z (Hartshorne [1, exercise I11.2.4]). Affine and projective space over §
are defined to be

L=Afxg 8 and T =P xg 5.

Projection onto the second factor makes A% and P} inte S-schemes. Notice
that if & = Spec R is an affine scheme, then A% = AR and P2 = P}, so
these definitions are compatible with the definitions of affine and projective
space over a ring.

We are now faced with the task of discussing three important proper-
ties of schemes and morphisms, namely regularity, properness, and smooth-
ness. The definition of each of these properties is somewhat technical, and
in truth we will make very little use of the fortnal definitions of properness
and smoothness in subsequent sections, On the other hand, the intuitions
underlying all of these properties are quite easy to understand, especially
if one works in a “nice” setting. So we are going to begin with an informal
discussion, including examples and basic material which we will give with-
out proof. This discussion should suffice for reading the remainder of this
chapter, except possibly for parts of §6. Then, at the end of this section,
we will give precise definitions and provide references for further reading.

Intuitive “Definitions.” A scheme X is regulor if it is non-singular, by
which we mean that every point of X has a tangent space of the correct
dimension.

A morphism of schemes X — 5 is proper if all of its fibers are complete
and separated. {These are algebraic analogues of compact and Hausdorff.)
Essentially, this means that the fibers of X — § are not missing any points
and do not have too many points. We also say that X is a proper §-scheme.

A morphism of schemes X — S is smooth if all of its fibers are non-
singular, or, to put it another way, if X is a family of regular schemes. We
also say that X is a smooth §-scheme.

In order to define regularity, we recall that the Krull dimension of a
ring A is the largest integer d such that there is a chain of distinct prime
ideals of A,

Mag C -+ My,
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A local ring A with wmaximal ideal M is called vegrfer if the dimension
of M/M? as an A/M-vector space is equal to the Krull dimnension of 4. (Sce
Matsumara [1, Ch. 7] or Atiyah-MacDouald [1, Ch. 11] for basic material on
regular local rings.} Intuitively. 81/91% is the cotangent space of Spec{A4)
at the point M., and the regularity of 4 is an assertion that 2 is a non-
singular point of Spec(A). For arbitrary schemies one defines dimension
and regularity in terms of the local rings as follows:

Definition. The dimension of a point P of a scheme X is the Krull di-
mension of the local ving O p at £, [ every closed point of X has the same
ditnension. we call this the dimension of X

Definition. A point P of a scheme X iy said to be requlor (or non-
sengudze) il the local ring Op is a regular local ring. The scheme X is
reguler (or non-singular) if every point of X is regular. In fact, it suffices
to chieck that every c¢losed point is regular: see exercise 4.5.

Example 2.6.1. Let B be a Dedekind domain. Then Spec{R) is a regular
scheme of dimension one. To see this, note that in a Dedekind domain.
every non-zero prime ideal is maximal by definition. Elence the longest
chain ol prime ideals is (0) < p. so R bas dimension one. Further. each
localization fp 15 a discrete valuation ring. so its maximal ideal M, i3
principal. [t fullows that Mp_;'j‘nfg Las dimension one as an Ry /M-vector
space, so Ry is regidar,

Example 2.6.2. If I is a regular local ring, or more generally if Spec{?)
i vegular. theu both &% and P} are regular schemes.

Examplc 2.6.3. Let /2 be a discrete valuation ring, let 7 be a nnifornizer
for 2. and asswme that 2,3 € ", Let ¢ € I, and define a scheme X C P,
by the equation
X o =at +az

Then X is a regular scheme if and only if a 20 (mod 72). To see this. one
first checks that the anly possible singular point is the point v = [0,0, I
on the spedial fiber X, and that this can only oceur if @ = 0({mod m),
Dehanogenizing the equation by setting =z = 1. we lind that the maximal
ideal AL, of the local ring O, is geverated by . ». and 7, and that these
guantitics are related by the equation

W= at if.
If ¢ # 0 {(1nod 7°), then a is itself a uniformizer for B, Hence
7€ aR = (y* - ¥R C AL

s0 a4 and y generate ;’11’7.;-*';\1'3\ which shows that O., is regular. Conversely.
if @ = 0 (mod 7). then AL /A2 cannot be generated by fewer than three
clements. so O is not regular.
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Next we lock at proper morphisms, which. recall, are supposer to be
morphisms X — § whose fibers are scparated and complete. For example,
suppose that we are givenu a “curve” (. a point v € ¢, aud a comumtative
diagrain of morphisms -

Oy — X

l l

c L s
If X — 8 is a proper morphisni, then the fiber of X over f(+) is scparated
and complete. so there should be a unigue way to extend F to all of €. This
statement is essentially the following valuative criterion for properness.

Theorem 2.7. {(Valuative Criterion of Properness} Let o : X — S be
a morplism of finite tvpe of Noetherian schemes, The map & Is proper if
and only If for every (discrete) vajuation ring R with fraction ficld K and
every comnnitative square of morphisns

Spec{K) -— X

|
1 I
Spec(R} -~ S,
there is a unigue morphisin Spec(R) — X fitting into the diagram. (In
other words, there is a nnique morpliism Spec{R) — X so that the compo-
sition Spec({R) — X — 8§ agrees with the botiom line of the square.)

FProor. Hartshorne [1. 11.4.7]. See also Hartshome [1. exercise 11.4.11] for
the assertion that it suffices to consider only discrete valuation vings. 0

In order to better understand what the valnative criterion is saying, we
note that if & is a discrete valuation ring with fraction field K, then Spec(R)
is a regular ovne-dimensional scheme (2.6.1}. and Spec{&’) is Spee(R) with
s closed point removed. Thus Spec(K) looks like a eurve with one peint
removed.

An important collection of proper S-schemes is the set of projective
schemes over 5. as described in the following result.

Theorem 2.8. Let § be a Noetherian scheme, and let X C P be a
closed subschewe of projective space over §. Then X is proper over 5. In
particular, PE itself is proper over 5.

Proor. See Hartshorne [1. 11.4.9]. O

We coutinue our informal discussion by looking at smooth morphisins.
For our purposes, the most important examples of sinooth morphisms will
be sclienmes which are snwooth over a discrete valuation ring or Dedekind
domain . In this situation. the condition that X be smwooth over R is
essentially equivalent to the assertion that all of its fibers are non-singular
ane have the swne dimension.
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Proposition 2.9. Let B be a discrete valiration ring with fraction field K,
resichie fleld &, and maximal ideal p. Let X be an integral (ie., reduced
and irreducible) R-schete of finfte type over R whose generic fiber X, /K Is
non-empty. Then X is a smooth R-scheme if and only If X, (K} and X, (k)
contain no singular points.

Proor. The schone X is irreducible. so it has a unignue generic point. Our
assunption that the generic fiber X, is non-empty shows that the generic
point of X maps to the genervie point of Spec R, so X is flat over Spec R from
Hartshorne [1. TI1.9.7]. If R contains its residue field & (the so-called fune-
tiou field case). the desired result then follows from Hartshorue 1, 111.10.2].
The general case is Milne [4. T Prop. 3.24). see also Bosch-Liitkebolinert-
Raynaud {1. §2.4, Prop. 8].

O

There are wany theoreus i algebraie geonetry which say that some
property of worplisins, such ay properuess, stuoothiness, separability, finite-
ness, ete. is preserved under composition, base extension, and products.
The only result of this sort that we will need is the following assertion {hat
the composition of sincoth worphisms is again smooth.

Proposition 2.10. 7f¢: X - Y and v Y — Z are simooth morphisms.
then the composition v o ¢ X — Z 08 a smooth morphisng.

PROOCF. See Hartshorne [1. HE10.1¢] or Altman-Kleiman [1. VI1.1.7ii).
g

We now ook al some examples of regular schemes and proper and
smooth morphisins.

Example 2.11.1. Let 2 be a discrete valuation ring with unifovnnizer .

We asstime that 2 € 8%, Let X C P4 be the schene given by the equation
3 . .

X st dayt =G4

Then X is proper aver R from (2.3}, since it is a closed subscheme of P, 1t

is also casy to check that the schenme X is irredueible and regular. However,

the special Bber of X is given by the equarion ¥ = 2% so the special fiber

is reducible and singnlar. Hence X is not sicoth over A.

Example 2.11.2. We continne analyzing example (2.6.3), s0 R is a dis-

erete valiation ring with wniformizer 7 and 2.3 € R*. and X' < P% is the

scheme defined by the equation

X:yfz=a'+a2’ lor some a € R.

We also let B e the fraction field of 1, & the vesidue feld of . ad p the
maximal ideal of R. Notice that X is proper over £ by (2.3). since it is 1
closed subscheme of 'EE”?;(.
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Suppose first that a € R, Then the special fiber X, /5 ix 0 non-
singular curve, so X is smooth over R from {2.9).

Next, suppose that ¢ = 0{mod p). Then the special fiber Xp/h is
given by the equation y?z = 1% so the special fiher is singular and X
is not smooth over R. Let v € X, C X be the singular point ou the
special fiber, and let X" = X - 4 be the scheme obtained by renoving ~
from X. This makes the special fiber X:,‘;’k non-singular. so X" is smooth
over R. However, removing the point + has destroved the completencss of
the special fiber, so X" is not proper over 1.

Finally, we observe that if 2 is a uniformizer for E. then (2.6.3) says
that X is reguiar. This is true despite the fact that its special fiber X,
is singular and s0 X is not smooth over . We will prove later {4.1) that
since X is regular, every R-valued point of X lies in the smooth part A,
In other words, the natural inclusion XY(R) C X(R) is an equality. so in
this situation X" retains a sort of properness property over R.

This last example (2.11.2) illustrates an important general phenone-
nou. Let X be a {nice) scheme which is proper over a discrete valuation
ring R and which has a smooth generic fiber. Then X need not be smooth
aver R, since its special fiber Xp may have singularities. We can create
a smooth R-scheme X" by removing from X the singular pommts on its
special fiber, but then X will not be proper over R. Thus the attributes
of properness and smoothness are somewhat antithetical Lo oue another.

However, if the original scheme X is regular, then it turns out that
every f-valued peoint in X{R) actually lies in XY(R}. So for regular
schemes, X still behaves to some extent as if it were proper over £, We
will prove this later (4.4) when X has relative dimension one over /7. The
general case we leave as an exercise.

We are now ready Lo define properness and sioothness. hut we want to
stress that the most important thing js for the reader to understand the un-
derlying intuitions and the examples described above. For (urther reading
on this material. see Hartshorne [L. TIT §§9.10], Altnan-Kleiman {1, V.VI],
anel Bosch-Liitkebohmert-Raynaud [1, 2.1-2.4].

Definition. Let ¢ @ X — % he a morphism of finite type. The map ¢
is separated if the diagonal morphism by 1 X — X xg X {2.3) is a closed
immersion. The map ¢ is universally closed il for any base extension 5" —
S, the map X xg 8" — 8 sends closed set to closed sets. The wmap & is
proper if it is separated and wniversally closed. We also say that X s
proper over S, or that X is a proper S-scheme.

Definition. Let ¢ : X — 5 be a morphisin of Onite tvpe, lel » € X, and
let 5 = @) € 5. The map & is smooth (of relative dimension r) at o
point x € X if there are affine open neighborhoods

se8SpecRC S and reSpecdAC X

with
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A=Rh )N Fo) for some fi... ., fo e Rt tagr)

5o that the o x 0 minors of the Jacobian marrix (9, /8¢ ;} generate the unit
ideal in A,

We say that ¢ is smooth {ov that X is smooth over 8) if ¢ is smooth
al all points of X. A morphism that is smooth of relative dimension zero
is called an étale morphism.

Remark 2.12. The Jacobian condition in the definition of stneothness is
sintilar to the criterion we nsed Lo define non-singnlar points o varieties
in [AEC, T §1]. In particular, it is clear that if X — Spec R is a smooth
morphism and p € Spec R is o maximal ideal. then the ber Xy is & non-
singular variety over the residue fleld B/p, which is a special case of (2.9).
There are many other ways to define smootliness. One of the most useful
Is in terms of the sheaf of relative differentials of X/S, see for example
Hartshorne [1, IT §8. IIT §10]. Altman-Klelman (1, VIVI], Milue [4, 1§3]
ot Boseh-Linkebolmert-Rayuand [1, §2.1,2.2]. For a fancy fuuctorial defi-
wition, see Milne [1, 1.3.22].

43. Group Schemes

A gronp scheme over § iy an S-scheme & whose fibers [orin an algebraic
farnily of groups, similar to the example described in {2.4). This means we
should be able to multiply two points provided they lie on the same fiber,
and the mmlriplications should fit together to give a group law on the fiber
product G x ¢ G MMore forinally, a group scheme over 8 is a group in the
category of S-schemes. This leads to the following definition. Note thal we
nst be careful to define evervthing in terms of maps. rather than in terms
of points. {Aun allernative approach is to define a group scheme in terms of
its associated functor of points: see (2.1.2) or Eisenbud-Harris [1. IV A v

Definition. [Let § be a scheme. A group scheme over 8 is an S-scheme
T — 8§ aed S-morphisis

oyt 85— G it G — (. G xg G — {F,

sueh that e following diagrams colmnte;
(i) ("Iff!-."r;r.f.rfty,r m'.’f.'mf.‘m‘)

G xs (7 (7 xe (G

Tyl 1wery |

j;r / j.lrf

. “ e g . I
5 Py G — i & Ko 5 ECH £
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(i) (énverse)

. 1wd il

e Oxs0  CxsCG ——io— GxsG
A[. e \VU Tﬁg 11"-
¢ s G ¢ s ™G

{Here 7 NS x g (7 is the diagonal map (2.3).)
(iii) { associativity)

1]
(;'XSGXsG F—P GXSG

Jl)qr JF‘

G xg G £, e

Example 3.1.1. Let (7 be a group variety defined over a field K as dis-
cussed in §1. Then G is a group scheme over the one point scheine § =
Spec(K'). This is clear from the definitions. Note that the identity mor-
phism og 0 8 — G sends the one point in S to the identity element of G

Example 3.1.2. The additive group scheme G, over Z is the scheme (5, =
Spec Z[T]. The group law on G, is given hy

G, xz (o, — .,
|
(Spec ZITy]) xz (Spec Z|T3])
|
Spec(Z[Th] ®z Z|Tz])
|
Spec Z[T). Ty] —  SpecZ[T],

where the morphism SpecZ[T17.T,] — SpecZ{7T] is induced by the ring
homomorphism

ZIT) — ZIT1, T, T T + Ty

For any ring R, we have G, (R} = R with group law given by addition
on 1. The additive group scheme (345 over an arbitrary scheme § is the
group scheme Gy, xz 5 obtained by base extension. In particnlar, G, 5 =
Spec R[T}.



308 IV. The Néron Model

Example 3.1.3. The muliiplicative group scheme Gy, over Z is the scheme
G = Spec Z{T, T~ ). The group law on Gy, is given by

Gm XE Gm i Gm

|
(SpecZ[T1. 1)) xz (Spec Z[Te. Ty ')

|
Spec Z[Ty, T Y. 1o, 1571 —  SpecZ{T.T-1],

where the morphism Spec Z[T1, 77" T2, T '] — Spec Z[T, 771 is induced
by the ring homomeorphism

SpecZ|T, T — Z|. T7 " Tu. 157, Tr— T\ To.

For any ring R, we have G,,(R) = R* with group law given by multi-
plication on B*. The multiplicative group scheme Gy, 5 over an arbitrary
scheme 5 is the group scheme G, Xz § obtained by base extension. In
particular, G, p = Spec R[T, T-1].

Example 3.1.4. Let R be a discrete valuation ring with maximal ideal p
and fraction field K, and let E/K be an elliptic curve with good reduction
at p. Fix a minimal Weierstrass equation for E,

E:y?z+arzy+ asy = 2° + apr® + auz + ag.

The coeflicients of this equation are in R, 50 we can use the equation to
define an R-scheme £ < P%t- (Of course. we need to homogenize the equa-
tion first.} The fact that £ has good reduction implies that the scheme £
is smooth over R, since good reduction is equivalent to the fact that the
special fiber £, of £ — Spec R is a smooth elliptic curve over the residue
field R/p.

The addition law on £ is given by rational functions with coetficients
in R, so it induces a rational map

& xpl — &

We know from [AEC, 111.3.6] that the addition law E x E — E on the
generic fiber is a morphism. We will later give two proofs that g itself is
an R-morphism. The first proof (5.3) uses explicit equations and is similar
to the argument in [AEC, II1.3.6, 111.3.6.1]. The second proof (6.1) uses
fancier machinery to prove a much stronger result.

The next proposition shows that the set of T-valued points of & group
scheme form a group.
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Proposition 3.2. Let & be a group schewe over S, let T be an arbi-
trary S-scheme, and let G(T'} be the set of T-valued points of G, which
recall is the set of S-morphisms T — G. For any two elements ¢, v € G(T'),
define a new element & = € G(T) by the commutativity of the diagram

[ AN -

T'xsgl —— Gxs@G

i [

where &1 is the diagonal map (2.3). In other words.
G =polonxy)ody € G{T).

This operation gives G(T) the structure of a group. The identity element
is og o vy, where wr « T — 8 is the map making 1" into an S-scheme. The
inverse of ¢ 1540 .

More precisely, the association T — G(T) Is a contravariant functor
fronr the category of S-schemes to the category of groups.

Proor. All of this follows from the definitions and elementary diagrain
chases. For cxample, to verity that oy o mp is the identity element of G(T'),
we observe that the following diagram is commutative:

1xmr

GxsT — {Ixg &

Tq{:xl jlxo’“

B (Foamy}
TxsT 0 Gxe@

Tar lp

oy )
T G

But the definition of oy tells us that the map po(l x gy} : G xg 5§ — @
down the right-hand side of this diagram is projection onto the first factor.
Hence tracing around the boundary of the diagram vields

Griapomp) =pro{lxap)jo{pxl)ody =prel{dx Llody = .

We will leave it to the reader to perform the similar computations
needed to check that 4 o ¢ s the inverse of ¢ and that the associative law
holds, which completes the proof that G(T) is a group.

Finally, the functoriality statement 1eans that if f: 7" — T is an §-
morphisin of S-schemes, then the map

GT)— T,  ér—gof,
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is a homomorphismm of groups. It is clear that the identity element is
mapped to the identity clemoent, so we must verify that

(p+tof={paf)«(iof) for all ¢ e G(T).
The definition of @ # 1 says that the right-hand square of the following
diagram is commutative, and the lefi-hand square is clearly commmutative:

T el g T xeT P ax @

R

r Lo = g
The map (¢ > y) o (f x f} along the top row of this diagram is equal to
(o fi = (3o f). so by definition the map along the bottom row equals
{@po fi*({gof). Thisis the desired result. which completes the prool of
Proposition 3.2. ]

Remark 3.3. In our study of elliptic curves and group varieties, the
translation-by- maps provided an important tool. A group scheme G/ S
is not a gronp. s0 we cannot translate ¢ by a point of the scheme &. In-
stead, G s a farily of groups parametrized by the points of 5. So in order
to trauslate GLowe need to start with a fawily of points on G paraetrized
by 5. Then we can translate cach group in the famnily by the appropriate
point. We formalize this idea in the following manner.

Let /8 be a group scheme, and let ¢ € G(S} be an S-valued point
of (. Theu the {right) translation-by-o morphism is the S-morphism
Te + G — & defined by the composition

MG = GxsS X3 Gxs@ 5 o
To nnderstand 7, farther, we note that the S-valued point o 8 a map
a: 85 — & In particular. for each point 5 € §. we get a polat o{s) on
the fiber G.. where G, is a group variety over the residue field at s, The
restriction of 7, to the fiber G, is precisely Lranslation by the point o(s) €
G Thus 1, can be viewed as a family of transkations of the fibers of G.

Remark 3.4. Another important tool in our study of elliptic curves was
the collection of nmultiplication-by-rii maps. These maps can be defined
inductively on every group schemne in the following way. Let 7: G — 5 be
a group group schieme over S with identity elenient a - 8 — & inverse roap
i G — G and group multiplication g Gx g — G, Alsolet ideg - G — G
be the identity map on G. For each integer m. the multiplication-by-m wmap
on G is the morphism
[m] : 7 —
defined inductively by the rules

(1] = idg;. [+ 1] = jeo ([l x {1]). [ — 1] = o {lnl x 4).
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&4, Arithmetic Surfaces

Let £ be a Dedekind domain. An arithmetic surface over Spec{R) is the
arithmetic analogue of the fibered surfaces studied in 11T §8. Here Spec{ /)
plays the role of the base curve, and an arithmetic surface is an R-scheme
€ — Spec(R) whose fibers are curves. For example, if B is a discrete valu-
ation ring, then there will be two fibers. The generice fiber will be o curve
over the fraction field of R and the special fiber will be o curve over the
residue fleld of A. Just as in the case of fibered surfaces, an arithmetic
sirface € may be regular (non-singular) even if it has singular fibers.

Definition. Let R be a Dedekind domain with {raction fleld &. For exam-
ple. B could be a discrete valuation ring. Intuitively, an arithmetic surface
{over R} is a “nice” R-scheme € whose generic fiber is a non-singular con-
nected projective curve C/ A and whose special libers are unions of curves
over the appropriate residue fields, Note that the special fibers may he
reducible or singular or even non-reduced.  This intuitive definition will
suffice for our purposes. but for the technically inclined, we indicate that
the word “nice” is an abbreviation which means that € is an integral, nor-
1nal, excellent schenie which is flat and of finite type over R.Y

Remark 4.1.1. An arithmetic surface € is a one-dimensional family of
one-dintensional varielies, so it is a scheme of dimension two., One might
instead call € a curve over . sinee it lias relative dimension one over R
(i.e., the fibers are one-dimensional). We will frequently be interested in
arithmetic surfaces which are regular. or proper over R, or smooth over K.
We recall the intuitions from section 2. An arithmetic surface @ is regular if
it is nou-singgular as a surface. € is proper over B if its ibers are conplele,
and € is smooth over R if its fibers are non-singular. If € is smooth over I,
then it is automatically regular, but in general the converse is not true.

Remark 4.1.2. The definition of an arithmetic surface € ensures that even
if € is not regular. its set of singular points is a finile set of closed points.
In other words, an arithmetic surface is regular in codimension one. This
nicans that there is a theory of Weil divisors on €. In particular, for any
irreducible curve F C € (equivalently. any point # € € of codimetsion
ouel, the local ring Op of € at £ is a discrete valuation ring. We denote
the corresponding normalized valuation by

ordp : K@) — Z.

I Integral is equivalent to reduced and irreducible {Hartshorne [1, IL3.15Y,
normal means that all local rings are integrally closed (Hartshorne {10 11 ex-
ercise 3.8]}. flat meaus that the fibers vary “nicely” (Hartshorue [L, LU §9)},
finite type eans the extensions of local rings are finitely generated algebras
(Hartsherne {1, 11 §3]), and excellent is a somewhal technical condition which
won't concern uy, but see for example Matsuwinura [1, Ch. 13].
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TGy Q/

° . - ®
(2} (3) (p) (97) ()

The Arithmetic Surface € : y* = o + 222 + 6 over Spec(Z)
Figure 4.1

where K{C) is the function field of €. For the basic thoery of Weil divisors,
principal divisors, and the divisor class group. see Hartshorne [1. 11 §6). We
will continue cur discussion of divisors on arithinetic surfaces in section 7.

Example 4.2.1. The projective line P}, over R iy an arithinetic surface
over R. For any maximal ideal p of B, the fiber over p is P the projective
line over the residue fiekl & = R/p. Notice that P}, is both proper and
simooth over R,

Example 4.2.2. Let € C P2 be the closed subscheme of P2 giveny by the
equation

€y’ =’ +2x° +6.
The generic fiber of € is an elliptic eurve £/ with diseriminant A =
—2%.3. 97, so for all primes p % 2, 3,97, the fiber €, is a (non-singular)
elliptic curve over Fy,. The fibers over the “had™ prites are

€y s y? = 28, @y y? = ¥+ 2), Cyr 1 y? = (2 + 66)%(a + 64).

The arithmetic surtace €/Z is illustrated in Figure 4.1,

The arithinetic surface € is proper over Z, sinee it is a closed subschemne
of P% {2.8). 1t is clear that € is not smooth over Z. since it has singular
fibers. We claim that € is a regular scheme. To see this, it suffices to
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check that C is regular at the singular points on the fibers. We will check
that the point P € € corresponding to the cusp x = y = 2 = 0 on the
fiber Gz is non-singular. The maximal ideal ¥p of the local ring @p at P
is generated by z, ¢, and 2, and the residue field at P is Op/Mp = F,. By
definition, € is regular at P if

dimp, Mp /M3 = 2.

This dimension cannot be less than two, so we must show that M;:/M%
can be generated by two of z,y, 2. Using the equation for €, we see that

2=3"1y% — 2% — 22 e M2,

so r and y are generators, This proves that € is regular at P. We will
leave for the reader the analogous calculations at £ = y = 3 = 0 and
€+ 66 =y = 97 = 0 (exercise 4.14).

The scheme € is thus regular and proper over Z. If we discard the
three singular points on the three singular fibers, we obtain an open sub-
scheme €% ¢ € with the property that €% is smooth over Z. Of course, €0
will not be proper over Z, since some of its fibers are missing points.

Example 4.2.3. Let € C P be the closed subscheme of PZ given hy the
equation
C:y' =+ 207 + 4.

The singular fibers of € are €3, G5, and €;. The scheme € is not regular,

since one easily checks that the point £ = y = 2 = 0 is a singular point
of €.

Let n : € — Spec(R) be an arithmetic surface and let p € Spee{R) be
a point with residue field k, = R/p. The fiber

Cp = C xpp = C Xgpec(r)y Specihy)

is a curve, but it may be reducible or singular or even non-reduced. More
precisely, we can write the fiber as a union

Cp = i nin
=1

for certain irreducible curves Fy, . . ., F/kp and multiplicities ny, ..., 1, > 1
in the following manner. Fix a uniformizer u« € R for p, that is, ordp(u) = 1.
Then n*{u} = u o is a rational function on €, and the fiber of € over p is
given by
€y = Z ordp{m*u) F.
Fom-1(p}
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L

F?, Fl

The Special Fiber C; 1 (3% — a2 — 3%}y — 2% (2y =z~ 3) = 0
Figure 4.2

Here the sum is over the irreducible components of the fiher over p, and
ordy is the normalized valuation on K{C) corresponding to F {4.1.2).

There are several ways in which a poim x € €, cau be a singular poing
of the fiber €,. It may lie on a component F' with multiplicity n > 2, it
may be a point where two or wore componeits intersect, or i may be a
singular point of a particular compenent. The following example illustrates
these ideas.

Example 4.2.4. Cousider the arithmetic swface € C AZ defined by the
equation

€2y — (w+ Dyt — 2 + 2° + )y’
-+ 3 e -2 (e 0ty -t = 2 =5

We are going to look at the special fiber Cy of € aver the point {5) € Spec Z.
This special fiber s the curve in A%n defined by reducing the equation of €
modulo 5. s0 after some algebra we find

Gy — b =By -2y —r-3) =0
Thus 5 consists of three irreducible components, which we label as
Fioyt=243x?, FBy=2 F:2y=x+3

We have illustrated the special fiber @5 in Figure 4.2 Such illus-
trations can be very useful for visualizing components, multiplicitics, and
intersections. as long as one keeps in mind that one is looking at a drawing
in B? which purports to represent a curve in characteristic p! In particu-
lar. there may be interscction points which are “hidden™ because R is not.
algebraically closed.

The component Fy of €5 appears with multiplicity 2, and each of Lhe
other componeuts has multiplicity 1, so as a scheme the special fiber has
the form

(:‘;5 = F_'[ +2.F'_; +F3,.
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In particular, the scheme Gy is neither irreducible nor reduced. Every point
ou Fj is a singular point of €. since F, itself appears with nultiplicity
greater than 1. The other singular points on the special fiber are the
node (0.0} on Fy and the points where the various F)'s lntersect, such as
the point (3,2) on F| N £y and the points (2.0) and (3.3) on £y N F3,
{Remember that the fiber €5 lives in characteristic 5.)

The next proposition says that if an arithmetic surface € is regular
and if a point x € €, on its special fiber lies in the image of an R-valued
potut P € C(R} (ie., il x = P(p)). then z is automatically a non-singular
point of €,.

Proposition 4.3. Let 7 : ¢ — Spec(R) be a regular arithimetic surface
over a Dedekind doinain R, and let p € Spec(R).
{a) Let x € Cp C € he a clused point on the fiber of € over p. Then

€, ix non-singular at v <= 7 (p) ¢ M2 ..
Here n* is the natural map ©° + R — Qg induced by m.and My o is the
maximal ideal of the local ring Qe of C at .
{b) Let P € Q(R). Then €, is non-singular ar P(p}.

Proor. To case notation, we will write
C=C,=Cxn{R/p)

for the fiber of € over p, and we will let P = 7v*(p}0e . Notice that B C
Me . since x lies on the special fiber over p.
{a}) We first assume that P ¢ J\ff%_;{_ and prove that r is a non-singular point
of €. We are given that @ is regular, so. by definition, O, is & regular local
ring of dimension two. This means that we can find clements f. fo € Me
s0 that

Moy = f10cq + f20c. + ME .

If we write p = tK. then 7#*{f} € P C Me ., 50
™) = a fi +axfy (mod M%) for some ay.ap € Op .

Our assumption is that 7 ()0e ., =P & JX{%I\_!_, which means that at least
one of a; and @y 15 not in Me .. and hence at least one of them iy a unit
in Q¢ ,. Switching f| and f2 if necessary. this means that

:}V{C.J: = ?Tw(t)oe..c + fi!ot".’..r + 3\12[_,"; = q} + f20("f.1: -+ NAEQCT

The fiber € (as a scheme. which includes multiplicities associated to
non-redouced components) is € = € x5 (B/p). so its local ring at = is ob-
tained from the local ring of € by reduction modulo p. In other words,

Off.;:.‘ = O(ﬂ.:qu} and :M—(_"r = :N[e‘/gn
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Therelore

Hence Mé,;a:/M%I is generated by the single element f3, which shows
that O is a regular local ring of dimension one, and so & is a non-singular
point of C.

This proves the implication that we will need for part (b}, We will
leave the proof of the opposite implication as an cxercise for the reader
(exercise 4,17).

(b} We assutue that #*(p} C .M%_T and derive a contradiction. Using the
fact that 7 o P is the identity map on Spec{ ), we compute

p={(xoP)(p)=P on*(p)C P*{ME,) = (P"Me,)* = p*.

The last equality follows from the fact that P : Spec{RB) — € is a mor-
phism of schemes, so by definition {Hartshorne [1, I 2}) the induced map
P*: Qg, — Ry is a local homomorphism of local rings. This means in
particular that P"Me , = p.

But p is a maximal ideal of the Dedekind domain R, so the inclu-
sion p C p? is impossible. Therefore 7*(p) ¢ :W[%_J:. Applying {a}, we
conchide that x is a non-singular point of the fiber €,, which concludes the
proof of {b). O

The following important corollary says that the smooth part of a
proper regular arithmetic surface is large enough to contain all of the ra-
tional points on the generic fiber. For an example which shows that the
regularity condition is necessary, see (5.4.4) in the next scction.

Corollary 4.4. Let R be a Dedekind domain with fraction field K,
let €f R be an arithmetic surface, and let CfK be the generic fiber of €.
{a) If C is proper over R, then

C(K) = C(R).

(b} Suppose that the scheme € is regular, and let C" C € be the largest
subscheme of € such that the map C® — Spec(R) is a sinooth morphism.
Then

{¢) In particular, if € s regular and proper over R, then

C(K)=C(R)=CR).
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Proor. (a) This is really just a special case of the valuative criterion of
properness. Auy point in €(R) can be specialized to the generic fiber to
give a point in C(K). so there is a natural map C(R) — C(K). This
map is clearly one-to-one, since two morphisms Spec{R) — € which agree
generically (i.e., on a dense open set) are the same. Thus G(R) — C(K).

Let P € C{K) be a point. We are given that C is proper over f2. so the
valuative eriterion (2.7} says that there is a morphism op : Spec(R) — €
making the following diagram commute:

= E€xpKN — €

I
Spec{K) -— Spec(R).

This proves that every point in C(A) comes [rom a point in C(R), so
E(R) = C(K).

(b} Proposition 4.3 says that cvery point in €(R) intersects each fiber
at a non-singular peint of the fiber. But, by definition, Y is the com-
plement in € of the singular points on the fibers. Therelore the natural
inclusion Y R) — E(R) is a bijection.

(¢} This is immediate from (a) and (b). a

The previous corollary (4.4} says that if € is a regular arithmetic sur-
face thal is proper over R, then the smooth part €% of € is large enough
50 that all of the Al-valued poinls on the generic fiber extend to K-valued
points of €". This raises two questions. First. given a (non-singular projec-
tive) curve C' defined over V', does there exist a regular arithmetic surface €
proper over R whose generic fiber is C/K7 Second, assuining such proper
regular models exist, to what extent is there a minimal such model? The
following theorem gives the answer to these questions. It is the arithmetic
analogue of the geometric results described in (HL7.7} and {II1.8.4). We
will discuss the construction of these minimal models further in §7.

Theorem 4.5. Lot B be a Dedekind domain with fraction fietd K. and
et /K be a non-singular projective curve of genus g.

(a) (Resolution of Singularities for Aritlimetic Surfaces, Abhyankar [1.2],
Lipman [1,2]) There exists a regular arithmetic surface €/ R, proper over I,
whose gencric fiber s isomorphic fo C/K. We call C/R a proper regular
model for /K.

{b) {Minimal Models Theorem. Lichtenbaum {1], Shafarevich [2]) Assume
that g = 1. Then there exists a proper regular modef G/ R for C/K
with the following minimality property:

Let €/ R be any other proper regular model for C/K. Fix an Isomor-
phism from the generic fiber of € to the generic fber of €™ Then the
indnced R-hirational map

C--s emin
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is an R-isomorphism. We call €M/ R the minimal proper regulnr model
for C/K . It is unique up to unigue R-isomorpliisui.

PROOF. {a} Sec Abhyankar [1.2] and Lipman [1,2]. There is also a nice
exposition of Lipman’s proof in Artin [2]. In the case that ¢ has genus 1,
we will explicitly construct a proper regular model for C/K in §9.

(b] See Lichtenbawm [1. Thni 4.4] and Shafarevich [2. lectures 6.7,8).
There is a nice summary of the main resnlts with sketches of the proofs in
Chinburg [1]. See also §7 for a further discussion. o

Just. as in {TI1.8.4.1). the importance of the minimal regular model
lies in the fact that every antomorplism of its generie fiber extends to a
morphisim of the entire scheme.

Proposition 4.6, Let R be a Dedekind domain with fraction ficld K.
and let /K be a non-singular projective curve of genus g > 1. Let C/R
be a minimal proper regnular model for C/ K. and let & C € be the largest
subscheme of € which is smooth over R. Then every K-antomorphism
T K — CfK of the generic fiber of € extends (o give R-automorphisms

:8—2¢0 and e — v

Proor. The fact that v extends to an R-automorphism € — € iy exactly
the definition of minimality given in (4.5b). Next take any point r & €Y
and choose some neighborhood 7 € €Y of x. Then 7 is smooth over R.
Further, IJ is an open subset of €, since CY iy open in €. We know that
7: € — @ is an R-isomorphism. so 7(I7) is an open neighborhood of r{x)
and is smooth over R. Thereflore {r) € ", which proves that 7(€%) < Y.
Applying the same argunient to 77! gives 77H{EY) C Y, which completes
the proof that T gives an R-automorphism of GY. 0

§5. Néron Models

Let K be the fraction field of a discrete valuation ring R. The Néron model
of an elliptic curve E/K is an arithmetic swrface £/ R whose gencric fiber is
the given elliptic curve. The schieme €/ is characterized by the fact that
it is large enongh so that every point of E gives a point of &, but small
enough so that the group law on E extends to make & into a group scheme
over &, Of course. when we talk of “points of £.” we mean more than just
the points of the nnderlying scheme. This leads 10 the following definition.
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Definition. Let R be a Dedekind domain with fraction field K, and let
E/K be an elliptic curve. A Néron model for E/K is a (smooth) group
scheme £/R whose generie fiber is E/K and which satisfies the {ollowing
universal property:

Let X/F be a smooth R-scheme (Le., X is

smooth over R) with generic fiber X/ K, and Néron
let ¢ @ X, — E;i be a rational map de- (Ma])ping)
fined over K. Then there exists a unigque R- Properly
morphism ér : X, — &5 extending ¢y

Remark 5.1.1. A Néron model £/R is a smooth R-scheme. This means
that for every point p € Spec{R}. the fiber &, of £ — Spec{R} is a non-
singular variety defined over the residue field A{p): see (2.9). However,
as we will soon see, the fiber £, over a closed peoint p may have several
components and may not be complete, so i general € will not be proper
over R.

Remark 5.1.2. In the Néron mapping property we have only required
that the map ¢x : X;p — L on the generic fiber be a rational map. It
turns out that any rational map from a non-singular variety to an clliptic
cirve is a morphista. See (6.2h} helow for an even more general stalement.,

Remark 5.1.3. The most important instance of the Néron mapping prop-
erty is the case that X = Spec(R) and X = Spec(HK'). Then the set of K-
maps X, x — E, g is precisely the group of K-rational points E(AK), and
the sel of A-morphisms X — &,5 is the group of sections £(R). So in
this situation the Néron mapping property says that the natural inclusion

E(R) —— E(K)

is & bijection. If R is a comnplete discrete valuation ring with algebraically
closed residue field, then one can show that the equality £(R) = E(K}
suffices to ensure that the group scheme £/R is a Néron model for E/K,
See exercise 4.30.

We begin our study of Néron models by proving that they are unique
and behave well under unramified base extension,

Proposition 5.2. Let B be a Dedekind donsain with fraction fiedd K,
and let E/R be an elliptic curve.

(a) Supposc that £,/ and €/ R are Néron models for E/K. Then there
exists a unique R-isomorphisu 0 0 £/ R — E2/ R whose restriction to the
generic fiber is the identity map on EfK . Tu other words. the Néron nrodel
of EfK is unique up to unique Isomorphisi.

(L) Let K'/K be a finite unramificd extension, and let R’ be the integral
closure of R in K'. Let £/ R be a Néron inodel for E/K. Then Expg R is a
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Néron model for Ef/K'. (N.B. If X'/ K is ramified. this result will generally
not be true.)

Proof. (a) The identity map E/K — E/K is a rational map from the
generie fiber of € to the generic Aher of £5. and & is smooth over R,
s0 the Néron wapping properiy for €2 sayvs that the identity map extends
uniquely to an R-morphisin ¢ : £, /R — £9/R. In a similar fashion we
obtain a unique B-morphism & : €2/K — &/ R which is the identity map
on the generic liber. But then ¢ow; £/K — £, /R and the identity map
&1/R — &,/ R are R-morphisms which are the same on the generie fiber, so
the uniqueness part of the Néron mapping property says that ¢ o b equals
the identity map. This proves that ¢ and @ are isomorphisms.

(b} Let X'/R' be a smooth RV-scheme with generic fiber X//KY, and let
dre 2 X, — By be arational map. The compaosition

X’ — Spec(R') — Spec({R)

makes X' into an R-scheme. Further, our assumptions on K’ imply that
the map
Spec(R'Yy — Spec(R)

is a smooth morphism. (Sec exercise 4.19.} IHence the composition is a
smaooth morphism (2.10), so X’ is a smooih R-scheme.

Now the Néron mapping property for £/R tells us that there is an R-
morphism

X 28 g

whose restriction to the generic fiber is the composition
SF PR ¥
X Exxy K 2 E

The two R-morphisms ¢y 0 X* — & and X' — Spec{R’) determine an -
morphism (and thus an R'-morphisin} to the fber product,

@R:;x’—.*EXRR!.

Further, the restriction of ¢ to the generic fiber is ¢ . This gives the
existence part of the Néron mapping property. We will leave it to the reader
to prove the uniqueness part, which corpletes the proof that £ xp R is a
Néron maodel for E/ K. O

Let & be a discrete valuation ring with fraction field K. We arc going
to usc the Weierstrass equation of an elliptic curve E/K directly to con-
struct an R-group scheme W' C P% whose generic fiber is £/K. [f the clo-
surc W of W' in P is regular, then we will also prove that W'{R) — E(K).
50 W satisfics the most important instance of the Néron mapping prop-
erty (5.1.3}). In particular. if E has good reduction, then we will sce (6.3)
that a minimal Weierstrass equation tor F/K already defines a Néron
model.



£5. Néron Models 321

Theorem 5.3. Let B be a discrete valuation ring with fraction field K,
let E/K be an elliptic curve, and choose a Welerstrass equation for E/K
with coefficients in R,

E:? +aizy+ asy = 2° + apx? + agx + ae.

This Weierstrass equation defines a scheme W C P%. Let W' C W be the
largest subscheme of W which is smooth over K.

{a) Both W/R and W°/R have generic fiber E/K.

{b) The natural map W(R) — E(K) is a bijection. If'W is regular, then
the natural map WP(R) — W(R) is also a bijection, so in this case there is
a natural identification W(R) = E(K).

{¢) The addition and negation maps on E extend to R-morphisms

W x p W — W and W — W

which make WO into a group scheme over R. The addition map further
extends to an R-morphism

W% W W

giving a group scheme action of W® on W.

Remark 5.4.1. If E/K has good reduction and if we take a minimal
Weierstrass equation for E/K, then W itself is smooth over K. So in this
case (5.3) says that W = W' is a group scheme over A.

Remark 5.4.2. If E/K has bad reduction, then there is exactly one sin-
gular point on the reduction E (mod p}. In other words, the special fiber W
of W contalns exactly one singular point, say ~ € W C W, and then W° is
obtained by discarding that point,

WO =W {7}

Remark 5.4.3. The scheme W/R in {5.3) is proper over R, since it is a
closed subscheme of P (2.8). It follows from the valuative criterion (4.4a)
that W{R) = E(K). However, in general, the scheme W will not be regular,
since a singular point on the special fiber will often be a singular point
of W. So, in general, we cannot use (4.4b) to deduce that W{R) = E(K).
Intuitively, if W is singular, then there will be points P € F(K)} = W(R)
which go through the singular point of W. Thus, in general, W® will not
be large enough to be a Néron model, because WO(R) # E(K), whereas W
itself will be too large to be a Néron model, because the group law on £
will not extend to all of W,
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Example 5.4.4. We illustrate the previous remark by looking at the curve
E-v+ay=2"4ag.

If ay € K™, then W is stooth over A {(excrcise 14.20(h}). so W is a Néron
model for £. B () > 1, then the special fiber

W v ey =a*
has the singular point (0,0), so
WY =W {(0.0)}.

We consider two cases.

First, il v{ag) = 1 {L.e., ag i a uniformizer in ), then W is a regular
schente from excrcise 4.20(a). It follows from {4.4c} that WHR) = W(R) =
E{K). We can also see this directly as follows. If P € W(R} were to
go through the singular point on the special fiber, then we would have
P = (a.y} = (0.0} (mod p), which means that .y € p. But then the
equation for £ would give

ag = y° +ay— & € p°,

contradicting the assumption that v{ag) = 1. Hence W' (R) = E(K).

Second, if v{eg) = 2, then W is not a regular scheme and WY will
not be a Néron model for F, despite the fact that WY is a group scheme
with generic fiber £. For example, suppose that as = o with {a) > 1.
Then the point P = {0,a) € EF{K) = W(R) is not in WHR). since P =
{0,0) (mod p).

ProoF (of Theorem 5.3}, (1) W is projective over R, since it is the closed
subscheme of P2 = ProjR[X.Y,Z] defined hy the single homogencons
eqitation

WY Z 4+ a0 XYZ+ayVZ? = X4 00 X2Z + ag X 2% + ag Z°.

its generic fiber is the variety in P% defined by this same equation. Thus
the generic fiber of W is precisely E/K.

If W9 is not equal to W, then as described above in (5.4.2), W? consists
of W with one point on the special fiber temoved. In particular, W and W
have the same generic fiber, so the generic fiber of W is also E/K.
(b} The scheme W is a closed subscheme of B4, so it is proper over R (2.8).
Further, its generic fiber is E/K from (a), so (4.4a} tells us that E(K) =
W(R). This proves the first part of (b). If in addition W is regular,
then (4.4b} says that W(R} = W®(R), which gives the sccond equal-
ity BE(K) =W R).
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{¢) Let
oW W--->W and PTW---» W

be the rational maps on W induced by the addition and uegation laws on
the generic fiber £/KN of W. The [act that the generie fiber is a group
variety means that g and i satisfy all of the group axioms on a non-empty
open subschieme of W so they will satisfy the gronp axioms on the Targest
open sthscheme on which they are defined. In other words. if we can show
that g is a morphism on WY x g W and tliat 7 is a morphisin on W. then
Lhe group axicms are autowmatically (rue.

If W is smwooth over R, we are going Lo prove thal g is o maorphism ou
all of W x g W II'W is not smwooth over B theu as explained above (5.4.2).
the special fiber W contains a unique singular point ~ and W = W~ {~}.
It this situation we will show that g is a morphisin except at the single
point B -

(v, e WX W Wxp W

In particular, it is a morphism on W" = 5 W.

In order to simplify our calenlations. we will assume that the residne
field & does not have characteristic 2 or 3 {(equivalently, 2 and 3 are nnits
in R). The gencral case is similar, but the formulas are considerably longer.
This assumption allows us to make a change of variables in P4, and put our
Weierstrass equation in the for

W V2Z=X"+AXZ* + BZ*

In other words. W is the clased subscheme of IFD;Zrr defined by this homoge-
necs equation.
Let W, be the aftine open subscheme of W defined by

'V\?H”‘ = {Z ?,: U} — W,

and let * = X/Z and y = Y/Z be affine coordinates on W The addition
map j is then given hy the usual formmla [AEC. 11E2.3)

= [(352 - 1’1]((92 - ?}1)2 - (g — :1?1}2(3-’2 + .1-‘1)),
(2 — y1)” + (r2 — 1) (g — oy + 2oz ~ 2003, (02 — 7).

More precisely, this fonuula gives the restriction of i to Wy x g W,
and on this affine scheme g will be a morphism except possibly along the
closed subscheme where its three coordinate Munctions vanish.  Looking
at the third coordinate and then at the second coordinale, we see (liat p
is a morphism on Wiy % Wag except possibly on the closed subscheme
defined by the cquations

o —w =2 — 4 = O
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In other words, j¢ is a morphism off of the diagonal.
To deal with peints on the diagonal, we use the relations

W=+ Az +B  and  yd=ul+Am+ B
which hold identically on W,g x g W, to rewrite the addition map p as
M= [(3}1 + y2){ (e + w2 + Yo}t +(xd + g + 22 + ‘4)2)_

(z] + @iy + 15 + A
= (g + w2} (G0 + 22)” + ALy + a2} + B — yrya) (i1 + v2)7].

(See [AEC, II1.3.6.1] for a similar calculation.) Just as above, we see Lhat g
is a morphism on Wy x g Wae except possibly on the closed subscheme
defined hy the equations

g+ y2 = .I-‘? + e + Jé» + A=0.

We have now proven that g is a morphism on Way x g War except on
the subscheme defined by the four equations

g — &) =y2 -4 =ity = J!,f + e + ;I.’:j +4=0

A little algebra and the fact that 2 € B* shows that this subscheme is
defined by the equations

£ = . = 1yz =0 i_’;;z:'f +4=0

In particular, it is contained in the diagonal of Wy x p Wi, 50 if we iden-
tify W,g with this diagonal, then g is a morphism except on the subscheme

y=3z"+A4=0.

Using the relation y° = &% + Az + B and the fact that 3 € R*, we sec that
the disceriminant 447 4+ 2782 is contained in the ideal generated by y and
352 + A, Hence if W is smooth over R, which implies that its discriminant
is a unit iu 2, then g is a morphism on all of W.g x g Wag. Similarly, if W
is not smooth over R, then g will be a morphism on Wy % g Wy away
from the subscheme

Ty =X, 1 =iz =0, 3x¥ + A =0, 44% +27B% =0,
which is precisely the singular point on the special fiber of the diagonal.

Next ler W be the affine open subscheme of W defined by

Wi ={Y £0} c W.
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Notice that W x5 W is covered by the four affine subschemos

'V\?m-f AR Wnﬂ‘, 'va-f xR 1\7:“{. W:Lff A Wan'. WJ_:.‘”- b 1‘V:1ﬁ,
since W does not intersect the scheme ¥ = Z = . We have already
dealt with the restriction of p to the first set, so it remains to show that g
is a morphism on each of the last three. We will leave this task for the
reader (exercise 4.22), since the proof is similar to the argument given
above,

Finally, we ohserve that the negation map

PWxpW—W, [X.Y.Z] —|X.-Y.Z],

is a morphism on W, since it is actually the restriction of & morphisim on
P4 x g P%. This completes the proof of Theorem 5.3. O

$6. Existence of Néron Models

In this section we arc going to prove the existence of Néron inodels for ellip-
tic curves. The proof, which closely follows the exposition of Artin [1, §1],
is largely scheme-theoretic and is at a more advanced level than the other
material in this chapter. The reader who is willing to accept the statement
of Theorem 6.1 should read Remarks 6.1.1-6.1.3 and can then proceed o
the next sccetion with no loss of continuity.

Theorem 6.1. Let ' be a Dedekind domain with fraction field K,
fet E/K be an elliptic curve, let €/ R be a minimal proper regular model
for E/K (4.5). and let £/R be the largest subscheme of €/R which is
smooth over R. Then £/ is a Noron model for E/K.

Remark 6.1.1. The generic fiber of € is the non-singular curve £, so €
has only finitely many singular fibers. Each fiber of € consists of one or
maore irreducible components, possibly with multiplicities (see §4), say

"o
Gu = E Tlpin-,'.
i=1

Then € is formed by discarding from € all Fii's with np, = 2, all singular
points on each Fy;, and all points where the £,;’s intersect one another.
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Remark 6.1.2. Continuing with the netation from (6.1.1}. the group
scheme £/ R cowes cquipped with an identity element, which is an f2-valued
polutl gg € £(R}. The mage ao( ) of the identity element is a curve on ©
which will intersect the fiber €, at the point o (p}. Proposition 4.3 tells us
that 74(p) will be & non-singular point of €,. so it will ke on an F,; hav-
ing mmltiplicity sy, = 1. The component of € containing ag(p) is called
the identity component of €,. The scheme obtained by removing all non-
identity components [rotn the fibers of € is called the connected component
{of the identity) of €. The image aq{R) of the identity clement lies in €, 50
we can define the wdentify component of £y and the connected component
fof the identity} of € in an analogous manner. The connected component
of £ is a subgroup scheme of £: see exercise 4.25. We will see later (9.1)
that it is lsomorphie to the smooth part of the scheme defined by a minimal
Weierstrass equation for E.

Remark 6.1.3. With notation as in (6.1), one can prove that the group
law € x g & — € extends to give a group scheme action

EXR@—>G,

See exercise 4.23. We proved a special case of this in (5.3¢).

Befure beginning the proof of {6.1), we want to say a fow words explain-
ing why the smooth part of a minimal proper regular model for E/K turns
out to be a Néron model. In other words, how will we use the four proper-
ties smooth.” “minimal.” proper,” and tregular’? First, the properness
of € over & ensures that K{K) = C(R) {4.4a). Next. the regularity of € tells
us Lhat every H-point lies in the smooth part of @ (4.4b), so €(R) = E(K).
This gives E(/) = £(R), which Is an inmportant ease of the Néron mapping
property {5.1.3). Thns the properness and regularity of € are mainly used
lo obtain the Néron mapping property. On the other hand, the smoothness
and minimality of & are used to prove that € is a group scheme over £.
In particular. the minimality implies that any K-antomorphism of £, such
as a translation-by- £ map for some point P € E{K). will extend to give
an R-automorphism of £, These translation maps on € will be essential for
showing that the group law on E/K extends to give £ the structure of a
group scherne over It

With these preliminary comments completed. we begin the prool of
Theorem 6.1, The first step in the proof is the following generalization of
a theorem of Weil [3). Well's theorem asserts that a rational map from a
smooth variety to a complete gronp variety is automatically a wmorphism,
and Artin [1, Prop. 1.3] has extended Weil's theorem to a scheme-theoretic
settilg,

Proposition 6.2. (Wil [3], Artin fl]) Let R be a Dedekind domain,
Iet G/R be a group scheme over R, let X/R be a smooth B-scheme, and
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let ¢ 1 X --+ (G be a rational map over B. Write Dom{¢) for the domain
of ¢, and suppose that Dom{ o) is dense in everv fiber of X/R.

{a) The complement X ~ Dom(d) is a subscheme of X of pure codimenision
one.

(b)Y If G is proper over R, then Dom(¢) = X. In other words, ¢ is a
morphism.

Proor. We will write u(g.h) = gh and ¢{g) = ¢ . Further, to simplify

our exposition and help reveal the underlying ideas, we will phrase our
argumnent in terms of points. But the reader should be aware that in
order to be completely rigorous, our “points” should be T-valued points for
arbitrary R-schemes T. As an alternative. the proof can be given purely
schemoe-theorctically, a task which we will leave for the reader.

Having made this disclaimer, we begin by constdering the rational map

F:XxpX---+0. Fla.y) = ola)ply) L
We claim that there is a natural identification
Dom(¢) —— A M Dom{F). @ — (rox),

where A is the diagonal in X x g X. To see this, take a point x € Dom{).
Then Flr,z) = &(x)@{e)™" is defined, so (r,x) € Dom(F). Conversely,
if (o, ) € Domf F}, we can use the fact that Dom(F) is open to find a non-
empty open set U C X so that x xg 7 € Dom{F}. Next, since Dom({¢) is
open, we can find a point y € U M Dom{e). Tt then [ollows from

Sz}t = Flx, y)oly)

that ¢ is defined at =, s0 & € Dom{e). This completes the proof of the
claim.

Let A(X x X} be the function field of the scherne X x 5 X, and let Qg
be the local ring of 7 along the identity section; that is. Qg g is the ring of
rational funetions on G which are well-defined at some point on the imape
of the map ey : Spec(R) — &, where #y s the identily element of the group
scheme (5.

The rational map F defines a ring homomorphism

E Qa0 — KX xX). f—foF

Let f € Qgo. Iz € Dom(e). then (r,z) € Dom(F) from the claim
proven above, and further F(x,r) = o(x)¢{z)~! is the identily element
of 7, so F(f) is defined at (o, ). Conversely, if £7(f} = f o F is defined
at (z,x) for all functions f € Qg . then F must be defined at (i, x). This
proves that

x € Dom(¢p) <= (x.x) € Dom(F* f} for all f € Oy
— F*(O(;.ﬂ} < O.’rxl}{“[':r“x:]-.
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where Ox oy (o0 © K{X x X) is the local ring of X x5 X at (&, 7).

The scheme X x5 X is smooth over R, so in particular it is normal.
This implies that a function f & K(X = X} will be defined at (i, 2) unless
its polar divisor div. ()} goes through (z.x). {This is a standard property
of normal schemes. It [ollows, for example, from Hartshorne [1. I1.6.3A].)
In other words, the local ring O .« () can be characterized as

Oxuxirn= {:‘l ER{X XX : (r.w) ¢ di\-"x(ﬁ)}U{O}»
Combining this with our description of the domain of ¢ from above yields
X~ Dom(é)={reX : F'(Oco) € Oxxa.ion)

={reX : (z.2) € dive{F" f) for some [ € Ocro}
zan | diva(F*f)

fedk:n

) (andiv. (F* ).

Fetan

I

The diagonal A is a complete intersection in X x g X, and each divisor
divee (F* f) has pure codimension one in X x5 X, so each of the intersec-
tions A Ndive (7 f) has pure codimension one in A, It follows that the
union over f € Uerp also has pure codimension one in A, since we know
o priori that it is a proper closed subset of A, This completes the proof
of (a).

(b} The following lemma (6.2.1) says that a rational ap from a smooth
scheme to a proper scheme is defined off of a subset of codinension at least
two. Then (6.2.1} and (a) imply (b).

Lemma 6.2.1. Lei R be a Dedekined domain, let X/ he a smooth R-
scheme. Ict Y/ R bhe a proper R-scheme, and let o : X --+ Y be a dominant
rational map defined over R. Then every component of X ~ Domio) has
codimension al least two in X.

Proor. Let 2 € X be an irreducible subscheme of codimension one in X,
We need to show that ¢ is defined at the generic point of 2 {i.c., & is defined
on a non-cmpty open subsct of 2). Consider the local ring Oy ¢ of X at 2.
It is a local ring of dimension one, and it is regnlar since X/ R is smooth,
s0 1l is a disercte valnation ring,.

The dominant rational map ¢ : X --+ Y indnces a morphisnt

Spec K{X) — Spec K (Y)

fromn the generic point of X to the generic point of Y. In other words,
composition with ¢ indnces an inclusion of function flelds K'(Y) — K{X}.
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This gives us the commutative diagram

s

X - Y

T
SpecOx 2 ]’
Spec K{X) — SpecK{Y).

The discrete valuation ring O - has fraction field K{X), and we arc given
that Y is proper over K. so the valuative eriterion of properness (2.7 ) implies
that the rational map

SpecQy 2 — X -~y

extends to a morphism Spec Oy = — Y. This says precisely that ¢ is defined
at the generic point of Z. which completes the proof of (6.2.1}), and with it
also the proof of (6.2b). a

We can nse (6.2} to find the Néron model of an elliptic curve with
good reduction.

Corollary 6.3. Let B be a Dedekind domain with fraction fleld K,
let E/K be an elliptic curve given by a Welerstrass equation

Y arry + agy = 5 4 aze’ + agr + ag

having coefficients in R, and let W C P% be the closed subscheme of Pf,
defined by this Welerstrass equation. Suppose that W is smooth over R
or, cquivalentlyv, that the Weierstrass equation has good reduction at every
prime of R. Then W/ R is a Néron model for E/ K.

FrROCF. Theorem 5.3 says that the addition law on E/K extends to make
W into a group scheme over the localization of B at cach of its prime ideals.
These group laws are given by the same equations, so they fit together to
make W into a group scheme over R, It remains to verify that W has the
Néron mappiug property.

Let X/R be a smwooth A-scheme with generic fiber X/K| take any
rational map ¢ @ X;x -+ Eyp defined over K, and lel ¢ : X --» W be
the associated rational wap over K. The fact that W is a closed subscheme
of P%, implies that it is proper over R (2.8), so we can nse (6.2b) to deduce
that the rational map ¢ extends to a morphisin. This proves that W/R
has Lhe Néron mapping property, so it is a Néron model for £/ K. a

Our next step is to prove {hat if the scheme € in (6.1} is a group
scheme, then it will be a Néron model for £, at least provided that the
ring R is large enongh. The precise properiy we will require R to have is
described in the following delinition.
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Definition. A discrete valuation ring F is called Henselian if it satisfics
Hensels lemume that is. 1? is Henselian if for auy mouic polynowial f(r) &
E|r] and any element a € R satisfving

Fla) = 0{maod p} and fiia) £ 0{mod p).
there exists a unique element o € R satisfying
v = a{mod p} and flol =100

The ving R is called strictly Henselian if it is Henselian and if its residue
fleld & = R/p is algebraieally closed. (Remember our residue fields are
perfect. The usual definition of strictly Henselian requires & to be separably
closedl.

For cxxaunple, if B is a diserete valuation ring. then the completion of B
with respect to its maximal ideal p is Hepselian, We have scen many -
stances i whicly it is helpful to work with complete diserete valnation rings.
for example in our stwdy of forual gronps [AEC, TV §6] and the reduction
theory of elliptic curves [AEC. VII §2] [n particnlar, we used Hensel's
lenna tor complete diserete valuation rings to prove the surjectivity of the
reduction map Ey(KY — F. (k) in [AEC, VIL.2.1].

However, for many purposes the completion is too large, since the
completion of I will generally not be Hat over & The following general-
ization of [AEC, VII.2.1] says that the reduction map is surjective for any
Menselian ring.

Proposition 6.4. Let R be s discrete valuation ring with maximal ideal p
and residne field k, let X/R be a smooth R-scheme. and let X[k be its
special iber. Consider the reduction map

X(R) — X (k).

{(a} If R is Henselian. they the reduction map is surjective.
{b) If R is strictly Henselian, then the finage of the reduction map is dense

in X.
Proor. {a) Replacing X by an affine neighborhood. we can assume that
X =SpecA with A=R[t..... [T SO

for certain polynomials fi.. ... fu € R[f1.....t,4.]. Further, the assiunp-
tion that X is smooth over i means that the o x 11 minors of the Jacobian

natrix of
= (28)
B P
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generafe the unit ideal in A.

Choose any point b = ibi..... 5.,1_) € X(k): that is. let b € A" R} satisfy
Jilby=---= £,y =0 {mod p).
We need to construet a point .3 € A%(R) with the property that
3 = b{inod p) and ATy ==L =0

For example. suppose that X is locally a hypersurtace {i.e, m = 1),
given by the single equation f{f... .. tnir) = 0. Then the Jacobian con-
dition says that the partial derivatives i f /0, generate A, so in particular
one of the values (2f/0t)(0) must be a unit in A, say (9f/dt)(B) € A”.
Thus the polynomial F{#) = f(£ b ... by, } satisfies the hypotheses of
Hensel's lemnma, so it has a root 3 € R with 31 = by {(inod p}.  The
point 3 = (3. ba,. .. 8, € X(RY reduces modulo p to rhe original point &
in r‘Ll[,i) which completes the proof in this case. We wiil leave the general
case, which is somewhat more difficult, for the reader wo complete, or see
the references for exercise 4.27.

(b} The residue field & is algebraically closed, so it is clear that Xp(k) is
dense in X, Now (b} follows from {a). o

Ay the next proposition explaing, every disercte valuation ring R can
he embedded in a minimal (strictly) Henselian ring.
- (=]

Proposition 6.5. Let R be a discrete valuation ring with maxinal
ideal p. residue field £, and fraction field K. Let K7 he a separable closure
for K. let R® be the integral closure of R in K7, and choose an ideal p*
of K7 Iving above p. Let

D={oeGryr i oo ="}
f= {O’ = 0 U(J;) —repforallx € H‘}’

he the assnciated decomposition and inertia groups.

{a) Let R°(1})} denote the subring of B° fixed by D, and define R" to be
the localization of R*(DY} at the maximal ideal p* N K¥(D). Then RY is
Henselian, It is called the Henselization of B,

(hy Let B%(1) denote the subring of B fixed by 1, and define B 1o be the
localization of R*(I} at the maximal ideal p° N 75(I). Then B is strictly
Henselian. It is callod the strict Henselization of .

(¢} With the obvious notation. we have

pll — pRll. ili‘-h =} p.ﬂh - plr{:i]l. .I[\:Hh — 'Z
Further the natural map

Gr}\"‘";'f\"'- 3 G{',.-"k
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of Galois groups Is an Isomorphism.

ProoF. {a) We are going to verify that R" has the Heuselian property.
Let f(r) € Rh[;{'] be o mouic polynomial. which we may assumnce to be
irreducible and separable over K. (If f is inseparable, then f'{x) is iden-
tically 0, so the Henselian property is vacuonsly truel) Factor f over K®
as

flr)={x o}z —oa) o (0 —ay)

Suppose that o € R" satisfies f{a) € p" and f/(a) ¢ p". This implies that
there is exactly one root. say o = ;. with the property that o — a € p*.
Further. if o € D is any element of the decomnposition group of p*, then we
have

a— oo =cla~«a)€a(p?)=p°.

But there is exactly one root of f which Is congrnent to a, so #{a) must

equal . This shows that « is fixed by D, and hence o € R".

{b} The proof that R™ is Henselian is similar to the proof of {a), and it

is a standard fact that the residue field is an algebraic closure of k; see for

example Serre {4, T §7]. {Remewmber we are asswuming that & is perfect.)

(e} Again these are standard properties of Galols extensions of local ficlds.
O

Remark 6.6.1. It is clear from the construction (6.5) that the fraction
fields K" and K*" are separable algebraic extensions of A, Note that in
general the fraction field of the completion of R will be transcendental
over K, in fact. of infinite transcendence degree. Thiy 18 one reason why it
is often better to work with the Henselization. The moral is that one should
work with Henselizations if one ouly needs to solve polynomial equations.
but one has to go to the completion in order 1o 1se convergent power series.
We also mention that strietly Henseltan rings play the same role for the
étale topology that local rings play for the Zariski topology.

Remark 6.6.2. The Hensclization can also be deseribed in terms of a
universal mapping property, which essentially says that it is the smallest
Henselian extension of R. and similarly for the strice Henselization. See
exercise 6.2%.

Praposition 6.7. Let R be a strictly Henxelisu discrete valuation ring
with fraction field K, lot EfK be an elliptic curve, let C/R be a mininal
proper regular mode! for EfK {4.5), and let £/ R he the largest subhscheme
of /R which is smooth over B (6.1.1). If the group faw on £/ K extends to
make £ into a group scheme over R, then £/ R is a Nérou model for E/K

Proor. Let X/R be a smooth R-schemwe with generic fiber X/K, and
let. ¢p : X --+ F be arational map. [u order Lo verify the Néron mapping
property. we mnst show that ¢ extends to a morphism X — &,
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The elliptic curve E is a proper group scheme over I, and X is smooth
over K, so applying (6.2b) with B = & to the map o5 + X --+ E, we see
that ¢ extends to a morphism. This means that the rational map

@:X---2&

induced by @g is a morphism on the generic fiber.

We suppose that ¢ is not a morphism and derive a contradiction.
By assumption, £ is a group scheme, so (6.2a) tells us that the set of
points where ¢ is not defined is a set of pure codimension one in X. Hence
there is an irreducible closed subscheme Z C X such that ¢ is not defined
at the generic point nz of Z. Note that the generic point of Z is given
by 12 = SpecOx 2. aud that the local ring Gr z is a discrete valnation
ring because X is regular and Z has codimension one. We now have the
following picture:

X SN € c e
;
A Spc(‘.@‘_‘(.z 1 1
)
Spec K (X) 2E, SpecK(&) = SpecK(C).

The scheme C is proper over I, and O« » is a discrete valuation ring,
%0 the valuative criterton of properness {2.7) says that ¢ extends to a mor-
phism ¢ : nz — €. In other words, if we map to € rather than to the smaller
scheme &, then ¢ is defined generically on Z.

We are assuming that ¢ : X --+ € does not extend generically to Z,
or eguivalently that ¢{nz) € € is not contained in €. In particular, if
we let & be the residue field of R and take any point xy € 2{k) so that
¢ 1 X --» € s defined at xqg, then o{xg) @ £. (This is another way of saying
that ¢ : X --» £ is not defined generically on 2.}

The set of R-valued points X{R) maps to a dense set of points in the
special fiber of X by {6.4b}. Note that this is where we use our assumption
that f is strictly Henselian. In particular we can find a point z € X(R)
which iutersects Z at a poiut. call it xy € Z{k), at which themapg: X --» €
is defined. Composing x with ¢ gives a rational map

Spec{R) -5 X e

which by the valuative criterion of properness (2.7) extends to a morphism
Spec{R} — €. In other words ¢ o xr € €(IF}), and by our construction it
is clear that ¢ o ¢ E(R}). However, (4.4b) says that C(R) = E£(R). This
contradiction completes the proof that ¢ extends to a morphism X — &,
and hence that £ has the Néron mapping property. O
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In order to complete the proof of Theorem 6.1 for strictly Henselian
rings. it remains to show that the scheme € is a group scheme over K. This
is done in two steps. First, we prove that there exists some group scherme A
over R such that € and A Lhave isomorphic dense open subsets. Second,
using the group operation on A, we show that £ and A must be isomorphie.
The proof of the first parl uses an argunent of Weil to construct a group
variety (or schieme) by pasting together group chunks. We will not give
the full proof of Weil’s result but will be content 1o give a brief sketeh and
refer the reader to Artin [1, §2] for the details.

Definition. Let R be a Dedekind domain, let V/ R be a smooth B-scheme
with nou-einpty fibers, and ler

Vg V-2 ¥

be a rational map defined over B. The map g is called a normal law on 'V
if it satisfies the following two conditions:

{1) The map p is associative; that is,
plplr.y)oz) = plepu(y. z))  whenver hoth sides are defined.
(i) Define rational maps

;.'):V > Vs r‘I.?X‘r? Vv '(_,:'-’ :\?Xnv———-) VXRv

(g} — (wopnle.y)), () = {y. (. 9)).

Then the domains of definition of & and & contain a dense subset of
ecach fiber of V x5 V. and the restriction of & and + to each fiber is &
birational isomorphism.

Remark 6.8. 1f ( is a group scheme over a Dedekind domain R, then its
group law is a normal law. Condition (i) is true because the group law
on (7 Is assoclative by definition, and condition (i) s immediate since ¢
and = are isomorphisms. For example, the inverse of 3 is the map

Goxp(— G x5, {r.y)— {(;f-(y-. f(:r})_..-r).

For a general normal law g, the requirement that the rational maps ¢
and ¥ satisfy condition (ii) provides a sort of inverse for the hidden group
law that 4 is trying to cimulate.

The following theorem says thal a normal group law on V makes a
large chunk of V¥ into a large chunk of a group scheme.
Theorem 6.9, {Weil [3]) Let R be a Dedekind domain, and fet V/R be
a smooth R-scheme of finite type over R, Suppose Lthat every fiber of V is
non-cmpty and that V{R) is dense fn each fiber.
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Let ¢ be a normal law on V. Then there exists a group scheme G/ R
of finite type over R, an open subscheme U/ R C V/R. and an open sub-
scheme U' /R C G/ R with the following two properties:

(i) {7 and ' are dense in every fiber.
(ii} There is an R-isomorphisin U 22 U’ so that the normal law g restricted
to 7 coincides with the group law of GG restricted to 7.

Proor. (Sketch) The underlying idea is to start with a good open sub-
scheme 7 of ¥ and construet & as a union of translates of L7, More pre-
cisely, for each x € U(R). let I/, be a copy of I7. Then one treats U, as if
it were “I7 transtated by 77 and uses g to provide giuing data to attach U7,
to {7 For further details, see Arvin {1, Thm. 1.12]. O

The next result, combined with (6.7}, will complete the proof that £/R
is a Néron model for E/K . at least over strictly Henselian rings.

Proposition 6.10. Let B be a strictly Henselian discrete valuation ring
with fraction field K, let E/K be an elliptic curve, let ©/R be a minimal
proper regular mode! for E/K (4.53). aud let £/R be the largest subscheme
of C/R which is smooth over It (6.1.1). Then the group law on E extends
to make £ into a group scheme over R.

PrOOF. The proof consists of two stepy. First, we verify that the group
law on £ defines a normal law on &. This allows us to apply (6.9). which
vields a group scheme G/ R that is birational to €. The second step is to
show that the resulting birational map £ — G 1s actually an tsomorphisni.
Noiiee thar the proof is somewhat indirect. Rather than proving that the
group law on F extends to €, we instead construet an auxiliary group
scheme G owhich extends the group law on B, and then we show that &
must equal £,

We begin wilh the assertion that the group law on £ defines a normal
L

o Expl---2 L.

The associativity of j¢ is clear, since pe is associative on the generic fiber
of £, and a raticnal map s determined by ils resiriction Lo any dense open
subset. So it rewmaing to verify that the wmaps

p:E€xpgl---» Expk 8 xgl -9 Expé

(r.9) — (2opx.y)). (wy) — (youle.y))-

are defined on & dense subiset of the special fiber and that their restrictions
to the special fiber are birational Isomorpliisms,

Suppose that B is any discrete valuation ring which is the localization
of a smooth R-schewe, and lel R be the fraction field of A, Then the
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minimal proper regular model of E over the field K’ is € x p Spec(R'}). We
apply this fact, taking R’ to be the ring

R’ = Lr]}_-:‘f =

=

the local ring of £ at a generic
point € of its special fiber € )
Note that the special fiber & need not be irreducible. so it may have several
generic points, one for each component. We can take It to be the local
ring at any one of these generie points. Note also that here is where we
use the fact that & is smooth over R, since this fact implies that R’ is the
loealization of a smooth R-scheme,
Thete is a natural map Spec{R’}) = £ — £. in other words an B'-valued
point of £, We let 7 be the correspouding translalion map,

7:Spec{R') x g & — Spec(RY gz E.

This translation map is an automorphism on the generic fber, so it fol-
lows from {4.6) and the minimality of € x g Spec{R’) that 7 is actually a
morphism.

The map 7 on Spee{R) x g £ is translation on the second factor by
the generic point ol the (irst factor, s0 we obtain a commutative diagram

Spec(RY xp € —~ Spee(R') xp €

L
i
| |

&

Expé — Expé.

This proves that ¢ is defined at every geperic point of the special fiber
of & xp € lying over £ But £ is an arbitrary generic point of the special
fiber £, which implies that ¢ is defined at every generic point. of the special
fiber of & x £ A similar argument can be applied to 4, which proves that
the domains of definition of ¢ and ¥ contain a depse subset of the special
fiber of € x g & This verifies the first part of properiy {ii) in the definition
of a normal law.

Now take any point P € E(R), and let 7p : &€ — & be the automor-
phism of £ extending the trauslation-by- morphisin on the generic fiber
of E {4.6). Then the map

Pxi b

& = S[)E'C(R)XRE — EXRE e EXRE

is precisely the map P x e, 50 it is one-to-one. Tt follows that the fibers of ¢
are not all positive dimensional. Therefore ¢ must be generically surjective.
and hence a birational isomoerphisim on the closed iber of € x g £. Similarly
for 4, which completes the verification that j is a normal law on &,

We can now apply (6.9} to deduce the existence of a group scheme
G/R, open subschemes U/R C € and UY/B C /R which are dense in
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every fiber, and an R-isomorplisin U 2 U so that the restriction of g to U
coincides with the group law of & resiricted to U, The isomorphism 7 =
U’ extends to give an R-birational map A : G — £, and the proof of (6.10)
will be comnplete il we can show that A is an isomorphism.

As described in (3.3), any point P € G{R) defines a translation moz-
phism 7 : G = (. The generic fiber of & is E/K . so P gives a point
in E(K). Translation-by-£> on E/K s an automorphisin of the generic
fiber of £. 1t follows from (4.6} and the minimality of £ that this induces
a translation map on &€, which we will also denote by 7p 1 € — &, Now
if y € (¢ is anv point, then we can find a P € (7(R) so that 7p(g) € L.
(Note R is strictly Hensclian, so G{R) maps to a dense subset of the spe-
cial fiber of & from (6.4b).) Then we can extend the definition of A to a
neighborhood of g by using the fact that A = 7_p 0 A o 7p at every point
wlere it iy defined, since the right-hand side is clearly defined at g. This
proves that A is a morphism.

On the other hand. the map A7! : & — & in the apposite direction is
a rational map from a scheme smooth over R to a group scheme over I,
Suppose that A™! is not a morphism. Then Weil's theorein {6.2) tells us
that there is an irreducible curve Z € € such that A~! is undefined at the
generic point 7, of Z. But we know that A7l s defined on 7. and U7 is
dense in the special fiber. so Z cannot be a component of the special fiher.
It follows that 5, is contained in the generic fiber E of £, In other words,
there is a point of E at which A7! is not. defined. But on the genceric fiber. A
is the identity map £ — E. This contradiction shows that A~! is defined
everywhere on €. Therefore A is an isomorphism. and hence £ is a group
scheme over R. O

We now have all of the tools needed to prove the existence of Néron
maodels for elliptic curves over Dedekind domtains.

Proot {of Theorem 6.1). If the ring R is strictly Henselian, then combin-
ing (6.7) and (6.10) shows that &£ is a Néron model for E/A. There are
two more steps needed Lo complete the proof of (6.1). First. we have to
descend from the strict Henselization of a discrete valualion ring down to
the ring itself. Sccond, we have to glue together Néron models over discrete
valuation rings to create a Néron model over a Dedekind domair.

Sa suppose first that R is a discrete valuation ring, and ler, ¥ be the
strict Henselization of R (6.5). Then @M = € xp " will be a minimal
proper regular model for E/R™. To see this, we note first that proper
morphisms are stable under base extension (Hartshorne [1, 11.4.8¢]), so €
is proper over %" Next, the regularity of €% follows. since € is regular
and R*™M is flat and unramified over R. Finally, the minimality of G is
a consequence of the construction of the minimal proper regular model
in terms of a regular model with all exceptional curves blown down. See
Lichtenbaum [1], Shafarevich [1]. Chinburg [1], and the discussion i §7 of
this chapter.
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Letting €™ = & x g B*Y, it iy clear that € is the largest open sub-
scheme of G which is smooth over Y, so owr previous work implies
that /RN is a Néron model for /K™ We are going to use this fact
o verify that € has the Néron mapping property over R.

Let X/ R be a smooth B-seheme with generie fiber X/ A and lot ¢y
Xix — By be a rational map defined over A, Consider the extension
of X and o to B, say X = X xp R and o © XSh — Ejen. The
scheme X051 38 smooth over R from Hartshorne {1, 1T1.10.1b} or Altinan-
Kleian [1, VIL.1.7]. so the Névron wmapping property for £ tells us that @30
extends to a unigque morphism ;-")?%‘ : 9{';.};'{_]‘ — 8?}]}{.\[,, This gives us the
conunttative diagran e
:rsh RakiN Esh

| 1'

3 G £,

where the top row is obtained from the bottoni row using the base extension
Spec R*!' — Spec R, The strict Henselization B™ is faithfully fat over R
{Bosch-Littkebohmert-Raynaud [1. 2.4, corollary 9)). so this is exactly the
situation in which we can apply faithfully flat descent (see. e.g., Bosch-
Liitkebolmert-Raynand [§, Chap. 6] or Milue [4. I §2]) to conclude that
the rational map on the bottow row is & morphisin. Therefore &/ A has the
Neéron mapping property, which concludes the proofl that £/R is a Néron
model for E/K in the case that R s a diserote valuation ring,

Finally, suppose that R is a Dedekind domain. From what we have
alvcady done, we know thai for cach prilne p € Spec £, the localization
£ xp Ry is a Néron model for F over K. Further. (6.3} tells us that if we
fix a Weierstrass cquation W/ R lor E/A and if we let S C Spec IR be the
sot of primes for which W has bad reduction. then W x5 Rg (i.e.. the part
of W lving over Rg) is a Néron model for E over fig. This gives the Néron
model over a dense open subset of Spec B, and gluing this large picee to
the finitely many bad fibers prodnees a Néron madel over all of Spec R,
This completes the proof of (6.1]. O

47. Intersection Theory, Minimal Models, and Blowing-Up

In Chapter III we saw anply detoustrated the power of intersection theory
as a tool for stwlying the geometry of swrfaces. Tu this section we will
describe, withan proof, the analogous theory on arithmetic surfaces due
te Lichtenbaumn [lj and Shafarevich [L1]. Unfortnnately, the fact that an
arithmetic sirface is not complete means that it is not possible to define
an intersection theory on the full divisor group. but we will be able to
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compute intersections with divisors which lie on the special fiber. In the
next section we will use intersection theory to completely describe all of
the possible special fibers for a minimal proper regular model of an elliptic
curve. We will work over a discrete valuation ring, rather than a Dedekind
domain, since everything we do in this section can be done fiber-by-fiber.

Let B be a discrete valuation ring with maximal ideal p and residue
field k = R/p, and let /R be an arithmetic surface over B. The scheme €
is normal by definition, so there is a good theory of Weil divisors on €
as described in Hartshorne [1, II §6]. An irreducible divisor I on € is a
closed integral subscheme of dimension one, in other words a curve, and
the diviser group Div{€) of € is the free abelian group generated by the
irreducible divisors. Further, each non-zero function f € K{C) defines a
principal divisor

div(f} =) ordr(f)T € Div(€),
r

and as usial we say that two divisors are linearly equivalent if the differ-
ence is principal. Here ordp is the normalized valuation associated to the
irreducible divisor I'; see (4.1.2).

Let T" € Div(€) be an irreducible divisor and let £ € €, be a point on
the special fiber of €. Informally, a uniformizer for I' at = is a function
which vanishes to order 1 aleng ' and has no other zeros or poles in a
neighborhood of &. More precisely, a uniformizer for I" at 2 is a function f €
Ue » in the loeal ring of € at z with the property that

ordr(fy =1, and ordp (f) = 0 for all irreducible TV # T with z ¢ T".

To sec that such a function exists, we need merely note that if x € T,
then Qe r is a discrete valuation ring containing the integrally closed local
ring Q¢ ;.

Definition. Let I';,I'; € Div{C) be distinet irreducible divisors and lot
x € € be a closed point on the special fiber €, of €. Choose uniformiz-
ers fi.fa € Og for ['1,T; respectively. The (local} intersection index
of I'y and Uy at x is the quantity

(Ty - Ty)z = dimy Oc o /{ f1, fa).

Notice that this is the same definition that we gave in (IHI §7) for
the local intersection index on geometric surfaces. Just as in Chapter I,
we would like to add up these local intersection indices to get a global
theory. Further, we would like our intersection theory to have the important
functorial properties deseribed in (I11.7.2). In particular, linearly equivalent
divisors should give the same infersection index. Unfortunately, it is not
possible to define an intersection theory on Div{€) with this property. The
problem is that € is not complete. This is true even if € is proper over R,
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which will ensure that the fibers are complete, because the base Spec{R)
itself is not complete. This non-completeness means that it is possible to
use a linear equivalence to move an intersection point “out to infinity,”
where it then disappears. The following simple example illustrates this
difficulty.

Example 7.1. Let € = P}, = Proj R[X.Y], and consider the two divisors
N ={X=0} and [y ={X+x"Y =0}.

Here 7 ¢ R is a uniformizer for the maximal ideal p of B, and n > 1 is an
tnteger. These two divisors intersect at the point

w={X=x=0}eC, =P}

on the special fiber. To compute the local intersection index we dehomog-
enize by setting Y = 1 and then compute

(Ty -T2}, = dimg R[X]{X}/(X,X + 7)) =dimg B/ (7™) = n.

The divisor 'y is linearly equivalent to the divisor ['y defined by
‘be
Ty = [y +div (ﬁi;—fi—) = {Y =0}.

Notice that 'y and Py have no points in common. So the linear equiva-
lence I's ~ I'; has caused the intersection point of Iy and I's to disappear.

The preceding example gives us two oplions. Either we can drop the
requirement that intersections be invariant under linear equivalence, or we
can restrict the allowable divisors. As we will see In the next section, it
is extremely important to be able to compute the intersection of a divisor
with itself, and to Qo this we need to be able to move the divisor i some
way while not cthanging total the intersection index. 50 we will adopt the
second alternative and restrict the set of divisors.

The irreducible divisors on an arithmetic surface €/R come in two
flavors. First, there are the components of the special fiber, as described
in §4. Sccond, if I' C € is an irreducible divisor which does not lie in the
special fiber, then the map [' — Spec{ R) will be surjective. An irreducible
divisor which is a component of the special fiber is called a fibral divisor,
and an irreducible divisor which maps onto Spec(R) is called a horizontal
divisor. For example, the image o(Spec R) of a section ¢ € C(R} is a
horizontal divisor.

Definition. A divisor D = > n;I'; is called fibral if every component T';
of D is a Abral divisor. The group of fibral divisors on C 1s denoted

Div,(€) = {D & Div(€) : D is fibral}.

Notice that Divy{€) is a subgroup of Div(C}.
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Definition. A divisor D = Y n,I; is called positive if cvery n; > 1. The
set of positive divisors clearly does not form a group.

The fibral divisors are fairly rigid, at least in the sense that their
interscctions gencrally cannot be moved off of the special fiber by a linear
equivalence. This makes them suitable for intersection theory as described
in the following result.

Theorem 7.2. Let R be a discrete valvation ring, and let C/R be &
regular arithmetic surface which is proper over R. There is a unique bilinear
pairing

Div{€) x Divy{€) — Z, (D, Fyr— D-F,
with the following properties.
(i) IfT e Div(€) and F € Div,(€) are distinct irreducible divisors, then

P-F= Y (T-F).
xelMF
(iiy If Dy, Dy € Div(C) and F € Divy(C) are divisors with Dy linearly
equivalent to D, then D - F = Dy - F. In particular,
div(f)-F =0 for all f € K(C}* and all I € Div,{(C).

The intersection pairing also has the following symmetry property.

(iii) If Fy, F; € Div,(€) are fibral divisors, then Fy - Fo = F5 - Fy.

PROOF. Just as in the geometric case (I11.7.2), the main idea is to use
linearity and the linear equivalence property (ii} to reduce the computation
of - F to the case of distinct irreducible divisors, and then apply (i). The
principal difficulty, as always, is to show that the result is independent of

the various choices made. For details, see Lichtenbaum [13, Shafarevich (1],
Lang [6, TIT §§2,3], or Chinburg [2, §4]. m|

Remark 7.2.1. Let € = P = ProjR|X,Y], let a € R be an element
which is not a square in R, and consider the two irreducible divisors
={X’=a¥Y?} and F=C, =P

Then T M F consists of either one or two points, depending on whether or
not a is a square in the residue field k. If /o ¢ %, then I" and F intersect

at the one point
z={r=X%-a¥?=0} €@,

where 7 is a uniformizer for K. We compute the intersection index at x by
dehomogenizing ¥ = 1,

(T F)e = dimg R[X](x2_oy /{7, X* — a) = ding k[X]/(X? —a) = 2.
Similarly, if /& € &, then T’ and F intersect at the two points
y:{ﬁzX—\/aY:O} and z:{rr:X%-\/(EY::O}.
We will leave it to the reader to check that (I' F), = (I": F), = 1,



342 IV, The Néron Model

We proved (IIL8.2) that the intersection pairing on a fibered surface
is negative semi-definite on fibral divisors. with kernel the entire fiber. The
argnment given in Chapter IIT carrics over almost verbatim to give the
same result for arithunetic surfaces.

Proposition 7.3. Let R be a discrete valuation ring with maximal
ideal p. and let €/ R be a regular arithmetic surface proper over R.
{(a) The special fiber €, is connected.
(b} Let F & Divy{(€) be a fibral divisor. Then F? < (), and the following
three conditions are equivalent:

(iy F2 =10

(if)y - F' =0 for every F' € Div,(€).

(ili) 7" = aC, for some a € Q, where C, = € x g p is the special fiber

of C with appropriate multiplicities; see §4.

Proor. (a) This is a special case of Hartshorne [1. TIL11.31

{b} Clearly. (i) implies {i). Further, the divisor €, is principal, since
it is equal to div(z} for a uniformizer m € R. so (7.2ii) shows thar (iii)
implies (ii). The fact that F2 < 0 and the remaining inplication (i) =
{iii} are proven in exactly the same way as the geometric case (IIL3.2).
For further details, see Lichtenbaum [1). Shafarevich [1], or Lang [6, III
Prop. 3.5]. O

To simplify our discussion for the remainder of this section, we are
going to assume thal our discrete valuation ring R has an algebraically
closed residuc field k. In practice, most of what we say will remain true
with some slight modifications.

With this asswnption, an irreducible fibral divisor F on € is an irre-
ducible curve defined over k. If we further assume that C is proper over 2.
then £ will he proper (henee projective) over k. Recall that the arithmetic
genns of such a curve F/E is defined to be

pu{F) = dimy H'(F,Op).

More generally, if we write the special fiber as €, = 3> n;F;, then any
positive fibral divisor F = Y a/F, is a one-dimensional scheme over k.
If F is connected, the arithmetic genus of ' is defined by exactly the
same formula. Sec Hartshorne {1, exercise [11.5.3] for a discussion of the
arithmetic genus, The next proposition describes the few facts that we will
need to know about the arithmetic genus.

Proposition 7.4. Lot B be a disercte valuation ring with maximal
ideal p, fraction fiekd K, and algehraically closed residue field k. Let €/ R
be a regular arithinetic surface proper over R.
(a) {Adjunction Fornmla) There is a divisor K¢ € Div(€) with the property
that

F2P4 K¢ F=2p,(F)—-2 forevery F € Divy(C).
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The divisor K¢ is called a canonical divisor on C. (N.B. The adjunction
formula is only valid for fibral divisors. }
(b} Let C/K be the generic fiber of C. Then

24 (Cp) = pua(C) = g{C),

where g{C'} is the usual genus of C/K [AEC. 11.5.4].
(c} Let ' € Divy(C) be an irreducible fibral divisor. Then p,(F} = 0,
and po(F} = 0 if and only if I is isomorphic to PL.

Proor. (a} The classical adjunction formula for a non-singular curve on
a non-singular surface is proven in Hartshorne [1, V.1.5], and the case of
singular curves is described in Hartshorne [1. exercise V.1.3]. The adjunc-
tion formula for arithmetic surfaces is due to Lichtenbaum [i1, Thm. 3.2].
For further information, see also the discussion in Lang [6. remark 1 on
p. 117}

{b) The first equality follows from the general fact that in a flat family, the
arithmetic genus of the fibers remains constant (Hartshorne [1, IT11.9.10]).
The second equality is Hartshorne [1, 1V.1.1], since € is non-singular.

(¢} The inequality p,(F) = 0 is clear, since by definition the arithinetic
genus is the dimension of a certain cohomology group. For the sccond
assertion, see Hartshorne [1, TV exercise 1.3(h)]. 0

Remark 7.4.1. The description of the canonical divisor Ke in (7.4a) is
not. of course, the usual definition. A canomical divisor is normally defined
to be the divisor of a differential form of top dimension, so in the case of
an arithrnetic surface €. the divisor of a differential 2-form on €. But for
our main application (8.1} in the next section, we will only need to know
that there exists some divisor satisfying the adjunction formula (7.4a). In
fact. it would suffice to know that the map

Div,(€) — Z. Fr—2p,(F)—2—F%

is a homomorphising see Lichtenbaun [1, Th. 3.2|.

Earlier {4.5) we stated the existence of a minimal proper regular model
for a curve /K. We now want to briefly deseribe how such models are
constructed and give Castelnuovo’s criterion for minimality, If €/ R is any
regular model for C/K, and if x € €, s a point on the special fiber of €,
then we can blow up # to get another regular model €'/R and a birational
morphism

o @ @

{See Hartshorne [1, I §4, IT §7, V §3] and the discussion (7.7, 7.7.1) at the
end of this section.) The map & is an isomorphism away from z, and the
inverse image of # is a divisor D = ¢~ (&) with the property that

D=} and D? = -1,
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Thus blowing up x has the effect of replacing = by a projective line whose
self-intersection is —1.

In pgeveral. an irreducible fibral divisor D € Divp(€) which satis-
fies D = P} and D? = 1 is called an ezceptional divisor or an exceplional
curve. Castelnuovo showed (in the geomelrie setting) thar such curves can
always be blown back down,

Proposition 7.5. (Castelnuovo’s criterion) Let B be a discrete valua-
tion ring with fraction field K and algebraically closed residue feld k, and
let C/K be a non-singular projective curve of genus ¢ = 1.

(o} Let ©/R he a proper regular model for C/K (4.8a), and It D €
Divp{€’} he an exceptional divisor ou €. Then there exists a proper regular
model C/ R for C/K and a birational morphism ¢ € — Cso that x = ¢(D)
s a single point and ¢ is the blow-nup of € at &.

(b} Let € be a minimal proper regular model for C/K. Then € contains
no exceptioual divisors.

ProOF. {a) Sce Hartshorne [1, V.5.7] for a proof in the geometrie situation.
The arithmetic version is due to Lichtenbaum [1, Thm. 3.9] and Shafare-
vich [1, p. 102]. see also Chinburg [2, Thm. 3.1].

(b} If € contains an exceptional curve, then {a) says that we can blow
it down to get a smaller regnlar madel for (7/K. But a blow-down map
ig clearly not an isomorphism, which contradicts the assinmed minimality
of €. O

Remark 7.5.1. Continning with the notation from (7.5h), it can be shown
that a proper regular model /R for /K is roinimal if and only if it con-
taing no exceptional divisors. Further, starting with any proper regular
model for €/K, one can prodiuce a minimal maodel by blowing down ex-
ceptional curves until none are left. The geometric cage is described in
Hartshorne [1. V §83.5]. The acithetic case is due to Lichtenbanm [1.
Thm. 4.4] and Shafarevich [1. p. 126]: sec also Chinburg {2. Tho 1.2].

Remark 7.6, Let R be a Dedekind domain. say the ring of integers of a
number ficld A, aud let €/ B be an arithmetic surface. Then we can define
an intersection pairing

Di\-‘(e) x Di\«'ﬁ[.(e} — Z.

where Divy), (€] denotes the group of divisors generated by the components
of 1he special fibers and the pairing is defined lincarly using (7.2). Unfor-
tutately. if we wani. to retain the linear equivalence property (7.2i1), then
it still is not possible 1o extend this pairing to all of Div{€). As before.
the underlying problem is that Spec(H) is not complete, so intersection
points can move out to lulinity and disappear. Arakelov [1] had the bril-
liant idea of adding in some extra fibers “at infinity.” More precisely, he
adds one iber for each archimedean absolute value of K. and then uses
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tools from differential geometry to define real-valued local intersection in-
dices on these archimedean fibers. Arakelov’s intersection theory extends
to the [ull divisor group while retaining the linear equivalence property.
and many of the most important theorems from the classical geometry of
surfaces, such as the Ricmann-Roch and adjuncrion formulas, extend to
the Arakelov setting. For more information about Arakelov intersection
theory on arithmetic surfaces, see for exaniple Chinburg (1], Faltings {1,
or Lang [6].

The final topic we want to discuss in this section is the blowing-up
process.  This is described with varying degrees of generality in Hart-
shorne [1, [ 4, T §7, V §3]. With an eyc towards the explicit computations
we will be doing in 9. we offer the following brief primer on blowing-up
surface singualarities.

Remark 7.7. {Blowing-Up Singularitics on Arithmetic Surfaces) Let R he
a discrete valuation ring with uniformizing element 7 and residue field k.
Let € C 4% be an arithmetic surface defined by a single equation

fle.yy=0 for some polynomial f{r. ¥} € Rle.yl.

Tn other words, € = Spec B[z, y]/(f). In order to ensure that € is a two-
dimensional scheme whose special fiber has dimension one, we will assume
that f is not a constant polynomial and that at least one coefficient of f
is & unit in £. In fancier terminology, this means that € is fat over R.

Keep in mind that € is a “surface” (i.e.. a two-dimensional scheme)
sitting inside the three-dimensional scheme A%. Intuitively, the three “co-
ordinate functions” on A% are w. x, and y, aud in order to calculate the
special fiber we always set 7 = 0.

We are going to assume that € lias a singularity at the point 7 =z =
y =0 on the special fiber. In other words, we assume that

. af, af . L

0,0 = =0, = —(0,0) = .

£0,0) = 52(0.0) = 720.0) =0 (mod m)

Let m = (m. x.%) € € be the singular point on the special fiber of €.

Then the blow-up of € af m is formed by taking the following three schemes
and ghiing them together as explained below.

Chart 1. Define new variables
r = mi andl Y = 7.
and let © be the largest integer so that
flmzr mn) = 7" filz.n) with fi{xy.3n) € Rlx;. m].

In other words, factor out a power of 7 so that the cocflicients of f; arc
in £ and at least one coefficient is a unit. Then the first coordinate chart



316 IV. The Néron Model

for the blow-up of € at m is the scheme € C A% = Spec Rizy, ] defined
by
Cj : Spec Rlzi. ]/ (il )

Chart 2. The sccond chart is formed using new variables 7. 27, " defined
byy
= 7'y, x=zx"y, y=1y"

We substitute these into the polynomial f{ic. ). This means we do two
things. First. we replace z and y by 2'y" and . Second. we take each
coeflicient a of f{r. ¢} and replace the largest power of w dividing o by that
power of 7'y, For cxample, if m¢|a and 7 + a, then we would replace a
by (74" )%7 %0, We factor out the largest possible power of ¥ to get

F'y' Yy = () f12' ') with f'(e' o) € Rla".2" /).
and then the sceond coordinate chart of the blow-up is the scheme
€ : Spec R[x', o' i) {m — ="y, 2" "))

Note that 7' is a new variable, just like the variables z* and ¢'. The
scheme €' is the closed subscheme of 4%, = Spec R[z'. 1", '] defined by the
two equations 7 = 'y’ and /(0" ") =0
“hart 3. The third chart, is formed similarly to the sccond chart using the
variables =% 2",y defined by

Mo H L

T=T %, r=u". y=ux.

Substituting these into f{r.y) as cxplained above and pulling out the
largoest power of x” gives

f(rﬂ' .” N (_I .ff),l) H ‘_{ fr :g.r.f) W lt,ll f”(u{ " 1 ! e R|' ]
Then the Wird coordinate chart of the blow-up is the schene
e!.r cJJf_CR[TT . I ]H{("T H H’ f”t?” H)}'

It is easy to see how to glue the three coordinute charts together. For
example, in order to map € to €, we just need to solve for (z'.&", 4"} in
terms of {m. ).y ). FThus

;W T 1 ; : T ;
T :_’:_:__'. a :._;::——z—‘ ¥ =UY=TY.
¥ ¥ oon ¥ Y i

These equations define a birational map €, — € which is defined every-
where except at ihe points of € with y; = 0. Similarly, we get a birational
map €; — €7 by using the equations

i i m 1 " " Y Y Y1
—=—=—. g'=zx=mr., ¥ ="=====
X . .
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and a biratienal map €’ — €" using

- /
" T T T ' I I Y Y 1
T —=—=—, r'=r=ry. y = === —
T . 7 : : T - or
£ T X £ A x

These maps are used to glue the three coordinate charts together, and the
resulting scheme is the blow-up of € at m.

In order to find the special fiber of the blow-up, we take the special
fibers of cach of the coordinate charts and then glue them together. The
special fiber of a coordinate chart is calentlated by setting m — 0 and looking
at the resulting curve defined over k. The lirst coordinate chart is easiest,
and we find that

€, = Spec k[:rl,-e;l]/(fl {x1.301)).

In other words, €, is the curve in A2 defined by the single equation jl = 0.
Similarly, the special fiber of C’ is obtained by setting 7 = 0, which
weais thai A
& = Speckix’ ./ V(7Y ).

Here =’ is to be treated as a variable, so ©' consists of two pieces, one
abtained by setting ©° = 0 and the other ebtained by setting ' = 0. Of
course, each piece may consist of several components, or a piece could be
cinpty. Finally, € is given by

— S])E‘C P‘i‘-[ﬂ”, QI:”. y”]/{??”.'l-'ﬁ. .f_H {a.‘h" yﬂ)).

s0 € also consists of two pleces, one with 77 = ) and the other with % = 0.

Example 7.7.1. We arc going to illustrate (7.7) by blowing-up the arith-
metic surface
x4yt =t
at its singular point m = r = y = 0. For siraplicity, we will assume that
Lhe residue field does not have characteristic 2, 3, or 5.
T find the first coordinate chart of the blow-up, we substitute x = 7,
and y = 7wy into the equation for € and cancel 72, which yields

The second coordinate chari is oblained by substituting «# = 7'y’ . = 'y,
) 2 .
and ¥ = ¢/, and then canceling %'~ to obtain

2 3 4,2
Cx" Yy =0y, m=ay

Finally. to get the thiul chart. we substitute m = 772", r = 2", and y =

y"'2” and cancel =77 to get

3 T 4 2
ol 1+ A yr; gt R
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Next we compute the special fibers by sctting m = 0. The special fiber
of ) is )
(‘?] H .TC% = 0,

soCrisa non-singular rational curve appearing with multiplicity 2.

To find the special fiber of &, we must set m = 'y’ = 0. This gives us
two pieces, one with #° = 0 and one with ¢ = 0. In this way we find two
fibral components, which we will denote by Fy and Fj:

& Fiorn' =0, 2% +y° =0,
2F) ' =0, 2t =0.

Keep in mind that F] and F} are curves in A} = Speck[r’,2’,v']. Thus F}
is a rational curve with a cusp, whereas F{ is a non-singular rational curve
which appears with multiplicity 2 in the fiber. In other words, as a divisor
we have &' = F{ + 2F}].

Similarly, the special fiber of €” is obtained by setting » = n”z" = 0.
However, when we set 2 = 0 we obtain the equation 1 = 0, so 2" = 0 does
not give any components of €. Hence € consists of the single rational
Clurve

e — 0, 1= 3’.‘”33}”5.

We claim that when we glue €;, €', and C‘?m” together, the special
fiber €” is identified with F], and the special fiber €, is identified with 2Fj.
To verify the first statement, we observe that the special fiber €/ is defined

w3, b

by the equations 7 = 0 and 1 = 2"7y”°. According to {7.7}. the gluing
map €' — €” is given by the substitutions

ﬂ_!! — ﬂ_!fxf:‘ x.ﬂ — m!y!, yﬂ — 1f1:r‘
Substituting these into the equations for G yields
'/ =0 and 1= (£"y)3(1/e)° = o e,

which are exactly the equations of F|. We leave it to the reader to verify
the assertion that €, is glued to 2F}.

Thus the special fiber of @ contains all of the components of the special
fiber of the blow-up. If €’ were regular, we would have completed our
construction of a regular model, but unfortunately it is not regular. In
fact, every point on the component F} of the special fiber is a singular
point, so next we want to blow up € along the entire curve 3" = 0. We
didn’t discuss blowing up a surface along 2 curve in (7.7}, but the procedure
is very similar.

Recall that €' C A}, = Spec R[#’,2’,¢/] is given by the cquations

2 3 4 42
oz +yr ::I_r.rylr7 Tr::rr’y".
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The Special Fiber § of the Scheme $: X2 +Y =T, 7 =TY
Figure 4.3

To blow up € along the curve ¢ = 0. we make the substitutions
P=XY, y=Y =T,

and cancel Y2 from the first equation. This yields the arithmetic sur-
face § C A¥, = Spec R|T. X. Y] given by the equations

S:-X*+v =71 =TV

Note that 8§ is regular at X = ¥ = T = =« = 0, since the equations
for 8 show that the maximal ideal at that point is generated by the two
variables X and T. One can similarly verify that 8 is regular at all other
points, so it is a regular mode! for €.

To compute the speeial fiber 8§ of §, we set # = TY = 0. The part
with 7 = 0 is the non-singular rational curve X2 4 Y = 0. whercas the
part with ¥ = 0 factors as

X?-T'=(X-THX+TH =0

0 it consists of two non-singular rational curves which intersect tangen-
tially. All three of the components of § intersect at the point X =Y =
T = 0, so the special liber § looks ax illustrated in Figure 4.3.

Label the three components of 8 as indicated in Figure 4.3,

Fl:Y=X-T°=0, F:Y=X+T?=0. F:T=X*+Y =0

Locking at Figure 4.3 or directly from the equations for the components,
we can compilte the pairwise intersections

Fi-F, =2, Fy-Fy=1. - Fy=1

Next. using the fact (7.3) that the interseciion of a component with the
entire fiber 8 = Fy + Fu, + F, is zero, we compute the self-intersections,
Fi=—(F\-Fa+F  F3)=-3.
Ff=—(F-F1+ F, - Fy) = -3.
Fi=—(Fy-Fy+ Fy- ) = -2,



350 1V, The Néron Model

This shows that Fy, Fa, and Fy are not exceptional curves. so 8 is a minimal
regiilar model.
We have now computed the incidence malriz of the special liber,

R R Ry Fy -3 2 1
F,-F, Fo.F, Fo-Fy =2 -3 1
Fy By By By Fy-Fi 1 1 =2

The incidence matrix of the special fiber of a minimal proper regular model
of a curve can be used to compute the group of components of the Néron
model of its Jacobian variety, see Raynaud [1] and exercises 4.32 and 4.33.
In this example. the 2 x 2 minors of the incidence matrix have determi-
nant 5. Raynand’s theorem then implies that the group of components of
the Néron model of the Jacobian variety is a cyclic group of order 5.

§8. The Special Fiber of a Néron Model

In this section we are going to describe the Kodaira-Néron classification
of special fibers on minimal proper regular models of elliptic curves. Qur
main tool will be the intersection theory described in the previous section.
We will work over a discrete valuation ring with algebraically closed residue
field. In the next section we will give an algorithm of Tate which computes
the special fiber and also provides some additional information, including
a description of what happens when the residue field is not algebraically
closed.

We begin with o proposition which describes the intersection properties
of the components of the special fiber. The most important part of this
proposition is the last formula in (d). since it is this formula which puts
gevere constraints on the possible configurations of the components.

Proposition 8.1. Let R be a discrete valuation ring with maximal
ideal p, fraction field K. and algebraically closed residue field k. Let EfK
be an elliptic curve, and let €/t be a minimal proper regular model
for E/K. Suppose that the special fiber of € contains v irreducible compo-
nents, say Fy...., Fr. and write the special fiber as

Gy = XT: n, F;.

{a} At least one of the n, v is equal to 1.
(b} Let K¢ be a canonical divisor on € (7.4a). Then

Ke- F =0 forall fibral divisors £ € Divp(C).
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(¢) Ifr =1, then F =0 and p,(Fy) = 1.
(d) Suppose that r > 2. Then for cach 1 <7 = r,

F? =2 F;=P. and > wF - Fo=on.

Ly

ProoF. The schieme € is proper over R, so C(R} & E{K) from (4.4a). By
definition, an elliptic curve E/K has at least one K'-rational point, namely
its identity element, so we can find a point P € 8(R). Let P(p) € €, he
the image of P on the gpecial fiber of €, and let F; be a component of €,
containing P(p). The scheme € is regular. so {4.3b} says that P(p) is a
nan-singular point of €,. It follows that n; = 1, since if n, = 2. then every
point of F; would be a singular point of Cp. This completes the proof of {(a).

Next we consicder the special fiber €, as a divisor on €. It has the
following three properties:

e2 =10 from (7.3h)
P (Cp)y=g(E) =1 from (7.4b)
Cﬁ + K¢ €p = 2p.(Cp) — 2 adjuction formula (7.4a).

Substituting the first two equations into the third gives
Ke € =0

We next apply the adjunction formula (7.4a) to an irreducible fibral
component F; to get

Ffz + I{C . Ff'_ - zpa(ﬁ) —2.

The arithmetic genus of an irreducible divisor is non-negative (7.4¢), since
by definition it is the dimension of a certain cohomaology group. Thus the
right-hand side of the adjunction formula is at least —2. On the other hand,
we know that F? < 0 from (7.3b). This leads to the following possibilities:

(iy F?2=0 forsomel <i<rp,
(i) F?<0 and Ke-Fr <0 forsomel<i<r.

(iitf) FP<0 and Ke-F >0 foralll <<y

In case (1) we know from (7.3b) that F; must be a multiple of the entire
special fiber. More precisely, we must have r = 1 and €y = i Fy. Then (a)
tells us that n; = 1, so F; = C;. Now the equality K¢ - C, = 0 proven
above gives us (b), and the facts €7 = 0 and p,(€;) = 1 noted above give
us {¢}). This completes the proof of Proposition 8.1 in case (i).
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Next consider case (ii). Each term in the left-hand side of the adjunc-
tion formula is negative, whereas the right-hand side is at least —2. The
only way for this to happen is if

Ffz = f(e . R = —1 and pn(};‘f) =L

Now (7.4¢) says that F; = P}, and hence F; is an exceptional divisor. But
Castelnuove's criterion (7.5b) says that a minimal proper regular model
contains no exceptional divisors, so case (it} cannet occur.

It remains to consider case (iii). The sirict inequality F? < 0 implies
in pariicular that v > 2. We take the equality Ke - Cp = 0 proven above
and write it out in terms of the fibral components ag

i e Fy =00

i=1

Each n; > 1, and since we are in case (iil). each Kg - F; = 0, $0 the only
way that this can be true Is if we have

Keg-F; =0 forall 1 <:¢ <.

This proves {b).
Next we substitute Ke - F; = (0 into the adjunction formula for F;.
which yields
F:'.z = 2p,(F,) — 2.

We are in case (i), so F? < 0, whereas p,(F,) > 0 from (7.4¢). It follows
that
Ft=_2 and pdF) =10,

T

and then (7.4c) tells us that F; = P}, Finally, we note that €, - F; =
Fi - €5 = 0 from (7.3b}, which allows us to compute

0=¢,-F, = an,-ﬂ- -F = ~2n, 4+ Z n, Fy - F.

y=1 1< j#i
This completes the proof of (d). ]

We are now going to use (8.1) and a combinatorial argument to give
the Kodaira-Néron classification of the fibers of minimal proper regular
madel of elliptic curves.

Theorem 8.2, {Kodaira [1], Néron [1}) Let R be a discrete valuation
ring with waxinal ideal p, fraction field K, and algebraically closed residue
field k. Let E/K be an elliptic curve, and let €/R be a minimal proper
regular model for E/K. Then the special fiber €y of C has one of the
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following forms. {See Figure 4.4. Note that the small numbers in Figure 4.4

indicate the multiplicities of the components.)

Type In. €, is a non-singular curve of genus 1.

Type I,. €, is a rational curve with a node.

Type L.. €, consists of n non-singular rational curves arranged in the
shape of an n-gon, wheren > 2.

Type II. €, is a rational curve with a cusp.

Type III. €, consists of two non-singular rational curves which intersect
tangentially at a single point.

Type IV. @, consists of three non-singular rational curves intersecting at
a single point.

Type If,. € is a non-singular rational curve of multiplicity 2 with four
non-singular rational curves of mmitiplicity 1 attached.

Type I, ©p consists of a chain of n + 1 non-singular rational curves of
multiplicity 2, with two non-singnlar rational curves of multi-
plicity 1 attached at either end.

Type IV*. @, consists of seven non-singular rational curves arranged as
pictured in Figure 4.4.

Type III*. @, consists of eight non-singular rational curves arranged as
pictured in Figure 4.4.

Type II*. €, consists of nine non-singular rational curves arranged as
pictured in Figure 4.4.

Remark 8.2.1. If the residue field £ of B is not algebraically closed,
then €, may have some components which are irreducible over k but be-
come reducible over a finite extension of k. In other words, the Galois
group Gy may act non-trivially on the k-irreducible components of Cp,
and then the k-irreducible components of €, arc the orbits. We will discuss
this situation further in the next section when we describe Tate's algorithr.

Remark 8.2.2. The dual graphs of the pictures in Figure 4.4 turn out
to be extended Dynkin diagrams. There is a discussion of this in Mi-
randa. (1. T §6], as well as a proof of {(8.2) based on the negative semi-definite
quadratic forms attached to the extended Dynkin diagrams. The proof re-
lies only on the facts proven in (7.3}, namely that G, is connected and that
the intersection pairing on €, is negative semi-definite with kernel equal 1o
the eutire fiber.

Remark 8.2.3. We will use Kodaira's [1] netation I, II, ..., IIX*, II*
to describe the various types of special fibers (8.1). There is a second
notational systern, due to Néron [1], which is alse in common use. For the
convenience ol the reader, we briefly list the equivalences.

Kodaira | Iy | 1, 1| I | Iv b L e | I~ | i
Néron a b, | el a2 o3 ¢l | b, cb c7 &
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Reduction | Number of Configuration
Type Components (with multiplicity)
Iy |
I, 1
I, n
II 1
111 2
v 3
Iy 5
I n+5
v 7 of Vo2t o !
3
4 1
i 8 o3 ﬂ 3 \1
2 )
4 2
I 9 1l 3l s 3[ 4
l') 6 I

The Kodaira-Néron Classification of Special Fibers

Figure 4.4
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Remark 8.2.4. Ogg (3] and Namikawa and Ueno [1] have given a classi-
fication, similar to (8.2}, for the special fibers of proper regular minimal
models of curves of genus 2. It turns out that there are move than 100
configurations!

ProoF (of Theoreir 8.2). We will write the special fiber of €, as usual as

€ = i 1, F;.

i=1

We are going to consider a number of cases, which we will box for clarity.

Cphasr =1 component‘

Propasition 8.1(a.c) tells us that n; = 1 and p,(€;) = 1,80 &, = F) is an
irreducible curve of arithmetic genus 1. If €, is non-singular, then it is o
non-singular curve of genus 1 {Hartshorne [1, IV.1.1]), so we have Type I,
If €, is singutar, then Hartshorne {1, V.3.7] and the tact that p (€p) = 1
means that a single blow-up of a singular point on €, will produce a non-
singular rational curve. Hence €, is a rational curve with exactly one
singular point of multiplicity 2, from which it is not hard to show that the
singular point is either an ordinaty node or an ordinary cusp. This gives
Types I, and IL.

{Alternative proof for » = 1. We will see in the next section that
if r = 1, then the scheme W/ R defined by a minimal Weierstrass equation
for F is already a regular scheme. It will follow that € = W, so the
special fiber C; is obtained by reducing the minimal Weierstrass equation
modulo p. But we already know from [AEC, VII £5) that the reduction W,
is either a non-singular curve of genus 1, a rational curve with a node, or
a rational eurve with a cusp.)

We assume henceforth that » = 2, which means that we can apply the
formula given in (8.1d},

Z n, Fi o Fy = 2n,. €3}

1€5€r 35

Note that each n; > 1, so every term in the sum is non-negative. We
will he making frequent. use of this iinportant formula (+). We also note
froms (8.1d) that every component is a non-singular rational curve; that is,
F, 2P} forevery 1 < i <.

Proposition 8.1{a) says that one of the n;’s equals 1, so rclabeling
the F,’s if necessary, we may assume that n, = 1. We further know that €,
is connected (7.3a), and » > 2 by assumption, so after further relabeling
we may also assume that Fy - Iy > 1.

Cphasr =2 components‘

This means that C, = F1 + ngF3, so applying (x} for i = 1 and i = 2 gives
RQFQ . Fl =2 and F1 -FQ = 2?1-),.
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Further. F) - Fp = F; - F] frown (7.2101), s0 we deduce that

F-Fa=2 and ny = 1,
This means either that I and F5 intersect tangentially in a single point,
which gives Tvpe I, or else they intersect transversally at two distinct

points, which gives Type I;. This completes the analysis of the special
fiber in the case that €, has exactly two contponents.

Cp has r = 3 components

We claim in this case that intersecting components always intersect trans-
versally; that is. we claim that

Fi Fr <1 forall 1 <4, <pr, @ £id.

T see this, we use the fact that Cp is connected and contains at least three
components to find a third component. say £y, so that Fj intersects at
least one of F; or Fr. say Fy - F, = 1. Applying (%) to F; and to Fj gives
the inequalilies

ek By < npg Fo - Fy+ngFy - F < 2n, and  n F; - By < 20y
We now multiply these two estimates to obtain the strict ineguality

reyii, (F; - 14‘,;,)2 < Aning.

Therefore F, - Fio < 2, and since the intersection index is an integer, we
find that Fy - Fir < 1 as desired.

In particular, we have £ - F2 = 1. Using this and the fact that ny = 1.
we can apply (#) to F] to obtain the bound

fg = 1o bl - Fo < 2ny = 2.

Thus 1 enuals either 1 or 2, which leads to two further subcases.

Applyving {*) 10 Fy gives

m Py Fa+ ZTIJFJ' - F» = 2n3,  and hence Zn.jff,- R =1,
=3 i=3

sitnee Fy-Fh = Tand n; = ny — 1. This ineans that there is exactly one more
component intersecting I, call it Fy, and ny = 1. If Fy also interseets Fy,
then we get two possible configurations depending on whether or not FyNFy
is the same point as 751 Fy. If they are the same point, then we get a fiber
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of Type IV, and if they are not, then we get three rational curves arranged
in a triangle, which is Type 1.
Suppose now that Fj; does not intersect Fy. Then applying (x) to F

gives

nely  Fy+ z-n.\_,-ﬂ - Fy = 2ny,  and hence Z n By - Fy =1

=1 i=1

since Fo - Fy = 1 and na = ny = 1. Therefore there is exactly one more
component intersecting Fu, call it Fy, and ngy = 1. If Fy also interseets Fi,
then we have four rational curves arranged in a square, which is Type 1.
If F; does not intersect F), then applying () to Iy gives in the same way
one more cowponent Fy intersecting £, and ns = 1. The fiher €, has only
finitely many components, so this process must eventually terminate. More
precisely, since €y has » components, the process will terniinate with F.
intersecting Fy. At this point we will have » rational curves, each of multi-
plicity 1, arranged in the shape of a polygon, which means that the fiber €,
s of Type [,.

Applying () to F gives

ra ks - By + Z n, F, - Fy =2n;, and hence Z n;Fy-Fyp =10,

=3 =1

since Fy - Fy =1, 17 = 1. and ny = 2. This meaus that there are no wmore
components intersecting Fi. Next applying (*) to Fu gives

I r
nFy -y + Z n;Fy - Fy = 2np. and hence Z n; R =3

e j=3

Thus £5 inlersects either one, two, or three additional components.

Suppose first that F5 intersects three additional components, which
we label Fy, Py, and F5. Then ny = ng = n; = 1. which gives a fiber of
Type I3, and applying (+) to Fy. Fy, and Fy shows that €, contains no
other componcnts.

Next suppase that Fo intersects exactly two other comnponents, say Fy
and ). Switching these two components if necessary, we have ny = 1
and ng = 2. Thus €, contains the configuration illusirated in Figure 4.5(a},
where the small 2's next to F; and F)y indicate that they are components
of multiplicity 2. Of cowrse, € may contain some additional components.
Let s = 4 be the largest inleger so that €, contaius the configuration
illustrated in Figure 4.5(b). Applying (*) to F; for any 4 < ¢ < 5 gives

- -
?l_s__LFg_l-Fr-l-n-,;_g_lF-,;_,_l -F,'-l— Z '.*L_ij-Fr = 2715._ S0 Z ity Fj'F,: =1,
J=s+1 f=s+1
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2 . L2
Fi,F3 Fy 3
2
F2 et
{(a) (b)

Building a Fiber of Type Ty
Figure 4.5

since Fi_ - F = F;o (- F, =1 and n,_y =n; = n;4y = 2. Thus there are
no more components intersecting any ol £y.. .., F._1. On the other hand,
applying (¥) to F, gives

- .
e F, o Fu 4+ E niF; - Fo=2n,, and hence E i Fp - Fy =2
j=atl J=s+l

If F. intersects exactly one additional component, then that compo-
nent will have multiplicity 2, which means that € contains the config-
uration in Figure 4.5(b] with one more mmltiplicity-2 component. This
contradicts our choice of &, so F, must intersect two additional compo-
nents. each of which has wwltiplicity 1. This gives us a fiber of Type [
(with n = 5 — 3). and it is then casy to check using (+) that there are no
more components. This completes the proof in the case that I intersects
exactly two components in addition o Fy.

Finally we suppose that F, intersects exactly one additional compo-
nent, say Fio with multiplicity ny = 3. This means that €, contains the
confliguration illustrated in Figure 4.6(a). Let £ > 3 be the largest integer
so that € contains the configuration illnstrated in Figure 4.6(b). Apply-
ing {+) to F; for any 3 < i < f gives

P

-
N Fio - Fitnip Fopr- B+ E 'H-_;‘FJ,‘F;‘ = 2%, 50 E 'ﬂ\,F,wF; =10,
i=t+) j=t+1

since
Ff..l'F} :F,_+1‘F,; = 1. Ti_1 =17 — 1, T = i. ancl Tiivl =i+ ].

Thus there are no more components intersecting any of Fy,. .. Fr.p. On
the other hand, applying (*} to F, gives
r T
1 by Fr 4+ E nFy - Fy = 2ny, and hence E nF I =t+ 1
i=t+1 J=f+l
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! i
~ ]
. F
N t 142
Fi|1 F3]3 ‘\Fl-l el Fii|z Fuol7
2 . Jo D3
Fy Fii3

(d
Building Fibers of Type IV*, HI*, 1T~
Figure 4.6

If F; were to intersect exactly one more component, then that component
would have multiplicity { + 1, contradicting the fact that we chose the
largest ¢ so that €, contains the configuration in Figure 4.6(h). Thus #;
intersects at least two additional components, say Fryy and Fy s,

Let F; be any component intersecting £;. Applying () to I} gives

m e - F = 2ny, and hence n, > /2.

It follows that F, intersects only the two additional components F,o
and Fy, 4, and we have the estitnates

Nig1 + Npypz = E 41, Tee el = t/2, Ny = 1/2.

Switching Fryq and Fi 2 if necessary, we may assume that n,, < nygo.
Then there are only two possibilities, depending on the parity of £.

t = L {mod 2)

I this case we must have

t+1
Tl = Ny42 = T
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Applving (+) to £, then gives

[ rs
mF Fog+ E s P Figy = 2nyyy. and hence E n k- Fy =1,
j=t+3 F=t+3

since Fy - Fipy = 1, ne =4 and nyyq = {14+ 1}/2. Therefore Fyyy intersects
exactly one more component, say Fyyy, with multiplicity n,,4 = 1. Ap-
plying the exact same argument to F, s gives the same conclusion, so €
contains the configuration illustrated in Figure 4.6(¢).

Finally, applying () to F} 4 gives

, ,_

. 3-1t

B Froa+ E P Fy = 20, 50 E n k- Fg = —
P et

since Frpy o Frypg = 1, npay = (8 4+ 11/2, and miqy = 1. The sum is non-
negative, and ¢ > 3 by assumption. so we must bave ¢t = 3. Therefore €,
looks like Figure 4.G{c) with t = 3, which is precisely Type 1V*. This
completes the proof when ¢ is odd.

£ =0(mod 2)

In this case we must have
t d P+ 2
n =- and =n = —.
1= g 42 9

Applving (+) to Fy_q gives

r
e By Frpr + E n; Ry F =204, and hence E i Fy -k =0,

=t J—t+3

since Fy - £rypy = 1, ny = £, and nyyy = ¢/2. Thus there are no additional
components intersecting Fr4.
Next we apply (*) to Fpp. This gives
T I
- Fiyo+ Z 1, E - Fiypa = 20449, and hence Z 7, Fio Frypn = 2.
g=t+3 A=t13

since Fy - Fypp = 1, 1y = £, and ny40 = {f + 2)/2. Hence Fiio intersects
at least one additional component, say Fips, whose multiplicity 43 18
either 1 or 2. So we now know that €, contains the configuration illustrated
in Figure 4.6(d).

Don't despair, we're almost done! Applying (*) to Fypy gives

.
e Fgo - Fros + E g Ey s iy = 20403,
J=Ff4+4

and hence
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P

E 'H-_ij cFa =gy

t+2 {(‘2— 8)/2 if s =1,
y=t+d

2 (6—1)/2 ifngs =2

since Fypg - Fiys = 1 and n,40 = (t 4+ 2)/2. But the sum is non-negative,
and f is even and > 3 by assumption, 5o we must have

f=4dort and ny=2.

If + = 6, then there are no additional components, and Figure 4.6{d) is
cxactly Type II*. Finally, if £ = 4, then there is one more component Fy gy
hitting Fiys. and its multiplicity is 7,44 = 1. This gives Tvpe 117, which
completes the proof of Theorem 8.2 (]

£9, Tate’s Algorithm to Compute the Special Fiber

In this section we are going to describe an algorithm of Tate which com-
putes, among other things, the reduction type of an elliptic curve given by
a Welerstrass cquation. We set the following notation, which will be used
throughout this section.
R a diserete valuation ring with maximal ideal p, uniformizing
element w, fraction field X', perfect residue field & of character-
istic p. and normalized valuation .
E/K  an elliptie curve given by & Welerstrass equation
Eiyf +a1oy+ aqy = 77 4+ ax? + ayr + ag.

C/R  a minimal proper regular model of E over A (4.5b).

£/ the largest subscheme of €/ R which is smooth over 12 (6.1.1).
Note that &/R is a Néron model for E/K (6.1).

C/k = € x g k, the special fiber of €.

&k = & x k., the special fiber of £. It is a group variety over k.

€Y/R  the identity component of £ (6.1.2): that is, € is the open
subset of £ obtained by discarding the non-identity components
of the special fiber. It is a subgroup scheme of € {exercise 4.25).

€%k the identity component of the group variety é/k {1.5¢).

Tate’s algorithin is essentially o set of nstructions for computing €
and £ from a given Weierstrass equarion. For this reason its statement
as a formal theorem has the unsatisfyving form: “The following 11 step
procechire leads 1o Lhe stated results.” So before we describe the algorithm
itself. we want to give two corollaries. This will serve to cxplain (if not
to excuse) why Lhe following resulls are called *corollaries.” when in fact
they are really conclusions which can be deduced from the description and
validity of Tate's algoritiun.
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Corollary 9.1.  Take a minimal Weierstrass equation for E/K, and
let W C F% be the closed subscheme defined by this equation.  Fur-
ther, let WY/ R be ihe largest subscliome of W which is smooth over R,
Then W' =2 £%: that is, W is the identity component of a Néron model
for /K.
Corollary 9.2, Take o minimal Welerstrass equation for E/ K. We recall
from [AEC, VII §2) the following notation:
E M the reduction of the given Welerstrass equation modulo p.
Eu (k) the set of non-singular points of E(k).
Ey(K) ={PeE(K): Pe E(A:)“,;}. the set of points of E(R) with
non-singular reduction.
E(K) ={P ¢ E(N) : P = O}, the set of points of E(K) which
reduce Lo the identify element.
Further, let
EYR) =loc&(): o) =0eil)}.
The isomorphism E(K) = E(R} described in (5.1.3) induces the following
identifications:

(a}
EK) = ENK) D E(K)
| ft |
ER) = EYRY D &NAy.
{b)

E(K)/Eo(K) = E(RVEYR) — » ERIEV(K)

l !

E(K)/E(K) = E&(H)JEVR) —— E(k).

If i is complete, or even merelv Henselian, then both inclusions in (B) are
isomorphisis.

(¢) Epelk) = EV(K).

(d} The group E(K)/Eq(K) is finite. More precisely. if £ has split inulfti-
plicative reduction, then E(K)/ Eo{K) is a cyclic group of order —w(j{£)):
otherwise, E(K}/Ey(K'} has order 1, 2, 3, or 4.

Remark 9.2.1. Note that Corollary 9.2(d) is exactly "AEC, VIL6.1]. a
result which was left unproven in [AEC]. The fuct thal E(K}/Ey(K) s
finite, even if the residue field & is infinite. played an important role in the
proof of the critericn of Néron-Ogg-Shafarevich [AEC, VIL7.1], and we will
nse it again in the next section (10,2} when we prove a gencralization of
this eriterion,
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Remark 9.2.2, Corollary 9.2 can be used to bound the torsion subgroup
of an elliptic curve defined over a loval field or & munber field. Con-
tiniing with the notation set at the beginning of this section, we recall
from [AEC, VIL.3.1{a)] that the subgroup E (K contains no prime-to-p
torsion. since it is isomorphic to the formal group of E. Suppose now
that E has additive reduction. Then E'(k) = E. (k) = &7 s a p-group
from (9.2¢). whereas the quotient E(KY/ Eo(K) = E(k)/EV(E) is a group of
order 1, 2, 3, or 4 from {9.2d). Using these fuets and the exael sequences

0 — E(KR) — EyK) — ENEY.
0 — Ey(K) — E(K) — E(K)/EJK) — 0,

we couclude that if £/ has additive reduction. then E{R )i, has or-
der ap” for some @ € {1.2.3. 4} and some ¢ = 0.

Now consider an elliptic enrve E defined over a number field . The
torsion subgroup of E(A) injects into Lhe torsion subgroup of E{K,) for
each completion of K, so the local estimate we just proved can often be used
te obtain strowg global estimates, For example. suppose that E has adeditive
reduction at primes py.pe of K with distiner residue characteristics g, po.
Then E{R o has order dividing 12, and if py > 5, then E{K b has
order at most 4.

Tate’s algorithm, which we are now going Lo describe, computes the
following quantities associated to the elliptic curve £/K:

Tvpe  the reduction type of the special fiber € over the algebraic clo-
sure & of k. We will nme the Kodalra symbols (8.2) to describe
the reduction tyvpe.

m{FE /K] the number of components, detined over k and commted without
multiplicity, on the special fiber €.

t{D g} the valuation of the minimal diseriminant of E/K.

FIE/K) the exponent of the conductor of F/K. This quantity will be
defined in 410, but for now we note that it can be commputed
using Ogg's formula (11.1),

fIRIK) =0(Dp, ) —m(E/K) + 1.

E/K) the order of the group of components &£(k)/ENk). Equiva-
lently, ¢«{E/K] is the number of components of the special
fiber € which have muliplicity 1 and are defined over &,

To ease notation, we will sometimes write

m=m{L/K). f=flE/K), ¢=c(E/K),

when the curve E and field & are clear from the context.
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Remark 9.3. If £ is a complete local field. then (9.2b) says that o[ E/K)
equals the order of E{'K){E“(K) This quantity s the so-called Bircl-
Swinnerton-Dyer “fudge factor.” It is a sort of peadic period and appears

in the conjectural formula for the leading cocfficient of L{E. s} around
s =1[AEC, C.16.5]. Sce Tate |2, §5] for details.

Tate’s Algorithm 9.4, (Tate [2]) The following algorithin comnputes the
reduction type, the values of m(E/N), v(Dp,p). F(E/K), and o E/K),
aud the surious other quantities described during the course of the algo-
rithm.

Remark 9.4.1. At the conclusion of Tate's algorithm, one obtains a min-
lmal Weierstrass cquation for the given clliptic curve, In practice. however.
it is considerably easier to implement Tate's algoritlnn if one knows, a pri-
orl, that the initial Weierstrass equation is minimal. Turther. if one only
walts a minimal equation and is not interested in computing other gquan-
tities, such as the reduction type. then there are easior methods available.
For example, il the characteristic p of & salisfes 3 > 5, then a given Weier-
strasy equation is minimal if and only if either v{ey) < 4 or v{eg) < 6.
In general, one can use a short algorithm of Laska [1] to ud a mlmmal
Welcrstrass cquation. Sce also exercise 1.36 for another methodd.

Remark 9.4.2. In the case that the residue field & is algebraically closed.
we have assembled information about the various reduction types in Ta-
ble 4.1. This table is taken, with winor modifications, from Tate [2, §6].
Notice that if char(k) # 2,3, then everything about F (1‘0{111<‘ti(m type.
exponent of conductor, group of vomponents E{KY/ EGK)) can be read
off fram Table 4.1 ance one has a minimal Welerstrass equation for E/K.

Our description of Tate's algorithm follows very closely Tate's exposi-
tion [2]. The idea is to begin with an arbitrary Welersirass equation

E:y? +ajzy +asy =2 +ape + o+ ay

for E/K and manipulate it to produce a minimal proper regular model €.
Once we have this model, we will be able Lo read off all of the infonnation
we wanl. As we go along we will he making varions assmnptions. These
assumptions are cumulative, and will be boxed| for clarity. We wiil
delay the proofs of the varions steps unlil afier deseribing the complete
algorithm.

Making a change of variables, we may assume that the Welerstrass
equation has coelficients |a|‘rr.:_;.a;;.a._1.a.f,- € ff_| We let

by = a.f + deas, by = aqan + 2ay. b = ag + b
by = afa.{,- + deigg — ayaiy + a.-zaﬁ — fl'i = (byby — hf)_;'—'l.
A — —bibg — 8B — 2702 + Bbyby by
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be the usual quantities [AEC, 111 §1] associated to the given Welerstrass
equation.

It is nol necessary to assume that the original Weierstrass equation is
minimal. When the algorithm terminates, the resulting Weierstrass equa-
tion will be minimal, so its discriminant will equal v{Dg ;). Further, we
will see that the smooth part of the final Weierstrass equation. considered
as a scheme over R, is the identity component of €, which will prove {9.1).
Step 1. If w { A, then the special fiber é/k is an elliptic curve, and we
have

Type Ty, 2(A)=0, m=1, f=0, e=1

Step 2. Assume m This means that £ has a singular point.
Make a change of variables to move the singular peint to (0.0}, Then

‘ It 7w ¢ by, then we have Type L, with n = v{A). More pre-
cisely, let & be the splitting field over & of the polynomial T2 4+ a,T — a..
Then we have

Typel,, v(Al=nz=1, m=nf=1
Further, if &' = k. then E has split multiplicative reduction,
én(kj ~E and e =mn:
whereas if & # k. then F' has non-split multiplicative reduction.

1 if n is odd,

g0k = {¢ SN () = and ¢=
E0k) = {ae k' N¥(a) =1} and « {2 [ mact,

From now ot F has a cusp and [EP(k) = k], We are going transform
the Weicrstrass equation so as to make the a,’s more and wore divisible
by 7. Ta keep track, we introduce the convenient notation

Qi =7 ' d,

Step 7. Assumme now that . If 72t ay, then
Typell, m=1, f=v{A), e=1
Stey 4. Assume thar le lag| (which implies that 72|bg and «2|bg). If
7 | by, then
Typelll, m =2, f=v(A)-1. =2
Step 5. Assume thai m (which implies that =2|by). If ©2 { bg, then
Type IV. Let &' be the splitting field over & of 72 + a3, - ag 2 = 0. Then

3 il k’f = A.‘__

. r _. A S
Type IV, m=3, f=v(A)-2, ¢ {1 i ko
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Step 6. Assume that . Then we can change coordinates to get

I?r|a| and ay, w°las and a4, and ?r3|a.ﬁ].

More precisely, the boxed assumptions up to this point show that we can
factor
Y2+a,Y —az = (Y ~a)? (mod ),
Y2 4 a3,Y —as2 = (Y — 8)* (mod 7),

and then the substitution 3’ = y + ax + Bm will have the desired effect.
Having done this, we consicer the factorization over k of the polynomial

P(T) = T® + ag1T? + a1 2T + g
To assist in explicit computations, we note that P has discriminant
Disc(P) = 7~ %(—4ajag + aZal — 4a} - 27a} + 18azasas).
If P(T) has distinct roots in & (i.e., if 7 | Disc{P)), then
Typell, m=5 f=v(A)-4, c=1+#lack: : Plu}=0}
Step 7. 1f P(T) has one simple root and one double root in &, then
Typel!, m=n+5, [f=v{(A)—-4-n c=2o0r4d

If p £ 2, then n = v(A) — 6, so m = v(A) — 1 and f == 2. For arbitrary p,
one can calculate the values of n and ¢ using the following subprocedure
to Step 7.

Step 7. (Subprocedure) Translate x so that the double root of P(T)is T =
0. Then 72 § ay, 7_1'3ia4, and 7l|ag. If the polynomial Y? + a3 Y — g 4 has

distinct roots in k, let &' be its splitting field. Then

4 itk =k
r * — — _r — t
T}peIls m_61 f_U(A) Jy C {2 lfkr?ék
Y2 a3 2Y —ag 4 has a double root in k., translate y so that the root
isY =0. Then 11'3|a3_ and 7°|ag. If the polynomial as 1 X% + ag3X + ag5
has distinct roots in k, let &* be its splitting field. Then

4 f K =k,

.Type I ., o m=7T, f = ?_;(A) — 6, r = {2 i K % r



J6¥ 1V. The Néron Model

If w51 X%+ 044X + ag.5 has a double root in &. translate r so that the
root is X = (. Then _?T4|a.1 and 7%ag. If the polynomial Y2 4 u34Y — e g
has distinet rools in &, let & he its splitting field. Then

1 L —
Typel;. m=8, f=v(A)-T7, c= { ; i{ :_, ; ;:

If Y2 + ay,4Y — agg bas a donble root in k. ete. Continue this proce-
dure until the guadratic polynomial which appears has distinet roots in k.
The process will terminate because after each two steps we have will have
forced a;. as, and ag Lo each be divisible by at least one additional power
of . This means that by, By, and by are also divisible by at least one addi-
tional power of 7. and hence the same is true of A, But the discriminant A
is invariant under all of the translations involved, so the process will stop.
Step 8. Suppose now thal P(77) has a triple root in k. Making a trans-
latton ou x, we_may assume that the root is T = 0, which means that
‘?r2|az, w3 aq, and w*ag|. If the polynomial Y2 + a3,V — ay 4 has distinet

rools in k. let & be its splitting ficld. Then

: . 3 ik =K,
Type IV, m=T. =p{A) -6, o= . '
Step 9. Suppose now that Y2 4+ a0 — a4 has a double root in k. Making
a translation_on y. we may assume that the rool s ¥ = 0, which wcans
that |7%}ay and ;’T5|a{j', If w14 ay. then

’-\
I
o

T}-‘pe [I[*’ o= 83 f - U{AJ - ??

Step {0, Supposc that ‘ If 7% 4 i, then

Typell”, m=9. f=uv(d)-8 c¢=1

Step 11, Finally, suppose that . Then the original Weierstrass
equation was not minimal. The substitution (&) = (207, 7% leads to
the cquation

2 3 2
Y e Y dagsy =27 aasr’T Fagair’ + s

with coefficients in R and discriminant A = 7712, Go back to Step 1
and begin the algorithm again with this new equation. Note that we can
only get to Step 11 a finite munber of times, sinee each time we gel here.
the discriminant of the original Welerstrass eqration must be divisible by
an additional factor of m'%. Therefore the algorithin will terminate.
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This concludes our description of Tate's algorithm. We are now going
to give some indication of why the various steps in Tate’s algorithm vield
the stated conclusions. The idea is to start with the given Weierstrass
equation and perform a sequence of blow-ups to produce a minimal regular
model for E. In practice, we will really only need to carry out the blowing-
up process until we are able to recognize which tvpe of fiber is emerging.

Let W C P% be the scheme defined by the given Weierstrass equation,
and let WP/ be the largest subscheme of W that is smooth aver R. In
other words, WY is formed by removing from W all singular points {if any)
on its special fiber W. Just as in the descripiion of Tate's algorithim, we
will put a box around cumulative assumptions as we make them.

Proof of Step I.  The condition 7 ¢+ A means that the special fiber W is
non-singular, so W itself is smooth over E. Henee £ = € = W, which shows
that the special fiber is of Type Jq. .

We assume now that @ which means that the reduction £ has a
singular point. {Equivalently, the special fiber W is gingular.) Making a
linear change of variables, we may assuwme that the singular point ts {0.0) €
E. This means that if we write

flz.y) =v° + arey + aay — 2 — aoz? — aya — ag,

then f{0.0) = 0 (mod =), and further both partial derivatives (¢ f/éx}(0. ()

Proof of Step 2. This is the case that E has multiplicative reductiown,
We are going to leave it to the reader {exercise 4.37) to perform the blow-
ups necessary to resolve the singularity in this case. At the end of this
section {9.6) we will briefly explain another approach to analyzing mul-
tiplicative reduction using Tate's analytic models for elliptic curves over
complete local fields. We will also prove the following lemma which covers
Types I[; and L

Lemma 9.5. Let U be a discrete valiation ring with fraction field K,
Iet E/K be an elliptic curve given by a Weierstrass equation

e arey 4 asy = @ + axx® + ayr + ag

with coeflicients in R, let W C P%, be the R-scheme defined by this equation,
and let W*/R be the largest subscheme of W that is smooth over R.

(a} Ifv(A)Y =1, then W is regular, € = W, and € = W". The curve E has
Type I reduction.

(b) If wlay, aq. ag and 7§ ag. then W is regufar, € = W, and & = W' The
curve £ has Type Iy reduction if w4 by, and Type I reduction if w|bs.

Proor. {a) As described above, the fact that 7#|A means that we can make
4 linear change of variables to get wlay, ¢4.ag. This implies that wiby, bg. by,
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I we make the assumption that v{A) = 1, then we must have #(bg) = 1.
sinee all of the other terms in the formnla for A are divisible by at least =2,
WTiting by in the form

by = botty — araatg + a.gu.ﬁ — af = bong  (mod T.'z)._

we find thaw if o{A) = 1. then viag) = L and 7§ b

We now drop the asswuption that o(AY = 1 and prove that W is
regitlar asswming ouly that mwlog. ay. g and 72 t ag. This will verify the
first statements in both {a) aud {(h). We ueed to prove that W is regular
al e singular point (0,0) W oon its special fiber. In other words, if we
let m = (w. .k y) be the maximal ideal corresponding to the singular point
on the special iber, then we must show that the local ring of W at m,

Rir. ylm
Owm= PN R S
(1% + ey + asy — 2% — apr? — agr — ag)

s a regular local ring, By asswuption. e(a,) = 1. so a4 is a uniformizer
for . On the other hand. a,, is in the ideal of Qw q generated by r and v,
since

g = y'z ey gy — 0 = aor? —aar € 2 O0wom+ 0w o

Therefore the maximal ideal {70y} of Ow y, is gencrated by the two el-
cncnts o awd g, 50 Oy g 15 a regndar locad ring. This proves that W is
regular, and sinee i is clearly also proper over A, we find that € = W
and £ = W This proves the first part of (1) and (b).

The special fiber € = W is the curve

ER oo
§OA Ly = a7 A o

in A7 e will have a node (respectively cusp) at (0.0) if the guadratic
form g2 4 a0y — dpr? has distinel roots (respectively a double root) in &.
The diseriminant of this quadratic forin is aj + dda, = by, 50 W has a node
if 7 f by and a cusp il 7. By definition. the special fiber is of Type 1)
if it has a node, and of Type ITif it has a cusp, and we saw above that
if #(A) = 1. then w1 b, This completes the proof of ($.5). 0

Continuing on past Step 20 we now assiene tlat [ﬁ[bg . Nutice that
b is 1he discriminant of the quadratic form y? + a2y — aze?. so this form
has a double root In b say

o a vy — tpa® = (y — (1-;1')'2 (imod ).

The substitntion y — y 4 cue allows us to assume that |w|ap.ay|. Notice
that this substitution leaves the other ;s and all of the §,’s unchanged.
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Proof of Step 8. We are given that m|a;. ay. ag. b2 and that 72 § ag. This
is exactly the situation in (9.5b), which shows that the special fiber is of
Type 1L

FProof of Steps 4 and 5. We now add the assuinption that , and
recall that our model satisfies wla), as, a3, aq. We are going to blow up the
singular point # = x = y = (0 of W using the procedure described in {7.7).
Thus the blow-up consists of the following three coordinate charts ghied
together in an appropriate fashion:

W, I}f @y asam = ‘J‘Tﬂ?f + GQ-Iff + g2 + a5,

3 2 2
Woeldmr' +a,7 =27y +ax’ a7 +aganr™, w'y =,

N

o 5
W™ ay Fasar”y =2 as +asq " Fogar”, 7'

rH _

Note that we are using the notation «;, = 7 7q; introduced earlier.

Looking at the special Rbers of each of Wi, W', and W' it is easy to
verify that the special fiber of WY contains all of the components and all of
the singular points of the special fiber of the blow-up. Thuy all of the action
will be happening on W”. Further, it is not hard to see that the projec-
tion A% — A% induced by the natural inclusion R{y”. 7] «—+ R[z".y". 7"
maps W isomorphically to the subscheme of A% = Spec R[y”. 7] given
by the single equation

2 2 2 3
¥R by T ey T = b waow T Faga T +ag e
) N 2
(The map in the other dircetion is 27 — ¢ + a1py” + ay 7"y — w2 —

FURY i (lﬁ‘g?TH:).)
We next take the closure of this scheme in P3,. This means we homog-
enize
y' =Y/X and ' =Z/X.

which yields the scheme 'V ij? = Proj R[X.Y, Z] given by the equation
VY2Z 4wy 1 XY Z +ag V22 = v X% + w00 | X2Z + @ X Z2 + g2 2"

Notice that V is a model for E/K, since ity generic fiber is isomorphic
over K to the original Welerstrass equation delining E.

To find the special fiber of V, we set m = 6, so V is the curve in A?
given by the equalion

V(Y24 a4.1YZ — a1 XZ — a6222)Z = 0.
Thus the special fiber consists of the line Z = () and the {possibly degen-

erate} conic
Y24 a4, YZ — a622% = a5, X Z. (%)
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This line and conic intersect at the point ¥ = Z = 0 with multiplicity 2.
Suppose first that #* { bg, which is the condition for Step 4. The
formula defining by is

by = atag + dasag — aragas + a4l — ai.

and our cuwmulative assumptions itnply that every term except the last one
is divisible by #3. Henee w2 { by if and only if 72 { a4, and this in turn
is equivalent to the assertion that (+) is a non-singular conic (as opposed
1o being two lines). So n° { by implies that V consists of two non-singular
rational curves intersecting at a single point with multiplicity 2, which is
exactly Type III.

Next assume that , or equivalently that 72fay. This means that

the special fiber Vis given by the equation
(Y*+d31YZ — d622°)Z =0, (%#)

so over k& it consists of three lines. Fhese lines will be distinct if and only
if the quadratic form Y? + &3,YZ — G222 has distinct roots, which is
equivalent to the condition that its discriminant &ﬁ‘l + dag e = f)bg does
not vanish. So if we assume that w2 { bs, which is exactly the condition for
Step 5, then V consists of three non-singular lines intersecting transversally
at a single point, which is a fiber of Type IV. Further, the number ¢ of
components defined over k will be 3 if ¥+, 1Y Z —ag.2 Z? splits into linear
factors over k& and will be 1 otherwise. This completes our consideration of
Steps 4 and b of Tate's algorithm.

We now assume that . This means that the quadratic form
in (*x) has a double root in &. Making a translation ¥ — Y + 32 moves
the double root to ¥ = 0. We now have [’:‘T|{11,ag, m?las. aq, and ﬂ'3|a5|i.
The equation for V can be written as

V:Y2Zama XY Z4way oY 22 = w1 X tmap 1 X2 Z+mas 2 X 22 4 mag 4 27,

and its special fiber Y2Z = 0 consists of the line Y = 0 with multiplicity 2
and the line Z = 0 with multiplicity 1.

The next step is to blow-up the double line # = Y = (. To ease
notation, we are going to dehomogenize at the same time, s0 we set

X=mz, Y=ry.., Z=1

and divide the equation for ¥V by w. {The reason for the subscripts on x,
and ys is that they are related to our original Weijerstrass coordinates by
the formulas z = w2, and ¥ = @2y2. For the rest of this proof we will use
the notation z = 7"z, and y = ®"y,.}
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We now have the scheme
Vo ?1':9"2"’ + T Ty + Tasal = ;r'f + flz.l-??f + a2t + Ag 3.

and the total blow-up consists of ¥ and Vi glued together in the natural
way. The special fiber of the total blow-up is thus formed by ghiing together
the two pieces X
V:Y2Z =0,
i?() 0= .’I?:li + ag_]_"l'?‘f + &4.2.'1'1 + (}.bd

There are now three cases to consider, depending on the nunber of distinet
roots (in &) of the polvnomial

P(T) = Td + ag_] T2 + (_1.4‘2T + &ﬁ.:;.

Proof of Step 6. For Step 6 we assume that P(T') has distinct roots
in k. Then V, consists of three distinct lines, so the blow-up is composed
of the double line Y2 = 0 together with fonr lines of multiplicity 1 in-
tersecting it. This means we have a fiber of Type I, Further, there is
always one component Z = 0 of multiplicity 1 defined over &, and the
other multiplicity-1 components correspond to the roots of P{T). Hence
the number ¢ of multiplicity-1 components is one more than the number of
roots of P(T) in k.

Proof of Step 7. For Siep 7 we assiine that P{T) has one simuple root and
one double root. hMaking a translation of the form x, — oy + v, we wmay
assume that the double root is 7 = 0, which hnplies that 72 § ag, 7%ay,
and mta;. The special fiber of Yy is now

Vo) + ag) )"zr'f =0

s0 we need to blow-up Vy along the double line r = iy = 0. To do this, we
make the substitution @, = wug and divide by « to obtain the scheme

- N “r
Vi y% + wiy  Tele + oty ol = :"rz:;.‘:j + e Xy + Ty 32 + G

Qur total special fiber is now composed of the following components: the

siimple lines Z = 0 and 7 + ds; = 0, the double lines ¥ =0 and x; = 0,

and the special fiber of V). Notice how a fiber of Type [ is emerging.
The special fiber of V, is

"1?1 : {}‘22 =+ &-5.2y2 - L_I.,t_,_; = (.

If this quadratic equation has distinet roots in k. then V, consists of two
distinet lines, and we have a fiber of Type I}, Further, there arc already
two multiplicity-1 components defined over &, nainely the lines Z = {
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and #; + @z | = 0. 50 ¢ = 4 if the polynomial y.g + iy oy — G has its roots
in &, and ¢ = 2 otherwise.

If the polynomial y% + g2y — dy.g has a double root, then making
a translation on gz allows us to tuke the double rool to be ¢y = 0. This
means that 7%|ay and 7%ag, and the special fiber of V), is y§ = 0. We
blow-up V1 along this double line by making the substitution yy, = m, and
dividing by =, which gives the scheine

2 ; iy
Vo omys + map oty + T gl = n‘;rr; + (J',g‘l;,(.’é + oy sy F ;.

The special fiber of ¥y iy

‘\:’2 . &2_1:{}% + (:1-4_;;,]‘.'2 + ﬁ-{;‘r, = ()

If this quadratic equalion has distinet roots in k., then Vo eonsists of two
distinct lines, we have a fiber of Type 15, and we're done. Otherwise the
quadratic equation has a double root and Vy s a double line, so we translate
to make the double line @3 = 0, blow it up using ro = mry. and contine
DI O NIeITV Way.

Ay explained during the description of the Step 7 subprocedure. this
process will eveulually reruinate, The point is that the special fiber at
each stage looks like

P Yo+ A3t — G =10 if 70 =2 — 3 15 odd,
" Ayl + dg 1%, F g =0 ifn =2 — 2 ix even.

So each two steps of the algorithm foree ay. ay, and ag to be divisible by
an additional power of =. This implies the same for 6y, &, and &, and
hence also for A, But A s irvartant under the varions translations we are
using, which shows that eventually we wmst get a quadratic polynomial
with distinel roots. We will leave for the reader the easy verification that
if the residue characteristic p # 2, then the fiber V,, consists of two distinet
lines precisely when n = v{A} — 6. This concindes onr discussion of Step 7
of Tate™s algorithn.

Proof of Step 8 We now assume thar the polynomial P{T'} has a triple root
in k&, which after a translation we can take to be T = 0. This means that
Ifrgl;ag. i lay. and ?T"|a(,-|. so the special fiber Vyy is the triple line 2§ = 0.
Our total special fiber now consists of the simple line Z = 0, the double
line Y? = 6. and the triple line x§ = 0. The scheme V) is regular except at
the points on the special fiber satisfyving

2
T =& = y5 tagaye — ey =0

Making a translation gz — yo + = allows us Lo assuine that the polynomial

Y8+ ayays —agg has gy = 0 as a root in & This may require making
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a quadratic extension of k, in which case the components of the special
fiber corresponding to the two roots of the quadratic polynomial will not
be defined over A.

We now have , and we blow-up Vy at thepoint 7 = 23 =4 =0
by making the change of variables

0t . rr . :
r=xy,  wmi=ay,  y=y

{This is chart 2 of the blow-up as described in (7.7).) This yields the

scheme U C A% = Spec R[#’. 2. ] given by the equations

. 3 2 2
UWem+magr’ +agon’ =0y + mager’” +asge'7’ +agsn’™, w=n'y.
The special fiber of U consists of three components, which we label as

Fliora'=x"=0, Fj:x' =y =0, Fj:y =ags~aqar —agss =10

Notice that when we glue W to Vy, F is identified with the mul-
tiplicity-3 component a7 = 0 of ¥y, Our next step is to compute the
multiplicities of the new components F and Fj. To do this, we rewrite the
equation for U’ as

N [ 2 ' ' 13y
7 {y +ar1z'V +asa — a2’ Y — aasr’ - epsT } =Iy.
The function ' does not vanish identically on FY. so it is a unit in the local
ring O ;. Similarly, since we are making the Step 8 agsumption that w34 .,
the quantity in braces is also a unit in Ogs. It follows that both " and 3
are uniformizers for OF';:_ that is, they each vanish to order 1 on F3, so

ordpy (U') = ordgy(7w) = ordp (n'y") = 2.

We leave for the reader the analogons verification that ordg Wy=1.
But we're not done with Step 8, because we have to perform an iden-
tical blow-up of Vy; at the singular point m = 21 = y2 +az.5 = 0. This gives
another pair of components, one of multiplicity 2 and one of mmltiplicity 1.
The resulting configuration is of Type IV*, which completes the verification
of Step 8 of Tate’s algorithm.
Proof of Step 9. For this step we have ?T"S]a;;'. s0 the scheme U given
above is singular at the point #° = #" = 3 = {1, We blow it up at that
point by making the substitution

Tl_.f — :‘THJ’:”.\ a‘f — ._I:H? y? — yﬂ':c.ﬂ.
This gives the scheme U” C &% = Spec Rlx”. x",4"] defined by the equa-
tions

[l por i

W y's" +a 2"y 7" 4 aasx’y"w

2 w2 p ’ 2
="y Faver" Y 7" v as 7" +agsr.
T = quynﬂn.
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Under our Step 9 assumption that 78 { ay. we find that U consists of the
following four components:

Fl” 2 =g =0, Frr Ly "M
F o =" — gy — agsn” =0.

Fl oy =aya+agsn” =0,
We compute the multiplicity of £}’ in the fiber by writiug

2
" {y +ap gy’ +oagary' T —asai” 1,.' — 43— Gg oM }_rn .

The function in braces does not vanish identically on I}, so it is a unit
in Opr. This means that 2 is a wniformizer for F{ and ordp(z”) =
)ordpu ¢} = 2. Hence

ord p;»{ll”) = ordpe{w) = ord;--;r(_;c”gy”?r”) =4,

So we now have a chain of components of multiplicities 1, 2. 3, and 4.
Notice how the fibers of Type [IT* and II* are emerging.
A similar ealenlation shows that ord g (U’ '} = 2. Further, our Step 9
assumption that x* { ay implies that U" is regular at the point 7" =
"= y"” = 0 where F|' and F} intersect. Heuce there is a multiplicity-2
componeit attached to the mualtiplicity-4 componens of the regular minimal
model. This means that the fiber is of Tvpe 111%, which completes our
analysis of Step 9. For those who wish Lo recover the full Type 1117 fiber,
we mention that U” is singular at the intersection of F; and Fy, that is. at
the point 77 = 2" = 9" — a4y =0

Proof of Step 10.
the point 7" = 2"

" LT i f1e R i fir
al=ayr 2 =2y YT =y

This gives the scheme
ey i AR N . £ w2 2
U rmw™ faq 2™y T FagarTy T w

mZ Y m2 TSy ek pned el mz
T + g

Y+ o ¥OOr daaar Yy 5T

(-1
="y e

The special fiber WY consists of four components,

i i e
o™ =g =0 bl y =" =0,
F:;” Ca" =1 — agan” = 0, Fm . ; — 1= agar” = 0.
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We compute the multiplicity of F3” in the special fiber by writing

LIr

w2 _ne e 2
{1+ ar12™y" + ag 22" :

¥oom —de2t Y

12 el o el e
—aq 4w = ag e w™ Y = Y

Both z'” and the quantity in braces are units in Ogy». which shows that o
and y"' each vanish to order 1 on F§”. This allows us to compute

- il E
ord gy Uy = ordpgs (1) = ordpéu(;rm'y”"'?r"”) = 5,

Further, the $tep 10 assumption that 7% { ag implies that U is regular
at the intersection point © = 2" = ¢ = 0 of F}" and FJ’. Hence the
appearance of the multiplicity-b component F3 ells us that the fiber is of
Type II*. As usual, we leave for the reader the enthralling task of perform-

ing the additional blow-ups necessary to find the other IT* components.

Proof of Step 11, Finally, suppose that 1ITT0|0(1]- Our cumulative assurnp-
tions to this point are that «|a;. 7°lag, 7 |as, 7¢|s. and 7%as. In U we

make the substitutions

T = lf?ryf-. 2= ﬂféfﬁ-yg ym — ?T;f}é/-’r:i.

which leads to the R-scheme
3 2
yzs + a1y + a3 als = Ty + de2ds + Q4402 + Gas

defined by a Weierstrass equation whose diseriminant is 7~ 2A. We can
now begin again at Step 1 uging this “smaller” Weierstrass equation. Note
that each time we pass through Step 11. we will have shown that the original
diseriminant is divisible by an additional 71?2, Thercfore the algorithm will
terminate. This concludes the proof of Tate's algorithin (9.4}, O

Remark 9.6. During our verification of Tate's algorithm (9.4), we left
the casce of multiplicative reduction (Type I,) for the reader to analyze.
There is another approach to multiplicative reduction using Tate’s p-adic
analytic uniformization. We will describe Tate's uniformization in the next
chapter {V.3.1, V.5.3), but briefly, if £ has split multiplicative reduction
and K is a complete local field, then thereisa g € A with v{q) = +{A) > 0
and an isomorphism of groups

K" /4% -~ E(K).

This isomorphism is given by v-adically convergent power series. Further,
the isomorphisin identifies the subgroups R* = Eg(K), so we get isomor-
phisms

E(K}/ Eo(K) = K" /¢"R* = Z/nZ.
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Here the second map is induced by the valuation v : K* — Z, and
n=ug) = v(d)

We know that A{K) = E(R). and it is clear from the definitions
that #3(K) = WIR). Further, one can show that W(R) = EYR), ei-
ther by a direet caleulation or using the argument in (V §4). It follows
that E(R)/EY(R) = Z/nZ, and then (9.2b) gives ¢ = n.

Similarly. it £ lias non-split reduction. then {V.5.4) says that we can
find an wnramified quadratic extension K’/K with residue ficld &' such
that E has split reduction over K’ Then

E(K'y =K' /¢%,
FKy={ue K™ g Nﬁ’(u) & ¢< /g,
Eo(K) & fue BT NE () = 1) = {u ek < N = 1)

Note the last isomorphism depends on the fact that K'/R is unramified.
Finally, we have

E(k)/EVR) = E(R)/EO(R) = E(K)/Eo(K) = (N ) ¢/ (NE) (1),

The fact that K7 /K is nuramified means that the norm map is surjective on
units, N4 : R — R*, from which onc easily deduces that this last group
is trivial if o is odd, and has order 2 if » is even.

PrOOF (of Corollary %.1). If we start with a minimal Welerstrass equation
for E/K, then we never get 10 Step 11 of Tate's algoritling, so the original
equiation defining W never changes. Tracing through the various stages
of Tate's algorithim, we see that the non-singular part WU of the Weler-
strass equarion ends up as an open subset of the minimal regular model C.
Since WY clearly contains the image of the zero section, and since the spe-
cial fiber W is irreducible, we see that W is the identity component. of the
special fiber of €. Equivalently, W! = £, {For an alternative proof of (8.1)
which uses a bit more algebro-geometric machinery and does not rely on a
case-by-case analysis, sce Liu [1].) O

Proor (of Corollary 8.2). (a} First, the equality B{K)} = E(R) follows
from the definition of the Néron model (5.1.3). Next we observe that the
definitions of Fy and W? are hoth given in terins of the reduction of the
given Weierstrass equation. so Eg(K) = WY ) is antomatic. Now (9.1)
says that W = £ 50 we get. the middle equality Ey(K) = (). Fi-
nally, £1{A) and £'(R) each consists of the points which reduce to the
identity on the special fiber, and these reductions are compatible since
we already know that Fo(A}) = E"(R). This proves the third equal-
ity E1{/K) = EUR).
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(b) The isomorphisms E{K)}/Ey(K} = E(R)/EYR) and E(K)/E|(K) =
E(R)/EY(R) are imumediate from the identifications proven in (a}. Further,
the reduction map E(R) — £(k) has kernel £'(R). and the inverse image
of E::”(A‘) is £°{ R} by definition, which gives the injectivity of the right-hand
maps. Finally, if R is complete {or merely Henselian}, then the rediction
map E(R) — E£(k)} is surjective (6.4a), so in this case the right-hand maps
are isomorphisims. N
(¢} We have E (k) = WY(E) directly from the definitions. Now (9.1)
implies that ﬁ?”(k} = £ME), which gives the desired result.
{d) From (b) we have an injection E(K)/Ew{K) — é(ﬁc);'é”(k}. The
group &(k)/EMEY is forred by looking at the special fiher € of the minimal
proper regular model and taking the componenis that have muliipleity 1
and arve defined over k. A quick perusal of the list of reduction types shows
that only Type I, has more than four multiplicity-1 components. Further,
Tate's algorithm (Step 2, see also {9.6]) savs that if a tiber of Type I, has
non-split reduction, then it has at nmost two componenis defined over 4.
This proves that E{K)/E{K) has order at most 4 unless E/R las split
multiplicative reduction. Finally, if £ /K has split multiplicative reduetion,
say with a Type [, fiber. then Step 2 of Tate's algorithm says that nequals
the valuation of the minimal discriminant. which is also equal to — u(\j[E))‘
[

510. The Conductor of an Elliptic Curve

The conductor of an clliptic curve E/K is a quantity which measures the
arithmetic complexity of E/A . similar in some ways Lo the minimal dis-
criminant. Just like the discriminant, the conductor is a produet over the
primes p at which E has bad reduction, but the exponent of p is defined
i terms of the representation of the inertia group on the torsion subgroup
of £. The conducior is an important quantity which appears in the func-
tional equation of the L-series of E. in the modular parametrization of
clliptic curves over @), and in various questions concerning the cobomology
of E.

Before defining the conductor, we bricfly recall some standard facts
about local fields. For more details, see Serre [4]. Let K be a local ficld of
residue characteristic p, let L/K be a Anite Galols extension with normal-
ized valuation vy, and ring of integers iy, and let G{L/K) be the Galois
group of L/K. Then for each integer i = —1. the i'"-higher ramification
group of L/ K is the subgroup of G{L/K) defined by

GiL/K)={c e GIL/K) s vg{a” —a)zi+1lforalla € Ry }.
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We write
g (L/K) = #G;(L/K}

for the order of the i*"-ramification group. One should think of the higher
ramification groups as measuring the cxtent to which the extension L/K
is wildly ramified. The following lemma records some basic facts about the
higher ramification groups.

Lemma 10.1. Let L/K be a finite Galois extension of local felds.

{a) The higher ramification groups Gi(L/K) are normal subgroups of
G{L/K}.

(b} G (L/K) = G(L/K).

{¢) Gul{L/K} is the inertia group of L/ K.

() [Go(L/KY: GL{L/K)] is relatively prime to p.

{(dy Gy{L/K) is a p-group. Thns L/K is wildly ramified if and only
IFGUL/K) # 1.

PROOF. See Serre [4], especially Chapter IV, Proposition 1 and Corollar-
ies 1 and 3 to Proposition 7. O

The conductor of an elliptic curve consists of two pieces, a tame part
and a wild part. It turus out that if the residue characteristic p is at
least 5, then the wild part will be zero. 5o if one is willing to ignore residue
characteristics 2 and 3, then &(£/K) can just be set equal to 0 in the
following definition.

Definition. T.et F/K he an elliptic curve defined over a local field of
residue characteristic p, and let. I{K/K) be the absolute iuertia group
of K. Fix a prime ¢ different from p. let Vi(E) = Tp(E) ®z, Q¢ be the £-
adic Tate module of £, and write Ve(E)/'A/K) for the subspace of Vi(E)
that is fixed by I(K/K). The tame part of the conductor of E/K is the
quantity

e(E/K) = dimg, (1@(1—7)/%(5)“*"“{1) =2 — dimg, (W(E)f”"”*’l) ,

Next let L = K(E(€}). Then the wild part of the conductor of E/K is the
quantity

— 9L/ K)

SE/K) = > L)

dimg, ( Bl6)/E[( /K1)

The exponent of the conductor of E/K is the sum of the tame and wild

parts,
FE/KY=e(E/K) + 8(E/K).

The conductor is a representation-theoretic quantity, since it is defined
in terms of the action of the Galois group G{X /K') on the torsion subgroup
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of F. The following gencralization of the criterion of Néron-Ogg-Shafare-
vich [AEC, VIL7.1] provides a geometric interpretation for the tame part
of the condnctor. We note that in many books (including [AEC, C §16])
one finds this geometric description (1(.2b) used as the “definition” of the
conductor.

Theorem 10.2. Let K be a focal feld of residue characteristic p, and
let £/K he an elliptic curve.
(a} The tame part of the conductor of E/K is given by

0 il E has good reduction,
(E/KY = < 1 if E has nmltiplicative reduction,
2 if E has additive reduction.

(b} If E/K has good or multiplicative reduction, or if p = 5, then

() if £ has good reduction,
S(E/R)Y=0 and fIE/K)= (1 if £ has multiplicative reduction,
2 if E has additive reduction.

(e} In all cases, the exponent of the conductor f(E/K) is an integer whic
is independent of the choice of £.

Proor. (a) Notice that

e(E/K) =0 = V(E)RE) =y (B
= [(K/K} acts trivially on T3{E)
<= T:(E) is unramified.

S¢ the assertion that
e(Ef/K) =0 < E/K has good reduction

is precisely the criterion of Néron-Ogg-Shafarcvich [AEC, VI1.7.1]. We are
going to mimic the proof of [AEC. VIL.7.1] to obtain a somewhat stronger
result. This proof is taken from Serre-Tate [1].

Let K™ be the maximal unramified extension of X, and consider the
two exact sequences

0 — Eg(K™) — E(K™) — E(K"™)/Ey(K™) — 0,
0 — E(KY) — Ey(Kv) — Ene(k) — 0

Here k, the residue field of K™, is the algebraic closure of the residue field
of K. We note that E{A")/Eq(K"™) is a finite group from {9.2d), and
that Fi(K™) has no £-torsion from [AEC. VIL3.1{, since it is isomorphic
to the formal group of E.
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For any abelian group A, we let T¢{A) denote the Tate module of A,

Te(A) = lim A[#7].
and we set.

Vi(A) = Te{A) @z, Qr.

We obscrve that Ve(A) will be 0 if A has no é-torsion, or if A is a finite
group. lu particular, ’

Vi(E(K")/Ea(K")) =0 and Ve E{{K'T)) = 0.
Hence the two exact sequences given above yvield isomorphisius
Vi(B(K™)} «— Vi(Eo(K™)) — Vi(Eu(k)).
On the other hand, we clearly have
V(E(E™) = Vi (E(R)) SR K™ 2 v(B(m) S,
which proves the fundamental isomorphism
Ve B(RY) ) o (BB,
Now we compute
(E/K) =2 — dimg, (Ve(E) /%))

=2 - dimg, (L’}(E“S(k)))

dimgy, (L{(E')) if E has good reduction,
=2 — ¢ dimg, (Vi(k*)} if £ has multiplicative reduction.
dimng, (Vg (£:+)) if £ has additive rednction,

where the last line follows from the standard description of the various
reduction types [AEC, VIL5.1). Using the [act that ¢ & p, we find that

Ve(E) = Q7. AR =0 VekYy =0

which compleies the proof of (10.2a).
(b) Fix a prime ¢ # p, and let L = K(E[¢]). If E/K has good reduction,
then L/ K is unramified from [AEC, VIL4.1), so the inertia group Go{L/K)
is trivial. It is then clear from the definition that 6{E/K) = 0.

Next. suppose that E/K has non-integral j-invariant, that is, v {jp} <
0. Let £ # p be a prime. We will prove later {see (V.5.3) and exercise 5.11)
that there is an extension K'/K with the following properties:
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(1} [K':K]=1or?2

(2) K'/K is unramified (respectively ramified) if £/K has muitiplica-

tive (respectively additive) reduction.

(3) There is a ¢ € K’ such that K'(E[f]) = K'(pte, ¢'/%).

Here p¢ denotes the group of #P-roots of unity.

Thus the extension K'{FE[¢]) /K’ is composed of an unramified cyclo-
tomic extension K'(p)/K’ and a Kummer extension K7 (gee, ¢'/¢}/ K’ (p2¢)
whose order divides ¢, This shows that the extension K'(E[¢])/K' is
at worst tamely ramified. It follows from properties (1) and (2} that
K(E[E])/K is tamely ramified if either E/K has multiplicative reduction
or if p > 3, which completes the proof of (10.2b) in the case that jp is
non-integral.

Finally we consider the case that E/K has integral j-invariant, or
equivalently from [AEC, VIL5.5], £ has potential good reduction. A key
tool in proving (10.2) in this case is the following strengthening of the
criterion of Néron-Ogg-Shafarevich.

Propaosition 10.3. Let K be a local field of residue characteristic p, and
let E/K be an elliptic curve with integral j-invariant.
{(a) The following are equivalent.
(i) E has good reduction over K.
(ii) E[m] is unramified for every integer m > 1 reiatively prime to p.
(iii) E[m] is unramified for at least one integer m > 3 relatively prime
to p.

(b} Let m > 3 be an integer reiatively prime to p. Then E has good
reduction over K{E[m]}.

ProoF. (a) The equivalence of (i) and (ii} is [AEC, VIL.7.1], and the imn-
plication (ii}) = (iii) is trivial. So it suffices to prove that (iii) implies (i).

We are given that F/K has potential good reduction, so we can find
a finite Galois extension L/K such that E has good reduction over L. We
are also given an integer m > 3 such that E[m] is unramified over K. Let £
be the largest prime dividing m, and let

V=¢ if¢#2 and ¢ =4 ifé=2

Notice that £|m since m > 3, so E[#| C E[m]|. Thus E[#] is unramified
over K.

The fact that F has good reduction over L means that the inertia
group Ij,; acts trivially on the Tate module To(E) [AEC, VIL4.1b], so
the inertia group f;,x of L/K acts on T¢(E). This action gives us a
homomerphism

o IL/K — AUt(T{(E))‘

Further, we are given that E{¢'] is unramified over K, so I, i acts trivially
on E[#']. In other words, the image p({,,x) is contained in the kernel of
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the natural map

Aut{T(E)) — Auwt(E[€]).

It we choose bases T¢(E) = Z7 and E[¢] = (Z/FZ)2, then this last
map becomes

GL2(Z¢) — GL2(Z/¢7).
It is an elementary exercise to verify that the kernel of this map, namely
{M € GL2(Ze) : M =1{mod &)},

has no clements of finite order. (See exercise 4.38. This is the point, at which
we need £ = 4 if £ = 2, since if we took £ = 2, then the matrix (_lll _(]})

would be in the kernel.)

We saw above that the image p{I,;x ) is contained in this kernel. But
the group I, 5 is finite, so it follows that its image p(f7 ) Is trivial. In
other words. the inertia group Iy, acts trivially on T (E). which proves
that T¢(E) is unramified over K. Now [AEC, VIL7.1] tells us that E has
good reduction over A, which completes the proof that {iii} implies (i}.
(k) This follows immediately from [a), since Elm] is clearly unramified
over the field K (E[m]). 0

We now resinne the proof of Theorem 10.2(h), where, recall, we are
assuming that £ has integral j-invariant and that p > 5. and we arc trving
Lo verify that 8(E/K) = (. Without loss of generality, we may replace &
by its maximal nnramified extension.

For each integer m > 3 relatively prime to p, let L, = K(E[m]]. Now
Proposition 10.3{a) tells us that £ has good reduction over L, and then
ancther application of (10.3a) says that for any other m/, the set E[m/] is
unramified over Ly, which means that the compositum L,,-L,, is an un-
ramified extension of L,,,. But we took K = K™, so L, has no unramified
extensions, and hence L, C L,,. Reversing the role of m and m’ gives
the opposite inclusion, which proves that all of the Ly, 's are the same. We
write L for this common field.

Now let £ = 3 be a prime with £ # p. (We will deal with the case £ =2
later.) The action of the Galois group G{L:/K) on E[¢] gives an injection

G(Li/K) —— Ant(E[¢]) = GLy(Z/¢Z).
It. follows that
#G(L/K) | 4 GLoZ/T),

But we showed above that the field Ly = L is independent of £, so we find
that #G{L/K) divides # GL,(Z/¢6Z) for all £ # 2,p. The group GL(Z/FZ)
has order £(¢ — 1)%(£+ 1), and it is easy to sce using Dirichlet’s theorem
on primes in arithmetic progressions that

ged {#(f — 1)*(¢ + 1)} = 48.
EF2p ’
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Henee G{L/K) has order dividing 48.

In particular, {L : K] is not divisible by p, since p > 5 by assumption.
This proves that the extension L/K is at worst tamely ramified, so the
higher ramification groups G;{L/K) are trivial for ¢ > 1 (10.1d}. It follows
directly from the definition of §(E/K} that 6{E/K) = 0. This completes
the proof of (10.2b) for £ = 3.

Finally, if # = 2, we use the fact that .. = Ly and that I has good
reduction over L 1o conclude that

G(L/K) —> Aut(E[4]) = GLy(Z/AT).

This last group has order # GL2(Z/4Z) = 96 = 2°-3, s0 L/ K is not wildly
ramified at. p, since p > 5. Hence §(E/K) = 0.

(c} If p =5, then (b} says that f(E/K) is an integer which depends only
on the reduction type of E/K. hence is independent of £. The general case,
which is due to Ogg (2], uses more machinery than we want to develop
here. We have sketched the proof in exercise 4.46. For further details, see
Ogg [2], Serre [7, chapter 19], and Serre-Tate [1, §3]. a

If the residue characteristic of K is not equal to 2 or 3, then we
have seen that 8(E/K} = 0, and so the exponent of the conductor sat-
isfies f(E/K) < 2 from (10.2b). When the residue characteristic is 2 or 3,
the exponent of the conductor is still bounded as described in the following
result.

Theorem 10.4, {Lockhart-Rosen-Silverman [1], Brumer-Kramer {1]} Let
K/Q, be a local field with normalized valuation vy, and let E/K be an
elliptic curve. Then the exponent of the conductor of EJ/K is bounded by

FE/K) < 2+ 3uk(3) + 6vk{2).

{Here vg (p) is the ramification index of K/Q,.) Further, this bound is
best possible in the sense that for every finite extension K /€, there is an
elliptic ciurve E /K whose conductor attains this bound.

ProoOF. We are going to prove the slightly weaker bound
FIE/K) <2+ 3vk(3) + Bug(2),

since the proof Is easier and the weaker estimate suffices for most appli-
cations. For an elementary, but involved, proof of the stronger ineguality
in certain cases, see Lockhart-Rosen-Silverman [1]. The proof for gen-
eral K requires heavier machinery from representation theory; see Brumer-
Kramer [1].

We begin with the observation that if p > 5, then §(E/K) = 0
from (10.2b} and ¢(E/K) < 2 directly from its definition, so f(E/K) < 2.
It remains to deal with the cases p = 2 and p = 3.
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Let £ be any prime other than p. let L = K(E[£]). let Disx be the
different of L/K, and let 7 be the smallest integer such that G.(L/K} = 1.
We will need the following elementary properties of local fields:

(i) 0L (Dryx) =3 _(9:L/K) - 1).
=1
(ii) v (Drsr) = gl LK) — 1+ v {go(L/K)}.
oruipl
(iii) 7 3}}_1 + 1.

See Serre (4. IV, §1. Prop. 4] for {i), Serre [4. III. § 7, remark following
Prop. 13] for (ii}, and Serre [4. IV, §2. exercise 3(c)] or Lockhart-Kosen-
Silverman {1, Lemma 1.2{b}} for (iii).

We are now ready to compute.

f(E/K) =c(E/K) + §(E/K)

< 24+ 8(E/K) since clearly =(£/K) < 2
7—1 -
g(L/IK) COULIKY
9 LB E[f)] E[#)C &/
F 2 g w) (Ela/ 1 )

since G{{L/K}=1fori > r

r—1

2

L2+ — g (L/K since dimg, (E[¢]) = 2
!}[}(L/I\);j{ ) (E[#])
= ——= ) &(L/K)
go(L/K) =
2 ~
qul LK) (r‘ ?Z[:}(q (L/K) ))
2 .
B m(r + T’L(QL;.-K)) from I)rDDeI‘ty (1)
o
= S(L/E) (;L—(pl) + 1+ go(L/K) =1+ vz (gn(L/K JJ)
from properties {ii) and {iii)
_ 2ox(p)

+ 2+ 2vg {go(L/K)) since go(L/RK) is the
ramification index of L/ K.

p—
Now suppose that p = 3, and take (say) € = 5. Then
G(L/K) — Ant(E[5]) ¥ GLy(Z/5Z),

s0 in particular go{L/K) divides # GLo(Z/5Z) = 480 = 2° - 3. 5. Hence

vrc (go(L/K)) < v (480) = wg{3),
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and substituting this in above with p = 3 gives the desired estimate,
FE/K) < 2+ 30k (3).
Similarly. if 3 = 2, then we can take {sayv} £ = 3 and nse the injection
G(L/K) — Auwt{E[3]) = GL2(Z/3Z)

to conclude that go(L/K) divides # GL2(Z/3Z) = 48 = 2% . 3. However,
we call easlly save a little bit. We are allowed (o make an unramified
extension of K, so we may adjoin to A a primitive cube root of unity,
Then basic properties of the Weil pairing {AEC, [IL&.1] imply that the
image of G(L/K) lies in SLo{Z/3Z). {We sketeh the prool below.} Hence
the ramifcation index gy(L/K) divides #SLy(Z/37) = 24 = 22 .3, It
follows that
vi (go( L/ K)) < e (24) = vg (2°).

and then substituting this in above with p = 2 vields
FIEJKY < 2vpe(2) + 2 4 205 (2°) = 24 8y (2).

Let 7 be a uniformnizer for A, If p > 5, then (10.2b) says that any
elliptic curve E/ A with additive reduction will hit the maximum conductor
exponent. f{E/K) = 2. If p = 3, then we claim ihai the elliptic curve

E:y*=s+nm

satisfles f{E/K) = 24304 (3). Similarly, if p = 2, we claim that the clliptic
curve
3

E v+ ry=2* -2+ 7r
if i

salisfies f(E/KY = 2 + 6vx (2}, We conld verify these claims by a lengthy
direct calculation, but instead we will leave thew for the reader to chock
{exerciscs 4.52 and 4.53) wsing Tate’s algorithm (9.4) and a formmla of
Ogg (11.1} to be proven in the next scction.

It remains to prove the assertion from above that the image of G(L/K)
lies in SLa{Z/3Z). Fix a basis S, T € E[3]. Then e4{5.T) is a primitive
cube root of unity, so it is in K. Let ¢ € G{L/K), and let p{o) = (? 3) €
GL2(Z/3Z) be the matrix giving the action of ¢ on E[3] relative to the
chosen basis. Using [AEC. IIL8.1{a.b,c.d}], we compnte

e3(5.T) = ex(S. 1) = e3(87.T7) = ey(aS + T, bS + dT')
= (-3{5! -T)ud—bf_: _ (-’-;S(S._ T}rh\l Pf_ﬂ'}‘
Therefore det pla) = 1. s0 the image of G(L/K) lies in SLo(Z/3Z). O

The conductor of an elliptic curve over a munber field is defined by
combining all of the local conducior exponents, just as the minimal dis-
criminant was defined as a product of the local discriminants.
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Definition. Let E/K be an elliptic curve defined over a number field K|
and for each prime p of K, let f(E/K,) be the exponent of the conductor
of E consider as an elliptic curve over the local field K|,. The conductor

of E/K is the ideal
fE/K) = T[ o /.
P
Example 10.5. Let E/K be an elliptic curve defined over a number field,
and suppose that F has everywhere semi-stable reduction, by which we
mean that E has either good or multiplicative reduction at every prime.
Then the conductor of E/K is the product of the primes of bad reduction,

HE/KY =[] »

P|'Db,u<

where Dy, is the minimai discriminant of E/K [AEC, VII §8]. Con-
versely, if the conductor [(E/K) is square-free, then E/K has everywhere
semi-stable reduction. This follows from (1.2}, which says that the con-
ductor exponent satisfies f(E/K,) > 2 if and oniy if E/K, has additive
reduction.

Both the minimal discriminant and the conductor measure the extent
to which an elliptic curve has bad reduction. We will see in the next
section (11.2)} that the exponent of the minimal discriminant is always
greater than the exponent of the conductor, so we always have an inequality
of the form

NG (fe/x) < N§ (Dgyxc)-
Szpiro has conjectured that there should be an inequality in the other
direction.

Szpiro’s Conjecture 10.6. Fix a number field K and an ¢ > 0. There
is a constant o K, z) so that for every elliptic curve E/K,

Ng (De/x) < oK, e)N§ (fe ).

This conjecture, if true, lies very decp. Its validity would imply the
solution to many other Diophantine problems, including for example the
assertion that if a,b € Q" arc fixed, if n = 2, and if m is sufficiently large,
then the equation ax™ + by™ = 1 has no non-trivial solutions z,y € Q.

Surprisingly, it is quite easy to prove a function field analogue of
Szpiro’s conjecture; see exercise 3.36. One can even prove such a result
with ¢ = 0 and with an explicit constant ¢. The function field version
of Szpire's conjecture was originally discovered by Kodaira {see Shioda (3,
Prop. 2.8]) long before Szpiro formulated his conjecture, and it has been
frequently rediscovered since that time; see for example Hindry-Silverman
[2, Thm. 5.1} and Szpiro [1].
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511. Ogg’s Formula

Let E/K be an elliptic curve defined over alocal feld. Ogg’s formula relates
the minimal diseriminant of £/ K, the exponent of the conductor of E/K,
and the number of components on the special fiber of the minimal model
of E over the ring of integers of K. This formula was originally proven
by Ogg [2] in all cases except whon K is a field of characteristic (¢ with
residue field of characteristic 2. Ogg's proof relies on a lengthy case-by-
case analysis. A more conceptual proof nsing scheme-theoretic techniques
and working in all residue characteristics has been given by Saito 1], who
proves Qgg's formula as a special case of a general result for curves of
arbitrary positive genus, An expanded exposition of Saito’s proof just in
the case of elliplic curves can be found in Liu [1].

Ogg’s Formula 11.1.  (Ogg [2]. Saito [1]} Let K/Q, be a local feld,
et EJK be an elliptic curve, and let

ric(Dg, i) = the valuation of the minimal discriminant of E/K,
f(E/K) = the exponent of the conductor of Ef K,

m(E/K) = the number of cornponents on the special fiber of E/K.

Then
ti{Ppix) = FIE/K)+ m{(E/K) - 1.

Remark 11.1.1. The number :n{E/K) in {10.1) is the number of irre-
ducible components defined over k on the special fiber of the minimal proper
regular model of £/K. This includes all of the components, not just the
multipliciiy-1 components which make up the special fiber of the Néron
model. Further, each component is counted once, regardless of its mualti-
plicity. For example, if £/ K has Type L, reduction, then m{E/K) = n, and
if E/K has Type IIT* reduction, then m(E/K) = 8. The value of m{E/K)
for these and the other reduction types can be found in Table 4.1.

Remark 11.1.2. The minimal discriminant and special hiber of E/K can
be computed in & straightforward nianner using Tate's algoritlim (9.4). For
this reason, Ogg's formula {11.1} is frequently used to compute the expo-
nent of the conductor of E/K for residue characteristics 2 and 3. See for
example exercises 4.52 and 4.53, as well as the conductor tables contained
in Birch-Kuyk [1] and Cremona [1].

Proor {of Ogg™s Formula 11.1). If £// has good reduction, then
v { Dy =0, fIE/K)=0, and m(E/K)=1

These three equalitics follow from [ALC, VIL.5.1a], (10.2b), and (6.3) re-
spectively. (Notice that (6.3) says that the minimal Weicrstrass equation
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for E/K is already the Néron model, so its special fiber is irreducible.)
This verifies Ogg's forinula when E/K has good reduction.

Next suppose that £/ K has multiplicative reduection. Then f{E/K) =
1 from {10.2b). Further, Step 2 of Tate’s algorithm (9.4) tells us that the
special fiber of the minimal model of E/A is an wn(E/ K }-sided polygon,
with m{E/K} = vx{DPg;p). This verifies Ogg's formula when E/K has
miltiplicative reduction.

Finally, suppose that £/& has additive reduction. Consider first the
case that p = 5. Then (10.2b) tells ns that f(E/R) = 2, so Ogg’s fonnula
becomnes

v Dy =m(E/K) + 1.

It 1s now a simple maller using Table 4.1 to verify Ogg's formula case-by-
case, checking each of the reduction types I, [1L. .., [I*.

It remains to eonsider p = 3 and p = 2 when F/K has additive
reduction. We will give a direct case-by-case verification for p = 3, since
it enly takes a few pages. A similar proof for p = 2 would be extremely
lengthy. so for this last case we refer the reader to Saito’s proof [1] which
works in all residue characteristics and does not rely on a case-by-case
analysis. {See also Liu [1].) Unfortunately, the papers of Saito [1] and
Lin [1] use technigues which are beyond the scope of this book.

S0 we now assumne that p — 3 and that E/K has additive reduc-
tion. In particular, {%.2a) tells ns ihat the tame part of the conductor
s z(E/K) = 2. Further, the fact that p = 3 means that we can find a
minimal Weierstrass equation for £/K of the fonn

. : 2
£ ?;2 = 2% + 4,1 + au7 + g,
The discriminant of this equation is
A= —16(-1@3(15 — fféuf + dal} — 2?(:,% — 18anitqig ).

Using this simplificd forin for F will make all of our caleulations easier.
Let L = K(E[2]} be the field generated by the 2-torsion points of F,
s0 F is the splitting field over K of the cubic polynomial

fla)y = 27 + aan® + aga + ap.

Further, let Af = K(vA}. Notice that the discriminant of the polyno-
mial f(r) satisfies A = —16 Disc(f}. Thus we sec that K € Af < L and
that (L K]
a4 |2 H[L:K)=2or8,
A1+ K] —{1 if [ K]=1or3.
Suppose first that E/K has Type Il reduetion, so wn(E/K) = 2.
A quick perusal of Step 4 of Tate's algorithm (9.4) shows that £ has a
Weierstrass cquation satisfyving
vrlay) = 1. eplagd) =1, wglag) =2, and wvp{A) =3
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We claim that L/K is at worst tamely ramified. To see this, we let my
be a uniformizer for K and use the fact that vx(A) = 3 to chserve that
Tag = ?r;\,l\/E is a uniformizer for Af. Notice in particular that M/K is a
ramified extension of degree 2. Now consider the polynoniial

Hr) = ﬂ';;:jf{:‘T‘.\f.'L'} =x% 4+ T'FE_ILG.Q.’J)E + frn_fa;lx + fr;f"}aﬁ e Mx].

The coefficients of g are in the ring of integers of M, and the discriminant
of g has valuation

v(Disc g) = v{x;f Disc f} = v{ni /A%) =0,

Hence the splitting ficld of g over A, which is L, is unramified over AS.
This proves that L/ K is not wildly ramified, so é{E/K) = 0. We have now
computed all of the pieces in

vi(Dpyx) — HE/K) —m(E/K)+1=8—(2+0) =2+ 1 =0,

which completes the proof of Qgg’s formula for p = 3 and Type III redue-
tion.

If £/K has Type III* reduction, then a similar calculation shows
that vi {A) = 9 and that K{£[2]) is tamely ramified over £. So again we
find that

vi(Dew) — FHE/K)—m{E/K)+1=0—(2+0) -8+ 1=0.

We leave the details to the reader (exercise 4.54a).
For the remaining reduction types (II, II1, IV, Iy, IV*, [II*, II*}, we
are first going to show that if Ogg's formula is true for £/M, then it is also

true for E/K. More precisely, if we write Ogg(E/ K} for the quantity
Ogg(E/K) = vx{Dpyr) — fIE/K) —m(E/K) +1,
then we will show thait
Ogg(E/M) = ofM/K) Qpg(L/K),

where e( M /K) is the ramification index of Af /K. It is clear that this equal-
ity holds if M/K is unramified, since none of the quantities in Ogg(E/K)
will change, so we only need o consider the case that A/ K is ramified.

Assuming now that A/ K s ramified. we have ¢(M/K} = 2, so the
ramification is taine. kit follows that the higher ramification groups lor L/ K

and L/M are the same,

Gi(L/M) =Gi(L/K)  loralliz 1.
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Further, /K is a ramified extension of degree 2. so go(L/K) = 2g4(L/M).
Using these two facts and the defimition of wild part of the condnctor, we
compile

ey N G LK _ o
S(E/K) = Z %dunﬂ (E[z]/E[g]G.U:H\})

i=1"

_x- il R
- P 2an( L /ALY ding, (E[‘]/E[Z] )

Voo,
= —&(E/Af)
FO(ESA
Notice that the full conductor does not satisfy such a simple relation,
since e{E/I) = 2, and we will see that =(E/A) may be any of 0, 1,
ar 2.

The next step in our proofl that Ogg(L/M) = 20eg(L/K) is to verify
the following table describing how various quantities change when we make
the ramified quadratic extension M/K. {For more extensive tables, see
cxercises 4.48. 4.49. and 4.50.})

Tvpol B/ R I v |15 17 = I
{n=1)
Type{E/AL) IV | IV: | I | v | Iv*
2’1;‘;{(@5;‘;{} — 'U‘.\g(l)_::-_,r,\;) 0 i} 12 12 12 12
2f(E/KY — fLE/AL) 2 2 4 3 2 2
2m(E/RKY —m{E /A -1l =19 10 11 11

Notice that the value of 2m{E/K)} — m(E/Af} in the last line is easy to
compute by using the first two lines and reading off the number of com-
poncnts for each reduction type fron Table 4.1 Shuilarly, the identity
S{F/RY) = 8(E/AL/2 that we proved above implies that

2H(B/KY — f{EJAL) = 2:(E/K) — (E/A),

s the penultimate line of the 1able [ollows bmmediately from the first two
lines and the fact {9.2a) that ¢ = 0 for good reduction, ¢ = 1 for multi-
plicative reduction, and ¢ = 2 for additive reduction. The verification of
the remainder of the table is now simply a matter of tracing the various
reduction types through Tate's algorithm. We will do Type TV reduction
to iHustrate the idea, and leave the other cases for the reader.

So supposc that £/K has Tyvpe [V” reduction. Then Step 8 of Tate'’s
algorithm gives a minimal Welerstrass for E/ R satistving

v lag) = 2, preles) 2 3, vy (ag) = 4.
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(Remember we can assume that a; = a3 = 0.) Fix a uniformizer =y,
for M and muke the chunge of variables @ = 73,2, y = 73,%’. This gives
a Weierstrass equation for E/M of the form

3 3 2
E-y  =r" +a.2" +a2" + a.
? 2 4 &

M ot 2 P i , [ —— .
where of = T3 ae. a) = 7y, a1, aud ag = 74, ¢ In particular, we have

unslag) = 2ugclan) — 222, wvaylay) = 2upfas) —4 > 2.
var(al) = 2uilag) — 6 =2, va{A") = 2ux(A) —12.

Now a quick check of Step 5 of Tate’s algorithm shows that this is a minimal
equation for E/M and that E/M has Type IV reduction. Further, A" =
ﬂ",\__fle, $0

oar(Dpyar) = var{A) = 20k (A) — 12 = 20 (Dpg) — 12,

Finally, a fiber of Type [V* has seven components, and a fiber of Type IV
has three components. so0 2m{E/K}) — m(E/A) = 11. This completes the
verification of the Type IV* column in the above table. The other columns
may be verified similarly.

We now use this table fo compute

20gg(E/K) - Ogg(E/M)
= {20x(Dp) — var (Dt} — {2F(E/KY — F(E/M)}

- {2m(E/K)Y - m{E/M)} + {2 - 1}
0-—2—-(=1)4+1=0 if Type(E/K )=l or [V,
12-4-0+1=0  if Type(E/K)=I,
12-3-10+1=0 if Type(E/K)=I} n > 1,
12-2-11+1=0 if Type(E/K)=1V* or II*.

This completes the proof that Ogg(E/A) = 2 0gg{ £/ K), so it now suffices
to prove Ogg's formula for E/AL. We note from the table that E/M is of
Type [V, IV*, I, or I, so it suffices to consider these four cases.

If E/Af has Tvpe Iy reduction, which is to say E/M has good reduc-
tion, or if /A has Type [, reduction with » > 1, which means E/M has
multiplicative reduction, then we are done, since we have already verified
Ogg’s formula for good and multiplicative reduction.

Suppose now that E/Af has Type IV reduction. Using Step 5 of Tate's
algorithm, we see that our Welerstrass equation salisfies

var{ag) = 1, var{ea) = 2, gy ag) = 2.

Let o £ L be a root of the polynomial f(z) = 2% 4 a22? 4+ a4z + ag- Note
that the degree of L/A is cither 1 or 3. and L is the splitting field of f, so
we have L = M{a). We want to use the fact that o satisfies the equation

fla) = o’ 4 aya? 4 aga +ay =0
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to coinpute its valuation. First we observe that

Y

= 111111{ vap{ane®) varlege), vas(og }

111111{1 + 2up 0 2 + vapla). 2},

Buar{cr) = vay {(19(}'2 + ager 4+ )

W

30 vpp(a) = 2/3. Similarly,

2= ay (a;.;) = ‘."_.U{Qa + (520'2 + (!.._](‘r)

A%

min{t-'_.u ((r"" b vagfanee® )oeag (agoy) }

min{B-L‘M (o). 14+ 2vap{a). 2 + £‘_.U((.})}._

Wy

which gives the opposite inequality 2/3 > vz (e}, Hence var{a) = 2/3. In
particular, this proves that L/Af is totally ramified of degree 3. so LA 1s
wildly ramified. Further, if we choose a uniformizer 7, for M, then
elef ;
Ty, = wajaEL

will be a uniformizer for L, since vyp(me) = 1/4.

We can use 77, to detennine the higher ramification groups for L /AL
The Galois group G(L/M) is a evelic group of order 3, so there is an
integer r = 1 such that

G(L/A) = GU{L/ANY = =G ({L/A]).
and
G?(L;{JI‘I) = (;,.',.I(L/."n’) = .-=1.

We want to compute this integer r. Writing G(L/A} = {1.0.6%}. the
definition of the higher ramification gronps says that

r=uwv.(n] —mL).

We substitute 75, = 73 /o and use the lact that Ty, € A to got

T Al \ _
rT=vg ( P T) =uwplmar} + vpfo — o) — v fon?).

The extension L/M is totally ramified, so vy = 3wy, This moeans that
vrlmar) = 3 and vy {a) = vp(a) = 2, and hence

r=uvploe—a’)— 1

Further. the exact same calculation gives r = vp(o — o™ ) — 1, and since
- . . . 2
the valuation is Galois invariant, we alse find that v = ¢p{a” - o” ) — L
Adding these three expressions for v yiclds
2

I =wvplee —a”)y+op(o— (x”lz) + o fa” — o 1—3

=1y ((n - a7 o - (1‘“2]((1'” o }) -3
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Notice that @, a7, and a” are the three roots of f{x}. so the discrim-
inant of f(x) is

2

Disc{f) = — ((“‘ —a" o —a” Ja” - (t”z))Q .

We ohserved above that A = —16 Disc( f}, which gives us the forinula

1o 1 1 j
P ETJL{DlsL'(.f)) -1= oL (a)-1= §U"‘f(-’—“ -1

This relation is the keyv to proving Ogg's forinula, since it relates the condue-
tor, via the higher ramilication growps, to the discriminant of the minimal
Welersirass equation.

The non-trivial elements of G{L/Af] act on the non-zerc elementy
of E[2} via a permmtation of order 3. so the only element. of E[2] fixed
by G(L/A) is O. This means that E[2]% /M) oquals E[2] for i 2 r and
is trivial for i < r, and hence

. (,![Lq” 2 ifi<r,
dimr, (E[QVE[ ) {0 if i > r

Using this and the value for r computed above. we can determine the wild
part of the conductor directly from the definition:

SE/M) = Z j}(;/;? i, (EP],”E[ZIG'(L/M})

= 2(1' -1
= {A) -4
var{Desar) — 4

Adding this to the tame part =(£/M)} = 2 of the conductor gives the
relation

FUEJMY = <(EJM) + 6(E/M)Y = var{Dpas) — 2.

It only remains to recall that we are working with a curve E/3f having
Type IV reduction. This means that m{E/A) = 3, so the lasi relation can
be rewritten as

var{Dgyar) = fFIE/AMY+ 2= f(E/M)4 3 1= f(E/M)+m(E/M) - 1.
This completes the proof of Ogg’s formula when E/M has Type IV reduc-

tion. The proof for Type TV* reduction is similar, s0 we leave it for the
reader. O
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Corollary 11.2. Let K/, be a local field, let E/K be an elliptic curve,
let v (Dpyac) be the valuation of the minimal discriminant of E/K, and
let f{E/K) be the exponent of the conductor of E/K. Then

JE/K) = vr(Dpyx).

with equality if and only if E/K has reduction tvpe Iy, L, or L

Proor. When p = 5. the stated inequality Is quite easy to verify by a
direct calculation, since it essentially comnes down to showing that if the
discrimminant satisfies vx (Dgyp) = 1, then E/K has multiplicative reduc-
tion. We proved this fact earlier (9.5a}. In general. Ogg’s formula {11.1)
tells us that

vk (Deyr) — f(E/K) =m(E/K)-1=0

since the number of components certainly satisfies m{E/K} = 1. Further,
there is equality if and only if m{(E/K) = 1. which occurs exactly for
reduction types Iy, I;. and I1 O

EXRROISES

4.1. {a) The special orthogonal group 50, i3 defined to be
SO, = {Af € 8L, : "AfM =1},

where "AL denotes the transpose of the matrix A7, Prove that SO, is an
affine group variety.
() The arthogonal group O, s defined to he

O. = {MeGL, : "AAr=1}

Prove that there is an isomorphism O, = 50, xZ/2Z of group varieties.

4.2, Let A be the matrix 4 = (_(}“ I(j‘ ) . where I, is the 1 x n identity matrix.

The symplectic group Sp,,, is delined to be
Sy, = {Af € SL,n ¢ (ATAM = A}

Prove that Sp,,, is an affine group variety.

4.3, Let E be an elliptic curve, and let ¢ : £ — FE be a morphism satisfy-
ing ¢(O) = (. Use the Rigidity Lemma 1.8 to prove that ¢ is a group
homomorphism. {This provides an alternative proof of [AEC. II11.4.8] nol
requiring the theory of Picard proups. This proof readily generalizes to
abelian varieties of arbiteary dimension.}



Exercises 397

4.4,

4.6.

4.7.

4.8,

4.9.

4.10.

Let E be an elliptic curve, and let ¢ : Ex E — E be a morphism satisfying

ulP.OY= (O, P)=F forall P e F.
Prove thalt u{P, Q) =P | Q for all P,Q € .
{a} Let A be a regular local ring, and let B be a prime ideal of A. Prove
that the localization of A at P is a regular local ring.
{b} Let X be a scheme, let z.y € X be points, and suppose that = is in
the closure of . {N.B. Points of a schemc need not he closed.) lIf x is a
regular point of X, prove that y is also a regular point. Hence X is regular
if and only if all of its closed points are regular.
{c) With notation as in (b}, give an example to show that it is possible to
have @ singular and y non-singular.
Let R be a discrete valuation ring with fraction field K, residue field k&,
and maximal ideal p, and let 7 be a uniformizer for A. Let X/£ be the R-
scheme defined by X = Spec R{t)/(#t).
{a} Prove that the generic and special libers of X are given by X,, = Spec K
and X, = A} Note that X, is smooth over K and that X, is smooth
aver k.
{b) Prove that X is not smooth aover K. This shows that something like
the irreducibility condition in {2.9} is necessary.
‘Let ¢ : X — 8§ be a morphism of finite type of Noetherian schemes,
let x € X, and let 3 = ¢{x). Prove that ¢ is smooth at & if and only if ¢ is
flat at & and the fiber X, is smooth over the residue field of 5 at s. (This
shows that what is really going wrong in the previous exercise is the fact
that X is not flat over R, since its fibers have different dimensions.}
Complete the proof that G(T) is a group by verifying the following two
facts, where we use the notation from (3.2).
{a} {io¢)*¢=0¢0mnr foralt ¢ € G{T).
(b)Y =+ {(w*2)=(d*v)*Aforall ¢, A G(T).
Let S be a scheme, and et G, and G be the additive and multiplicative
group schemes respectively (3.1.2, 3.1.3).
(a) Prove that G,(5) = T'(5,0s).
{b} Prove that G.{5) = ['(5,0%).
Here O3 is the structure sheaf on S, and T'(8, T) denotes the global seclions
of the sheaf 7.
(a} For each integer r = 1, let g, be the scheme

i = SpecZ[T] /(T - 1).

Prove that therc is a natural incluston g, — G,, so that u,; is a (closed)
subgroup scheme of G,,. The group scheme u. is called the scheme of
" _roots of unity.
{b) Let R be a ring of characteristic p > 0, and for each integer r = 1
let @y be the A-scheme

ay = Spec RIT|/(T).
Prove that there is a natural inclusion e, — G, g so that ap» is a (closed)
subgroup scheme of G, /5.

{c) Let A beasin (b). Prove that v, and g, 5 are isomorphic as schemes
over R, but that they are not istomorphic as group schemes over A.
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4.11.

4.12.

4.14.

IV. The Néron Model

Let G be a group scheme over 5.
(a) Prove that for each integer re, the multiplication-by-m map [m} : G —
(7 described in (3.4) is a morphism.
(b) Prove that [-m| = |-1]o|m]|.
{c) More generally, prove that {rmn] = [m] o [n].
(d) Prove that [m+ n] = go([m] x [n]).
{e) With notation as in {3.4), prove that [0] = g o 7 and that [—1] = <.
Let R be a ring, let d € R, and let G4 C A% be the affine scheme given by
the equation

Geixl—dy® = 1.

{a} Prove that the composition law

Gy X rGa — Ga,

({z1. 1), (22, 42)) Vs (P12 + dy1ye, T1ya + 221)

gives G4 the structure of a gronp scheme over f.
(b} Prove that (o fits into the following exact sequence of group schemes
over R.

U—‘—'Ga;ﬁ‘—“—)ao ‘—".LQ/R_‘ 1.

ere fiz,n = Dpec — is the scheme of square roots of umty;

{Here p2,p = Sp RIT|HT? — 1) is tt h f f uni

see exercise 4.10{a).)

¢) Prove that (7 is isomorphic to Ga, g X gtz ; g as group schemes over .
P hat (Vg is i hi Gay U2 pasg h ft

{d} Let di, d2 € R. Prove that Gy, is isomorphic to Gy, as group schemnes

over R if and only if there is a unit # € R* such that dy = u>ds.

(e) If2 ¢ R", prove that ;1 and Gu,;p are isomorphic as group schemes

over f.

. Let K be a field of characteristic @, and for each d € K, let G4/K C A%

be the group variety
(G4 T2 — dy2 =1

described in the previous exercise. Prove that every connected group va-
riety of dimension one defined over K is isomorphic over K to one of the
other foullowing group varieties:

(i) The additive group Ga, x.

(ii) The group (7; for some d ¢ K. {Note that G is isomorphic to the
multiplicative group G x.}

(iii} An elliptic curve defined over K.

Let € C P2 be the arithmetic surface given by the equation
iy’ =a"+ 22" +6.

Complete the proof (4.2.2) that € is a regular scheme by verifying that €
is regular at the points s =y =3 =0and x + 66 =y =97 = 0.
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4.15.

4.16.

4.19.

4.20.

4.21.

Let B be a discrete valuation ring with normalized valuation v, and let W
P% be the arithmetic surface given by the Weierstrass equation
W oy +any =2 + @mr’ + aar + ap.
Let A and j be the associated discriminant and j-invariant.
fa} T v{A) = 1, prove that W is a regular scheme,
(b} If v{A) =2 and «{y} = 0, prove that W is a regular scheme.
{The computations are simpler if you assuine that 2 and 3 are units in R,
but the results are true in general.)

2

Let €/Z be the arithmetic surface in A; defined by the equation
Co(r® + A% 4 32— Dy — 120 0% — 1® - 20)y°
— (=3 w3t — T -t
Deseribe the special fiber €1 of @ over the point {7) € SpecZ: that is,
describe the components of €, their multiplicities. and their intersection
points. Draw a sketch (in B®) illustrating €;. (See (4.2.4) and Figure 4.2
for a similar calculation.)

S Let o 0 € = Spec{) be a regular arithmetic surface over a Dedekind

domain f. let p € Spec{R), and let x € €, C € be a nou-singular closed
point. on the fiber of € over p. Complete the proof of Proposition 4.3 by
proving that = {p) ¢ M2 ..

8. This exercise generalizes (4.4). Let ¥ be a Dedekind domain with traction

field &, and let X be a “nice” schome over B whose generic fiber X/K s
a smooth, projective variety, (Here “nice” has the same meaning a= in the
definition of arithmetic surface: see §4.)
(a) If X is proper over R, prove that X (&) = X(R).
(b} Suppese that X s a regular schome. and let X" < X be the largest
subscheme of X with the property that X' is smooth over 5i.  Prove
that X{R} = X"(R).
Let. B /R bhe an extension of discrete valuation rings witl maximal ide-
als p. p’, fraction fields A, K’, and residue fields k. & respoctively. Sup-
pose that K'/K is a finite extension. Prove that &' is the localization of a
smooth F-scheme if and only il p = pR' {t.e., B/ R is unramnified).
Let B be a discrete valuation ring with fraction field K. and lt E/K be
an elliptic curve given by a Weicrstrass equation

E ' +azy=21"+ag with @y € % and ay € R.
Let W C B be the R-scheme defined by this Welerstrass equation.
(a) DProve that W is a regular schewe if and only if v(ag) < 1.
(b} Prove that W is smuooth over B if and only if vlag) = 0.
Let E/K, W/R and W'/ he as in the statement of Theorem 5.3, where
we assume that we start with a minimal Welerstrass equation for E/K.
{(a) If E/K has split. multiplicative reduction, prove that the special fibers
of W and Gu,p are isomorphic as group schemes over the residue field
of R.
(b} o E/K has additive reduction. prove that the special fibers of W
and G, ;g are isomorphic as group schemes over the residue feld of R.
(¢) Give a similar description of the special fiber of WY in the case thag
the curve E/K has non-split wuleiplicative reduction.
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4.22.

4.23.

4.24.

IV. The Néron Model

Let R be a discrete valuation ring with fraction field K, let E/K Dbe an
elliptic curve, and choose a Weierstrass equation for E/K with coefficients
in £,

E:Y'Z4+mXYZ+asY28 = X° + o X*Z + s X Z° + a5 2.
Let W C F%, be the R-schoe defined by this Weierstrass equation, and let
i W W - W

be the rational map induced by the addition Yaw on the generic fiber. Define
affine subsets of W by

Wae = {Z £ 0} and Wie = {Y £ 0}

Irove that g is a morphism when restricted to each of the following sets:
[{l.} 1‘\7-,,1-[ o Wf_\ﬂ-.

(h) W'y x5 W

{£) Wiy xp Wiy

{The formulas will be easier if you assunie that 2 and 3 are units in K and
take a Weterstrass equation of the form V22 = X*+ AXZ? + BZ%. We
described the beliavior of g on Way x g Wop during the proof of (5.3). This
exercise 15 asking vou to complete the proof of (5.3).)

Let 2 be a Dedekind domain with fraction ficld K, let E/K be an elliptic
curve, let B/ R be aninimal proper regular model for E/R, and let £/ be
the largest subscheme of €/ K which is smooth over R, Note that £/8 s a
Néron model for E/K . 5o in particular € is a group scheme over B (6.1).
{a) Let P& E{K) = E(R), and let 7p : £ — £ be translation-by-P (3.3}
Prove that 7 extends to an B-morphizin € — €.

(b} Prove that every automorphism o : E/K — E/K extends to an R-
morphisi € — €.

{¢} "Prove that the group law & x4 € — £ extends to give a group scheme
action & x5 € — £,

{d} Prove that in general the group law £ x5 £ - £ does not extend 1o
give an F-morphism € x5 € — €.

Let A be a discrete valuation ring with fraction field K. residue field & and
residue characteristic p. Let £/K and £'/K be elliptic curves, and let £/ R
and £/ B he Néron maodels for E/R and E' /K respectively. Let ¢y : E —
E’ be an isogeuy of degree m = 1 defined over K. Assume that either p
does not divide m, or else that £/K does not have additive reduction.

(a) “Prove that ¢z oxtonds to an H-maorphism oy : £ — £

(b) Prove that ¢n is a homomorphism of A-group schemes.

(¢} Prove that the restriction of éx to the special fiber is a finite mor-
phism ¢y, : £/k — &7k which maps the identity component of & to the
identity component of €.

{d) Prove that there is an A-morphisol &g 1 & — £ with the property that
the composition (,3;?0(,5_;,»_ 1 £ — £ is the multiplicatiou-by-rre map on £ {3.4).
This peneralizes the construction of the doal isogeny for elliptic curves over
fields [AEC, 111 §6).
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4.25.

4.26.

1.28.

Let K be a Dedekind domain with fraction field KX, let E/K be an elliptic
curve, and let £/R be a Néron model for E/K. Prove that the connected
component of £/R as described in (6.1.2) is a subgroup scheme of £/R.

Let R be a Henselian discrete valuation ring with valuation v. Let fiz) €
R[x| be a monic polynomial, and let ¢ € R be an element with the property
that

o fa)} > 20(f'(a)).

Prove that there is a unique element ¢ € R satisfying
vla—a)=v(f{a)) and  fla)=0.

{Note the strict inequalities.)

. Let B be a discrete valuation ring with maximal ideal p and residue field &.

let f1, .., fm € Rlxr. ... 20 let
X =8pec Rxi,....xa] /{1, - fou)
be the scheme defined by the fi's, and let
J = J(my ) = (DO, ) sz

be the associated Jacobian matrix.
{a) Prove that the generic fiber of X 15 empty if and only il some power
of p is contained in the ideanl (fie. . fmk

(b) Let &= (d1,....a8.) € X{&) be a point ou the special fiber of X. Prove
that Xy is smooth over &k at & if and only if the matrix J{@) satisfies

rank J{d) = n — dim X,.

{¢) Assume that X is irreducible. reduced, and has non-empty generic Rler.
Suppose further that the ring R is Henselian, and let a = (a1..... an) €
A"{R) be a point satisfying

Hla)=-- = fula) = 0{mod g} and rank JT;}) =n—dimX,.
Prove that there exists a {unique} point o € A" (R} such that
hilel=-= fuia)=10 and a = a(mod p).

This result is a multi-variable version of Hensels lemma. Tt implies the
surjectivity of the reduction map for smooth schemes over Henselian rings.
{Hint. First prove (¢) under the assumption that R is complete.)

Let R be a discrete valuation ring with residue field &, and let B and B
be the Henselization and strict Henselization of B respectively (6.3}

(a) Let R’ be a Henselian discrete valuation ring, and let i - B — R
be a local homomorphism. Prove that there 15 a unique local homonior-
phism R" — R’ extending 7.

(b} Let R” be a strictly Henselian discrete valuation ring with residue

field £7, let i : B — R” be a local homomorphism, and let v - &7 — &
be a E-homomarphism. Prove that there exists a unigue local homomor-
phism " — R which extends ¢ and which induces the map u on the

residue fields.
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4.29.

4.30.

41.31.

4.32.

IV. The Néron Model

*Let K be an algebraically closed field. let C/K be a curve of genus ¢ > 1,
and let V' be the g-fold symmetric product of . Note that the points of V'
can be naturally identified with the positive divisors of degree g on €.

{a) Fixa basepoint Fy € (7. Prove that there is a rational map g : ¥V xV —
V" determined by the property

iz, y) ~a+y - g(Fo).

(Here ~ denotes lincar equivalence of divisors.)

(b) Prove that p is a normal law, and hence from (6.9) that there is a
group varicly J/ K associated 1o g

{c) Prove thail the map V' — J is a morphism, and deduce that J is proper
over K.

{d} Prove that the map of sets

Vv — Pic™((), x — class[z — g(Pa)],

induces an isomorphism of groups J(K) - Pic®(C).

The group variety Jf is an abelian variety called the Jacobian variety
of €. This construction of ihe Jacobian variety is due to Weil [3]. For a
further discussion, see the proof sketch of Proposition 1I1.2.6(b).

Let R be a strictly Henselian discrete valuation ring with fraction field K.
Let £/R be a group scheme over R whose generic fiber E/K is an ellip-
tic curve. Prove that £/ R is a Néron model for E/K if and only if the
inclusion E{R) — E(K) is a bijection.

Let R be a discrete valnation ring with uniformizing element 7 and alge-
braically closed residue field k. Assume that char(k} # 2,3,5. Let € © A%
be the afine scheme defined by

B:y" =2 + 0%

that is, € = Spec R[z, y}/(y* — «® — =*).

{a} Show that € is regular except at the one point T = x = y = 0 on the
special fiber.

{b) Compute the blow-up of € at the singular point 71 = 2 = y = 0 as
explained in {7.7). Show that the resulting scheme is still not regular.

{c) Continue blowing up until you get a regular scheme. Draw a picture
ol the special {iber similar to the diagrams in Figures 4.3 and 4.4,

{d) Repeat (a), (b), and (c) for the arithmetic surface ¢* = 2® + 77,

{a) For each of the Kodaira-Néron reduclion types (8.2), compute the
intersection incidence matrix of Lthe special fiber.

{b) Show that each of the incidence matrices in {a) has deterniinant 0.
{¢) Let M be the matrix obtained by taking any one of the incidence matri-
ces in {a) and deleting a row and column corresponding to a multiplicity-1
component. Show that det{A) is equal to plus or minus the number of
multiplicity-1 components on the special fiber. Equivalently, |det{M)| is
the order of the group of components of the Néron model.
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4.33.

4.34.

4.36.

4.37.

Let R be a discrete valuation ring, and let €/ R be a proper regular modcl
of a curve of positive genus. Generalize part {b) of the previous exercise
by showing that the incidence matrix of its special fiber has determinant (.
(For a generalization of part (c}. sce Raynaud [1].)

Lel R be a discrete valuation ring with maximal ideal p, fraction field X
and algebraically closed residue field & Let O/ K be a non-singular projec-
tive curve of genus ¢ = 1, and let €/ R be aominimal proper regular model
for /K. Suppose that the special fiber €y of € contains a configuration
witlh ¢ components of the forin shown in Figure 4.6(b). where each of the
illustrated compoenents satisfics p. (F) — 0 and FZ = -2,

{a) Provethat + < dg + 2.

{b) If ¢t = 4g + 2. complete the picture of €. In particular, show that €
has cxactly 4dg + 5 components. {For g = 1, vou'll get a fiber of Type IT°.)

5. Let 2 be a complete discrete valuation ring with fraction field K and al-

gebraically closed residue fickd k of characteristic p # 2,3, Let E/R be
an elliptic curve with additive reduciion, and let Ey{ K} be the subgroup
of E{(K) consisting of points with non-singular reduction (9.2}

{a) Drove that Es(K) is uniquely divisible by 2 and 3.

{b) Prove that E{(R)/Eq(K) is killed by 12,

{¢) Prove that the natural map E(K)[12] — F(K)/Eu{K) s an isomor-
phism.

{a) Let (74, (% € Z be integers with C','? — (','['f # 0. Prove that there exists
a Weicrstrass equation

1}2 + oy + asy = 2+ (]'.2:1?2 + aq¥ + g

with coefficients a . a2, @3, a1, 2 € % satisfying ¢4 = Oy and ¢p = Cy if and
only if one of the following twoe conditions is truc:

{1} ords(Cs) # 2 and Cs = —1 (moed 4},

(i) ordq{Ch) £ 2, ord2(€7) = 4, and Cy = 0 or 8 (mod 32).

() Use the criteria in (a) to devise a quick algorithm to check whether a
given Weierstrass equation with integer coefficients is a minimal Weierstrass
eguation.

(¢) Generalize the criteria in {(a) to an arbitrary ficld K/{J.

Let R be a discrete valuation ring with fraction field K, let £/ be an
elliptic curve given hy a Welerstrass equation

2 3 2
Yo arry +usy =20 +aert +ar + @y
with coefficients in R, and assume that wlas, aq, ?r2|a.;,-, and 71 by, Resolve

the singularity on the special fiber by a sequence of blow-ups and show that
the special fiber is of Tvpe I, with n = w{A)

. Let £ he a prime, let £ = €if £ # 2. and let £ = 4if £ = 2. Prove that the

group
fAf € GLa{Z) : M = 1(mod )}

contains no clements of Anite order.
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4.39.

4.40.

4.41.

4.42,

4.43.

4.44.

IV. The Néron Model

This exercise generalizes the previous exercise. Let K/(Q, be a p-adic field
with ring of integers R, maximal ideal p, and normalized valuation v .
(a} Suppose that there is a matrix M € GL,(A) of exact order m > 2
satisfying

M=1 (modp").

Prove that

m=p and rg;’i‘ig?_l‘

(b) If r > vk (p)/(p — 1), prove that the group
{M € GLA{(R) : M =1 (mod p")}

contains no elements of Anite order other than the identity element.

Let E/K and E'/K be elliptic curves defined over a local field, and let
¢ : E — E' be a non-constant isogeny defined over K. Prove that

e(E/K)=e(E'/K), 8(B/K)=8(E'/K),  f(E/K)= f{E'/K).

Notice that this generalizes the assertion [AEC, VIL.7.2] that E and E'
either both have good reduction or both have bad reduction, since (10.1)
says that good reduction is equivalent to £ = 0.

Let K/Q3 be a 3-adic field, let E/K be an elliptic curve, let £ # 2 be a
prime, and let L = K(E[f]).

{a} Prove that the first higher ramification group &1 {L/K) is either trivial
or a cyclic group of order 3. { Hint. Show that G(({L/K) is independent of £,
and then take £ = 2.}

(b} Prove that G1(L/K) is a cyclic group of order 3 if and only if B/K
has reduction type I1, IV, IV", or II".

Let K/Q2 be a 2-adic field, let F/K be an elliptic curve with potential
good reduction, let £ > 3 be a prime, let L = K(E[¢]), and let G1(L/K)
be the first higher ramification group of L/K. Prove that

G L/K)={1} or Z/2Z or E/4Z or H;,

where Hg is the quaternion group of order 8. {Hint. Show that G1(L/K)
is independent of £, and then take £ = 3.}

For each of the following elliptic curves E/Q,, let L = Q2{E[3]) and
compute the first higher ramification group G1(L/Qs2).

(a) BE:y° +2y=2"

(b) E:y*+2ry+8y=12>

{c) E:y?+2y=2%+2z.

Let K be a number ficld. Prove that for any constant B there are only
finitely many elliptic curves E/K whose conductor fg,x satisfies

ING (fe/x)| < B.
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4.45.

4.46.

1.47.

"

Let L/K be a finite extension of local fields as described at the beginning
of §10, let mz be a uniformizer for L, and define an index function

?:L,a"f\' : G(LXK—) — {OC;}‘ '!’:L.;'K(U) = Ia'[,(ﬂ'i — ?TL}.

{a) Prove that ip;p(0} =i+ 1if and only if ¢ € G:(L/RK).

(b} Prove that iy, (ror™!) = iz, x{o) for all o, 7 € G{L/K).

(¢) Prove that ip,x{o7) > min{iy w(o) i x{7)} forall o.7 € G(L/K}.
W continue with the notation from the previous exercise, with the addi-
ticnal assumption that the extension L/K is totally ramified. For basic
material on the representation theory used in this exercise, see for exaniple
Serre {7]. The Artin character Arp,p and the Swan charecier Sw, . are
defined to be the functions

Arp w1 G — 2, Swron :Griw — &
AI'HK(O'}= _'";L,."K(U} ifO'-‘,éL SWLJ,.’K{(T):].—‘.P:LI;K{_UJ if()’?‘—'l‘
AI‘L;K{]) = Ziux(f’}s SWL;"K(I) = Z(?-L;K(JJ - l)-

a £l a#l

{a) A fanction 4 on G(L/K) is called a class function if w{rem™ 1) = ¥{o)
for all 0,7 € G(L/A}. Prove that Ary, i and Sw,,, are class functions.
(k) *For any pair of functions 1, v on G{L/K). define
) - 1 " s -1
fn, e = m Z ) g l{o)d (o)
g (L/R}
If x is the character of an irreducible representation of G{L/ K}, prove that
(x.Arg,p) and {x. 5w, x) are non-negative integers.
{c) Replace K by its maximal unramified extension, and let E/K be an
elliptic curve with integral j-invariant. Let L/K be a finite Galois extension
such that E has good reduction over L. Further let x g be the character of
the representation of G{L/K) on T;(E}. Prove that vg takes values in Z
and is independent of £.
{d} *Continuing with the assumptions from (¢}, prove that
ME/K) = (Swrpn,xe} and  fIE/K) = (Argye, xe).
Deduce that 8(F/K)} and f{E/K) are integers that arc independent of £
This proves (10.2¢) in the case that E has potential good reduction,
(e} If E/K has non-integral j-invariant, prove that 8(E/K) and f(E/K)
are integers and are independent of £, thus completing the proof of (10.2c).
(Hent. For (¢}, use the isomorphismy E(A) = K* /" described in {V.5.3}
and exercise 5.11.)
Let K/, be a p-adic field with p = 5, let v be the normalized valuation
on K, and let E/K be an elliptic curve. Prove that there exists a minimal
Weierstrass egunation for E/K with a1 = az = a3 = 0, and with a4, ag,
and A as described in the following table:

Type [ o | L, | D Jmu[w [ 1; [ 1, [IN[Or [ Ir
vi(as) 0| 21| =1|=2]=2] =2 {>3|=3| >4
Urclne) =0 =1| 22| =2| = =3 |=4|=>5] =5
(A =0 =n]| =2 =3]=4[=6] =n+t6]| =8] =0] = 10|
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4,48, Let K/(Js be a 3-adic ficld with nonmualized valuation ¢4, and let E/K be
an elliptic curve. Prove that there exists a minimal Welerstrass equation
for K/K with a1 = a3 = 0. and with az, a. a4, and A as described i the
following table:

Type || do | L. ] 1L | IO [ IV | I L, v lur [
i (nz) =0[ z1[21 >1[>1 =1 2] 22| =22
vn (64) =1[ 21 -—.1322 >2i 2 [2]| 23] =3] =4
vx (ag) 1] =1]>2 =2/ >3] >nt3} =4 >5] =5
pe{AY =0 =n[ >3] =325 =6l =nt6]| 29[ =9 =1

4.4%. Let K/, be a p-adic field with p = 3, let vx be the normalized valuation
on K, and let E/K be an clliptic curve with Type I}, reduction.
fa} If n = 0, prove that vy (J(E)) =0and vy (De,x) =6
(b} fn =1, prove that ug{j(E)) = —n and vk (D) =n+6
{c) Let LR he a tamely ramified extension with ramification degree e =
e(L/K). Prove that E/L has Type L,,.. reduction if ¢ = 0 (mod 2), and E/L
has Type I}, reduction if & = 1 {mad 2).
(d} Give au example of an elliptic curve E/Qy with Tvpe 1), veduction
satisfying n > 1 and +2(3(E)) = 0. This shows that {b) is not te for p = 2.
What ix the largest possible value of nin this sitvation?

. Let //04 be a 3-adic fickl with normalized valuation vg, and let L/ K be
a tainely ramified extension with normalized valuation v, Let ¢ = e(L/K)
be the relative ramification degree, so vy = vy, Let E/K be an elliptic
curve whose reduction type is one of IT, IV, IV™ or [T7.

(a} Prove that the reduction type of E/L is given by the following tahle:

Typel £/ K) e=1(6) | e=2(6) | e=4(6) | e=51(6)
11 11 ‘ v vt n
v W TV TV v
V= = l IV V= ! v
1 I [ 1V IV ! I1

(b} Let Dg;p and Dg,yp be the winimal discriminants of £/K and E/L
respeciively. Prove that the value of the difference

e(L/K)on{Desn) —ve(Dpsr)

s given by the following table:

TypelE/K) e=1 (G-I o= 216) e =4[6) =15 (6)
] 2e—2 | 2e-4 2 — 8 2e — 10

v de—4 | 4e—%§ de — 4 e — 8

e 8¢ — & 8¢ ~ 4 T8 - & Re — 4
T T0¢ — 10 10e — & 106 - 4 10e — 2
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4.91.

4.52.

This exercize illustrates how wild ramification can cause the reduction type
of an elliptic curve to change in an irregular fashion. It may be compared
with the previous exercise, which dealt with the tamely ramified case.

Let K/{}3 be a 3-adic field with normalized valuation va, and let B/K
be an elliptic curve given by a Weierstrass equation

E: y2 =%+ ag with vx(ag) = 1.

Let L/ K be a ramified extension of degree 3, so L/K is wildly ramified.
(a) P’rove that £/K has Type Il reduction.

(b} Ifvx{3} =1 {ie, if K/Q; is unramified}, prove that E/L has Type I1T*
reduation,

(¢} IF v {3) = 2, prove that E/L has Type Ty {Le. good) reduction.

(d} If v (3) = 3, prove that £/L has Type III reduction.

(e} Try to find a general formmnla for the reduction type of £/L. Does the
reduction type of E/L depend only on v (3}7

We continue with the notation from the previons exercise, so A/ is a
3-adic field and E/K s an elliptic curve

£ 3;2 =r*+ as with g {ag) = 1.
Prove that the conductor exponent of E/K is f{E/K} = 2430k (3). Notice

that (10.4) says that this is the largest allowable conductor exponent for
an clliptic curve defined over a 3-adic Held.

. Let K/Q: be a 2-adic field with normalized valuation vy, and let E/K be

an elliptic curve given by a Welerstrass equation

E: yz + 2xy = UL a4 with vy (ag) = 1.

{a) Prove that the equation given for £ is a minimal Welerstrass equation
and that #x{Dg,p} = Bua(2) + 3.

{b} Prove that E has Type I reduction and that the special fiber of E
has two components,

{¢) Prove that the conductor exponent of E/K is f{E/K) = 2+ Gun(2).
Notice that (10.4) says that this is the largest allowable conductor exponent
for an elliptic curve defined over a 2-adic field.

4. This exercise asks you to verily two cases of Ogg’s formula {11.1} that were

not completed in §11. Let K/Qy be a 3-adic field, let E/K be an elliptic
curve, and let L = K(E[2]).

(a) If E/K has Type HI" reduction, prove directly that L/K is a tamely
ramificd extension. Use this to verify Ogg’s formula for £/ K.

(b} Let A7 = K{vA). and suppose that E/Al has Type IV" reduction.
Give a direct proof of Oge’s fonmula io this siluation. { Hint. Mimic the
proof for Type IV reduction given in §11.}



CHAPTER V

Elliptic Curves over Complete Fields

Every elliptic enrve E/C admits an isomorphism C* /¢” = E(C) by complex
analytic functions, and we have seen amply demonstrated in Chapters I
and II the importance of such uniformizations. In this chapter we are
going to study uniformizations over other complete fields such as B and
finite extensions K /Q,. We begin in §1 with a brief review of the relevant
formmlas over €, and then in §2 we use the complex uniformization to
investigate elliptic cnurves over R

We next turn to elliptic curves defined over p-adic flelds K/Q,,. Tate [9]
hag shown that for every ¢ € K* with |g] < 1 there is an elliptic curve E, /K
and a p-adic analytic isomorphism K*/¢® = E,(K). In §3 we will describe
the Tate curve E, and prove all of its main properties except for the sur-
jectivity of the map K* — F (K}, which we reserve for §4. Tate has also
shown that every elliptic curve E/K with non-integral j-Invariant is iso-
morphic. possibly over a quadratic extension of K. to some E,. We will
prove this resilt and describe the necessary twisting in 5. and then in §6
we will give some applications, including Serre’s proof that an elliptic curve
with complex tltiplication has iotegral j-invariant.

41. Elliptic Curves over C

We have already discussed elliptic curves and eiliptic functions over € in
some detail; see [AEC VE and (T §§5-8}). The purposc of this section is to
gather and rewrite in a convenient form the formulas we will use later in
this chiapter when we study clliptic curves over R and over p-adic fields.
Lot E/T be the elliptic curve corresponding to the novmalized lattice

Ay =Z7 +7Z for some T € H.

We know thiat E(C) =2 C/A-, the isomorphisin being given i terins of the
Woelerstrass gr-function and its derivaiive. As in (I §6). it is couvenient to
lel.

w=e2 g=e2"T0 and q?‘ = {qk : ke Zy}
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Note that since Im(r} > 0, we have |¢| < 1. There is a complex analytic
isomorphism
C/A, == C*/g*. 2z u=e™?,

and we can use the g-expansions from (I 886,7) to explicitly describe the
isomorphism E(C) = C*/¢".
The eliiptic curve E has the Weilerstrass equation

E = 42° — go(m)m — ga(7).

From (1.7.3.2) we have
1 .
———g2{7) = - {1 + 240s3(q) .
(2mi)* 2
1

(271} 59‘5( m) = 216[ L+ 504ss(q )]

where in general

sn(e) = D oxlm™ = 3 7o

n>l Rl

{For the second equality, see exercise 5.1. Here apin) =3 dln d* as usual.)
We've collected the powers of 271 as indicated to make it easier to eliminate
them.

Next, the isomorphism

C*/¢¢ — E(C)
i — (W(T‘lﬂ Q)s p’(u, q))

is given by the power scries described in (1.6.2) and (1.6.2.1):

(2 )2 37(“ Q) Z (1 q ”)2 291(‘?)
NneEE
¢'u(l +¢"u)
@ )ng(u, ) = ; )

(Note that ' is the derivative of p with respect to z, where u = ¢27*?)
Jacobi's formula (1.8.1) says that the discriminant of the Weierstrass
equation for F has the product expansion

A7) = g2(7)° — 27gs(7)* = (2mi)Pq [J (1 - q

n>l
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and the f-invariant of £ is given by the series (1.7.4)

1
Glg) = = + 744 + 1968849 + -

+ nly" with o{n) € Z
p > elng {n)

120

-Qli—l

It is convenient to make a change of variables, partially to remove the
powers of 27.'? and partially t() climinate tlle [)0\&'91‘:; of 2 anrl 3 appearing

1 = + !
(2niy2" 7 127
1

——y = 2y
{(2mi)? i ¥ '
which gives the new Weierstrass equation

2 3
Yo+ 2y =2 Fagd’ 4 oag

with
1 1 A
U=y G g
1 1 1 1 1
= = + -
e 4 (27!)695( ) 48 2 I)l ;2( ) -”)8

Now using the series for go, g1, g, &' and doing a little algebra, we find we
have proven virtually all of the following result.

Theorem 1.1. For u,g € C with |¢| < 1, define guantities

Z LY (ﬁ‘ = Z v?_qq” .

nz=l ni=l

asfg) = —Bsalq). ag(g) = M

12
g
X(u.q) = Z FErToT 251{q].
neE
7l ”)2
Y{U. q Z {l(q q” )_5 - Sl(q)t

N
a2 e
E, : y* 4+ oy =12+ as(q)r + aslg).

(a) E, is an elliptic curve, and X and Y define a complex analytic somor-
phisu: _
o Clgw — EJC)

i — (X(uq)Yi{uq) ifud q .
& ifue g
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{b) Written as power series in q, both ay(g) and ag(g) have integer coefli-
cients; that is. aa{g), as(q) € Z[¢].
(¢) The discriminant and j-invariant of E, are given by the formulas

Alg) = —ag + a] + T20406 ~ 64a] — 432a3

=q [ (1~ ¢")* € Z{a).

nxl

1
g{g) = = - 744 + 196884 + - --

—_

:§+ n)g' Eﬂ—i—Zﬁq]]

w20
(d)} For every elliptic curve E/C there is a g € C* with |g| < 1 such that
is isomorphic to E,.

Proor. The discussion given above has proven all of (a), (b). and {¢)
except for the minor point that the power serics for ag(g) has integer coet-
ficients. Since

ag{q) = _5sslo +7ssle) Z qu

12 12

nzl

_ Z(Z et +?d )q”._

nwzl dn
it suffices to observe that
5d° +7d° = 0(mod 12)  for all d € Z.

{Notice that we used this same fact in the proof of (1.7.4a).) This completes
the proof of {c).

Finally, to prove (d), we note that the uniformization theorem (I.4.4}
says that every elliptic curve E/C is isomorphic to C/A for some lattice A
Then the change of variables used above transforms the Weierstrass equa-
tion for E into an E,.

O

Remark 1.2. [t is sometimes convenient to rewrite s1(¢) in the alternative
form

T

W=y

|

To check that these iwo expressions for s,{q) are the same, we substi-
tute T = ¢™ into

T d 1 _d i -~
(1—T}2:Tﬁ(1—’r) T2 T7 =) mT

i =00 ezl
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and sum over n > 1, which yields

'
Z H——Q_CI'T)_Q = Z Z mgt" = Z . Z g = Z 1niq

q"
nzl n>lmz=l m>1 n>1 mz1

il

For later reference. it will be helpful to rewrite the formulas

alz4+ ale(z - a)
o(z)2a(a)?

_o(22)
o(z)*

and g'(2) =

plz) - pla) = -

from (1.5.6} in terms of X {u, q) and Y(x, ¢). For this purpose, we introduce
a normalized theta function.

Proposition 1.3. Define a normalized theta function 6(u,q) by the for-
nmula
—q"u{l - q"u"l)

CErOE.

{a} B{u,q) converges for all u,q € C* with |¢] < 1 aud satisfies the func-
tional equation

6u.q) = (1-w) [T &

LI

Oqu.q) = ~ - 6(u,).

(b} & is related to the Welerstrass o function by the formula

1 2 2 o
alu,gq) = —=——ez" =™ 200, 0,
(t,q) = —5 = {w: q),
where u = €2™%, g = ¢™7, and 7(1) is the guasi-period associated to the

period 1 in the lattice ZT + 2.
(¢) @ is related to the functions X(u,q} and Y (u,q) described in {1.1) by
the formulas
_ ua®(uy g, @0 urust, q)
X{w1,9) — X{uz,q) = —
(1) (’Ul Q) (“’2. f}) 9(?..51,4;7)29(1@.(;)2
uf{u?, q)

Byt
PrROOF. {a) Since |¢"u} < 1 and |¢"u~!] < 1 for all sufficiently large n, it

is elear that the product defining & converges. Then replacing u by gu and
retrnbering the factors in the product gives

(i1) ¥ (u,q) + X{u.q) =

1"“1)(1 _ q"_lu_l}

Blqu, q) = (1 — ) [] ==L

w2l (1 - q'ﬂ)Q
_ ah o —1 _
= (l - u_l) H (1 q(?)_(,lqn}g - l = -?—}S(u Q)

n>1
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(b} This is immediate from the definition of @ and the product formula
for o given in (1.G.4).
{c) From above. X and Y are related to g and ' by the formulas

1 1 . . 1 ‘
X = WSJ_ o and 2Y +X = (21_.__{)35&

Henee writing w;, = 2™ and uy = ¢?™%2, we find (dropping the ¢ from
our notation)

1

Xlur) — Xfug) = {2?'”.)2 (w(mn) = pluz))

_ L o(uu)o(uu; ') )
= " e tu e Tun)? from (1.5.64)

_ppil Dz 4z2) (31— 500 = 227 - 225)

el za) s —e2) 20 —250) | B uz)0(uiuy ')
81 )20(12)?
from {b)
B(urun)Burug ')
B{u1)20(u2)?

This proves (i), and (ii} is proven by the similar calculation

1
2Y(u) + X{u) = Wg_f{u)

= —(2:—1}5% from ([.5.6h)

1,0 g2 g2 i T = 9('&.2)
— _enmilN(22)"—427) . mi{2z—4dz) -am (k
P e T from (b}
(%)
Biu)?

= —Uu

£2. Elliptic Curves over R

The uniformization theorem (I.4.4} says that every elliptic curve defined
over C is analytically isomorphic to C" /% for some ¢ = €277, Since an
elliptic curve defined over R is automatically defined over C, it has such a
model. We begin by describing a set of 7's which ¢lassifies elliptic curves
over R up to C-isomorphism.
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Proposition 2.1. Let E/E be an elliptic ecurve. Then there exists a
unique T in the set

Y= 4t = gja;z/‘_ {E - Y T
e {et t__l}U{{ 5 G_Q}U{Q—H(.{_
such that

Hr) = J{E).
(The set C iv illustrated in Figare 5.1.)

PROOF. First we check that j{(€) CR. If 7 = st or 7 = 5 +if with t € R,
then ¢ € R, so the g-expansion {1.7.4b)

'+ Z eln)g”. eln) € Z,
shows that j{r) € K. Next, for any v we have

—2mit f..—27ri|'r|2,*'7,

d=ce
—_— ok
=3 ().
-
Hence for r=¢

1) = ( = ) = ((? _01)6-,:9) = je”?), w0 j(e*) € R,

This proves that (¢} C R.
Next we observe that

50 in general

# we have

J!

i
+
g

llm . Z({n)q“
. Iy T y _
£_1Ln31LJ §+-st m g +Zc n)g" = —2c.

Iim j{if}
f—oe

g—l-

By continuity, we conclude that j(C) = RB. {Note that j : € — R is
continuous, since 7 : H — C is holomorphic.} Finally, {L.1.5b} and {1.4.1)
imply that 7 : € — R is injective, which concludes the proof that the
map j: € — R is a bijection. a

Proposition 2.1 completely describes all C-isomorphism classes of ellip-
tic curves defined over R. However, since R is not algebraically ¢losed, it is
possible to have more than one R-isomorphisim class in each C-isomorphism
class, For a given E/R. these other curves are called the funsts of E
(see [AEC X £5]). Our next resnlt classifies these twists,
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The Set € for Which j{r) e R
Figure 5.1

Proposition 2.2. (a) Let E/R be an elliptic curve. Then the C-iso-
morphism class of E contains exactly two R-isomorphism classes. (In the
notation of [AEC X §5], Twist((E, O)/R} = {+1}.)

(b} More precisely, define an invariant v(E/R) € {£1} by the rule
sign{cg), Iifj #1728 (ie., ifcg £ 1),

E/R} =
WE/R) {sign(q), if §=1728 (ie, if cg =0).

(Here ¢4 and ¢ are the usual quantities associated to some Weierstrass
equation for E/R.) Let E/R and E'/R be elliptic curves. Then

ExFE overR + j(E)=jE) and ~(E/R)=~(E/R).

Proor. From [AEC X.5.4], the twists of E are in one-to-one correspon-
dence with the elements of the group

R*/R**, where n = # Aut(E) € {2,4,6}.

Since n is even, R*/R*" = {41} has two elements. This completes the
proof of (a).
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For (b) we use the more precise description of the twist provided by
the sccond part of [AEC X.5.4]. If E/R is given, and if E'/R is the twist
of E/R corresponding to some D € R*/R™, then [AEC X.5.4] says that

(B} = D¥ey( B if J{FY £ 06,1728
('G{E’) = DC(;(E) if J(E) =0.
') = Dey(E) if 7(£) = 1728,
Hence in all cases (E/R)
. L
sign{l}) = —————,
'@ m
so the ratio y(E/R)/+{ £'/R) detennines whether £ is isomorphic to £ or
to its non-trivial twist. 8]

Remark 2.2.1. For an analogous result over p-adic fields, see {5.2).

By combining Propositions 2.1 and 2.2, we can now give a convenient
set of ¢'s which completely clagsifies all R-isomorphism classes of elliptic
curves. For any g = ™7, we let E, be the clliptic curve

E, 9 +xy = * + ay(g)z + aglq).
where aq4(q) and a6(g) are the power series described in (1.1), and we let
6:C /@ " BfC), 0w = (X(uq).Y(wa)),

be the C-analytic isomorphism from (1.1).
Theorem 2.3. Let E/R be an elliptic curve.
{a) There is a unique g € R with 0 < |¢| < 1 such that

By E,

(i.c., E is R-isomorphic to E,).
{by Compesing the isomorphism from (a) with the map ¢ described above,
we obtain an isomorphism

w: C*/¢" — B(C)

wihich cominutes with complex conjugation, that is, v is defined over R. In
particidar,

i B g™ — E(R)
is an R-analyvtic Isomorphism.

Proor. Note first that if ¢ € B, then the series (1.1) imply that as(g)
and ag{yg) are In R, so £y is defined over R. We want to start Ly using (2.1}
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to find a 7 with 7(r) = j(£). As noted during the proof of (2.1}, the

points 7 =it and 7 = % + it give real values of g. However, for 7 = ¢*% we
do not have ¢ € R. So we use the transformation

. 1 ¢ 8
afr) = which satisfies a(e') = 5t %cot 3

T —

Thus & € I'(1) yields a bijection

el

a:{ew: - gegg};{%—ut:égtg?}‘

Since j{ar) = j{r), we conclude from (2.1} that there is a unique 7 in the

set
; i i

such that j(r) = j(E). Note that in the second set we do not allow ¢ = 1,
since this would give the duplicate value

1 1
i(3+37) = sa) =26
The set of ¢ = €2™" € R with 0 < |g| < 1 corresponds bijectively with
the 7’s in the set
. 1
'.T:{zt : t>0}U{§+zt : t>0},

Further, the transformations

Sr = ul., Ar =
T

give identifications

Sifit it > 1} -5 Lt e < 1),

2. 1 LI 1 il 1 4. 1
,d.{2+et,t>2} {2+at.t<2},

n':z»——+§+§z.

{See Figure 5.2.)
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PJ!__.

A Set of r Giving Allge Rwith 0 < |g| < 1
Figure 5.2

Sinee j{v7) = §i{7) for any v € SL3(Z)}, we see from above that the

map
i T—R

is exactly two-to-one. ¥rom (2.2a) there are exactly two R-isomorphism
classes of elliptic curves with a given j-invariant. Hence to complete the
proof of (a} we must check that if 7,7° € T are distinet points with j{r) =
Jir’), then E, and Ep are non-trivial twists of one another. To do this we
will use (2.2b).

The change-of-variable formulas for Weierstrass equations [AEC [1I §1)
imply that

esq) = -11.4(1292(1')) and celg) = uG(Zlﬁg;‘(T})

for some u € C*. {In fact, our explicit formulas imply that u» = {2mi)~1,
but for our purposes it suffices to know that u does not depend on 7.) Now
suppose that

,_ar+b i a b
T = o trd for some (c d) € SLy{2).
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Then using the y-invariant defined in (2.2b} and the fact that g» and g
are modular forms, we find that
'}'(Eq’/R) . (CG(@"}) . (5’3(‘_;)) - i
— A —gipn | — -~ | =slgn | == | = sign{{er + d)
“.'(Er;/R) : C(i(g} ’ ng(T) { }
if j{rT)# 1728,
Sinilarly,
"."(Eq'/R} : (C-’l{q’)) . (92{7—’)) . : 1
S —gipn | ——— | =sign | = | =signi{er +d
".-'"(EW’JR) & ea{a) : .9’2(7) & {( ) }
if y(7) = 1728.
We must show that for the 7' and 77's described above, all of rhese signs
are —1. This requires checking several cases,

5 . 1
Casel, 7=it.>1 1 =5r=— ‘
T 1

In this case §(7} £ 1728, and
{er +d)f = (i) = =" < 0.
T—1
2r — 17
Again we are in a case in which j{7) # 1728, and
{er +d)° = (27 — )" = (28} = —641% < 0.
—1 1 1
Casc III: 7 =4 7T =ar= — = -+ i
T—1 2
This is the case that j{r} = 1724, and
(er+d=(r -1 =(-1)"=-4<0.
Henee in all cases E, and Ey are distinet twists, which completes the
proof of (a).
(b} The serics for X{w. g} and Y{u,¢) show that if ¢ € R, then the map
& C gt = B,(T). olu) = (X{u.g).Y{u.q)
commutes with complex conjugation. Since the isomorphism £ = E, in (a)
is defined over R, it follows that the composition ¢ : % /¢° — E(T) is also
defined over R. This proves the first half of (b}, and the second follows by
taking G p-invariants of the exact sequence

1
Case II: 7= 3 +it.t=1. T =58r=

3]

1 —g® —C — E{Cy — 1.
so we get R* /¢ —— E(R)}. (Note that HJ(G-CJ,-R._QZ) = Hom{Gey. Z) =
0.} Finally. it is clear that this isomorphism ts R-analytic, since we know
that ¢ is C-analytic and is given by power scries with coefficients in R,
O

An elliptic curve over R has either one or two components. We can
use (2.3} to give a criterion Lo determine whichi case holds.
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—
N

()

N
%

=x 2% -x+2 y2=x3—x+1

A =576 A =-368

Elliptic Curves over R with One and Twoe Components
Figure 5.3

2

Corollary 2.3.1. Let E(R) be an elliptic curve, and let A{E) be the

discriminant of some Weierstrass equation for E/R. Then there is an iso-

morphism of real Lie groups

) {R/Z. IFA(E) < 0,
 U(R/7) x (Z)27), FA(E) > 0.

PrROOF. Fix an isomorphism E 2,5 #, as in (2.3a). Then

W 2A(E) = A(E,) = ¢ [J(1 - ¢
=1
for some v £ R, so
sign A(E) = sign A(E,) = signg.

Now (2.3h) says that E(R) = E,(R) = R*/¢%, so the following isomor-
phisms complete the proof of Corollary 2.3.1:

log |
log |q|

o 1
R*f¢* — R/Z. uw+— > ( —sign(u) + ]) (modZ), if g < 0,

R*/q¢" == (R/Z) x {£1}, wur— (ITO’Q' lﬂ(mud?j), sign{-u.)), if g = 0.
08 g
a



§2. Elliptic Clurves over & 421
We conclude our discussion of elliptic curves over R by describing the
Weil-Chételet group WC(E/R). (See [AEC X §3] for basic facts about the

Weil-Chatelet group.] As in (2.2}, the fact that G g is so small leads to
a very simple answer.

Theorem 2.4. Let E/R be an clliptic curve, and let A{E) be the dis-
criminant of some Welerstrass equation for E/R. Then

0 ifA(E) < 0,

WC(E/R) = {Z;QZ if A(E) > 0.

ProoF. From [AEC X.3.6] there is an isomorphisim

WC(E/R) = HY(Gep. E(C)).
Choose a ¢ € B and an R-isomorphism E 2,5 F, as in (2.3}, Then

E(CT) = C"/¢* as Grg-modules,

s0 we have an exact sequence

0—¢* —C" — E(C) —0
of G'op-modules. Since

HYGep Ty =0

from Hilbert's Theorem 90 {or by an easy direct caleulation), the long exact
secuence in (g ym-cohomology gives

0 — WC(E/R) — H*(Gep.a®)  — H*(Gm, C').

Now Ggya = {l.o} is cyclic of order 2, so for any Gy p-module Af
(written multiplicatively) we have

{re M. ozx)=1x)
{z a{x):axe A}’

H¥* (G M) =

(This is a special case of a general formula for the cohomology of cyelic
groups. See exercise 5.2.) Since Gep acts trivially on ¢, we find

B (Cepe. ) % /i

gy ot oo THETCY t @ =}y
Hz-((z,f:;,'m.(c ) = {lu|2 : uec*} = /R 2'
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Hence we finally abtain an exact sequence
0 —— WC(E/R) — ¢*/¢** — R /R*?,

where the right-hand map is induced by the natural inclusion g~ — R”.
From this exact sequence we immediately conclude that

WO(E/R) = { 0 if g < 0,
YT 7T ifg >0

But as we observed during the proof of (2.3.1).

uA(EY=Alg)=g¢q H (1— ¢4 for some v € K,

el

so sign A(EY = signg¢. This completes the proof of Theorem 2.4. |

3. The Tate Curve

We have seen that everv clliptic curve defined over the complex numbers
has & parametrization ©/A for some lattice A C €. Suppose we replace €
by (, and endeavor to parametrize an elliptic curve E/{, by a group of the
form /A, Unfortunately, this approach immediately fails, because {J,
has no non-trivial lattices. Indeed, if A C @y is any non-zero subgroup
and 0 #t € A, then

piiteAforalln =0 and lin p™t =0,

FL— I

s0 0 is an accunnation peint of A. Hence @, contains no discrete subgroups
other than 0.

Tale's idea is (o first exponentiate, which leads 1o the alternative de-
scription C* /g% for elliptic curves over C. Now the analogous situation
over @, i3 much more promising, since @}, has lots of discrete subgroups.
For example. any ¢ €, with [g] < 1 defines the discrete subgroup

qz ={¢" ne Z) @;

Further. ihe series described in (1.1) will converge in (@, and give a p-adic
analytic isomaorphism of the quotient &), /g™ with a certain clliptic curve Ej.



£3. The Tate Curve 423

The situation is nicely summarized by the foilowing picture {taken from
Robert {1, II §5]).

Complex case p-adic case
C/A no p-adic analogue
l‘j’;‘;g“:é‘fii" no exponential available
C*/¢* @;/qE : p-adic elliptic curve.

More generally, we can work over any p-adic field K, by which we mean
a finite extension K/Q,. All of these facts {(and more) are contained in
the next theorem, the proof of which will keep us busy for the next two
sections.

Theorem 3.1. (Tate) Let K be a p-adic field with absolute value | - |,
let g € K* satisky |q| < 1, and let

533(q} + 7s5(q)

nkqn
se(g) = Z ¢ a1(q) = —5ss(q), aslg) = — 12
>l

be the series described in (1.1).
(a) The series a4(g) and ag{q) converge in K. Define the Tate curve E, by
the equation

E, : y? +try = z2® + aq(g)z + as(q).

(b) The Tate curve is an elliptic curve defined over K with discriminant

a=qJfa-q™

nxl

and j-invariant

+ Zc(n

nz0

, 1
J(Ey) = o+ 744+ 196884+ -

'Ql*'-

where the c¢(n)’s are the integers described in (1.1).
{c) The series

X(u,q) = Z qn Ty~ 2910

neE

2
Y{wg =Y, (l(q 1 sig),

na 3
ned 4 ?.I)
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converge for all w € K, u ¢ g*. They define a surjective homomnorphism

o

¢: K = EQ(R’)

v {(X(u,q),nu,q)) if u ¢ g%,
0 ifueqgs

The kernel of ¢ is q%.
(d) The map ¢ in {c) is compatible with the action of the Galois group
Gg /i in the sense that

o(u’) =¢(u)” forallue K* o Gg .
In particular, for any algebraic extension L/K, ¢ induces an isomorphism

¢+ L'q" 5 Ey(L).

Remark 3.1.1. The p-adic uniformization described in Theorem 3.1 is es-
pecially useful for arithmetic applications because it is compatible with the
action of Galois as described in (3.1d}. Note that a complex uniformization
C/A — E(C) or C*/q* — E(C) does not have this compatibility (except
relative to G'cyg), since in general one cannot apply an element of Galois
to the value of a convergent series by applying it to each term of the series.
{Sce exercise 5.8.)

Remark 3.1.2. Theorem 3.1 is actually true for any field K that is com-
plete with respect to a non-archimedean ahsolute value. The only time we
will use the fact that K is a finite extension of Q, will be in the proof that
the map ¢ in (3.1¢) is surjective. {In fact, we will really only need the fact
that the absolute value is discrete, so our proof actually is valid somewhat
more generally, for example over the completion of Qp.) For a proof of
Theorem 3.1 in the most general setting, using p-adic analytic methods,
see Roquette [1].

ProoF. {a} From (1.1b), the scries defining a4 and ag are in Z{g], so they
will converge in K for any value of ¢ € K satisfying }q| < 1.
{b) The diseriminant. of E, is
Alg) = -ag + a2 + T2aq4as — 64a} — 432a3.
Substituting in the series for a4(¢) and ag(g), we find the usual power series

Alg) = q - 24¢° + 252¢° + - = g {mod ¢?).

Hence ]A(q)| = |g| # 0, so E, is a non-singular elliptic curve.
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Next we observe from (1.1¢) that the identity

Al =qJJa-em*

>l

holds for all ¢ € € with |g[s < 1, where for the moment we write | - |
for the usual absolute value on €. It follows that this identity is true as
an identity of formal power series in Z[g]. Hence it remains true when we
take ¢ to be an element of absolute value less than 1 in any field that is
complete with respect to a non-archimedean absolute value,

Finally, the formula

) (1 -t 48a4(q))3
He) = —
A{g)
14 240g + 2160¢% + - - -
T g —24g2 + 252¢% 4 - -

1
=(1 + 7d4q + 196884¢° + .- )
q

holds in the non-archimedean case, since it is obtained formally by taking
the quotient of the appropriate power series.

{c) We begin by rewriting the series for X and Y as follows, where we've
used the alternative expression (1.2) for s1{g):

u qtu g "u g
X(uq) = —— ~2
=G+ 2 ((1 S A R R (R
~ 1 qnu qnu—l q‘n
S utul -2 +"Z>:1 ((1 S ey s o

w2 @, @
Yiu,q) = W + ; ((1 — qu)p + (1 — g mu)d + (1 —Q”)z)
2

_ 1 (qnu)‘z qnu—l qn
e ((1 —gap (gt —an) ‘

=l

These expressions show immediately that X (u, q) and Y{%, ¢) converge for
all u € K*~¢Z. {Note that although K itself is not complete, every term in
these series is in the field K(u) = Qp(u, ¢}, which is a finite extension of Qp:
so we are really working in the complete field K (). Similar comments will
apply below whenever we speak of substituting elements of K into a series.)
The functional equations

X(qu.q) = X(u,q) = X(u"',q)
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are now obvious, the first equality from the original series for X and the
second from the rearranged series we just gave. A littie algebra gives similar
functional equations for ¥,

Yigu,¢) = Y{u,q) and Y{u"!¢)=—Y{u,q) ~ X(u,q)

If we restrict u to the range |gl < lu| < |gj™!, we have |¢"u| < 1
and |¢"u~!| < 1 for all positive integers n. So we can use the expansion

nT (43 TrL
S = S L = R

nrlm21i d=1l m|d

1

with T equal successively 10 v, 4™, and 1 to rewrite the series for X as

Xlwq) = gy + 3 (L m™ + ™" - 2))g" € Qula).

d>1 md

valid for |q| < [u| < |g]~!

A similar calculation allows us to write ¥ as a power series in ¢ with
coefficients in Qu):

Y{u.q) = u)* + Z(

d=1

z { (m —21)mum _ E%_tﬂu—m + m})qd

m|d
€ Q(uw)]q), wvalid for lq| < |u| < |g|™'

We begin our proof of (¢} by showing that the image of the map ¢ is
contained in the curve Ej given by the Welerstrass equation

Ey: yt +xy = 2* + aslq)x + aslq).

This amounts to showing that when we substitute the series X {u,q) and
¥ {u, q) for & and y in this equation, we get an identity valid for all u €
K* < ¢%. By the periodicity of X and Y, it. is enough to consider values
of u blth that |g| < {u] <1 and w # 1. In this range we can use the above
formulas which express X and ¥ as power serics in g with coeflicients that
are rational functions of u. Thus we will be done if we can show that the
equation

¥ (u,)® + X(u,q)Y (1,9) = X(u, @) + as(@) X {u, @) + as(q)
is valid as a formal identity in the ring of formal power scries in ¢ with

coefficients which arc rational functions of the indeterminatec w. In other
words, we want to verify that this identity holds in the ring Q(u)]q].
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From (1.1}, we know that this equation is true numerically if we sub-
stitute any pair of complex numbers 4,4 € C in the domain of conver-
gence |gloe < Jttloo < |glatls u # 1. If we fix some u with |glee < |1loe < 1
and let g vary, we conclude that the resulting power series in ¢ with com-
plex coefficients are equal coefficient-wise. Then letting u vary, we deduce
that the coefhicients are fortnally equal as rational functions of w. Hence
we have an equality of formal power series in Q{2)[g]-

Next we prove that ¢ is a homomorphism. Given u,us € K*, we
put 3 = u g and must prove that

PB=P+5 where P, = ¢{u;), i =1,2,3.

In view of the periodicity @(gu) = ¢(u), we may restrict consideration to
values of u) and up in the ranges

lg| < fug] <1 and 1 < juy| < |g/™", which means that [¢] < fus] < g~

Then all three u; are within the domain of convergence of the power series
expressions for X, Y ¢ Q{u}fg] described above.

Since ¢{1) = O by definition, the relation Py = P, + % holds triv-
ially if #; = 1 or u3 = 1. Using the functional cquations for X(u~!, ¢)
and Y(u™',¢) and the fact that P, + P, = O if and only if 2| = 2
and y; + y2 = - x1, it is also not hard 1o verify that 3 = Py + I tn the
casc that wiue = 1. So we are reduced to the case that Py, %, and Py are
all diffcrent. from O. We write P, = {x,,y;); that is, we set ; = X{u;,q)
and y; = Vi, q) for i =1,2,3,

Suppose first that x; # 2. Then writing out the addition law on E,.
we sce from [AEC, II1.2.3] that the relation ) + 2 = I is equivalent to
the two identities

(o —21)°T5 = (2 —1)* + (12 — 1)@z — @) — {2 —~ )% (21 + 72),

(zz —zoys = —((y2 — 1) + (@2 - 21))z3 — (1202 — yairy)-

Now we can argue as above that (1.1} implies that these identities hold for
all complex numbers u,, 4z, ¢ in the specified ranges. Hence they are iden-
tities in the ring Quy,u2)[g] of formal power series in g with coefficients
that are rational functions of u; and us, and so arc true for uy, v, q € K.

To deal with the remaining case @, = x4, we could use the duplication
formula, or we could invoke a p-adic continuity argument, but perhaps the
simplest solution is to observe that x, = &, if and only if P, = £P;, and
then use the following letma.

Lemma 3.1.2. Let ¢ be a map of a (multiplicative) group into an {addi-
tive) group which takes on an infinite mimber of distinct values and satisfies
the identity

dlantg) = dlug) + olus) whenever ¢(uy) # tolus).
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Then ¢ is a homomorphism.

Proor. Given any u; and ug, the fact that ¢ takes on infinitely many
distinet values means that we can choose a u such that

olu) # Lo(wr),  du) £ —o(u) £ olus),  o(u) # £d(uiuz).
Then ¢fuu;) = ¢} + d{ur) # o(uz), so
¢(u) + d(ur) + ¢luz) = dluur) + luz) = luuiuz) = d{u) + dluguz).

Canceling ¢(u) gives ¢(u, ) +¢{uq) = d{uuz}, valid for all %, and u-, which
shows that ¢ is a homomorphism. ]

To finish the proof that our ¢ : K* — Eq(f_(') is a homomorphism,
we need merely observe that ¢ certainly takes on infinitely many distinct
values. For example, the series for X{u, g} shows that for any { € K
with ¢ < 1, we have {X{(1 + t,¢}] = |t}~>. Hence (3.1.2} applies in our
Case.

So we now know that ¢ is a homomorphism of K* into E,(K). That

the kernel of ¢ is ¢% is apparent from its very definition. It remains to
prove that ¢ s surjective, This is the hardest part of the proof, which we
will leave to the next section.
{d} As noted above, the series for X(u,q) and Y{(u,q) converge in the
complete field K{u}, so it really suffices to prove {d) for ¢ € Gt , where L
is any finite Galois extension of K containing K{u}. Any such ¢ maps the
maximal ideal of the ring of integers of L to itself, so o will preserve the
absolute value on L:

|a?] = || foralle € G,k and all o € L,

It follows easily from this that if 3 a; is a convergent series with a; € L,
then (3" a;)° = 3_a?. (See exercise 5.8.} Applying this to the series
for X{u,q) and Y{u,q), we deduce that ¢(u)® = ¢{u?). This proves the
first part of {d).

For the second part, we use {¢) to produce the exact sequence

1 — g% —— K* 2 E(K) —0.

We now know that the maps in this exact sequence commute with the
action of G g, ;. Hence for any algebraic extension L/ K, we can take G g,y
invariants of this short exact sequence to obtain the exact sequence

1= g% = L* 2 E (L),

To obtain surjectivity on the right, we observe that it suffices to prove
surjectivity in the case that L is a finite extension of Qp; we will prove
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exactly this fact in the next section. Alternatively, we may observe that
the next term in this last sequence is the cohomology group HY(G g1, q").
Since g € K, the action of Gg,; on g% is trivial, so this is just the group
of continuous homomorphisms from the profinite group G, to the dis-
crete group ¢* = Z. The only such homomorphism is the trivial one,
80 Hl(GR/L,qz) — 0, which proves that L* — E,(L) is surjective. This
completes the proof of (d). ]

Before resuming the proof of Theorem 3.1 in the next section, we
hriefly pause to repeat Proposition 1.3 in the context of p-adic theta func-
tions. These formulas will be used in our study of local height functions in
Chapter 6.

Proposition 3.2. Define a function 8(u, ¢} by the formula

(1 —q™u)(1—g™u™")
(1—gn)? '

8(u,qy = (1 —) [

=l

{a) @(u.q) converges for all u,q € Q, with |q| < 1 and satisfics the func-
tional equation

1
Hqu,q) = —=0(u.q).

(b) # is related to the functions X (u,q) and Y {u, ¢} described in (3.1¢) by
the formulas
. upb(uiug, q)8(uruy ' q)
i Xug,q) — Xiuz,q) = —
( ) (11 (}') ( 2 Q) 9(&1,()‘)29(%2,0)2
ut(u?, q)
8u,q)?

(i) 2Y (u,q) + X(u.q) =

ProoF. The convergence of the infinite product defining @ is clear, and the
functional equation follows formally by substituting qu for u and renum-
bering. This proves {a). Next we observe from (1.3) that the two for-
mulas in (h) are valid over C. Now an argument similar to that used to
prove {3.1¢) shows that they are valid over K. We will leave the details to
the reader. (|
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%4. The Tate Map Is Surjective

The final step in the proof of {3.1}, which we postpoued from the previous
scction, is to show that the map

¢: R — EfR),  o(u) = (X(u,q),Y(1,q)).

is surjective. One approach is to reprove in the p-adic case some classical
results from complex analysis concerning Laurent series. In particular, one
proves Schnirelmann’s Theorem that a Laurent series f{.X) which converges
for all X # 0 can be written as a convergent product

ok o X
£ =ex* I (1—f) 1 (1—;),

Jee| 1 ja| 1
where the product is over all roots « of f. Then one constructs the field
of p-adic meromorphic functions on K* /g% and shows using Riemann-Roch
that it is a field of genus 1 over K.This leads to an isomorphism with some
elliptic curve, and after some work with the classical power series for g
and p', one deduces that the elliptic curve is indeed the curve we have
denoted E,. For details of this line of preof, see Robert [1], Roquette {1},
and Tate [9). We will take a more computational, geometrically inspired
approach. However, we should note that the theory of p-adic analytic
functions has many important applications in modern arithmetic geome-
try. The reader might consult Bosch-Giinter-Remmert {1} for a thorough
introduction to this subject which is called rigid analysis.

In order to prove that ¢ : K* — E,(K) is surjective, we need to show
that for any given point P € E,(K) there is some u € K* with ¢(u) = P.
But the point P will be defined over some finite extension of K, so it suffices
to prove that ¢ : L™ — £,(L} is surjective for all finite extensions L/K. In
fact, this is even stronger than the original statement of (3.1c}, although
it is precisely the result we needed to complete the proof of (3.1d). For
notational simplicity, we will write K in place of L, s¢ we are reduced to
showing that for any finite extension K/Q, and any g € K with g < 1,
the map ¢ : K* — E,(K) described in (3.1} is surjective.

We also set the following notation which we will use for the remainder
of this section:

R the ring of integers of K,

m the maximal ideal of I,

' a uniformizer for B, M = 7R,

k the residue feld of R, & = R/9M,

ord, the normalized valuation ord, : K* — Z on K.



§4. The Tate Map Is Surjective 431
The group E,(K) admits the usual filtration {see [AEC, VII §2})
Eo(K) D Ego(K) D Eq1(K),

wherc ~ =
Ego(K) = {P € Ej(K) : P € Ens(k)},
E,\(K)={PecE,K): P=0}.

Here E,/k is the reduction of E, modulo 2, and E ns are the non-singular

points on E,. From [AEC, VI1.2.1} and [AEC, VI1.2.2] we have isomor-
phisms

e

EQ’,D(K)XEQ‘ 1 (K) =

ns(k)  and B, (K) = E (9)
Pl—-)- z

P = €T, ==y
(,y) ”

o

where E is the formal group of E [AEC, IV §1].
Similarly, the quotient group K* /g% has a natural filtration

K*/qz o Rne > Rt‘

where
Ri={ueR:u=1(mod M)}

is the group of l-units in K. There are also isomorphisms

R*/R} =k* and R} =G()

a—a Uk | -,

where G,,, is the formal multiplicative group [AEC, V1.2.2.2]. We are going
to prove not only that the map ¢ : K*/¢% — E,(K} is an isomorphism but
that it respects the filtrations we just described.

We begin with the formal groups. First, from the formula for X (v, ¢},
it is clear that

u = 1 (mod M) = ord, (X (u,q)) < 0,

since only the term will be non-integral. This proves that

t
T-up
d(RY) C E (K}

Next we show that this inclusion is an equality.
Using the isomorphisms described above, we look at the map

Cm(@) = R 2 B, (K) E,(9)

X(E+¢tq)
t — .
Yl +t4q)
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Note that as sets, G,, () and E’Q (M) are just the set MM; they merely have
different group structures attached to them. If we substitute ¥ = 14 ¢ into
the series for X {u, ¢) and ¥{u, ¢) and expand as Laurent series in ¢, we find
that

X{1+¢t,q) = t_2(1 + Z fxmtm) and Y(1+4,q) = t“s(l + Z ﬁmtm),
el wm

with coefficients o, 3 € R. By taking the ratio of X and ¥, we are
reduced to showing that if v, v2,... € K, then the map

W 29— I, tk-qt(1+ qut,m)
m>1

is surjective. This follows immediately from [AEC, IV.2.4], which asserts
the existence of a power series A(T) € R{T] satisfying ¢(MT)) =T (ie., v
is surjective, since for any w € M we have A(w) € D and ¥(A(w)) = w.)

Next we look at the behavior of ¢ on R*. If we take the series
for X{u.q) and reduce it modulo 9%, we see that

i

Xlu,q) = (—1_1? Z0 {mod M) for all 4 € R*,
— i

so ¢(R*) C E,5(K). Since ¢(R]) = E,1(K) from above, we get a well-
defined injective homomorphism on the quotient groups

o RYR Y Euo(K)/E . (K) = g ns(k)
U 1:'.2
¢ (1 —w)2' (1 —-u)? /)’
This map &* — Eq‘m(k) is clearly surjective, the inverse being
2

T,y — =,

{@,4) g

so the map on the quotient groups is an isomorphism. (Note that Eq has
the equation y® + xy = x°.) Then the commutative diagram

1 R — R — k* — 1

| e |
0 — Wi(HK) — ¢ vq,ns(k) — 0
implies that the map ¢ : R* — E,o(K) is an isomorphism.
We are left to show that the injective homotnorphism
¢: K*/R*q" — E(K)/E40(K)
is surjective. The group on the left is easy to describe, since the map
K*/R'¢E — Zford (9)Z
1 — ord, (u)

is clearly an isomorphism. So the following proposition will comnplete the
proof of (3.1).
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Proposition 4.1.

H#ELK)/Eqo(K) < ordy(g).

To prove this estimate, we will use geometry to divide E {K) into
several subsets, and then we will show that these subsets actually corre-
spond to the cosets of E (K} inside E(K). We start with an elementary
characterization of the points in E, o{K).

Lemma 4.1.1. Let P = (z,y) € E,(K). The following are equivalent:
(i) P e B, o{K),

(i) || = 1,

(i)  Jy[ = 1.

Proor. Taking partial derivatives of the equation for E,, we observe that
PeE, oK) < |ly—32°—ay| 21 or |2y+z[>1

&= max{|y - 3z, 2y + 2} > 1 since |ayg| = |g| <1
= max{|z|,|y|} > L

Suppaose first that || > 1 > |y|. Then
|$]3 = |y2 + TY — a4 — a6| _<_ max{|y!2, ]$y|$ |34$|, |a6|} < max{l, II|}

This strict inequality is a contradiction, so |z} > 1 implies ly| > 1. Similarly,
the assumption |y] > 1 > |z| gives the contradiction

[91? = |2 + a4z + ag - zy| < max{1. |y},
so |y| > 1 implies |z| > 1. This proves that
max{|z|,|y|} > 1==|¢]| > 1 and |y| > 1,

so (i} inplies (ii) and (iii).

Conversely, if P ¢ Fg0(K), then P = (x,y) reduces to the singular
point (0,0) of E,{k), so |z} < 1 and |y| < 1. Hence either of (i) or (iii)
implies {i}, which completes the proof of the lemma. 0

Next we use similar criteria to partition the points of E (K) that do
not lie in B, o(K).

Lemma 4.1.2. Let P = (x,y) € E¢(K) ~ Eqo{K). Then exactly one of
the following three conditions is true:

(i) 1> |y| > [z +yl, in which case |y| > |q]?,

(i) 1> |z +y| > |yl, in which case |z + y} > |q|%,
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(i) vl =z +yl =ldl7.
{Note that (iii) can only eccur if ord,{q) is even.}

Proor. Let
n = min{ord, z, ord, y} and N =ord, g.

Dividing the equation for E, by n*?, we obtain the equation

n

Y2+ Taln = 1700 + 1 "ag(g)en + 7 Pas(g),

whete
r,=7"recR and Ua =% "y € R.

{In fancy terminology, we've blown up the scheme E,/Spec(R) to find
the affine subscheme on which P lies.) Since |aq(g)| = laglg)| = |q], it is
immediate from this cquation that #~?"ag(q) € R, so

1 1 1
l=n< §0rdv aglql = §0rdv(q) = §N.

{The fact that 1 < n comes from {4.1.1}.)
We r~w consider two cases. First, if n < %N, then reducing the above
equation modulo 7 gives

y;i + Zn¥n = 0{mod 7).
This means that either
p = 0(med 1), ot Y, +x, =0{mod 7)., or both.
But they cannot both be zero, since otherwise =, = y, = 0{mod ), which

wolild contradict the definition of n. Henee one of the following two asser-
tions is true:

(i) %, #0(mod 7) and y, + z, = 0{mod 7},
(i) ¥ = 0{mod 7) and y, + z, Z 0{mod ).

These correspond to (i} and (ii} in the statement of the lemma. For exam-
ple, for (i) we find that

1
bl = [7"ya| = I7|" > |g|®  and  y+z| = 7" (g +20)| < |7]" =4k

It remains to deal with the case n — %N Sinee ag{g) = —g+ -, our
equation becomes

yﬁ + Taltn = (—q/wrg‘“) = 0{mod n}.



§4. The Tate Map Is Surjective 435

Hence |y,| = [¢n + 2x| = 1, which implies that
LA 1
9l = fy + | = [x]" = 2|2 =|gf.
0
Lemmas (4.1.1) and (4.1.2) allow us to divide E (K} into the following
subsets:

Eqo(K) = {(z,y) € Ef(K) : {z] 2 1or [y > 1},
Un = {{z.y) € E(K) : In]" = |yl > l= + 9},
Vo = {(z.y) € Eg(K) : |n” =iz +y| > |},
W= {(z,y) € E(K) : Jyl = |z +y| = Jal2}.

Notice that (4.1.2) says that U7, and V,, are cmpty unless n < %Ordv q,
so Eq(K) can be written as the union

E(K)=EoK)uWu |} (U.uW).

l£n<% ord, q

Further, if ord, ¢ is odd, then W = §. S0 we have partitioned E,(K) into
(at most) ord,(g} pieces. The final step in the proof of Proposition 4.1,
which will also complete the proof of Theorem 3.1, is to show that these
subsets are the cosets of E, o(K) in E,(K). More precisely, it will suffice
to show that two points in the same subset are in the same coset, since
this will imply that the number of cosets is no larger than ord,(g). This is
exactly what we do in the following lemma.

Remark 4.1.3. A more intrinsic explanation for the above decomposition
of EG(K)} is that the subsets U',, V5, and W are neighborhoods of the
non-identity components of the special fiber of the Néron maodel of E
over Spec{ ). This decomposition may be compared with the description
of special fibers of Type I, in (IV §8), Tate's algorithm (IV.9.1), and the
discussion in (IV.9.6).

Lemma 4.1.4. Let PP’ € E;(K) be points satisfving any one of the
following conditions:

(i) PP cly; (ii) P, P & V,; (i) PP ¢ W.
Then P — P € B, o(K).

Proor. The proof of this lemina is completely elementary, although some-
what computationally involved. We merely have to combine the geometric
description of Uy, V,,, and W with the algebraic formulas giving the group
law on £,

If P = P, there is nothing to prove. Assume for now that also P #
—P'. (We'll deal with P = -~ P’ at the end.}) Then writing P = (z,y)
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and P/ = (z,y"), the addition law on E, and a little algebra yield the
formula
3 k ;
t+y +2)y+z+y)
(x —2')?

#(P—P)=

In all three cases, (i), (ii), and (iii), we have {z < 1 and |2’} < 1, so {4.1.1)
and the formula for z(P — P’) gives

P~ P € E,4(K) = [z(P - P)|>1
= ly+y +2| ly+z+9| 2|z~

Suppose first that P, P € U,. Then
|z =yl = [x]" and || =y| = |=[", so |z -] < x|
On the other hand, since |y| = |7}* and |y’ + 2’| < |#x|?, we get
v+ ¢ +2'| =[]
and similarly Ji/| = [#|® and |y + | < |7}, so
ly +z+y] = |=["
Therefore
ly+y 2t ly+a+y| = n" 22—, s0 P— P € Byo(K).
This proves {i).

The proof of (ii) can be dene in a similar fashion, but it is even easier
to observe that

Pel, & —-PcV,.
This follows from the formula —{z,y) = (z, —~y — =). Hence (i) implies (ii}.
Further, since [/, and V, are disjoint, we see that P # —P’ in cases (i)
and (ii).
We turn now to case (iii), which is the most difficult. We claim that
in this case we have

y+z+v|=ly+y +2
To see this, we note that

2| < max{je +yl,|yl} = |gl? and |2'] < max{lz’ +¢'|, I¥|} = la1¥;
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then we compute

| +z+yy—(y+v + )|

= |(¥* +2y) — @* + 2y

= |(z° + a4z + ag) - (@ + agz’ + ag)]

=z - 2| 2% — zz’ +z + aa|

< |¢—z'||gl since |z[,|#’| < ||, laa| = |q|

=|{y+z+) -+ +2 g

<max{ly +« +¢|ly + ¢ + 2|} - lal

= max{|(y +z+¢)yl, {y+v + 2|} - lal?
since [y} = |y} = |q|3,

<max{|[(y+z+ )|, |w+v + W]}

since |g| < 1.

The only way that this strict inequality can possibly be true is if
ly+x+y)y| = [y +y +2)]
Further, we know that |y} = |y’|, so we have proven our claim
w+z+yl=ly+y +2
Using this equality, we compute
o -2’ = |y +o+y) - ly+y +2)]’

< max{ly+z+y'|ly+y + 7|}
=l+e+yl ly+y +2)

From above, this inequality implies that P — P’ € E, o(K).

Finally, we must deal with the case P = - P e W, s0 P - P’ = 2P.
We could argue by continuity, but here is a direct argument using the
duplication formula, which on E, reads

a' — 2042 — Bagr +ai ~ag _ f(z)

— f = — . '
x(P P] -T(QP) Ax3 +$2+4a4$—|—4(}.5 g(.’.v)

Here f{z} and g(x} are the indicated polynomials. Fromn general principies,
one knows that f{x} and g(x) are relatively prime in K[x]. More precisely,
if we let

F(z) = 4827 +8x464a4—1 and G(z) = 12¢° — £ — 20aqx + 2a4 — 108aq,
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then a little algebra suffices to verify the relation
z}F(z) — glz)Glx) = A,

where A is the discriminant of the Weierstrass equation for E,. Substitut-
ing f{x) = z(2P)g(z) into this relation gives

g(z){z(2P)F(z) — G(z)} = A.
We are assuming that P € W, so

: 2
lg(z)| = 12y + 2|* < max{ly|,ly + 2|} = |q],
IG(x)[ = 1223 ~ 2% — 20042 + 204 — 108ag] < max{|x12, lay], |aﬁ|} =g,
’F($)| = 4827 + 8x + 64aq — 1| = 1,

|A} = |q - 24¢° + 252¢° — -] = lgl.
Hence A
1 <|—=|=1x(2P)F{z) — Gz
| = [#(2P)Flz) - Gla)

[

maa({lsc(QP)] | F(z)| |G(~T)[}
= ma}({lﬂ}‘(gp)l, |Q|}

Since |g| < 1, it follows that II(QP)' > 1,80 2P € By o{K} from (4.1.1).
This completes the proof of Lemma 4.1.4, and with it the proofs of Propo-
sition 4.1 and Theorem 3.1.

O

§5. Elliptic Curves over p-adic Fields

In the previous two sections we have shown that for any p-adic field K/Q,
and any ¢ € K* with |g| < 1, the quotient group K*/¢" is (analytically)
isomorphic to an elliptic curve EQ(K’)‘ In the analogous situation over
the complex numbers, we know (1.1d) that every elliptic curve E/C is
isomorphic to E; for some ¢ € C*. However, in the p-adic case we have

1 1
li(E)| = p + 744 + 196884g + -+ | = el >1,

$0 it is clear that not every elliptic curve over K can be isomorphic {over K}
to an E;. A necessary condition is |J(E)[ > 1. We begin by showing that
this condition is also sufficient.
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Lemma 5.1. Let a € Q, be an element with |af > 1. Then there is a
unique ¢ € Qp with |g| < 1 such that j(E,) = a. This value of g lies in

Qpla).

Proor. The j-invariant of E; is given by the series (3.1), which we write
as

L+ T4dq + 196884q% + - -
; .

The reciprocal of this series, which we will call f(q}, is given by the formula

Ha)

1 q
H9) = 505 = T3 74ag 7 196884g7 7 -
— g - T4447 - 356652¢° — - -- ¢ Z[q].

Applying [AEC, IV.2.4] to the series f, we get a series g{q) = ¢+ -- € Z[4q]
such that g(f(q)) = ¢ as formal power series in Z]q). Since g has integer
coefficients and leading term g, it will converge if we cvaluate it at any
element 3 € @, of absolute value less than 1 and will satisfy |g{8}] = 4|.
In particular, since la| > 1, we find that

q=9 (é) € Qpla)

satisfies

0<|q|=‘;i—’<1 and ﬁ=f(q)=f(g(i—))=é-

Hence j{g) = o as desired. This proves the existence part of {5.1).
To prove uniqueness, suppose that j{q} = 7(¢'} with |¢| < 1 and |¢'] <
1. Then f(g) = f(q’}, so

0 = |flq) — Flg")]
=|g-q'|- |1 — 744(q + ¢') + 356652(¢” + q¢’ + 7+ |
=lg—4'|.
Therefore ¢ = ¢'. o

Before proving the p-adic uniformization theorem, we describe an in-
variant which is uscful for studying the twists of a curve.
Lemma 5.2. Let E/K be an elliptic curve defined over a field of char-
acteristic not equal to 2 or 3, and choose a Weierstrass equation

y2 +apry + azy = s —|—a2:c2 + @47 + 04
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for E/K. Let ¢q and cg be the usual quantities [AEC, 11T §1] associated to
this equation. Assuming that j{E) ¥ 0,1728, we define

WE/K) = —cajeq € K™ K*2.

{The reason for the negative sign will become apparent Iater when we prove
that v(E,/K)=1.)

(a) Y(E/K) is well-defined as an element of K*/K*?, independent of the
choice of Welerstrass equation for E/K.

{b) Let E'/K be another elliptic curve with j{E"} # 0,1728. Then F
and E’ are isomorphic over K if and only if

J(E)=j(E') and  y(E/K)=~(E/K)

(¢} Let E/K and E'/K be clliptic curves with j(E') = 5(E) # 0, 1728,
and suppese that v(E/K) # y{E'/K), so

o [2EE)
b=k (\/ WEJK) )

is a quadratic extension of K. Let
X GK;K - GL/K I {:H}

be the quadratic character associated to L/K. Then there is an isomor-
phism
y:BE—E

with the property that

W(P°) = x(o)p{P) for allo € Gy i and all P € E(K).

Proor. (a) The condition j{F) # 0,1728 is equivalent to ¢4 # 0 and ¢g #
0, so y(E/K) exists. If we choose a new Weierstrass equation for E/ K, then
the new ¢4 and cg are related to the old ones by the formulas u"cﬁ = c4
and u8cf = cp for some u € K*. {(See [AEC, III Table 1.2]. The fact
that « € K follows from [AEC, 11L.3.1].} Hence

c c4 €4
4 =y*= = = (mod K*?),
ch 6 Cp

which proves that +(E/K) is independent of the chosen Weierstrass equa-
ticn.
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(b} If E and E’ are isomorphic over K, then [AEC, IIL.1.4b] asserts that
j{(E) = j(E'). Further, since the Wejerstrass equations for E and E’ are
Weierstrass equations for the same elliptic curve over K, it follows from {a)
that v{E/K) = +{FE'/K).

Conversely, suppose that j{E) = j{E") andy(E/K) = y(£'/K). Since
the characteristic of K is not. 2 or 3, we can find Weierstrass equations for B
and E’ over K of the form

E‘:y2::c3+Ax+B, E g =+ Art+ B,
with 4, B, A’, B € K. The fact that j{E) = j{E') # 0,1728 implies that

A3 oA _ 443
BT B since j{(E) = 1728mA

Similarly, since ¢y = —484 and ¢g = —864B, our assumption v(E/K) =
+(E'/K) means that

MY = ) = 2= 2

w2
B cﬁ I3 {mod K**),

so there is some t € K* such that AB’ = t?A’B. Using these relations
between A, B and A’, B, it is now easy to check that the map

E — F, (z,y) —— (tzzr,t3y)

is a K-isomorphism.
{c} We take models for £/K and E'/K as in (b), and again the assump-
tion j(E) = j(E') # 0, 1728 implies that A3B'* = A”” B3, Next we let

£4Cq ’Y(E/K) x2
it= = .
1,‘L4CS 1.!' TR {mod K*%)
Since y(E/K} # v{E’/K), we know that L = K (¢} is a quadratic extension
of K; and as in (b), the map
Y. E— F, (z,y) — (t2z, By)

is easily seen to be an isomorphism. Finally, for any ¢ € Gz, g, we know
that t7 = x(o)t. So for P = (z,y) € E(K) we have
B(PY = p(@,y)" = (2,8%)" = (x(0)*27, x(0)*t"y")
= (%27, x(0)°y") = x(o) (%2, %) = x(o )b (P7).

We are now ready to prove Tate's p-adic uniformization theorem, which
applies to all curves whose j-invariant has absolute value greater than 1.
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Theorem 5.3. (Tate) Let K be a p-adic field, let E/K be an elliptic
curve with [j(E)| > 1, and let Y(E/K) € K*/K** be the invariant defined
in {5.2}.
{a} There is a unique ¢ € K* with |q| < 1 such that E is jsomorphic over K
to the Tate curve E,. Further, this value of g lies in K.
(b} Let g be chosen as in {a). Then the following three conditions are
equivalent:

(i) & Is isomorphic to E, over K.

(i) (E/K) = 1.

(iii) £ has split multiplicative reduction.

PRoOF. {a) From {5.1) there is a unique ¢ € K* with |g| < 1 such that
JlEg} = F(F). This implies [AEC, IIL.1.4b} that E; is isomorphic to E
over K, which completes the proof of (a).

(b} From (5.2) we know that E is isomorphic to £y over K if and only
if }{(E) = j(E,) and v(E/K) = v(E;/K). So in order to prove that (i)
and (it} are equivalent, we must show that v{E,/K) = 1. Using (3.1) we
find that the ¢q and ¢g values associated to the Tate curve

Ep 2 +zy =1 + as(g)z + aelq)

are
cq(q) = 1 — 48aq{g) = 1 + 240s3(g},

colg) = —1 + 72a4{q) — B6dags(g) = -1 + 504s5(q).

So the y-invariant of E,/K equals

cs(q) _ 1+ 240s3(g)
ce(q) 1 — 504s5(q)

WE /K) = — (mod K*%).

To see that y(E,/K) is a square, we use the following elementary calcula-
tion which implies that c4{g) and —eg{g) are themselves squares in K.

Lemma 5.3.1. Let a € K with jo| < 1. Then 1 + 4o is a square in K.

Proor. We first obscrve that the binomial coefficient

(1) - (-3)(-3)(5) - (75) ()

1 n! 4n n

is an integer divided by 4". Hence the coeflicients of the series

v -§ (e B (e

n=0} =0
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are integers, so the series converges in K. Therefore (1 +4a) ™' is a square
in K, so the same is true of 1+ 4a. This completes the proof of the lemma,
and with it the fact that (i} and (ii) are equivalent. ]

Next we note that since |a4{g)| = |as(g)| = lg| < 1, the eguation of
the reduced curve E is

E,: v +xy = 2",

which clearly has split multiplicative reduction. This shows that (i) im-
plies (iii).

Conversely, suppose that E has split multiplicative reduction. We will
show that v(E/K) = 1, which will prove that (iii} implies (ii}. Take a
minimal Weierstrass equation for E,

E y2 +a Xy + asy = ;1734—(12;1:2 + aqx + ag.

Making a linear change of variables, we may assume that the singular point
modulo M is the point {0,0}, where as usual we write 9 for the maximal
ideal of the ring of integers of K. Then the fact that {0,0} is on the curve
and singular modulo M implies that

asz = s = ag = 0 (mod M),
and hence that
by =ajaz + 244 =0{mod M) and ¢y = b2 — 24by = b {mod 91},

From [AEC, VIL5.1b|, the fact that £ has multiplicative reduction
implies ¢4 ,.=é 0 {mod M), so we see that by Z 0 (mod M). It follows that b2
is a unit {i.e., |b2| = 1). Hence

.. 1 1- 24%
HE/K) = C; =5 Y T (mod K*?).
L - 365 + 2165

Applying {5.3.1) to the numerator and denominator of the bracketed frac-
tion on the right-hand side of this equation, we find that

1
WE/K)= o~ =by (mod K",
2
It remains to show that if the multiplicative reduction of E is split, then b,
is a square in K.

Note that the reduction of E is

E: g2+ ayzy = 28 + asz®.
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We factor the polynomial
y* + &y — &3 = (y — ax)(y — Ba).

The fact that E has multiplicative reduction means that E has a node,
50 & # B; and the fact that the reduction is split means that & and 3 are
actually in the residue field of K, rather than in a quadratic extension.
{See [AEC, I1I §1, VII §5].) It follows from Hensel's lemma applied to the
polynomial T2 4 a1 T — a5 that & and A lif uniquely to elements o, 7 € K
such that

¥* +aijzy — agx? = (y — ax)(y — Bz).

Hence
by = a2 + dag = (—a — B2 +4(—aB) = (a — 8)% € K*%,

s0 Y(E/K) = by =1 (mod K*?).
We have now proven (ii} <= (i} == (iii) = (ii}, which complectes
the proof of Theorem 5.3. ]

Suppose that we have an elliptic curve E/K as in Theorem 5.3 with
invariant y(E/K) # 1. fwelet L = K (\/"f(E/K)), which is well-defined,

since ¥v({E/K) is defined up to squares in K, then it is clear that v{(E/L) =
1. Applying (5.3) to E/L, we find that E is isomorphic to E; over L, so

E(L) = Bg(Ly= L*/q".
We will now describe E{K) in terms of this identification.

Corollary 5.4. With notation as in the preceding paragraph,

E(K) = {ue L'/q" : Ni(u} € ¢*/¢”}.

ProoF. First we observe that the norm map N% is a homomorphism
Nk L*/¢" — K*/q*%,

so N&(u) is well-defined modulo g%, Applying (5.2¢) to E and E,, there
is an isomorphism

¥ Ey(K) — B(K)
satisfying ¢(P%) = x(o)y¥(P)° for all ¢ € Gg g, where x © G/ —
G, — {£1} is the quadratic character associated to L/ K. On the other
hand, the isomorphism ¢ : K*/¢% — E,(K) is defined over K, which means
thai ¢{P7) = ¢(P)?. We look at the composition

L*/¢* =5 E,(L) -~ E(L),
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which we know from above is an isomorphism of groups. Let 7 € Gg g
be an clement with x{r) = —1, so 7 represents the non-trivial element
in Gp,;k. Then for any u € L*,

(Wo¢)(u) € E(K) <= (o))" =v(p(w))
— —v(d(u”)) =v(d(w)) since x(7) = —1
= P(s(u")) = ¥(d(u)
since —(P) = ¢{-P) and —o{u) = ¢{u"'}
== u " = u(mod ¢%)
since ¢ and % are isomorphisms

P ul+’r c q?;_

Since '™ = NL (u), this completes the proof of the corollary. O

§6. Some Applications of p-adic Uniformization

As we have seen amply demonstrated, the arithmetic properties of the
torsion points on an elliptic curve are of fundamental importance. ln the
case that the curve has a p-adic uniformization, E(K) = K*/¢%, it is easy to
describe the torsion subgroup of E. Further, since the p-adic uniformization
commutes with the action of Gz, x, it is similarly easy to describe the
action of G g /g on the torsion subgroup of &. We will not prove the most
general theorem in this direction but will be content with the following
fundamental result. {See also exercise 5.13.)

Proposition 6.1. Let K be a p-adic fleld with normalized valuation ord,,
let E/K be an elliptic curve with |j(E)| > 1, and let £ > 3 be a prime
not dividing ord,, j{E}. Then there is an element o in the inertia subgroup
of Gg i which acts on the {-torsion subgroup E|f] of E via a matrix of

the form (1] }) In other words, there is a basis Py, P, € E[¢| such that

PP=P,  and P{=P +P.

{One sometimes says that ¢ acts as a transvection on E[{].)

Remark 6.1.1. Recall that there is an £-adic representation [AEC, III §7]

et GR/K _— AUt(Tf(E)).
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Since E[¢] = Ty(E)/¢Ty(E), another way to statc (6.1} is that relative to
an appropriate basis, there is a 0 € Gg - satisfying

pg{o)E((l) }) (mod £).

Remark 6.1.2. It is also worth pointing out that the proof of Proposi-
tion 6.1 does not need the full strength of Theorem 3.1. Specifically, we
only need to know that the map ¢ : K*/¢" — E,(K) is an injective ho-
momorphism; we do not need to know that it is surjective. The reason
injectivity suffices is that we are really only interested in the torsion sub-
group of E,. and a simple count shows that the there are m? points of
order m in f(*/qz, so we get. (essentially for free) that ¢ is an isomorphism
on ftorsion.

Proor. First we ohserve that it L/K is a finite extension of degree pritne
to £, and if (6.1} is true for E/L, then it is true for E/K. This follows from
the equality ord, j(E) = e, 0rd, j(E£), where w is the extension of v
to L, and the ramification index ¢,,,, is prime to £, since it divides [L : K.
Hence ¢ will not divide ord,, j(E), so there is a 0 € Gg, C Gg g that
acts as a transvection on E[f].

From {5.3b) we know that E is isomorphic to a (unique} Tate curve E;
over an {at most) quadratic extension of K. Sc replacing K by this ex-
tension, it suffices to prove (6.1) for E,, where ¢ € K*. Similarly, we may
assume that K contains a primitive #*P-root of unity ¢, since the degree
of K(()/K divides £ — 1, s0 the degree is prime to £.

Let Q = gt € K be a fixed #-root of ¢. Since ord, j(E,) = —ord, ¢
is not divisible by £, the Kummer extension K{Q)/K is totally ramified
of degrec £. Hence there exists a ¢ in the inertia subgroup of G g,y such
that 7 = (@Q. We claim that this is the desired ¢; it remains to pick the
right basis for E;{¢].

To do this, we use the p-adic uniformization {3.1)

& K*jq" =5 Ey(K).
With this identification we clearly have
¢ (7 Q%)/g" > B[]

Further, the p-adic uniformization map ¢ commutes with the action of
Galois (3.1d) (i.e., ¢(P?) = ¢{P)7), so the action of Gy, on Eglf] is
the same as its action on the quotient group (¢Z-Q%)/g% As our basis
for E,[¢], we take the elements P, = ¢({) and P, = ¢{Q)). Then

PY =6(¢)7 = ¢(¢7) = a($) = A1,

Py =¢(Q) =¢(Q°) = Q) =)+ Q) =P+ P

We next observe that Proposition 6.1 remains true for certain elliptic
curves over number fields.
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Corollary 6.2. Let K/Q} be a number field, let E/K be an elliptic
curve, and assume that the j-invariant of F is not in the ring of integers
of K. Then for all but finitely many primes {, the image of the é-adic
representation pg : G, — Aut(T¢(E)) contains an clement satisfying

pior= (g 1) (modo)

relative to a suitable basis for Ty(E)/¢T¢(E}y = E[€).

ProoOF. Let v be a {finite) place of K for which j(£) is non-integral,
S0 |j(E)|v > 1. Let Gg )k, C Ggyyx be the decomposition group of v
for the extension of v to K corresponding to some embedding K — I,
Now (6.1) gives an element ¢ ¢ Gg, 5, which acts like ({1] {) on E[f}.

But with our identifications, ¢ € G,k and E[¢] C E(K) C E(K,), which
gives the desired result, 0o

It is a legitimate question to ask why one should care that Gal(K/K)
contains an element that acts on E{f] as a transvection. One answer is that
this puts severe constraints on the allowable maps hetween such elliptic
curves. For example, we will now give Serre's p-adic proof that an elliptic
curve with complex multiplication has integral j-invariant. (For alternative
proofs of this important fact, see [AEC, exercise 7.10] and (11 §6).)

Theorem 6.3. Let K/Q be a number field, and let E/K be an el
liptic curve whose j-invariant j{E) is not in the ring of integers of K.
Then End(E) = Z.

PROOF. {Serre} We begin by recalling that there is a representation of the
endomorphism ring of E [AEC, IIT §7),

End(E) — End(Te(E)), % — .

Further, we proved in [AEC, V.2.3| that for any i € End{E}, this repre-
sentation can be used to compute the degree of ¥ via the formula

deg(y) = det{sie).

{This result appears in {AEC] in the chapter on elliptic curves over finite
fields, but the proof depends only on the non-degeneracy of the Weil pair-
ing, which is valid in general.)

Let 4 € End{E) be an isogeny. Taking a finite extension of K if
necessary, we may assunte that ¢ is defined over K. This means that

P(P7) =(P)"  forall ¢ € Gy and all P € E(K).
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We need to show that i € Z.
Let
m = deg(l + ) — deg{¢) — 1.
Notice that if we knew that 4 was in Z, then m would equal 2. So we
will try to show that m = 23 by showing that the degree of m — 24 is 0.
Using (6.2), choose a “large” prime £, an element 0 € G, and an
ordered basis { £y, P} for E[f] so that relative to this basis,

pg(U}E(é 1) (mod #).

{We will see below that any £ larger than deg(m—24) will suffice.) Looking
at the action of ¥ on E¢], we find that v is represented by a matrix

ve=(2 ) tmod o

for some a, b, ¢,d € Z/€Z. In other words, ¥(P1) = aP, +cP» and (P} =
P, +dP;. Now, since + and ¢ commute in their action on E(K), it follows
that their matrices commute in End{E[f]} & GLy (Z/{Z):

) a)=(C (1) mean

Multiplying this out, we find that & =d and ¢ = 0, s0

WE(S 2) (mod ?).

Next we determine the relationship between a and m:
m = deg{l + ¥) — deg{z?} — 1 by definition of m
= det(l + 1} —det(y) — 1 from [AEC, V.2.3

. l1+a b a by
:det( 0 ]_I_a)—det(o a) 1 (mod &)

=2a (mod {}.
This now allows us to compute the degree of m — 2y, at least modulo £.
deg{m - 2¥) = det(m — 2¢%) from [AEC, V.2.3] again

Edet[("'g :3;)2(8 2)] (mod ¢)

=0 (mod {} since m = 2a{mod £} from above.

We have now proven that deg{m ~ 2¢) = 0 (mod £} for all primes £
such that (6.2} is true, which means that deg(m — 2w} = 0(mod £) for
all but finitely many #'s. Hence deg(m — 2¢} = 0, so m = 2y. But
every endomorphism is integral over Z [AEC, I11.9.4], so m must be even
and ¥ € Z. This completes the proof that End{E) = Z. jm]
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EXERCISES

5.1. LetgeC, |gf <1, and let & € R. Prove that

k. .n
n i3
sele) = Y _on(n)g" =Y T,

n>1 n:=l 7

where as usual ox(n) = Z a5
d|n
5.2. Let (¢ be a cyclic group of order n, let & be a generator for &7, and let Af
be a (G-module.
{a) Prove that

2 o {xehf:g;—oa:=ﬂ}
H (C’ﬁﬂ"f]"‘ {x+az+.‘.+gﬂ_lm : IEM}'

(This piece of elementary group cohomology is used in the proof of (2.4).)
{b} Prove that

M:z+az+- --+o" 'z=0}
H(G M)y~ 1€ ,
(G, M) {r—ox: zc M}

Use this directly to show that for ¢ € R*, the Weil-Chételet group
WC(Eq/R) 2 H' (Ge/r, C*/q%)
has order 1 {respectively 2) if g < 0 (respectively g > 0.)
5.3. Let E/R be an elliptic curve, let A(E)} be the discriminant of a Weierstrass
equation for E/R, and let m be an even integer.

{a) Prove that

Z/mZ, if A(E) < 0,
E(R)[m] = { .
(Z/2Z) x {Z/mZ)}, if A(E)> 0.
{b) Consider the Kummer sequence
0 — E(R)/mE(R) — HY{G¢/r, Elm]) — WOC(E/R) — 0.

If A(F) < 0, prove that all three terms are 0. If A(E) > 0, prove that the
sequence is

0 — Z/2Z — Z/20 x Z/2Z — Z/2Z — 0.
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V. Elliptic Curves over Complete Ficlds

{a) Let a,.b € R, and let E/R be the elliptic curve
Byt =a+ac® + bz,

If A(FE) > 0, so in particular il & < 0, prove that WC({E/R) has order 2,
and its non-trivial element is represented by the homogencous space

Cw’ =4b2* — (1 + az?)?.

(Hint. See [AEC X.3.7).)
(b) Let E/R be an elliptic curve with A{(F)} > 0. Exercise 5.3(a) says
that E[2] C E(R), so we can factor

d2® + bar” + 2bar + bs = A — 1Mz — ex}(z — e3)
with e, < &2 < e;3.

Prove that the non-trivial element of WC{E/R) is represented by the ho-
NMogeneons space

C:=w® =14 2(2; — €1 - e3)2° + (&1 —ea)2”.

Let E/R be an elliptic curve, and choose g € B, 0 < |g] < 1, so that j(E} =
7{Fq). Suppose, however, that F is no! R-isomorphic to E;. Then if we
consider the isomorphisms

C"/q" > E,(C) — E(T),

the second map will not be defined over E. Prove that with this identifica-

tion,
B(R) = {n € C'/q" : [u® € ¢*/q""}.

For this problem we will write E{r} for E, with ¢ = ¢*™*", and for a

given E/R we write KX for the non-trivial twist of E. (See Proposi-
tion 2.2{a).)
{a) Prove that

E{it}x%;REG), for all £ > 0, ¢ # 1,

1 i 1

LoV s pllyt forallt >0,  # 1
E<2+2> ® <2+2t>’ orallt>0,¢#1,

e 1 4
E(‘L)x =/R E<§ 4= §> .
(b) Fix E/R with j(E) # 1728. From (2.3) there is a unique ¢ > 0 so that
EGt), if A(E) > 0.
F=m { 1 it ,
E<§+E L LAE) <O,
Let v{E/R) = sign ce( E) be the invariant defined in (2.2b). Prove that

~(E/R) = sign{l —t).
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8.7.

=]
jo.s]

5.9.

5.10.

5.11.

Let K/, be a finite extension with ring of integers A and normalized
valuation ord,. Let ¢ € K" satisfy |q| < I, let F, be the corresponding
Tate curve, and let ¢ : K* — E{K) be the homomorphism described
in (3.1). Prove that for every » > 1, ¢ induces an isomorphism

¢ R —= Eqr(K).

where
Ri={ue K" :orde{u—1) = r},
E,-(K)= {(:z:,y) € E,{(K) : ord,(z} < —27‘} u{o}.

(a) Let L/K/(}, be a finite tower of fields with £ Galois over K, let a; € L
ke a sequence of elements such that the series Z: o; converges, and let o £
G i Prove that

o0 o o

(Z (k,',) = Z ('t;‘.

i=1 i=1

(b} Show that (a) is true if we replace ¥, by R and take K =R and L =
C.

(¢} Find a sequence of elements o; € Q such that Eai = /2, and deduce
that there is an element o € (75,q such that

e

(o) #3er

i=1
Thus {a) is not true if we replace @ by Q.

Fill in the details needed to rigorously prove the formulas (i) and (ii) in
Proposition 3.2(b).

Let. A be a p-adic field, let ¢q,4 € K" satisfy |g| < 1 and |¢'| < 1, and
let E,; and E, be the corresponding Tate curves.

{a) If Eq and E, are isogenous, prove that there are positive integers m, n
such that ¢™ = ¢'".

{b) °Conversely, if g™ = ¢ for some integers m,n > 1, prove that E,
and E, are isogenous. {Clearly, there are homomorphisms from K */q%

to K* {q’z, for example u — u™. What is unclear is that the corresponding
homomorphisms E; — E, are given by rational functions, rather than by
power series.)

Let K be a p-adic field, and let £/ K be an elliptic curve such that [j(E}| >
L. Let v(E/K) be the invariant described in (5.2}, and consider the field

L= K( W(EKK))‘

{a) Prove E/K has split multiplicative reduction if and only if L = K.
{b) Prove E/K has non-split multiplicative reduction if and only if L/K
is unramified of degree 2.

{c) Prove E/K has additive reduction if and only if L/K is ramified of
degree 2.

(d) Tet Ea{K) be the group of points whose reduction is non-singular.
Describe the quotient group E{K}/Fou(K) in cach of the three cases (a), (b),
and (c}.
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5.12.

a.14.

V. Elliptic Curves over Complete Fields

{a) Prove that Lemma 5.2 is still true if K has characteristic 3.

{b) Show that if K has characteristic 2 and E/K is an elliptic curve
with j{E) # 0, then v(E/K) is always equal to 1. Hence Lemma 5.2
is mot true in characteristic 2.

. Let K be a p-adic field, and let E/K be an elliptic curve with split multi-

plicative reduction.
{a) Prove that for each prime £ # p there is an cxact sequence of Gz k-
modules

1 — Tg(#) — TE(EJ — Zg e 0,

where Te(u) is the Tate module of K (see [AEC, IIL7.3]) and G g, g acts
trivially on Z,.

(b} Prove that there is a basis for T¢(E) so that the image of the inertia
group of K/K in Aut(T:(E)) = GL2(Z,) is equal to

{(é T) € GL2{Z¢) : orde(h} > Ordﬂ(”“{jﬁ])}'

{c) Prove that the exact sequence in (a}, considercd as a sequence of G g -
modules, does not split.
Let Ey/K be a Tate curve over a p-adic field K.

{a) DI'rove that there is an exact sequence

0 — WC(E/K) ~= H> (Criciq”) — H* (Giyw. K7).

{(b) Trove that
I (Crx.q") = Hom (Gr k. Q/Z) = Hom (K™, Q/Z) .

{ Hint. Yor the second isomorphism, use local class field theory.)
{¢) It is well known from local class field theory Serre [4] that there is an
isomorphism HZ(G_;-(/K, K*) = Br(K) = Q/Z. Prove that the map

Hom (K", Q/Z) = H® (Cr w,q") — H* (Gr/x, K™) = Q/Z

obtlained by composing this isomorphism with the maps from {a) and {b)
is given by the rule f — f(qg).
(d} Deduce that

WC{E,/K) = Hom (E,(K),Q/Z).

In other words, the Weil-Chételet group of E,/K is dual to the group of
rational points E (K.

(e} "More generally, prove that WC(E/K) = Hom (E(K),Q/Z) for any
elliptic curve B/K satisfying [f(E)| > L.

(In fact, it is true that WC({E/K) = Hom{E(K), Q/Z) for all elliptic curves
over p-adic fields, not just those with non-integral j-invariant. The proof
of this result, which is due 1o Tate [5,6], requires different methods than
those used in this chapter. See also Milne [1])
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5.15.

Let K/Q, be a p-adic field, let E/K be an elliptic curve, let N > 5 be a
prime not equal to p, and suppose that there is a point P € E{K) of exact
order .

{a) Prove that £ has either good or multiplicative reduction.

{b) Let E — E’ be an isogeny of elliplic curves whosc kernel is the cyclic
subgroup generated by F (ie., B’ = E/ZP). Prove that

vk(Dg/x) +vx(Dp k) =0 (mod N + 1).
Here vg : A — Z is the normalized valuation on K, and Dg;x and Dge sk

are the minimal discriminants of E/K and E'/K respectively. (Flint. Take
Tate models E, and E, and look at the isogeny E; — E,..)

. Let F/K be an elliptic curve defined over a number field, let N be a

prime, and suppose that there is a point P € F(K) of exact order N. Use
the previous exercise and Szpiro’s conjecture (IV.10.6) to prove that N is
bounded by a constant that depends only on the field K. This approach
to proving the boundedness conjecture [ARC, VIIL7.7] is due to Frey.



CHAPTER VI

Local Height Functions

The canonical height function

h: E(K) -+ [0,00)
is a quadratic fortn whose value at a point P measures the arithmetic
complexity of P. The importance of the canonical height stems from the
fact that it relates the geometrically defined group law to the arithmetic
properties of the algebraic points on E. See [AEC VIII, §9] for details.

Recall that the ordinary height of a non-zero point I? € E{K) (relative

to the function ) is defined as a sum of local terms, one for each absolute
value. Thus

1

WP = g 2 e oetP). o)

The canonical height is then the limiting value of thesc ordinary heights,
. _ 1
hP) = nan;O Eh([n]P)

It is natural to ask whether the canonical height itself can be natu-
rally decomposed as a sum of quadratic forms, one for each absolute value
in K. The answer is “no,” but Néron and Tate have shown that there is a
decomposition into local functions which are almost quadratic. Precisely,
they show that for each v € Mg there is an almost quadratic function

At E(K N {0y — R
such that

h(P) = {A—ITQT] S nAlP)  forall P& E(K)~ {O}.
VEM i

In §1 of this chapter we will use an averaging argument to prove the
existence of local height functions for all absolute values v € Mg, and in
§2 we will prove that the canonical height is equal to the sum of the local
heights. It is also of interest to have explicit formulas for the local height
functions, so we will give such formulas for archimedean ahsolute values in
§3 and for non-archimedean absolute values in §4. For further information
about local height functions, see for example Lang [3] and Zimmer [2].
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§1. Existence of Local Height Functions

Let K be a ficld and let | - |, be an absolute value on K. The absolute
value can be used to define a topology on K in ihe usual way: a basis of
open neighborhoods around an clement o € R i the collection of (open)
balls

U.={8e€K :|F—al, <=} all £ > 0.

Let E/K be an elliptic curve. In a similar way we can define a topology
on E(K).

Definition. The v-adic topology on E(K) is defined as follows. For a
point Fy = {xy.yo} € E(R}, a basis of open neighborhoods of Iy consists
of the sets

U, = {{‘t:,y} € E(K) : lr—rols < g and |y — m! < 5} all 2 > 0.

For the point (O € E{K} at infinity we take as a basis the open neighbor-
hoods

U, = {(x.y) € BE(K) : ||, > =71} U {0}, all € > 0.

{Notice that for the neighborhoods of () there is no need to require both ||,
and |y|. to be large. The Weierstrass equation ensures that they simulta-
ncously go to oc. For an alternative definition of the v-adic topology, sec
exercige 6.1.}

In this section we will prove the existence of almost ¢uadratic local
height functions. These will be certain continuous functions

E(K)~ {0} — R,

where E{K )~ {O} is given the v-adic topology induced from E(K}, and R
is given its usual topology. The following formulation is due to Tate.

Theorem 1.1. (Néron, Tate) Let K be a field which is complete with
respect to an absolute value | - |, and let

vl = —log| - |.

be the corresponding additive absolute value. Let E/K be an elliptic curve.
Choose a Weicerstrass equation for E/K,

. y2 + a1y + azy = &+ asr® + asr + ag.

and let A be the discriminant of this equation.
(2} There exists a unique function

AMER)~{O} — R
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with the following three properties:

i} X is contintous on E{K}~ {0} and is bounded on the complement
of any v-adic neighborhood of 0.
{ii) The limit

exists.
(iii) For all P € E(K} with {2|F # O,

M2IP) = 4AP) + v{(2y + a1z + as)(P)) — %v(i\)‘
(b} A s fudependent of the choice of Welerstrass equation for E/K.

{c) Let L/K be a finite extension and w the extension of v to L. Then
{with the cbvious notation}

MelP) = A(P)  forall P € E(K)~ {0}

Definition. The function A described in Theorem 1.1 is called the {local)
Néron height function on I) associated to v.

Remark 1.1.1. For other properties of A which are equivalent to (iii}, sec
exercises 6.3 and 6.4.

Proor (of Theorem 1.1). (a} We begin with uniqueness. Let
M TEK)~ {0} — R

be two functions satisfyving (1), (i), and(iii}; and let A = A — X\ be their
difference. From (ii} we sce that the limit

lim A{F)
PoO
cxists: so if we define A{() to be this limiting value, then (1} huplies that
AEK)—R
is a continuous bounded function on all of E{K).
Next we observe from (iii) that A{[2]P) = 4A(P} provided [2]P # O.
But the points satisfying {2]77 = O lorm a discrete subset of E{K) (notice

there are at most four such points), so by continuity A{[2]P) = 4A(P)
holds for all . Iterating this relation N times and dividing by 4V gives

A(P) = 4%‘-\(2“?), valid for all P € E(K) and all N > 1.
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Since A is bounded. we may let N — oc to deduce that A{P) = 0.
Hence A = A, which proves unigueness.

Before proving the existence of A. which is more complicated, we will
prove (b} and (¢).

(b} It is clear that conditions (i} and (ii) are independent of the chaice of
Weierstrass equation. Since the quantity

{2y + a2 + a3)?

A

is invariant under change of coordinates (see [AEC, IT1 §1]), we see that (iii)
is likewise independent. Hence A, if it exists at all, does not depend on the
Weierstrass equation.
{¢) Since A, satisfles conditions (i), (ii}, and (iii) for E{L) and w, and
since w restricted to K equals v, we see that A, satishes (i), (i), and (i)
for E(K} and ». By the uniquencss alrcady proven, the restriction of A,
to E{K) equals A,.

We turn now to the proof of existence. Property (ii} says that A should
look like vox!, at least close to O. Of course, this is no good for points
with (P} close to 0, since away from O, A is supposed to be bounded. So
as a first guess for A we might try the function

A(P)y = %1‘11&1}{{-‘0(:{;(?)*'],0},

It turns out that A, almost satisfies property (iii}. We first need to make
this precise, and then we will modify A; to produce A.
Let

dlr) = 2% = bya? — 2 — by,
wie) = 41 + box? + 2o + b = (2y + a3 + ay)?
be the usual Mnctions on E, so the duplication formula {AEC I11.2.3(d)]

reads
H(P)

r(2P) = (P)

Define a function
1 1
for all P e E(K} with [2]P £ O.
Notice that if A} were to satisfy (iii), then f would be identically 0. We
are going to show that f is bounded.
Using the definition of A; and the duplication formula, we can rewrite f

as

111aX{|¢‘{P)| . T«'L‘(P” }) 1
7]f_4__,_1 + —'{,r(A).
max{|2(P)|. 1} !

(Recall that »(t) = —log|t|..) A priori, f is defined at all points P € E(K)
with [2]P # (. The following crucial result shows that more is true.

f(P) = 3 log (
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Lomma 1.2, With uotation as ahove, f exfends to a bounded continuous
function on all of E(K).

Proor. Let
max{ [$(P)],. [w(F)], |

P =
o 111e1x{|:1‘(P)]i,1}

s0 f =3 log(F)+fv{A). Clearly. Fis continuous ou E(K)~ {Q}. Fiurther,
as P — (O, we find

ax{|e{ P [P
lim F(P} = lim md\{w{ }.1-4.- Ll‘ { )|f}
P e[ Pii, — = IT{P}L

Hence F' extends to a continuous, bounded function on E(K).
Since the Hmit equals 1. we also see that there is a constant e; > 0,
depending on the chosen Weierstrass equation, such that

— 1

|x(P)|, 2 e1 = F(P) > 5
So in order to prove that log(F) is continuous aud bounded on E{A}, we
are reduced to showing that F is hounded away from 0 on the set |z], < o,
From the definition of . we must show that there is a constant ¢ > 0 s0

that,

max{ |o(P)

o I'IIL‘(P)l_“} > ey for all PP € £{K} with |.'L'(P)l“ < ey

The polynomials ¢(x) and #:{x)} are relatively prime in K[z]. We give
two quick proofs of this [act.
Proof 1 {Lheoretical): The map [2] : E — F has degree 4 [AEC 111.6.2(d)].
From the comnutative diagram

)

E E
-
P ¥ m

the rational map &¢/4 has degree 4, so &(x) and +{x} have no common
TOOE.

Progf 2 (computational): An explicit computation shows that
Resultant {¢(x), #(x)) = A2,

where A is the discriminant of the given Welerstrass equation. Since A # 1),
we see that @(x) and {x) have no common roots.
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Thercfore we can find polynomials ®, ¥ € K|z satisfying
@) @) + wlx)W{z) = )

Evaluating this identity at » = z({P) and using the triangle inequality yields
the desired result:

1< 10(1‘)@(&”1 + fi ()],
=2 I]lax{lfﬂ(.’f”n. |t,-$-‘(:r}|t___}> - miax{ I(I’(I') ll’{:t.‘)]{l}

< et nmx{io(;r]L_‘, ‘L.(J;}L} for el < e,

]
[N

O

According to Lemma 1.2, the “naive” local height function A) satisfies
condition (iii) up to a bounded function. The next proposition shows how
to decompose such a bounded function into a difference of two functions.
Then these new finctions will be used to modify A; so as to make (i) hold
exactly.

Proposition 1.3. ({Tate) Let
f E(K)y—R

be any bounded continuous function. Then there exists a nnique hounded
continuous function
i E(K) —R

stch that

f(PY = 4p(P) — p{[2]P) for all P ¢ E(K).

Proor. If the function ge exists, then we can use its defining relation N
times to compite

k(P) = LFP) + 1l2)P)
= JHP) + I (DP) + Tonl4P)

NoL oy 1
- Z 4"+1f([2“]P) + F;t([?“’l}’).
r=l1

Since u is supposed to be bounded, if we let N — o, then the last term
should disappear. S0 we define ¢ by the formula

WPy =3 T (21P)

=it
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and verify that it has the required properties. (Notice that if p exists, it
must be given by this formula, so we get uniqueness for free.)

First, since f is a hounded function, it is clear that the scries is ab-
solutely convergent, so o is well-defined. But mnore is true. Each of the
functions

Jo2"]: E(K) —R

is bounded and continuous. (It is easy to check that the multiplication
maps [m] © E(K) — E{H) are continuous for the v-adic topology.) It
follows that the series defining g gives a bounded continuous funetion
on E(K). Finally, using Tate’s telescoping series trick,

) e

4u(P) - wl(2P) = 3 - H129P) = 3 L 2 1P) = 5(P).

=l n=i}

O
We now have all the tools needed 1o prove the existence of A and so
complete the prool of Theoremr 1.1, As above, let

M(P) = % max{v(z(F)™').0},

JOPY = 2 ([2P) — () — o{(20 + a4 ) (P)) + Je(A)

From Letnma 1.2, f extends to a bounded continnous function (also de-
noted f} on all of F{K}). Then Proposition 1.3 gives a bounded coutinuous
function g E{K) — R satisfving

J(PY = 4Py — p([2) 1) for all ' € E(K).

Define
A(P) = M (P) + u(P).

We now verify that A satisfics properties (i}, (i), and {iii} of Theorem 1.1.
(i) By inspection, A; is continuous on E(K) ~ {0} and is bounded on the
complement of any v-adic neighborhood of O. Since g is convinuous and
honnded on all of E(K), A satisfies {i}.

(1} If PP is v-adically close to O, then A (P) equals ~ %'::(;e;(P)). We com-
jrute

P!]B}) {AI(P) + 1(P) + %?I(I(P))}

Jim ju(P) = (0},

s, o+ e}

Henee A satisfies (ii).
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(iii) Using the fornmlas defining and relating A, Ay, g. and f, we find

M2IP) = M{[2)P) + u{[2)P)
=M {[2]P) ~ f(P}+ 4 P)
=AM (P) +o{(2y + @y + 1) (P)) — Ju(A) + 4(P)
= AP} + v((2y + a1z + as)(P)) — 2v(A).

This proves that A verifies (iii) and completes the proof of Theorem 1.1,
O

§2. Local Decomposition of the Canonical Height

The canonical height [AEC VIII §9]
h:E(K) — [0,2)

is a quadratic form defined in terms of the arithmetic of F{(K). We now
show that At can be decomposed as a sun of local height functions.

Theorem 2.1. Let K be a number ficld, My the standard set of ab-
solute values on K. and n, = [K, : (] the local degree of v € M.
{(See [AEC VTII §5] for a description of M.} Let E/K be an elliptic
curve, aud for each v € My let A, 1 E(K, )~ {0} — R be the local Néron
height function associated to v as deseribed in (1.1}, Then

. 1 -
Py = wa ?%’1 neA(P)  for all P e B(K) ~ {0O).

In order to prove Theorem 2.1, we will use the defining properties of A
{especially Theorem 1.1{ii1}), together with the following fact, which we
will prove later.

Lemima 2.2. There is a finite set of absolute values § < My so that for
allv g 8,

M(P) = %max{v(w(!’)_l).[}} for all P € E{(K,) ~ {0}

Proor. This lemma says that for almost all absolute values, the naive
local height % max{'f-'(..r,‘_l).O} actually satisties the quadratic property (iii)
of Theorem 1.1. We will posipone the proof of (2.2} until §4. where we
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will prove the more precise result (4.1} that A\, = %max{v(_ xTiy, 0} for all
finite places ¢ such that the given Weierstrass equation has good reduction.
g

ProOOF (of Theorem 2.1). Let S be the set described in [2.2). Define a
function

L:E(K)~ 10} — R, L(P)= [h’l-Q] 3 mAd(D).
’ e

For auy given P € E(K) ~ {O}, (2.2) implies that
(P =10 if v ¢ 5 and -v(;t:(P)) >

Hence the swn Y n AL () has only finitely many non-zero terms, so L{P)
iz well-defined.

Next we compare L{F} with A{z(P)). From Theorem 1.1(i),(ii}, for
cach v € Afy there is a constant ¢, s0 that

—ep = A P) = l max{?' (x(P)"1).0} < e, for all P e E(K,) ~ {0},

and (2. ‘2 allows us to take ¢, = 0 for all » ¢ 5. Now multiply by n,.. sum
over ¢ € Mg, and divide by [K : Q. This gives

1 .
< L{P) - Eh(I(P)) <e for all P € F{K) ~ {0},
where

¢ = %@] Z AW

HES

ix finite and independent of F. In other words, if we set (] = 0, then
L(P) = —h(:r(P)) + 0(1) for all P € E(K).

Finally, we verify the quadratic nature of L. Let P € E(K) be a point
with [2]P # ©. Then

L{2]P) = Z A ([21P)

e Mg
1
:m Z n,{ AP+ u((2y + a1z + as)(P)) + v A)}
’ e A g
by Thecorem 1.1(ii}
== ﬂ} Z Fi Ao product formula [AEC VIIL5.3|
HE My

:4L(P).
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Since we have defined L(O) = 0, the relation L([2]P) = 4L(P) holds

for P = O, too. We must also verify it for P ¢ E[2], P # O. The quickest
way to do this is to use the triplication formula for A {exercise 6.4e),

A(3)Q) = 92,(Q) + v{(32* -+ baz® + 3byz® + 3ber + bs)(Q)) gv(A)
for all Q € E(K,) with [3]Q # O.
Summing over v € My as above gives
L(B8lQ) =9L(Q)  for all Q € E(K) with [3)Q} # O.
In particular, if P # O and [2]P = O, then

L(P) = L([3]P) = 9L(P), so L(P)=0.
Hence

L([2|P) = L(0) =0 = L(P) = 4L({P).
We have now proven the two relations

L(P) = %h(:c(P)) +0(1) and L{(2JP) = 4L(P) for all P € E(K).

The canonical height & also satisfies these relations [AEC VIIL9.3). 1
follows that the difference F = L — h is bounded and satisfies F'([2]P)
4F(P}. Hence

=+

F(P)= mF(2"|P) — 0,  soF(P)=0forall P& E(K)

Therefore I = h. 0

§3. Archimedean Absolute Values — Explicit Formulas

Let X be a field which is complete with respect to an archimedean ahsolute
value | « |, and let E/K be an elliptic curve. Then K is isomorphic to
either R or €, and | - |, corresponds to some power of the usual absolute
value. Thus in order to compute the local height function A over E{(K), it
suffices to consider the case that K = C, so in this section we will derive
explicit formulas for the local height for elliptic curves over the complex
numbers.
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Reeall that an elliptic curve E/C has an analytic parametrization
C/A — EB(C), 2+ (plziA), @' (zA),

with Weierstrass equation
E:(p")? = 4¢° — 52(N)p — ga(A)
having discriminant
A(A) = g2(A)? — 27ga(A)*.

{See [AEC VL3.6] and (1.4.4).) We put this in standard Weierstrass form
by the substitution

1,
T = plz), y=§p(z),

yielding the equation
1 1
E: =g — 192(1\):1? - :lga(A) with discriminant A = A(A}.

Recal) also the Weierstrass o-function (1.5.4)

o(z) = o{zA) = [ (1 _ 5) EE(E)
o

which has a simple zero at each lattice point and satisfies the transformation
formuta

olz+w)= w(w)c“(“’)(”%"”)o(z) forall ze C,w € A.

Here 1 : A — {£1} is the map with (w) = 1 if and only if w € 2A,
and 7 : A — C is the quasi-period homomorphism.
We have seen {I.5.6b) that there is a factorization

; a2z
p(z):_o‘gz)}'

Applying log| - | yields
log|o(22)| = 4logjo(z)] + log|e' (2)]-

Since p'(z) = 2y, comparison of this equation with Theorem 1.1(iii) {(and
the fact that the local height has a pole at Q) suggests that the local height
function on E{C) = C/A should look like —logle(z)|. Unfortunately, the
transformation formula for o(z) shows that |(z)| is not invariant under
translation by A, so — log|o-(z)| is not well-defined on C/A. The next
proposition explains how to modify ¢{z) to obtain an invariant function.
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Proposition 3.1. Let A € C be a lattice. Extend the guasi-period
map n : A — C linearly to obtain an R-linear homomorphism (also de-

noted n)
n:C=2Ag, R—C.

{a) For all z,w € C, the quantity
enfw) — wn(z)
is purely imaginary.
(b) Define a function
F(z) = e_%z”(z)a(z}.
Then
F(z +w) = Pp(w)ed G —wneN pey forall z € C, w € A

{Note that F(z) is not holomorphic, because n{z) is only R-linear.)
(c) The function |F (2)| is a well-defined function on C/A and is real-
analytic and non-vanishing away from (..

Proor. {a) Choosc a basis wy,wsy for A with Im{w, /ws) > 0. Legendre’s
relation (1.5.2d) says that

win(wz) — wen{w, ) = 2mi.
Write
z=aw +bwe, w= v +dwy, with ¢, b, ¢, d € R.
Then the R-linearity of % and Legendre’s relation give

zn(w) — wn(z) = (ad — be) (winlwe) — warn(wy))
— (ad — be)2ri.

{b) Using the transformation formula (I.5.4) for o{z} stated above, we
compute

Fz +w) e—%(z+an(z+w)g(z +w)

- e_%("“L“’)”(”“‘)gb(w)e’?[“)(“%“’}a(z)
- ¢(w)e%(z“(w)““’”(z))F(z),
(c} Since ¥{w} = 11, and since {a) implies that

et (znlwy—wn(z| ,
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it follows from (b) that |F(z)| is well-defined on C/A. Further, F(z) is
clearly real-analytic on € and vanishes only at points of A, so |F(z)| is
real-analytic and non-vanishing on C\A. ]

Theorem 3.2. Let E/C be an elliptic curve with period lattice A. Then
the Néron local height function

A E@) {0} —R
is given by the formula
Mz) = — log e 3 100a () AN) % |
- %Re(zn(z)) ~log|o(2)] - 11—210g|A(A)|,

where 1 : € — C is the extension of the quasi-period map described above
in {3.1).

Proow. Let A{z) be the indicated function. We must verify that A satisfies

properties {i}, (ii}, and (iii} of Theorem 1.1. First, (3.1c) ensures that A

is well-defined on E{C) ~ {(}. Further, since o{z) is holomorphic on C

and non-vauishing on €~ A, it is clear that A{z) is actually a real-analytic

function on E{C} ~ {O}. Hence it satisfies property (i) of Theorem 1.1.
Next we observe that the limit

lim A(z) + —Ql-t,r(p(z))

= lil}}j {%R.e(zn(z)) - %log|ar(z)'2p(z)| - %log|&(!\)[}

2
exists, since o(z) has a simple zero and p(z) has a double pole at z = 0.

(In fact, the limit equals é log’A(A)I.) This verifies property (ii).
Finally, we must check property {iii). From (1.5.6b} we have

logla(22)| = dlogjo{z)| + log|e'(2}],
and the lincarity of n{z) gives
Re{221(2z)) = 4Re(zn(2)).

Subtracting the first equation fromn half the second, and then subtract-
ing 115 loglA(A)l from both sides, we obtain the desired relation

M2z) = 4A(z) - log|p'(2)] + }1 log] A(A)].
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(Note that p'(z) = 2y and A{A)} = A for the Weierstrass equation y° =

= 1927 — 393.)

This proves that A has properties (i), (ii),and (iii} of Theorem 1.1, so A
is the Néron local height function on E{C}. O

Remark 3.2.1. In proving Theorem 3.2, we verified directly that the fune-

tion : )
—log le” M H g () A(A) T2

has properties (i), {ii), and (iii). This gives an alternative proof of existence
for Theorem 1.1 in the case of archimedean absolute values.

Corollary 3.3. The local height function
A ECN {0} -—R
satisfies the gquasi-parallelogram law
1
MP 4+ Q)+ MP — Q) =2MP) +2X(Q) + v(x(P) — x(Q)) — E‘U(A)
for all P, € E(C) with P,Q. P +Q # O.

{Note that the quantity (z(P) — 2(@Q))8/A is well-defincd, independent of
the choice of a particular Weilerstrass model for E.)

Proovr. The Weierstrass p-function has the factorization (I.5.6a)

_ olzt+wlo(z —w) e w
plz) — plw) = — oG () for all z,w € C.

Hence
- log|cr(z+w)l—-log|o(z—w)| = —--2!og]o(z)l—- 2log|o(w)|—loglp(z} - p(w)].
Next, the linearity of 5(z) immediately implies

(z+whn(z+w)+ (z — win(z — w) = 2zp{2) + 2wn{w).

Apply %Re( -} to this last equation and add it to the previcus one. Corm-
parison with the formula (3.2) for A(z) yields

Mz 4+ w) + Mz —w) = 2X{(z) + 2Mw) — log|p(z) — plw)| + élog|A(A)|,

which is exactly the desired identity. jm]

It is often convenient to use the Fourier expansions for o{z}) and A{r)
to rewrite the formula for the local height A(z).
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Theorem 3.4. Let E/C be an elliptic curve with lattice Zr + Z normal-
ized so that Im(7) > 0. As usual, let

- eZmz 21ré'rl

U and g =¢

and identify .
E{C) = C/HEZr+Z) = C'/g¢*

z —_ it

{See (I §6) and (V' §1).) Then the local height function
M ECH~ {0} —R

is given by the formula

i Imz
Az)=-=>DB, (I ) log lgl — log |1 —u| — Z logl(l — g"u){1 — g u 1Y,

2 mT
zl

where

Bo(T}=T% ~ T+%

is the second Bernoulli polynoimial.

Remark 3.4.1. The formula (3.4} for the local height A(z) is sometimes
rewritten using the equivalent quantities

Imz  loglu|  w(u)

Imr loglgl w(g)

ProoF. The Weierstrass o-function has the product expansion (1.6.4)

1 1 . . _ 1 — qg® 1 — g™ —1
O'(Z) — ———_8511(1);28_’”2(1 . U) ( q 'U.)_( - g U, )
2 (1-4¢")

n>1

The modular discriminant function has the product expansion (I1.8.1)

A(r) = (2m)2q [T (4 - 4"

vzl
Hence
e %2"’(2}0‘(,2)[1(7)1_12‘

— ]e%z{n(l}z—n(z)-—2m.)q-ll'§(1 . u) H(l _ qnu)(l _ qnu—l)i‘
2l




§4. Non-Archimedean Absolute Values — Explicit Formulas 469

To simplify the exponential, we use Legendre's relation {1.5.2d), which
in the case of a normalized lattice Z7 + Z says

(1} — (7)) = 2mi.

Writing
z=ar+b with a, 6 € R,

we find
1)z — n{z) — 2mi = a{rn(1) — nir}) — 2mi = 2mi(a — 1}.

Hence
ezsn{llz -ul=] 2#:}1,12 = prloT ¥bp2mila 1) | fp2miT
= e{u‘--a+é)?rir _e[a-—l}bm‘
50
ptemlz-nts)~2ni) o | ‘qzra —a+d )!

Substituting this in above yields the formula

= |g3tei-atid] u} H(l ~g"u)(l - g"u" 1.
n=1

‘ —ganis )O'( /_\(7)12

Theorem 3.2 says that applying - log(-) to the left-hand side gives the
local height A z). Sinece Im(2) = Im(ar + b) = alm(7), this completes the
proof of Theorem 3.4. 0

t4. Non-Archimedean Absolute Values — Explicit Formulas

Let A be a freld with absolute value », and let E/K be an elliptic curve. If
the absolute value v on K is non-archimedean, then we can talk about the
reduction of £ modulo v. More precisely, fix a Weierstrass equation for £
with e-integral coefficients (i.e. v(a;) = (). We consider the reduction £ of
that Weicrstrass equation module the maximal ideal of the local ring R ==
fa € K : v{e) = 0}, The reduced curve E may be singular. Define a
suhset FKy{K) of E(K) by

EofK)={P € E(K) : Pis a smooth point of E}.

In particular, if the reduced equation is smooth (F lhas good reduction),
then Eg(K) = E{K). (See [AEC VII], which discusses in some detail the
case that v is a discrete valuation.)

We now show that for points in Ep{&) the local height is given by a
sintple formula.
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Theorem 4.1. Let K be a field complete with respect to a non-ar-
chimedean absolute value v, let E/K be an elliptic curve, and choose a
Welerstrass equation for E with v-integral coefficients,

E: 3;2 +e1xy 4+ azy = 3 4 agx? + auz + ag.

Let A be the discriminant of this equation. Then the Néron local height
function A : E{K)~ {O} — R is given by the formula

APy = max{’u(x Py H0}+ w——v(A for all P’ € Ey(K).

Remark 4.1.1. If E has good reduction, then we can find a Weierstrass
equation for E/K with Ep(K) = E{K) and »(A) = 0. In this situation,
the proof of (4.1} will show that the function

-;— max{v(z(P)"'),0}

has properties (i}, (ii}, and (iii} of Theorem 1.1. This provides an alterna-
tive proof of the existence of A in this case. Further, since A is invariant
under finite extension of the field K (1.1¢) and is independent of the choice
of Weierstrass equation (1.1b), we actually obtain an existence proof when-
ever I has potential good reduction.

Remark 4.1.2. The local height X is independent of the choice of Weier-
strass equation. But the formnla for A given in Theorem 4.1 does not
appear to be independent of this cholce. For example, the change of co-
ordinates = = u~ 22, y = u 3y will alter the formula in Theorem 4.1
to

1
lmax{v(:.':’(P)_l),U} + = v A
2 12
1 B P I o 12
=3 max{v({u"2z(P)~"),0} + 5 v A).
However, this new formula for A(P} is valid only for points in Ej(K),
where E}(H) is defined using the equation with coordinates (x’,4’). One

can verify that the two formulas agree on the intersection Eq(K) N E{(K),
as they should.

ProoOF (of Theorem 4.1). Let
A (PY= = IIldX{T,‘ z(Py'),0} + —1,1 {A).

By inspection, A; satisfies conditions (i) and {ji} of Theorem 1.1. We next
verify condition (iii} for points in Eg(K) ~ {O}.
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As usual, let

olz) = 2" — byr® — 2bgr — by,
Wlr) = de? + bpa? + 2ya + by = 2y + ey + {1,3)2
be the Mnetions appearing in the duplication formula

(P
.r[[?] ) - w(P) )

Then the cquation
1
AM{[2]P) = M (P) + v((2y + oy + au)( D)) — __)—1-1!(3)
to be verified is equivalent (after some algebra) to
min{z{¢{P)), v{¥(P))} = min{du(x(P)).0}.

First suppose that 'u(;r(P)) < (0. Then the (non-archimedean) triangle
incguality yields

v{@(P}) = dv(z(P)) and e(w(P)) = v{dx(P)*) > 4v(z(P)},
50 the desired relation is true. We are left to prove
Pe Ey(K) and v{z(P)} = 0 == min{v{a(P)),v(e(P))} = 0.

To prove this, we must express the condition 7 € Ey(K) in terms
of ¢{ ) and »(P). Let

F(X._ Y) = Yz + (J'.l.XY + (I:;Y - ){:j - 0.2}(2 - (14X — g

be the polynomial defining E. Recall that a point (24, yy) € E is singular
if and only if
Fx{royo) = Fy (xo, o) = 0.

(See [AEC L.1.5]. The subscripts denote partial derivatives.) Now Eo(K)
consists of all lmint::' whose reduction modulo ¢ is non-singular on the
reduced curve E. So we see that

Pe Bo(K) = o(Fx(P)) <0 or u(Fy(P)) <0

We also recall the addition formula [AEC IT1.2.3(c¢)], which says that

z([2)P) = m® + ayrn — ay — 22(P),
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where m is the slope of the tangent line to E at P. {Note that m # 2
since 2] # 0.} Thus
_ Ex(P)

Fy(P)’

m

and so we find
Fx(P)* + G(P)Fy(P)

z([2]P} = FPe

for the polynomial
G=aFx —(ap + 2X)Fy € RIX. Y] C K(E}.

(N.B. G has coefficients in the valuation ring R, since by assumption the
coefficients of F are v-integral.) Thus

&=F% +GFy  and = FZ.
Now let P € Ey(K) satisfy v(x(P)) = 0. Then
0 < min{o(g(P)),v(w(P}}}  since v(z{P)) =0

=min{v(Fx(P)* + G(P)Fy (P)),v(Fy(P)*)}

=40  since either v{Fx(P)) < 0 or v(Fy(P}) <0.
This completes the proof that

M (121P) = D (P) + v((2y + a1 + as)(P)) — 7o(A)
for all P € Eg(K)~ {O).

We have now shown that A, satisfies conditions (i}, (ii}, and (iii) of
Theorem 1.1 for all points in Eg{K)~ {O}. If Ex(K) = E(K}, that is, if &
has good reduction and we take a minimal Weierstrass equation for E, then
the uniqueness assertion of Theorem 1.1 impiies that A = A,. However,
even if the Weierstrass equation for £ has singular reduction, the proof of
unigueness in Theorem 1.1 works for the subgroup Eg(A’). A brief sketch
follows.

From (i) and (ii}), the difference A = A — A extends to a hounded,
continuous funetion on all of Eg{ K} (in fact, on all of E{K)). Further,
from (iii) it satisfies A{[2}P) = 4A{P} for all P £ Eo(K). (By continuity,
this helds even when [2]P = 0.) Then

AP = %A([ZN]P) feand 0, so A(Py=0forall Pc EU(K)I.:I

It remains to find an explicit formula for the local height in the case
that E has bad reduction at v and P is not in Fy(K). Since the local
height is invariant under finite extension of K {1.1c), it suffices in principle
to consider the case that E has split multiplicative reduction at v. For
computational purposes, however, it is often more convenient to work di-
rectly over K. Explicit formulas for A in the case of additive reduction are
given in exercises 6.7 and 6.8,
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Theorem 4.2. Let K bhe a p-adic field (i.e., a finite extension of Q) with
absolute value v = —log| - |,, let g € K* satisfy |g, < 1, and let E,/K bhe

the Tate curve (V.3.4) with its paratnetrization

6: K'/q" > Ey(K).

{a) The Néron local height function
Acg: E(K)~ {0} —R

is given by the formula

Aow) = 38 (2 )o@ + o1 =+ (=" = ).

( n=xl
(b} If we choose u (hy periodicity} to satisfy
0 < vlu) < vig),

then

(vl o
532 (v(q)) vig), IF0 < win) < vig),

Ale{u)) = ]
p(l —u) + Ev(q), if vf{u) = 0.
(Note that for a Tate curve, v(q) = ~v(j{E,)) = v{Alq)).)

ProoF. (a) The Tate parametrization {V.3.4) is a v-adic analytic map
from K",‘qﬁ to the elliptic curve with Weierstrass equation

Ey:y? +ay =27 + as(g)x + ac(y)
defined by
G K'/q" TS Ey(K),  o(w) = (X (u),Y(u).

{For the series defining a4(y), ac{g). X{u}, and Y(u), see (V.3.1).) The
discriminant of the Weierstrass equation for E, has the product expan-

sion (V.3.1b}
Alg)=q [T - g™
=l

Recall also the v-adic 8-function (V.3.2)

9(?_::) l~u)H(1_qu)(1—qUI)

2
azl )
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and the factorization {V.3.2b)

uﬁ‘(u )

2V {u) + X(u) = BT

Applying v to this reiation and doing a little algebra, we find that
. 1 1
{v(ﬂ(uz)) — —Q-'U(uz)} =4 {U(G(u)) ~ ;z-v(u)} +v(2Y (u) + X(u)).

This suggests that v(8{u}} ~ jv(u) — v(A) would be a good candidate
for A, since it has property (iii), but unfortunately it is not invariant under
the transformation u — gu. So we make a slight alteration to obtain an
invariant function.

Define . (a1
vl
/\U==-BQ( )vq + {81} ).
(w) = 582 (S ) la) +(9(a)
We will show that X is the Néron local height function by verifving that it
satisfies properties (i), (ii), and (iii) of Theorem 1.1.
First, using the identities

viqu)  wv(u} B o) = Y
e~ ) +1, Ba(T + 1) = Bo(T) + 27, Hlqu) ul.‘?(u)

(the last is {(V.3.2a)}, it is easy to check that A{qu) = AMu); so A is well-
defined on
Ey(K) ~ {0} = (K*/q%) ~ {1}.

Next, the product defining & is absolutely convergent and non-zero
away from g©. Hence A is continuous (in fact, v-adically analytic) on
Eq(K) ~ {0} and bounded on the complement of any neighborhood of O.
This verifies (i).

To check (i1} we compute

lim {/\(u) n %U(X(u))} _ -;-B;;(O]v(q} " %l@l o(B(w)2 X ()

1 1. _
= 582(0)1.'((1) + 3 ?111_)1111 o((1 — w) X ().

The series for X (u) given in {V.3.1} is

X(u) =Y - T qv, Togap 2@

neld
1

qu )
(I_U)2 +Z{ l—q“u) ([__qﬂu—l)Z}_zbl(Q)s
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50 we see that the pole at & = 1 comes only from the n = 0 termn. Hence

hm(l —u)X{u) =1,

w—1

which proves that the above limit exists. (Iu fact, the lmit is ﬁr(q})
Finally, we verify the duplication formula (iii). Note first that for
all n = 1 we have v(1 - ¢*} =0, s0

v(alg) = v(q [T(1 - a)™) = vle).

n=l

Next wo add the formula

(w6 = o1} = (sf600) = Jr)) ++(25 () + X0

obtained above 1o the identity

1 e\ 1 1 ey T N 1
(5(-»-»@) *1‘2‘) <‘”—4(§(vm) *ﬁ)‘(‘”‘z’*(q)-

Since #(q) = t-'(A(q))._ this gives property (iil):

My = 40 (u) + v (2Y () + X (1)) ~ _113(&((;))

We have now shown that Alu) satisfies properties (1}, {ii). and {iii) of
Thecrem 1.1, so il is the Néron local height function.
(b) Since 0 < vfu) < v{yg), we have

vl —g"u) = el —g"w 1) =0 for all n = 1.
So the formula in (4) becomes

uin)

1
/\(LI'.) = EBZ ({{q

) vig) + o(l — u).

If in addition v{u} > &, then v{l — «) = 0. which gives the first expres-
sion. Similarly, if #(x) = 0, then the second expression is a consequence
of B2{0) = 1/6. )

Remark 4.2.1. The prool of (4.2} shows directly that the function de-
scribed in (4.2a) satisfies conditions (i), (i}, and (i) of Theorem 1.1, so
we obtain an independent prool ol ihe existence of the Néron lecal height
for Tate cirves. We have now given proofs of the existence of the Néron
local height, independent of the prool in §1, in the following three cases:
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(A} K = C, see (3.2.1);
(B} K/Q, and E/K has good reduction, see (4.1.1};
(C) K/Qp and E = E; is a Tate curve, see (4.2),

But if K is the completion of a number field with respect to some absolute
value, and £/ K is an elliptic curve, then we can find a finite extension L/ K
so that E/L falls into one of the three cases (A). (B). or (C). This follows
from [AEC, VIL5.5] and {V.5.3). Now using the elementary fact (1.1c) that
the local height is invariant under field extension, we obtain an independent
proof of the existence of A for all E/K.

EXERCISES

6.1. Let K be a field, | - | an absolute value on K, and E/K an clliptic curve,
For any rational function f € K{E}, let

Up(K)={P e E(K) : fis defined at [*}.

(a} Prove that the map

Us(K) — R, P [f(P),
is continuous. {Here Up{ K) inherits the v-adic topology from E(K), and B
is given the usual topology.)

{b) Prove that the topology on E{K) described in §1 is the weakest topol-
cgy (i.e, the topology containing the fewest open sets) such that the maps
in {a) are continuous for cvery rational function f € K{E).

6.2. Let K be a field, | - |, an absolute value on K, and E/K an elliptic curve.
If K is locally compact, prove that E{J) is compact. 1n particular, E{X'}
is compact if K =R. K =T, or A is a finite extension of {;.

6.3. Let K be the completion of a number field with respect to some abso-
lute value, and let E/K be an elliptic curve. Prove that for all P,Q <
E{K) with P,Q. P+ Q # O, the Néron local height A satisfes the quasi-

parallelogram law
MP 4+ Q)+ MP ~ Q) = 2MP) + 2MQ) + 2(#(P) — 2(Q)) — jv(A).

{ Hint. We already proved this for & = C in Corollary 3.3. Going to an
extension field, it suffices to prove the result when X is a finite extension
of Qp and F has either good or split multiplicative reduction. For the
former, the formulas for =3 + 4 and z374 in the proof of [AEC, VIILG.2]
may prove useful, at least if p # 2,3; whereas for the latter, vou can use
the Tate curve together with (V.3.2b} and {4.2) to mimic the proofl of
Corollary 3.3.}
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6.4

Lot & and E be as in the previous exercise, and fix a Welerstrass equation
E - y2 + wyay + asy = Pane 0.2.‘1’."2 + wqT + ag.

For each integer m define a function

Fua)=m" [] («-x(T)) e K(B).

TEE|m]
HE

{a) Prove that

div(Fn) = 2( Z (T)) — 2m* ().
TE Bl
{b) Prove that

2

Fy = 4z® + box® + 2ga + b = (24 + me + a3)”.

Fy = (32 + bax® + 3by2? + 3bgr + bs)7,

Fy = Fo(22°% + bax® + Bbax + 10be”

+ 100g2? + (babe — babe)e + baby ~ b2Y2.
Generally, show that there exist functions yy, € K{x, y) = K{E) satisfying
Fo = 62 (% is the m'-division polynomial; sce [ABC. exercise 3.71.)
(e} Let A be the discriminant of the given equation. Prove that the func-
tion .
Fox)”
{3”42—]

is independent of the Weicrstrass cquation.
{d) Prove the recurrence formula

FuirFu_1={xolm) - 2)F2, for all m = 2.

By convention, we set Fi{r) = 1. {Hint. Compare divisors. Then to find
the constant, let P — .)

fe} DProve that

21
12
for all P € E(K) with [m] £ O.

MIm)P) = m2M(P) + %U(F,,?{P}) _m oAy,

Let E/T be an elliptic curve with norinalized lattice Zr+Z, and let A(z) =
Alx +dy) be the local height function on E(C) ~ {0}

{a) Prove that
] Az} dedy = 0.
i

{Note that this is an improper integral, since A{z) blows up at z = (. Be
sure to check that the integral converges.)
{b) Prove that A{z) is a solution of the differential equation

a2 @& 2%
(EE * 5;':) M=) = Tmn7’

{This exercise, together with Thearen 1.1(1i), says that A{z) is the Green's
function on E(T) for the divisor {O).)
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6.6.

8.7

V1. Local Height Functions

Let A be a field with absolute value ¢ and let E/K be an elliptic curve.
Fix a Welerstrass equation for £,

E y2 ="+ Ar + H,
with discriminant and j-invariant

A=—16(24° +27B%)  and  j= —{484)%/A.

(a} Tf v is non-archimedean, and A and B are v-integral, prove that for
all P e E(K,)~ {0},
1

~ L max{v(j(E) '}.0} < A(P) - %max{-:'{w(P)'l},U} < 5

24

{ Hint. Use the explicit formulas (4.1) and {4.2).)
(h} If v is archimnedean. prove that for all P € E(K.} ~ {1,

1 AI;'U 1
‘)\{P) -3 max {?.-‘ (m) ?0}

=¥

b
{c} Now suppose that A 1s a nunber field, and A and B are in the ring of
integers of K. 'rove that for all I? € E(K),

(A).

< - maxdv(GIEYTIY 0} + (3.

h{P) — %h("r(f’))‘ < %}!U} + %h{;ﬁ) +log 3.

(The constants in (b} and (c) are certainly not best possible. See if vou
can improve theu )

The next three exercises give formulas for the local helght which are es-
pecially well suited for numerical computations. We hegin with the non-
archimedean case.

Let A be a feld complete with respect to a discrete valuation v,
let £/K be an elliptic curve, and fix a mindmol Weicrstrass equation for K,

p3 . B 2
Yo+ mry - asy = + axx” + aql + de.

Let A be the discriminant of this equation, and let P € E(K).
{a) Prove that P € Eo{K) il and only if either

(327 + 2020 + as — ay){P)) <0, or »((2y+aix +a}{P)) <0
Note that if P € EG(K), then {4.1) says that

AP = %IIIB.K{?.J(:IT(.P)_I].O} + %?J{A).

(b} Assume that #(A) > 0 and vieq) = 0. (This means that £ has nwlti-
plicative reduction at »; see [AEC VII.5.1b].) Let

a{P) = min { {2y + (il(z_; a3)(£) \ %} .

Prove that if P ¢ Eq(K'}, then the local height of P is given by the formula

A FPY — %Bz(a{!’))v(&).
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6.8.

6.9.

“Let K, v, E and A be as in the previous exercise. Suppose that E has
additive reduction (i.e., v{A) > 0 and #w{cs) > 0.} Let P € E{K} with
P ¢ Eo(K). Let Fy and F3 be the polynomials defined in exercise 6.4b.
Prove that

_%U(FZ(P)) + 1_121;(A) if v(F3(P)) = 3u(F2(P}),
AP) = ] 1
_Ev(FS(P)) + 5T,J(A) otherwise.

Let E/R be an elliptic curve given by the usual Weierstrass equation
2 3 2
Y+ ayry +asy = " + axx” + a4 + ag,

and suppose that 2(P) # 0 for all P € E{R). (Note that onc can always
achieve this condition by making a shift x = «’ + r for sufficiently large r.)
Then the functions

t=£, w =4t + bot? + 24t® + bet®, 2 =1 — bat® — 2bgt — bat?,

are well-defined for all points in E(R).
{a}) Prove that
w(P}

i21P) = .

This gives a convenient recursive formula for computing z([2"]P).
(b} Prove that there are constants ¢1, ¢z > 0, depending on the Weierstrass
equation, so that

a <zPY< e for all P € E(R).

Conclude that the series

L]

1 _—
3 L gl ((2'})]

=0

is absolutely convergent for all P € E(R).
{c} Prove that the local height function on E(R} ~ {Q} is given by the
formula

AP) = 5 logle(P)] — o= log|a| + 5 3 - logfe((2°]P)].

=0

(d) Give a modification of the series in (¢} which converges to give the
local height function on E{C) ~ {O}. (Note that in this case there will
always be points with (P} = 0.}
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£.10. Using the previous three exercises, compute the canonical height A{P) of

the indicated point on each of the following curves.

{a) Yty =2 - £ =1(0,0),
(b) ¥ty =2 -1 P = (0.0).
(¢} Y duoy+y =1 —2? — 48z + 147, P = (13,33).

{d] v+ ey +y — o + 2% — 1001 + 12375, P = {45.224).

. Define the periodic second Bernowlli polynomaal Bz(t) by

. 1
Baft) = (¢~ [1)* ~ (t D+ ¢
{i.e.. B2 equals B; on the interval 0 < £ < 1, and 1s extended periodically
modulo 1 to all of B).
{a) Prove that Bz(z} has the Fourier expansion
1 e'zanﬂ'f.
Bell) =53 D g
LET. k#0
(b} Let #i.....t5 € B. Prove that

N
3 But-t)z -

1= )= N
r#EJ

(c) Let X be a complete ficld with diserete valuation o, let E/K be an
elliptic curve, and let A be the discriminant of a ininimal Welerstrass equa-

tion for E at v. Prove that for any collection of distinct points Py, ..., Pn €
E(K),
JNI-
Z MP =P} > —u(d).
] : 12
1PN
i#)

{ Hinf. Since A is invariant under finite extension of K| it suflices to consider
the two cases of good and split multiplicative reduction. )

{d) Let K be complete with respect to a discrete valuation », and sup-
pose that E has split multiplicative reduction. Choose a parametriza-
tion E(K) = K*/¢", and let P € E[N + 1] correspond to ¢*/( 1 (Take
any root in K.} Foreach i, 1 < i< N, let P, = [{]P. Prove that

Y MR- = —;i\‘—;u(m (1 - —\—2:—1)

15i o N
P
Thus the estimate in {c) is essentially best possible.
{e) "Let £/C be an elliptic curve. Prove that there is a constant ¢ = ¢ &)
%0 that for any set of distinet points Pr,..., Py € E(C},

S AR -z —%N log N — o{ E)N.

| ESWERY
TFEy

{This is the archimedean analogue of {¢). It is quite difficult.}
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Some Useful Tables

§1. Bernoulli Numbers and {(2k)

1
Values of the Riemann {-Function at Even Integers, {{s) = e
¥
>l
w? t
2y = e — 4} = _
% e
6) = —_— 8) = - -
¢(6) 33.5.7 ¢(8) 2.33.52.7
w10 691712
10) = e 12) =
¢(10) 35.5.7-11 ¢(12) 35.5%3.72.11.13
2?T14
14) =
¢(14) 36.52.7.11-13
x =k
Bernoulli Numbers o Z Bkﬁ
k=0
1 1 1
Bz = E B4 - —% Bﬁ = E
1 5 691
By = —_—— = —_— — _—
8 Do e Dn 2730
7 3617 43867
B = — B = —_—— = _
14 6 1 5l D 798
283 - 617 11-131-593 103 - 2294707
B = —— B = - = ——_——
20 330 22 138 Baq 2730
Box = 13 -657031 B — 7 -9349 - 362903
o6 = 8 28 = 70
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52. Fourier Coefficients of A(r) and ji{v)

Fourier Cocfficients of (2r) 7 12A(r) = Z T(n)g" =¢q ]___['[1 — g

=l nzl

(1) = 1 Y= -2 T(3) = 252
r(d)= -1472 r(5) = 483D T(6) =  —6048
7)) = —16744 r(8) = 84480 r(9) = —113643
r(10) = —115920  +{11) = 534612  7(12) = —370944

The function 7(n) is called the Ramanujan 7 function. For values of r{n)
with n < 300, see Lelumer [11.

1
Fourier Coefficients of j(7) = - + Z efn g™,
q

n=i

{0y = 744 e(1) = 196834
e(2) = 21493760 (3} = 864299970
o{4) = 20245856256 (5} = 333202640600
o(6) = 1252023300096 o7} = 44656994071935
e(8) 401490886656000

1
Inversion of Series for § Function, g = Z d{n)—.

n=l
d(l) = 1 d(2) = 744
d(3) = 750420 d{4) = 872769632
d(h) 1102652742882 d(6) = 14705611 36292880
d{7) = 2037H18752496883080 d(8) = 2904264865530359883600
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3. Elliptic Curves over § with Complex Multiplication

483

In this section we describe all elliptic curves defined over @ with complex
multiplication by an order B = Z + fRy of conductor f in a quadratie
imaginary field X = [\K—D) of discriminant —I). The first table gives
the j-invariant for each such order. The second table gives a reproseulative
elliptic curve I over @ with the specified j. together with the minimal
discriminant Ap and conductor Ng of E. Those curves possessing ondo-
morphismus of degree 2 are discussed in (I1.2.3.1).

Discriminant Conductor J-invariant
—Dof K fof R of £
-3 1 0
2 21350
3 2153 . 54
3 1 2637
2 2330119
-7 1 —3353
9 335.‘51?3
R 1 4265.'{\
~11 1 —2'%
-19 1 ~21833
—43 1 — 218345
—67 i —21333531 1%
—163 1 — 2183859933208
Minimal Welerstrass .
-D g equation of £ over ¢ Ar Ni:
-3 1 gy = 38 33
2 y? = ot — 15z + 22 283+ 223%
3 W4y =a2? =30z + 63 RS 3
-4 1 ¥ =2+x 26 24
2 y? =" — 1lr + 14 2 2
-7 L ¥ +ay=a" 22 -22-1 74 72
2 y? = o — 595x + 5586 QrEyH | 72
-8 1 Y =2+ 4r? 4 2 P o
-11 | 1 Yry=x'—2®—Te+10 11 112
-19 | 1 v ry=a2 =38z +9 19° 192
—43 | 1 y? +y = 2 — 860z + 9707 ERL 432
—-67 |1 Y2 +y = u® — 73702 + 243528 657 672
—163 | 1 y* +y = x® — 2174420z + 1234136692 | 163% | 163° |




Notes on Exercises

Many of the exercises in this book are standard results which were not included
in the text due to lack of space, whereas others are special cases of results which
appear in the literature. The following list thus serves two purposes. First, it
is an atlempt by the author to give credit for the theorems which appear in the
exercises, and second, it will aid the reader who wishes to delve more deeply into
some aspect of the theory. However, since any attempt to assign credit is bound
to be incomplete in some respects, the author herewith tenders his apologies to
anyone who feels that they have been slighted.

Except for an occasional computational problem, we have not included so-
lutions {nor even hints). Indeed, since it is hoped that this book will lead the
student on into the realm of active mathematics, the benefits of working without
aid clearly outweigh any advantage that might be gained by having solutlions
readily available.

CHAPTER |

(1.1) For an elementary proof, see Alperin [1).
(1.5} (e} Let h(—13) denote the class number of (¥ (\H—D ) Then (-3} =1,
h{—0) =2, h(—23) =3, h(—28) =6, h(—47) = 5.
{1.10) See Serre [3, VII, §3.2, Cor. 2].
{(L.11} A similar argument is given in Serre [3, VII, Thm. 3} and Apostol [1,
Thi. 2.4].
{1.13) See de Shalit [1, Tl §2, equation {4)]. See also Weil |1, Ch. I1f, [V].
(1.14) I'roven in Stark [2] using Kronecker’s limit formula. Alternatively, one
can compare poles and zeros to see that the ratio is constant, and then
let z — 0 to find the constant.
(1.16) Answer: s(2, 1) = (y— {y—5)/24 if yis odd, and s(2,y) = (y*+5)/24y
if ¥ is even.
(1.19} {a) Sec Shimura [1, exercise 3.27]. (b,c) See Shimura [1, Thm. 3.24].
(1.20) (a,b) See Shimura [1, exercise 2.8].
(1.22) See Lang [2. Ch. III &4], Shimura [1, Ch. 3, §§4,5], or Ogg [1].
{L.24} See Serre [3, Ch. VII §4.3].
(1.25} Sec Apostol [1, Thm. 6.16].
(L.26) This is due to Hecke. See Apostol [L, Thm. 7.20].
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{1.29}

(¢} This is due to Hecke. See Ogg [1, Ch. I, Tl 1, p. I-5].

CHAPTER 11

{(2.1)

(2.9)

(2.12)
(2.13)
{2.14)

(2.17)
(2.18)

(2.19)
(2.20)
(2.21)
(2.25)
(2.30)

{2.33)

Write Ry = Z 4+ Z7, and for any « € R, write &« = a, + b,7 with
@, €EZ and &, € Z. Then f = min{b, : a € R, b, > 0}

This is due 1o Hurwitz {1]. A nice exposition of the proof is given in
the appendix to Rosen [1].

(a} See Shimura [1, (5.4.3), p. 124]. (b) See Shimura [1, excreise A8,
p. 124].

(b} This excreise was suggested by David Rohrlich,

The minimal polynomial of 3 is 27x" + 722% - 16.

Ky=lo=K, Ky =K, Ly = K{¥1), Ky = K(v/3), and

Li= Ki{+v/—9+6V3). Gal(Li/K) is exclic of order 4. 1n computing
La, the identity —10 — 63 = (=1 — 3)7 is nseful.

See Lang [1, Ch. 5. §1].

{a.b,c.d} See Lang [1, Cli. 5. §2]. Shimura [1. Ch. 4.6]. (f) See I’. Cohen
[1] and Silvermman [4
See Lang [1. Ch. 5, §3].
See Lang [1, Ch. 5. §2|.
Sec Lang [1. Ch. 5. Thm. 2].

See Gross [1, Lenma 9.2.3).

See Lang [L, Ch. 10, §4, Thm. 10]. For the general case ol abelian
varieties, sce Shinmra [1, Thm. 7.46 and Prop. 7.47].

See Ireland-Rosen [1, Ch. 18, §4].

1.
53
£2

CHADPTELR 111

(3.4)

(3.11)

{3.12)

(3.14)

{3.15)

(3.16)

(3.17)
(3.20)

The: Mordcll-Weil theorem for abelian varieties over finitely generated
fields is due to Néron. See, for exaniple, Lang [4. Ch. 6, Thm. 1].

{¢) See also Chapter VI text and exercises for an approach using local
height functions which give a better estimate in {c). One can then use
{¢) to prove (a) and (h).

[0,1.0), [0, £7, 1), [T,0,1}, [ = T, £(1 — 2T}.1),

(V2. (2T — 1},2/2).

See Mumford [1, §6. Lemma on p. 56).

In general, the Mordell-Weil group of an abelian variety is finitely gen-
erated in the following two cases: (i) (Néron) if the field of definition is
finitcly generated over . (i) (Lang-Néron) if one takes the quotient
by the subgroup of points defined over the constant Reld. For details,
see Lang '4, Ch. 6, theorems 1 and 2].

This version of (TIT.11.3.1) and {II1.11.4) for split elliptic surfaces is
due to Dem’janenko [1], with a gencralization to abelian varieties due
to Manin [1i. The example in (d) is due to Dem’janenko.

See Kuwata (1,2].

{a) 2. (b) 3. (c) 2. {d) 4.
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(3.21)
(3.23)
(3.24)
{3.31)
(3.32)

{3.34)
{3.36)

{3.37)
(3.38)

(3.40)

Notes on Exercises

This is a special case of Zariski's Main Theorem, see Hartshorne [1.
V.5.2, IIL11.3. excreise ITL1T1.4).

This is a special case of the general fact that algebraically equivalent
divisors are numerically cquivalent. see Hartshorne |1, exercise V.1.7].
(bl det(fon) =n. () a, =Hn -k /nif 1 <i <k and a, = k{n — il /n
if k< i < n. See, Tor example, Cox and Zucker [1, Table 1.14].

See Lang |4, Ch. 4, Prop. 5.2].

Sec Lang [4. Ch. 4, Prop. 3.3 and Cor. 3.4].

Thixs estitate ix due to Tate [4], see also Lang [4. 12 Cor. 5.4).

{b] This is dune to Kodaira, sec Shioda |3, Prop. 2.8]. It has been
frequently rediscovered, see for exarnple Hindry-Silverman [2, Thm. 5.1]
and Szpiro [1].

"This result is due to Hindry and Silverman [2].

For an explicit construction of the Jacobian variety of a hyperelliptic
curve, see Mumford [3. Ch. Ila]. In particular, Pie(€}[2] is described
in Mumford [3. Ch. IIla. Leinma 2.4 and Cor. 2.11].

Sce Shioda [3. Prop. 1.6].

CHAPTER iV

(4.5)

(1.7)
(4.10)
{4.15)
(4.16}
{1.19)
14.24)
{4.25}

(4.29)
(4.30)
(4.31)

(4.32)

{4.35)
{4.36)

{4.37)

fa) See Matsumura [1, corollary to Thm. 45 (18.G}).

Sce Bosch-Litkehohmert-Raynaud [1, §2.4, Prop. 8.

See Shatz [1, §2] ar Waterhouse {1, Ch. 1 and 2].

{a} This is a restatement of Lemma IV 9.5,

Cr o {w? - 2Nz - 1Yy - 22) = 0.

Sce Artin |1, §0|.

See Bosch-Liitkebohmert-Raynaud |1, Ch. 7. Prop. 6]

Cowbine (1V.5.3) and (I1V.9.1}. For a urore imtrinsic proof for general
group schemes, see Artin [1, Lemma 1.16].

6} See Greenberg [1. §3, Lemma 2| for a multi-variable version.

(b} See Bosch-Lutkebolimert-Rayuaud (1, 2.2, Prop. 7. {¢) See Bosch-
Liitkebohmert-Raynaud [1. 2.3. I'rop. 5.

See Milne [3. §7) or Wail [31

See Artin [L, Cor. 1.6].

{c} The special fiber has five components, three of multiplicity 1 and
two of mudtiplicity 2. This is a fiber of Type 1X-1 in the classification
of Namikawa and Ueno ‘1], (d} The special fiber has four components.
one of nultiplicity 1, two of multiplicity 2, and one of multiplicity 3.
This is a fiber of Type VITI-3 in the classification of Namikawa and
Ueno [1].

{c) Raynaud [1] has proven a general result which allows one to compute
the gronp of components ou the Néron mocdel of the Jacobian of a curve
in terms of the incidence matrix of Lhe special fiber of a minimal proper
regular model of the curve.

This exercise is taken from Tate [2, end of §6 .

{a.b) This is an unpublished vesult of Mestre; see Kraus [1]. (¢} This
is due to Kraus [1].

See Néron {1, §111].
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(4.39) The proof is essentially the same as the proof of [AEC, 1V.6.1]. See
also excrcibes 2.22 and 2.23.
(1.43) {a) {1}. {b) Z/2Z. () Hx.
(4 44) This follows easily fmm [AEC, [X.6.1].
(4.45) See Serre [4, Ch. IV, Section 1].
{4.46) (b} See Serre [4. Ch. VI, Thm. 1’]. {d) See Ogg [2]. Serre-Tate [1. §3],
and Serre [T. Ch. 19]. {¢) This is due to Ogg [2].

CHAPTER V

(5.2} See Serre [4, VIII §4].
{5.13) This is due to Serre {1, {(A.1.2), pp. 1V-31,2.],
(5.14) This approach to Tate's theorem for elliptic curves with non-integral j
is due to Shatz [1].

CHAPTER Vvl

{6.5) See Lang [6. 11 §5].

(6.6) {a) This is due to Tate; sec Lang [3, III, Thm. 4.5]. {b.c) See Silverman
13-

{(6.7) See Silverman [2, Lemma 5.1},

{6.8) See Silvevman [2, Thm, 5.2].

(6.9) The series (c¢) is due 10 Tate, and the extension to E{C) is duce o
Silverman. For proofs with error estimates, see Silverman [2].

(6.10) Solutions: {a) 0.025655... (b} R{Fy = 0, P is a S-torsion point, {c}
0.01028 . .., this point h.cn.«. very small height, (d) 0.01048 . . this point
has very small ratio A{ P}/ log(A).

(6.11) (b} This is due to Blanksby and Montgomery; see Hindry-Silverman
[1] {¢) Hindry-Silverman [1]. (e) This is due to Elkies, see Lang [6, VI

§5]. One can give the explicit lower bound

1,. 1 . .
—5.-'\' log N — 1—2—'\ max{log |j(E)],0} — 3.64N,

where the 3.64 is not best possible.
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() integer i Dedckind » function transformation forruada, 66
sl y) Dedekind sum. G6

Div(5) divisor group of a set. 68

Tin} 1" Tlecke operator, 68

A homothety operator, 68

A :_i A A’ is a sublattice of A of index 1. G9

AL{ZE) ring of 2 x 2 watiices with integral coefficients, 72

a{A) the ladtice Zlewy + bws) + Blow 4 dun), 72

‘D, integer matrices of determinant n. 72

&, special integer matvices of determinant n, 72

Fr lattice function associated to the modular function f, 74
fr moditlar finction associated 1o the lattice function F, 74
Tonin) 't Hecke aperator on space of modular functions, 76
() m™ Fourier coefficient of Tup(n)f. 76

Lif.5) formal Dirichlet scries attached to the power series [, 80
Bif. «) vormalized L-series attached to f. 833

(s} gamma hunction. 83

TN a congruence sibgroup of I'{L). 36

Cu{ N a congruence subgroup of I'(1). 87

(N a congruence subgroup of T{1), 87

LDy linear series attached to the divisor D, 87

0 Weidl pairing, 89

plee. 7} = o7 + . where a = (? 2:) 91

Fllo)ae = (det o o 7) T e, 91

o Petersson nner product of f and g, 92

s oa} incomplele ganma function, 93

glx) Ganss =unn associated to 4, 93

fle,m) Twist of the cusp form f by the character x, 93
Lifox.s) twist of the L-series L(f. s} by the character x. 93

Iy ring of integers (miaximal order) of K, 96

Fla the elliptic curve somorphic to /A, 97
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[-] normalized isomorphism R — End(E}), 97

ELL(R) elliptic curve, with endomorphism ring R, 98

CL{Hp) ideal class group of Ry, 99

a the ideal class of g, 99

al the product of the ideal a and lattice A, 89

ax Ea action of ideal class a on elliptic curve Ey, 99

Efa] group of o-torsion points, 102

By class number of K, 107

F coniplex multiplication map Gal{K /K)} — CL{Rg}, 112
oy Frohening element in Gal(L/K), 116

I fractional ideal prime to ¢, 116

P{c) principal ideals congruent to 1 moedulo ¢, 117

K. ray class field of K modulo ¢, 117

H, Hyi Hilbert class field of K, 118

K, completion of K at ©, 119

R. ring of integers of K, or K, if v is archimedean, 119
Aj idele group of K, 118

K, completion of K at p, 119

Ry ring of integers of Ky, 119

ord, normalized valuation on K, and Rp, 119

{s) ideal of the idele s, 114

U, an open subgroup of the idele group Aj., 119

N f{ norm map on idele groups, 119

Kb maximal abelian extension of X, 120

[, K] the reciprocity map for X, 120

h Weber function £ — E/ Aut{E) = P!, 134

F.(X) the polynomial Haes“ (X ~joea), 144

Smi{T) the coefficients of the polynomial F},(X), 144

F.(Y, X) the modular polynomial Fr,(§, X) = HGGSH(X —joa) 146
Ho(X] the modular polynomial F, (X, X}, 146

Mp™i p-primary component of an Rj-module M, 157

YVEL the Grossencharacter of a CM elliptic curve E/L, 168
La(E/L T local L-series of E at p, 171

Lis, g} Hecke {.-series attached to the Grossencharacter i, 173
AE/SLY, 8) modified L-series of E/L, 176

WEL sign of the functional equation of E/L, 176

D7 primitive integer matrices of determinant n, 181

8n primitive special integer matrices of determinant w, 181
T {X) the modular polynomial of order n, 181

Z{E/Fqp. T zeta function of the elliptic curve E/Fq, 183

Crls) zeta Phuinetion of the field L, 183

C{E/L.s) zeta function of the elliptic curve E/ L, 183

Tu(E) p-adic Tate module, 186

K(5.2) subgroup of K*/K*%, 194

K(5,m) subgroup of X* /K™, 195

Pic®{C) group of divisor classes of degree zero, 197

Jac((} Jacobian variety of €', 197

7ia} symmetric product of a curve, = C9/5,, 197
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& group of sections to an elliptic surface, 202

E(C/k) group of sections defined over & to an elliptic surface. 203
m the image of a rational map ¢ -V — W, 204

Domig) domain of definition of a rational map. 204

T f) order of the pole of f at f, 213

A canonical height on an elliptic surtace, 217

£, -0 canonical height pairing on an elliptic surface, 218
Dk . d) points in E{K)} with height at most d. 223

Div(5) group of divisors on a surface, 231

Oy local ring of a surface § at a point P, 231

Our loeal rving of a surface 5 at a curve I', 231

ordr order of vanishing aloeng a curve I', 232

div homomorphism &[5} — Div(S). 232

o linear equivalence of divisors, 232

Pic(S) Picard group of a surface S, 232

oIy intersection pairing ol divisors £ and Do, 233

(D - Dayp local intersection index at P, 233

T homomorphizim Div{C'} — Div(%) on a fibered surface, 237
Pn divisor on 5 with (D 4+ &p) - F =0 for all fibral F, 240
Tr translation-by- {7 map on an elliptic surface, 245

(P divisor assoclated to a section to an elliptic surface, 245
Dy divisor on elliptic surface £ for a point P € F{K), 247
{0 canonical height pairing ou an ¢lliptic surface, 247
E(K} subgroup of an elliptic surface. 251

Pro divisor with (P + Q} — {PY = () + ({) ~ dp . 252
[P.Q canouical height pairing with values in Pic(C'), 252
Div the gronp of divisors on a variety V', 255

h absolnte logarithmic height on projective space, 255
I height on a varlety associated to a divisor D2, 256

o height on a varlety associated to a morphism, 258

B the image of a section op to an elliptic surface, 265

(Tt the specialization map on an clliptic surface, 271

s the ring of S-integers of a function feld. 275

Map,(C, E, the set of morphisms from € to By defined over £, 281
kg fleld of definition of sections Lo an clliptic surlace, 282
fro o the conductor divisor of an elliptic surface. 287

T the additive group variety, 291

L the multiplicative group variety, 291

Gl the general linear group. 291

SL.. special linear group, 292

K the group of K-rational points on a group variety, 292
g identity component of a group variety, 292

A% afline space over the ring R, 298

Py projective space over the ring B, 293

A(T) the set of T-valucd points of a scheme, 208

A{H) the set of ff-valucd points of an R-scheme, 298

F functor defined by an S-schewne, 298

X x5V the fiber product of two S-schemes, 29%

X the fiber of an S-zcheme X over a point s € 5. 300
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Xp reduction of the scheme X mmodule p, 300

X, the generic fibor of an R-scheine X, 300

&% affine space over the scheme 5, 301

g projective space over the scheme S, 301
o identity section o, : § — & of a group schene, 306
i inverse ap ¢ 0 G — G of a group schenie, 306
7! group law u 1 G x4 (7 — G of a group scheme, 306
G the additive group scheme over &, 307
oy the additive group scheme over 5. 307
Taypr the additive group scheme over £, 307
Te the multiplicative group scheme over Z, 308
Gy the muliiplicative group scheme over 5. 308
Gww the multiplicative group scheme over £, 308
Ta translation map v, : &G — & on a group scheme.. 310

[rr] multiphcatiou-by-r map on a group scheme, 310
Op the local ring of a curve on an arithmetic surface, 311
ord g valuation attached to a curve on an arithmetic surface, 311
e’ largest subscheme of € smooth over R, 316

W the subscheme of Py defined by a Welerstrass equation, 321
w largest subscheme of W simooth over £, 321

¢/ minimal proper regular inodel of an elliptic curve E/K 325
L/R largest subscheme of @/ R which is smooth over B, 325
Dom({ o] domain of a morphisin ¢, 327

x special fiber of a scheme over a discrete valuation ring. 330
RY the Henselization of a discrete valuation ring. 331

R the strict Henselization of a discrete valunation ring. 331
iv(Q) the divisor group of an arithmetic surface €, 33%

div{f} the divisor of f on an arithmetic surface. 339

(Cy -, local intersection index on an arithimetic surface, 3339

Divp () the group of fbral divisors on the artthimetic surface €, 340
. F intersection index of divisors on an arithmetic surface, 311
PalF) the arithunetic genus of a curve on an arithmetic surface, 342
Ke a canonical Jdivisor on the arithmetic surface €. 342
Divi,{C) group of fibral divisors on the arithmetic surface €, 344
E;’k the reduction of a Welerstrass equation modulo p, 362
Eo{k) sel of non-singular points of E{k), 362

Eu(K) set of points of E[A) with non-singular reduction. 362
EH) set of points of E{A ) which rednce to the il'i(_‘.l'l!il‘.}-’ element, 362
m{FE/R nurmber of components over k on special fiber €, 363

Ty equals 7~ "a,, 366

G L/K) the " higher ramification group of L/K, 379

. (LK) the order of the "™ higher ramification group of L/ K. 380
=(EfK) the tame part of the concductor of /K 380

SE/N) the wild part of the conductor of E/K . 380

FLE/KY the exponent of the conductor of E/H, 380

HE/H) the conductor of an clliptic curve over a number Held, 388
e the scheme of 7™ roots of unity, 397

[ a finite group scheme in charncteristic p, 397
Gy a one-dimensional group schemme, 398
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Ar

Sw

ax(n)

E,

sk(q)

as(g}. aslg)
X(“! QJ'? Y{ﬂ: Q)
O{u, q)

E/R)
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index function on the Galois group of local fields, 405
the Artin character, 4056

the Swan character, 405

the sum Edlﬂ d®, 409

elliptic eurve over € with j(E,} = j{g), 410

the series > . ox(n)g™, 410, 423

Weierstrass coefficients of E,, 410, 423

series giving parametrization of Fq, 410, 423

theta function, 412

~-invariant for an clliptic curve defined over R, 414
Tate curve over p-adic field, 423

formal group of an elliptic curve, 431

formal multiplicative group, 131

~-invariant for an elliptic curve defined over K, 439
Bltratien of Tate curve E,, 450

the canonical height on an elliptic curve, 454
absolute value on the field K, 455

the local Néron height function on E associated to v, 455
the standard set of absolute values on K, 461

= [K. : Q,], the local degree of v € My, 461

local height associated to v, 461

the second Bernoulli polynomial 72 — T + é, 468
the reduction of ¥ modulo v, 469

points in E{ /) with non-singular reduction, 469
division polynomial. 477
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abe-conjecture, 275 on a modular tunction, 76, 79, Y1
Abel-Jacobi theorermn, 198 Action, group scheme, 321, 326, 400
Ahelian extension Action of SLy(Z} on T, 72
See also Class field theory Action of SLa{Z) on H, 9
Artin map. 117 fundamoental domain, 103, 92
conductor, 117, 118, 123 stabilizer of a point. 11
Frobenius element ag. 116, 121, 128, Action of SL2{Z) on H*. 11
129, 130, 132 Addition formula on an elliptic curve,
generated by j{F£). 121 210, 214, 323, 471
generated by CM lorsion points, 108, Additive group, 398, 344
128, 135, 148, 144, 166, 168 S-valued painis, 397
generated by roots of anity, 108, 128, over a field, 201, 203, 368
153 over R, 307
inertia gronp, 1200 1143 over 5, 307
maximal. 121, 121 over £, 307
of 44, 129, 151 rational points of, 292
of Hilbery class field, 134 Tate mudale of, 352
ray class Beld, 1170 118, 120, 129 145, Aceitive veduction, 171, 2R7. 388, 399,
150 40833
unramifed conduclor. 381
See Hilbert class field torsion limited. 453
Abelian group Adjunction formula, 234, 249, 345
bilinear forim on, 273 on arithmetic surface, 312, 3351
is s of p-primary components, (52, Affine group variety, 396
137 Affine scheme, sel of Re-valued points,
Abelian vancty, 118, 196 208
antomatically commutative. 196 Affine space
field of definition, 196 over a ring, 298
Jacabian, 197, A2 over a scheme, 301
hlordell-Well theorem. 485 Algebraic equivalence, 446
of ditnension one. 196, 279 ol divisors, 251, 285
uniformstzation theorem over ©, 1906, Algebraic family
144 ol ellipliic curves, 201
with complex maltiplication, 96 of points, 201
Abhyankar. 5.5, 317 Algebraic group variety, 115
Abwolule value Algebraic gronp
defines a ropology, 435 See Cironp variety
o a field, 455 Algebraic integer, j-lnvariant is. 140,
on a hamber lield, 461 A7, 151, 447
Action of a Hecke operator Algorithm
on a cwsp form, 7h, 78, 79 Laska’s, 364
on Fourier coefficients, 76, 78 minimal Weierstrass equalion, 364, 403
o a lattice function, ¥4 Tate's, 353, 3061, 364 387, g, 435

onoa modular form, 76 tor compute local heights, 178, 479
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Almost every, 201
Almost quadratic function, 454, 455
See alse Local height
Ample divisor, 233, 237
height associated Lo, 257
on a curve, 257, 264
om a surbace, 258
Serre’s theorem, 261
Analytic continuation of L-serics at-
tached Lo cusp lorm, 53, 94
Approximation theorem, weak, 155, 158
Arakelov mterseclion theory, 344
adjunction forronla, 345
IRiemann-Roch theorem, 345
Arakelov, 5., 314
Archimedean fiber, 345
Archimedcan local height, 464
Arithinetic genus, 342, 301
in Nat fanily, 343
one, 355
zero. 343, 352
Arithmetic surface, 311
adjunction formula, 342, 351
Arakelov intersection theory, 344
arithmetic genus of curve on, 342, 351
bBlow-up, 343, 345, 371
example, 347, 402
of a curve, 348, 372
canonical divisor, 342, 350, 351
closed fiber, 313
connected fiber, 342, 353
dual graph of special fiber, 353
exceptional divisor, 3d4
cxtension of autciorphisms, 318, 336
flat. 343
Galois acltion on special fiber, 333
generic fiber, 311
incidence matrix, 350, W2 403, 456
intersection pairing, 341, 342, 353
intuitive definition, 311
s curve over &, 311
local intersection index, 339
loral ring
of a closed point, 315
of a curve, 311, 313, 339
al a point, 370
minimal praper regular model, 317,
318, 344, 361
model of curve of geous two, 355
negative semi-definite inlersection pair-
ing. 342. 354
non-singular, 311
non-singular point on Aber, 315, 351,
304
projective line Pk, 312
proper, 311, 316, 317, 35!
propoer regular model, 317
regular, 311, 315, 316, 317, 351, 370,
3099
regular in codimension one, 311
resolution of singularities, 317

singular point on fiber, 314
smooth. 311
smooth part, 316, 318, 321, 325, 332,
335, 361, 362, 369, 378, 399, 400
special Rber, 311, 314, 350, 352, 361,
371, 399
of blow-up, 347, 371
Weil divisor on, 311
Artin characier, 405
Artin map, 117, 118, 1200 171
for €, 154
for Hilbert class field. 118
13 surjective, 115
kernel of, 117, 118, 179
prime splits completely, 117, 179
trivial on norms, 179
Artin reciprocity, 117
Artin, M., 325, 327, 334
Ausociative law, of a group scheme, 307
Associativity, normal law, 334, 335
Automorphism
of arithmetic surface, 318, 316
of a curve, 204
of Néron model, 400
Automorphism group
of an elliptic curve, 183
of an elliptic surtace, 245

Bad fiber, 203
Bad reduction, 185, 321
Baker, A, 141
Rasis for a lattice
normalized. 7
oviented, 6.9, 71. 72, T3, 84
Bermoulli nombers, 37
Bernoulli polynomial
Fourler expansion, 480
second, 468, 473, 478, 450
Bertini's theorem, 233
Bezout's theorem, 232, 233
Bilinear form, non-degenerate, 273
Birational equivalence, 204, 205
category of elliptic surfaces up to, 206G
calegory of varieties up to, 205
of elliptic surfaces, 206
over k, 204
Birational iscmorphism, 204
Birational map of fibered surface, 244
Birational morphism, 233
arithmetic surface, 343
Blow-up, 343
Birch, B.J., 389
Girch-Swinnerton-Dyer ludge factor, 364
Blankshy, 2. 187
Blow-down, 236, 244
Castelnuovo's criterion, Jd4
Blow-up, 204, 235
of an arithmetic surfuce, 343, 345
Clastelniove’s criterion, 344
coordinate chart, 345, 347, 371
example. 347, 102
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Blow-up {continucd)
exceplional divisor. 344
gluing of charts, 316, 348, 471
height associated to, 285

of multiplicative reduction earve, 403

primer omn. 345

of a scheme. 434

special fiber, 347, 348, 371

of a Weierstrass equation. 371
Bounded conductor. 404
Boundedness conjecture. 453
Brauer group. of a local field, 452
Brumer. A . 385

Calculus, freshman. 50
Canonical divisor, 27, 87

on an arithmetic surface, 342, 350, 351

on an elliptic surface, 249
Canonical height, 252, 454

as lntersection index, 247

as Lt 454

as swmt of local heights, 4541, 461

associaled 1o o divisor, 285

comparison with naive heightl. 475

explicit {1} estimate, 280

for divisor of degree zero. 285

15 o quadradie foru, 218, 451, 161

Iaktice structnre associated to, 254

lower bound, 287

an an olliptic surface, 217, 247, 265,

266, 269, 281, 286
o Jacobian variety, 271
over [unction fields is rational. 219,
247

parallelogram law, 218

pusitive detinite, 213

regulator, 273

standard properties. 267

Canonical height pairing, 218, 247, 252,

260, 261, 240
non-degeneracy, 272
with values iu Pic{£], 284
with values in Pic{C'), 262, 265
Clastelnnovo’™s criterion. 236, 344, 352
Clutegory
ol S-schemes. 208
of elliptic surlaces up to birational
couivalence., 206G
of wvarietios up to birational eqniva-
lence. 2005
Centralizer, 179
Character
Avrtin, 405
Swan, 405

Characteristic polynomial of Frobenius,

172
Characteristic zera, 187, 189
Chinese remainder theoreni, 103, 158
Circle gronp. 120
Clircle el boed, G1

Index

Class field theory 115-120
See also Complex multiplication
Artin map. 117, 118, 154
idele group. 1149
idelic formulation 118120
lescal
Ser Local elass field theory
of §, 151, 153
ray class field. 117, 118, 120, 128, 135,
180
reciprocity inap. 120, 152, 15%, 165,
164, 168, 16% 174
{Mass function. 105
Clliss numnber, LOT
B finite. 86
one, 107, 109, 138, 141
twao, 142, 181
Clused iiber over a DVR. 300
Ml
See Complex multiplication
Codimengzion one
generic poinl of subscheins, 328
regilar in, 311
Clohomology, £-adic, 172
Clommutator subring of endomorphism
ring, 129
Complete inlersection. 328
Connplete ring is Henselian, 330
Complex Lie group. 48
Complex wultiplication, 95
o-torsion points are free modnle, 103,
109, 138
action of ideal class group, 99, 122
additional references, 35
associated Gréssencharacter. 1650 164,
174, 175, 184, 185
5%
I, 06
K. 94
2L+ =737/2], 1L, 179
':[1] 101, 107, 109, 134, 18RS
=2, 110, 180
Zlp]. 102, 107, i77, 180
not-maximil order, 160, 180
comnputation of §, 112, 141
degree not sgquare. 183
degree of an isogeny, 1003, 124
elliptic cnrve with Ch by Ry, 99
enclomorphism ring, 946, 129
ficld of definition
ol endomorphisms, 106
of sogenies, 105
for abelian varieties, 86, 145
CGalols action
on 112113, 122, 131
on 3, 112122 166
generate ring of inlegoers, 93
good reduction. 158
group of a-torsion points. 182, 135
Isogenous curves, 175, 180
Iwasaves theory, 6
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F-invariant, 121, 122, 166
in {J, 138
is algebraic, 10

is integral, 140, 147, 151, 176, 447
J=0, 102107, 177. ]8()

Fo= L1728 M. 107, 1348,

J = —337h. 111

§ = S0y, 110, 180

llft of Frobenius map. 130, 132, 162

Leseries. 171, 175, 185

main theorem, 157, 159, 166

map ' GallK/RKY — QLR 112,
21

number of points modulo Pl 175
of degree two, 109, 141, 179
ordinary reduction, 179
potential good reduction. 140, 447
reduction mod P, 124, 127, 126, 131
Tate module. 179, 186
torsion generates abelian extensions,
108, 135, 143, 149, 166, 168
transitive action
of Galois group. 122
ol ideal class group, 100, 113
Lwist, 183
Waeber function. 134, 135
with 7 £ E, 142, |79

[}
=

-1

Cunnected component of Néron maodel,
326, 361, 401
Connected fibers. 240, 2834, 342, 353
Contravariant functor, 309
Clorrespondence, 68
Hecke, 68
See also Hecks operator
homaothety, 68
on sef of lattices, 68, %0
ring of. T
Clox. D., 186
Chremona, ) F., 380
Criterion of Neron-Ogg-Shafarevich, 362
Clrve
See wlso Riemann surface
ample divisor on, 257, 264
automorphistu group, 294
canonical divisor, 27, &7
differential form on. 207
exceptional, 236, 344
height on, 237, 264, 265
holomorphic differential on. 9%
homaology of, 148
hyperelliptic, 287, 486
Jacobian varicty of. 197, 199, 402
minimal proper regular model of, 317,
A18. 344, 361

normal law on symmetric product. 402
of genus two, 287
Picard group of. 192, 1953, 199, 402

Clomplex strocture, 1%
Components of fiber

group of, 363. 364

maltiplicity of, 313

number on special fiber, 363, 364, 380
non-reduced, 313

of a divisor, 231

of multipiicity one. 102

redacible, 413

singular, 313

Conductor

bounded, 404
constant under sogeny, 104
divisor of an elliptic surface. 287

Projective, 27 87
proper regular mode] of, 317
syvmrnelric product. 229
uniforinizer lor, 339
Cusp. 287, 370
of X(1). 14
ul HY, 14
stabilizer of, 15
Cusp form. 25, 91
Sce afso Modular funciion,
form

exponent of. 364, 364, 380, 380 basis of cigenfunctions, 78, K0, 92
bound for, 385 dimension of space of. 31
computation of. 389, 407 discriminant is a, 26, 31
lesy than diseriminant. 396 Fourier coefficients of, 70, 80, 81
maximun value, 387, 407 L-series altached to, 83, 85, 93
over 2-adic fiald. 407 simultaneous cigenfunction, 79, 80, 92
over 3-adic field. 107 slze of Fuurier (ULf'ﬁl"iF'Ilt.‘w 51

independent of ¢, 381, 405 space of ( ”n - 3L

of a Grisssencharacter. 176 spaces with ¢ lmP“L‘I"’“ one, 34

of an abelian extension, 117, 118, 123 twisted L-veries attached to. 04

of an elliptic curve, 379-388

twisted by yx, 93

o - Cvelotomic extension. unramifed, 383
ofan order, 178 Cyelatomic field, 95, 128, 151
ol ray class field. 117, 114, 129, 135 i abelian, 108, 128, 151

square-free, 388

Sepiro’s conjecture, 287,
Lame parl, 380, 381, 405
wild part, 380, 381, 403

383

Ceomductor-diseriminant formula for ellip-

Lic clirves, 384

I, 72,91, 143
action of 3La{Z), 72
T2 181

Decomposition group, 116, 331

modular

action of Hecke operator, 76, 78, 79, 92
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Dedekind, R., 67
Dedekind domain. 113, 179
arithmetic surface over. 311
is regular scheme, 302
Dedekind n function, 65
transforruation formula for, 67. 90
Dedekind reciprocity, 67. 90
Dedekind sum s(x, y). 66. 8%
Degree map on divisors, 197
Degree one prime, in ideal class. 118,
123, 161
Degree
non-square is (A, 143
of a CM isogeny, 103, 124
of a divisor, 232, 282
of isogeny s preserved under reduc-
tion, 124
Lreligne, P., 61, 81
Dem’janenko, V. A, 265, 269, 271, 485
Descont, theorem. 230
Descent, faithfully flat, 338
Determinant

homomorphism of group varieties, 202

kernel of, 292
Deuring, M., 85, 175
Diagonal

height associated to, 285

is complete intersection, 328

morphism, 300, 309, 327
Drifferent, 176, 356
Dilferemial form, 207

assaciated to a modular function, 25,

31, 87, 91

divisor of, 27

helomorphic, 27

invariant, 43, 183

of the first kind, 13

of the second kind, 43

of the third kind. 43

on a curve, 198

on a Rilemann surface, 27

on elliptic curve, 43

on H, 26

on X(1}. 23

order of, 27

regular, 27

sheaf of relative, 306
Dimension

of a point on a scheme, 302

of a scherne, 302

of Jacobian variety, 197

regular scheme of dimension ane, 302
Dirichlet character, primitive, 953
Dirichlet. series

See also L-series

analytic continuation. 83, 94

attached to a cusp ferm, 83, 83

attached to a power series, 80

Euler product expansion, 80, 92, 172,

173
functional equatian. 83, 94

Index

half-plane of convergence, 83, 94
relations satisfied by coefficients, 80,
a2
Dirichlet’s theorem on primes in progres-
sions, 118, 123
Discrete subgroup
of Qy, 122
of 5, 422
Discrete valuation ring, 328
arithmetic surface over, 311
closed Aher over, 300
generic fiber over, 300
Hensclian, 330. 401
llenselization of, 331
sinooth scheme over, 304
special fiber over, 300
sirict Henselization of, 331
strictly Henselian, 330, 402
unramilied extension. 399
Dizerimminant funclion. Fourier expansion.
59, 60, 467. 468
[Hseriminant
Fourter coeflicients. 152
See also Bananujan ¢ function; Ja-
cobi’s formula
is eigenfunction for Hecke operators,
7879
minimal, 363, 364, 388, 386, 396
for elliptic surface, 286
over 2-adic leld, 407
over 3-adic field, 406
modular, 26, 31, 32, 62, 89, 135
of a cubic polynomial, 62
of a Weierstrass equation, 62, 183, 455,
458, 470. 478
of isogenous curves, 453
of Tate curve E,. 377, 123, 424, 473
product expansion, 60, 62, 90, 409, 468
vanishes only at o, 32
weight 12 cusp form, 26, 31, 32, 34, 66
Div
See Divisor group
Division polynomial iy, 477
Divisor class group
of FL, 271
of a carve,
See Pieard group
of a function feld,
See Fieard group
Divisor graugs, 281
induced homomorphism, 2535
of a fibered surface, 284
of a set. HS
of a variety. 235
of an arithmetic surface, 339
Divisor
algcbhraic egquivalence, 204, 285, 136
ample, 233, 257, 208
associated to a morphism. 258
canaonical height, 285
components of, 231
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degree of, 232, 282
exceptional, 344
fibral, 246, 247, 284, 340
group of, 231
height associated to, 256, 265
harizontal, 340
integer part of, 87
intersection palring, 233, 238
is difference of very amples, 261, 284
linear cquivalence. 232, 339
loeal eguation, 232, 233
minimal discriminant, 286
nmmerical equivalence, 486
of a dilferential {orm, 27
of u section. 245
of an elliptic function, 45
on a surface, 231
or an aribhimelic surface, 311, 339
positive, 285, 341
principal, 232, 339
self-intersection. 234, 238, 213, 283,
342, 349, 351
Serre’s theoremn on ample, 261
transversal intersection, 232, 282
very ample, 257, 261, 284
Weil. 139
Nomaim
of a rational map, 204, 279
ol morphism to group scheme, 327,
333, 337
Dominant rational map, 204, 223, 228

frow smwooth scheme Lo proper scheme,

328
induces map on function fields, 205
of elliptic suriaces, 208
Dual graph of special fiber, 353
Mual isogeny, 67, 125, 220
of Néron maodel, 400
Duplication formula. 139, 427, 437
for height, 257
for lowal height, 4046, 471, 475
hay degree four, 458
on an elliptic curve, 210, 214, 437, 471
Dynkin diagram, 353

Effective bound for S-integer points,
27T, 288
Eigenfunction
basis of AL, 80, 92
for Hecke operators, 77
normalized, T8, 79, 80, 92, 93
simultanecus for all Tay,'s, T8, TY, 80,
92,93
LCisenstein series, 25, 41
algebra genevated by, 38
Flap. B8
Fourier coeHicients of, B8
gu and gy, 26, 35, H8
g and g algebraically independent,
BR
7y and 7y determine A, 35, 38
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(Gap, 25,31, 32, 55
is a modular form, 25
is eigenfunction {or HHecke operators,
78,03
normalized. 58
yeexpansion of, A%
special value of. 178
value at oc. 25
Flkies, N., 487
Elliptic curve
addition fermula, 323
automorphism group. 183
bad reduction. 1583
classification ol special libers, 330, 352
conductor, 363, 364, 358
endomaorphism of degree two, 109, 141
endomorphism ring &, 98
endomorphising are integral. 448
existence of Néron model, 325, 332,
335, 337
Geld of definition, 47, 38
field of moduli, 47, 38
formal group, 276
Galois conjugate, 131
gond reduction, 154
group of a-torsion poeints, 102, 135
Cordssencharaceer of, 185, 16858, 174, 175
height over function field, 212, 213
homogeneosus space of, 199
invariant differential, 43, 47, 134
is abelian varioty, 106
is group variety, 291
isogeny, 67, 182, 183
j-invariant
=0, 102, 107, 177, 180, 280
4 =1728, 101, 107, 138, 183, 2580
3= —3375, 111
3 = K000, 110, 180
non-integral has End{ &) = £, 147
é-adic representation, 403, 44135
L-series, 171, 172, 173, 183, 185. 264
map to PL13d
mininal discriminant. 363, 3641
minimal proper regular model, 325,
332, 330, 337, 350, 302, 361, 400
multiplication map, 310
multiplicative reduction, 103
negation map. 325
Néron model, 319
normalized, 97, 131, 134
of high rank, 272
ardinary reduction, 184
over T
Ser Elliptic curves over ©
over function field
See FElliptic surface
over locally compact ficld, 476
over peardic lields
See Elliptic curves over p-adic fields
over &
Hee Elliptic curves over B
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FElliptic curve (condinued)
potential good reduction. 140, 447
recluction inodule 3, 131
reduction type, 352, 353. 363, 364
representation on m-torsion, 108, 383
supersingular reduction, [84
translation map, 310
twists of, 283, 414, 439
r-adic topology
See v-adic topology, on an elliptic
CLIT W
Weber function, 134, 135
with complex multiplication
See Coroplex multiplication

Elliptic curves over 7, 408-413

analytic parametrization, 6. 34, 408,
411, 461, 168

diserimnant, 26, 409, 411, 161, 67
See also Discriminant

homolagy group, 37, 43

iseanorpiism clazs of, 36, 37

F-invariant, 34, 536, 411
See also j-lnvariant

lattice of. 408, 168, 477

lacal height. 464, 466, 468, 477

periods, 37, 43

Uniformization Thearem, 6, 34, 35, 845,
o6, 196G, 111

Welerstrass equation, 41, 109, 164

Elliptic curves over non-archimedean

fields, 124

Elliptic curves over p-adic fields, 138442
See also Tate curve Ky

adeditive reduction, 151

applications. 445 448

~-invariant, 439, 441, 451
ot equal one, 444

local hetght | 169, 472, 480

mmltiplicative reduction, 377, 478

non-split mnltiplicative reduction, 378,
451

quadratic character. 140, 444

split muttiphicative reduction, 377, 441,
451, 452, 472, 480

Tate madule of, 432

lorsion points, 383, 445

uniformization, 11, 123, 441, 444, 473,
480

Weil-Chalelel group, 452

Elliptic curves over B, 413 122

T isomorphism classes, 414

~-invariant. 414, 419, 450)
net equal one, 250

homogenecus spaces, 119

isomorphic to real Lie group, 420

Kumtmer sequence, 4449

number of components, 419

Fiscmorphism classes, 414, 414

sign of the discriminant, 4200 421, 149

tarsion subgrowyp, 449

twists, 411, 450

Index

uniformization over B, 416
Weil-Chateler group. 421, 449
with LI, 142, 179

Llliptic function, 39

See also Welersirass @ function,
Wheierstrass o fnction. Weierstrass
i lunction

divisor of. 43

factorization as product of &', 43

Lawrent series of F{u;q), 49

Elliptic integral, 178
Elliptic surface

See also Fibered surface, surface
algebraic cquivalenees, 254
as subset of F2 x ¢, 200
associated elliptic curve, 2006
autumorphism, 2145
baadd {iber. 2003
birational equivalence, 208
canotiical divisor, 249
cannnical height on, 217, 247, 2532, 265,
266, 269, 281, 284, 286
classical theory, 147
conductor divisor, 287
definition of, 202, 203, 205
divisor 20, 217
divisor of o section, 245
dominant cational map, 208, 223, 2358
fiber. 2001, 202
liber produect, 21%, 301
lield of definition, 203
ol section, 189, 282
generic fiber, 206
guod hber, 2008
gronp of sections, 2002, 210, 298
defined over £, 203, 210
height on, 212, 213, 265
infinitely many points of bounded
height. 220, 222
is 1 C-scheme, 298
J-invariant
is algehraic fonction. 280
coustant, 286
Kummer sequence for, 193
lattice structure, 234
lower bhound for height, 287
map on Pic is injective. 203
minimal discriminant divisor, 286
hMordell-Weil theorem, 2:30, 276, 279
multiple filbers, 2008
multiplication-by-re map, 266
Néren-Severi gromp. 253
non-singular fibor, 28§
norn-split, 218, 247
with zero digcriminant, 286
one-cocyile on sections, 284
one-parameter family, |88
arde (1) is bounded, 275
over non-perfect held, L&Y
polnts not oa group, 211
rational map between. 206
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S-integral points on, 275, 277, 288
section, 202
of order eleven, 190, 279
ol arder five, 278
ol order seven, 278
singular fiber. 203
specialization map, 271
it injective, 271, 281
of height, 263, 266, 269, 281, 286
split, 220y, 222 224 231, 271, 280, 281
over FL, 286
subgroup En{ A, 251, 281, 288
torzion subgroup, 288
transtation map, 243, 248, 251
weak Mordell-Weil theorem, 191 195,
230
zera section. 202
Endomorphizm
field of definition of, 11
of degree two, 109, 141, 179
of an elliptic curve. 4458
Endomorphism ring
comaint alor subring, 129
elliptic curve with given, 12}
normalized isomoarphizim, 97, 129, 131,
131
quakternion algebra, 130
reduction modulo 8. 1243
.. See Tate curve Ey
Etale morphism, 3G
Etale Lopology, 332
Eta function ()
See Quasi-period homomorphism,
Dedekind n-function
Euclidean structure on hlordell-Wejl
group. 247
Euler product, &0, 92, 172, 173
Exceilent scheme, 311
Exceptional curve, 236, 244
Exceptional divisor, 344
Castelnuovo’s criterion, 344, 352
on an arithmetic surface, 344
Exponcnt of the conductor, 380, 330
Lound for., 385
computation of. 389, 407
independent of €, 381, 105
less than discritninant. 396
Exponential function. special values, 151
Exponential map on multiplicative
eroup. 151
Lxtended upper half plane HY | 14
arcttan of T{1), 14, &5
cusps of, 14, &5
i a Hausdortf space, 16
topalogy on. 16, 85

Faithtully {lat

descent. 338

strict. Henselization is. 338
Fallings. ., 271

Fermigier, T., 272
Fiher
archimedean, 345
closed, 300
generc, 300
rultiplicity of components, 313
of a scheme over a point, 300
of an arithmetic surface, 313
of an elliptic surface, 201
singular point, 314
smooth. 307
special, 30
Fiber product, 259
diagonal. 300, 309, 327
graph tn, 300
group operation on, 211
uf elliptic surface, 211, 301
universal properly, 299
Fibered surface, 236
See also Surface. elliptic surface
connected fibers, 240, 283, 342
fiber of. 236
gonug at least one, 244
filbral curve, 237
fibral divisor, 2137
fibrral homomorphism. 237
fibral intersections, 238
horizontal curve, 2137
horizontal divisor, 237
nmap un Picard group, 284
15 injoective. 253
minimal. 244
multiplicity of fibers. 237
negative seini-definite intersection pair-
ing. 238
relatively minimal, 213
Filsral curve, 237
Fibral divisor, 237, 246, 247, 284
gronp of 340, 344
intersects fiber trivially, 238
an an arithimetic surface. 340
self-intersection, 238, 342, 351
Field
locally compart, 476
uor-porfoct. 187
of characteristic zero. 187, 189
perfeci. 330, 332
totally hnaginary, 116
Fieldl of definition
fov E{T{1). 282
of an abelian variety, 196
of an elliptic curve, 37, 38
of an elliptic surluce, 203
of Jacobian variety, 199
of section o elliplic surface, 180, 282
Ficld of modnli of an elliptic curve, 37,
34
Finite group scheme. 3497
Finite order clements in Picard group,
192, 195, 199
Finite tvpe scheme. 311
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tirst kind differential form, 43
Fischer-Giriess monsler group, 6l
Flat fumily, arithmetic genus in, 343
Flat morphism, 304, 397
Flat scheme, 311, 345
Formal Dirichlet series, 80
Formal group
of an elliptic curve, 276, 351
of Tate curve E,, 411
Formal logarithw, 150, 182
Forroal mudtiplicative group, 149, 431
Fourier analysis, 173
Fourier coefficients
Ser also g-expansion
action of Hecke operator, 76, 78, 79
integer, 14%
of a simultaneous eigenfunction, 7%, 80
retations satisfied by, 7%, 80
size of, 81, 82, 02
Fourier expansion
See g-uexpansion
Fructional ideal
is a lattice, 99
of quadratic imaginary field, 85
Free module of rank one, 102, 138, 186
Froy, (3., 133
Fricke. AL, 095
Frohenins map
action on Tate module, 172

antomorphism. 116, 128, 129 130, 132,

161
characteristic polynomial, 172
lift to characteristic zero. 130, 132, 162
of varieties, 132
Fudge factor, 364
Function ficld
hirational equivalence, 203
canonical height is rational, 219, 247
clliptic curve over
See Elliptic surface
finite subgroup of. 195
height on, 212
elliptic curve over, 212, 213
ideal class group, 192
infinitely many elements of bounded
height, 213
Kummer theorv. 1%1
local heights, 212
map induced by dominant rational
g, 205
Mordell-Weil theorem, 230. 279
S-integers, 275
Szpire’s conjecture, 287, 388
unit group of, 191
valuation an, 1934
Funclional equation
of Dirichlet series attached to cusp
form. 94
ol L-geries, 176, 184
of f.-series attached to cusp form, &3

94

[ndex

sign of, 176
for #(u. ). 412, 429, 474
for X, g). 425
for Y {u.g). 125
Functor
contravariant, 299, 309
defined by a group scheme. 309
defined by an S-scheme, 208, 306
Jacobian, 198
Funclorialivy of height function, 256
Fundamental domain {(F) or action of
SLu(Z) on H. 10, 14, 82, 92

Fundamental domain, for ©/A, 11, 71

Gap, See Eisenstein series
~-inwvariant
in characteristic two and throee, 451
of an elliptic curve, 449
tlefined over B, 414, 419
[(1}). See Modular group (1)
I'n{N). 87
[1{N) 87
'[N}, 56
[(s). See Gamma function
Gualois action
on series, 424, 428, 431
on special fiber, 353
{ialois cohomology
of a exclic group, 421
of a discrete group, 428
Galois conjugate of a O elliptic curve.
131
Galois group
decompaosition group, 331
higher ramilicalion group. 379
inertia group, 1200 149, 331
of Hilbert class field, 118
Cradois theory, 37
Gannma funcrion, 83, 176
incomplete. 93
Crauss, KB, 141
Ganss san, 93
CGaussian intcgers, 178
Gel'fond-Schncider theorem, 108, 142
General linear group, 291
centralizer of a subgroup, 179
daterminant, 292
elements of finite order, 4004, 204
formal loganithm, 150, 182
rational points of, 292
Ceneric fiber, 300
empty, 4(1
of an arithmmetic surface, 311
of an elliptic surface, 206
over & DVR., 200
Cienerie poind, 304, 328
of a scheme, 300
of Spec{ R}, 300
Crenus
arithmetic, 342, 351
in flat family, 313



Index

of a smooth curve, 27, 87
of the modular curve X {1}, 20, 21
two, special fiber of curve of, 355
zera, 343, 352
GLy, See General linear group
Global sections, 397
Cood Aber, 203

Good reduction, 184, 287, 321, 329 383,

388
conductor, 3581
Grissencharacter is unramified, 168
potential, 140, 148, 151, 176, 383
torsion for, 453
Graded algebra, 27, 88
Graph of a morphism, 300
(irean’s function, 477
Group
algebraic
See Group variety
pro-p, 150, 182
sporadic, 61
topological, 85
Gronp chunk, 198, 334
Group cohomology, 193
of a cyclic group, 421, 449
Group law
induced by normal law, 334, 337
is normal law, 334
Group of components
of a group variety, 292
of Néron model, 350, 362, 363, 364,
379, 402, 486
of special fiber, 363, 364
Group of sections to an elliptic surface,
202, 203, 210, 298
Group scheme, 306, 398
action. 321, 326, 400
additive group. 307, 397, 308, 399
associated functor, 309
associated to normal law, 334, 337
associativity, 307
diagonal morphism, 309
extension of group law, 332, 335
finite, 397
identily component of special fiber,
326, 361
identity section, 306, 326
in characteristic p, 397
inverse map, 306
local ring along identity, 327
morphisms to, 327, 333, 337
multiplication map, 310, 398
multiplicative graup, 308, 397, 368,
399
Neéron moadel, 319
of roots of unity, 397, 398
proper, 327
set of P-valued points, 309, 397
smooth part of Welerstrass equation,
321, 362, 378, 399, 400
smooth Weierstrags equation, 320

translation map, 310, 336, 337, 400
Ciroup variety, 291

abelian. 196

additive group, 291, 293, 398

algebraic, 115

defined over K, 291

determinant homomaorphism, 292

elliptic curve, 291, 293, 398

weneral linear group, 291

homomorphism, 292

identity component, 115, 292

irreducible components, 292

is a group scheme, 307

is non-singular, 252

Jacobian, 402

linear group. 292, 396

multiplicative group, 291, 283, 398

of dimension one, 283, 398

orthogonal group, 396

ralional points of, 292

special fiber of Néron model, 361

special linear group, 252

special orthogonal group, 396

symplectic group, 396
C(irdssencharacter, 136, 165, 168, 173, 184

conductor of, 176

for j = 0 curve, 177

L-series, 171, 173, 175, 183

of twisted curve, 183

on £, 156

reduction modulo 3, 174

unramified, 168, 173, 174

Half-plane of convergence
of L-series attached to cusp form, 83
ol L-series attached to elliptic curve,

183
Hardy, G.H., 61
[Lasse, H., 93

Hausdorff space, 16, 18, 19, 85
Hecke. E., 81, 173, 454
Hecke algebra, 70
is commutative, 71
of ['{1}, 70
Hecke L-series, 173
Hecke operator, 67-74
See also Hecke algebra
action on a cusp form, 76, 78, 79, 92
action on a lattice function, 74
action on a modular form, 76
action on a modular function, 76, 79,
91
action on Fourier coefficients, 76, 75,
%
as shifting operator, 76
commutativity of, 71
definition of, 68
discriminant is eigenfunction, 78
eigenfunction for. 77
explicit formula for, 71, 73, 74, 90
recursive formula [or, 90
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Hecke operator {corndinued )
relations satizfied by, 68, 79, 60
self-adjoint, 92
simultaneouns eigenfunclion lor all. 78.
79, 80,92, 93
T{p), 74. 77
Heegner, 111
Height
additivity, 206, 261
and linear eguivalence. 236
associated to a divisor. 2506, 265
associated to a morphism. 25%
associated to a positive divisor, 285
astociated to an ample divisor, 257
agsociated to diagonal of curves. 285
associated to exceptional curve, 385
canomieal. 217, 217, 2685, 234G, 204, 281
286
canonical
See Clanomical height
duplication formmla, 213, 257, 251
explicit (X1} estimate, 280
finitely many points of bounded, 257,
265
tor algebraically cquivalent divisors,
285
functoriality. 256
gearnetric transfortmation properties.
213
infinitely many clements of hounded.,
213, 220
Nérou-Late. 217, 247, 265, 266, 269,
281, 284G
See also Canonical height
normalization. 256
on a function field, 212
on & varicty, 256
on an elliplic swiface, 2120 213, 265
on curves. 257, 264, 265
on projective space. 253
parallelogram law, 213
quasi-parallelogran: lavw, 280
regulalor. 273
specializalion of, 265, 266, 264, 28],
286
stom of local, 212
Height Machine. 256
verilication of, 262
standard propertics. 267, 268
Hensel's lemmia, 330, 331, 401, 443
multi-varialle version, 401
Henselian ring. 340, 101
complete ring s, 330
strictly, 330, 402
snrjectivity of reduction. 3300 333, 5337,
401
Henselization
fraction field, 332
of a DVR. 331
strict, 337
universal mapping propeciy, 352, 401

Index

Hermitian inner prodact, 92
Llighor ramibeation group, 537%
intex function for. 105
lertisn group. 380
15 normal, 380
over Z-adhe field. A04
over d-ncie field, 404
Hilbyert cluss field, 95, 118, 130, 132, 142,
I8l
abelinn extension of. 1734
Artin map for. 118
Cladols group of. 1148
generated by (R 121, 122, 166
of {3/ —15). 180
of iy 23). 180
of quadratic imaginary Aeld. 121, 122
Hilbaert irreducibility thooremn., 272
Hilbsert. theorem 90, 1973, 421
Hindrey, B 277, 278, 486, 487
Holomeorphic diflerential {orm, 27,20
on a curve, [98
Henngeneois space of an elliptic curve,
15949
Homology group, 37, 43
of a curve, 118
Hotmomaorphism
of groups, 127
ol group variotie
Homnol hetic attice
13, Le
Hotwi hety operator, G, 40
relations satisfied Ty, 68
Horizonkal cnrve, 237
interseciion with, 283
Hovizondal divisor, 237
on at arithimetic snrface. 340
TTaewitz, AL 101, 294, 187
Hyperelliptic curve
intoper poinls o, 277
Jacobian varicty, 100, 287, AR
of genus two. 287
over funclion field, 277
Picard group, 287

292
= 6. 90 14, 57, 101,

Tieal
of an idele, 119 152 154
principal. 132
[deat class group. 449, 150
See alae Hilbert class ficld
acts on ELL(Ry), 99
avts on £ L LRy ) transatively, 100,
113
algorithin to compute. 85
class contains degree one primes, 118,
123
s finite, 86
is Picard group, 1492
of a tunctlion field. 192
of quadralic imaginary fleld. 85
Ilede
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ideal of. 119, 152, 130
mnitiplication by, 159, 170
Idele gronp, 119

characterization of ray class Helds, 1200

162
class field theory wsing. 115 120
contains K7 119
contains K 1148
nerm map. 119
topology on, 114
Elentity component
o A group varicly. 1150 202
of Néron modol is Weierstrass equa-
tlom, 362, 478
Identity elament. Néron model, 326
ldentity section of a group schewwe, 506
Inage of a rational map. 201, 279

Inridlence madrix, 240, 241, 205, 285 350,

402, 403, 186G
Incoptete paimma function, 93
Luddex function for higher ramification
grops, A5
Inert pritne. 181
Inertia groap, 1200 149, 169, 331, 380,
415
abzolle, 350
Inner prodnet
Hermitian, 92
I*eterason, N2
positive definite, 92
Inseparable isogeny. 127
Integer points
cffvetive moethods, 277, 258
on an clliptic surface, 275
Integers of a function ficld. 275
Integral seherre, 311
Integral
elliptiv. 174
nol path independent, 198
Intersection
self, 234, 23R8, 245, 281, 342, 349, 351
transversal, 2320 252
Intersection index
Arakelov, 311
cumputation of, 283
exanple, 319
Hnwear cguivalence. 341
lacal, 233, 283
an FL. 340, 341
ot an arithinelic surlace, 339, 341
sum of local indices. 244
syramnetyic, 341
Intersection pairing. 233
Aralelov, 311
incidence matrix. 240, 241, 243, 283
on an arithmetic sucface, 341, 342, 353
on fiberod sarface. 248
symmeatric, 34
lovariant differcntial. 43, 97, 134, 153
Inverse on a group scheme. 306
Irreducibility theorem of Hilbert, 272

iy |

Irreducible topological =pace, 280
Tsogony., G7, 182
Between O3 curves. 1780 T8}
between Tate curves, 463
cotiparison of discrininants. 153
conductors are equal, 11
degree preserved under reduction. 121
daal. 670 1250 240 400
ecopuations lor, LE3
field of definition of. 105
iw o homotmorphisoa. 306
lilt ol Frobenius map. 130, 132, 1062
of Néron inoedel. 400
purely inseparable, 127
redhietion nod 01210 127 120
[somorphism bivational, 204
Twasawa modlule, 186G
[wasawa theory. 96

F-invariant
classifies elliptic curves. 36
OWLin G, 107, 138
commputation of ) 112, 1581
divisibility propertios of Fourier coethi-
clenis, )
eclliptic surface with conslant, 286
Galois canjugate of . 112
generates Hillert class fold. 124, 122,
103
growth properties of Fourier coefli-
clents, £l
in £ 1114
integral. 383, 103
integralily propertics, L, 1510 447
J=0. 102, 107, 180, 280
S= TR 100, 1OV TR, e
Cirdssencharacter, 183
mnnber of points moedale po LRG
J— —3ath 1L
o= w0, 1100 T80
map X(1) - F'Ch 23, 30 306, 88
mrlubar, 38850 1200 11
modutar function of weight zero. 510
112, 111
uon-integral, 382, 105
of an elliptic surface, 280, 255
of UMD curve = algebraice, 104
obf UM eurve iy jntegral, L0 117, 151
447
feseTies, A% GO0 1210 T30 132, 144,
15, Blb, 110
ralionalily properties. 37, 104
singular. 104
supersingubar, Dkl
Tate curve F 0 423, 125 134, 173
transcendental values, 108
valuation of. 362, 379
Jacaba, (., G2
Jacolw sum. 177
Javobi’s formula, GO, 62, 65, 900 109, 365
Jacobian malrix, 330, 401
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Jacobian variety, 197, 199, 402
canemeal heighd o, 271
cornstruction ol 197
curve of gems Lwo, 287
dimension of. 197
feld of definition, 19
i= o functor, 198
Niévon mudel, 330
of a homogeneous space, 1899
of a hyvperetliplic curve, 199
of genns one curve, 197
of getas 2een corve, 197
of hyperelliptic virrve, 436

Jordan normal form, 179

Jugendtranin, S6

Kernel of Arvin map. 117, 118, 179
Foolaira, K. 287 302 486
Kodaira-Néron classification of Alers.
3o, 3h2
Raodaira novation for special fiber, 353
Kodairs reduction type. 3020 353, 363,
Eiia!

Kemya, T, 272
Kramer, K. 385
Kraus, AL 186
Kronerker, L., 95
Kronecker congruence relation. 182
Kronecker Jugendtraum. 96
Kronecker limit formula, 484
Fronecker-Welber theorcin. 93, 120
Krull dimension. 300, 302
Kummer extension. 383, 116
Rummer =equencs

for an elliptic surface, 193

for fields. 193
Kummer theory tor function lields, 191
Kuwnda, Mo 189, 480
Wuwk. V¥, 380

F-series
See wlse Thrichlet series

analylic continuation, #3, 93, 84, 173,

Fi#
attached o a cusp form, 83, 85, 93
attached to a modalar form, 93
atinched to o power series, 80
attached 1o a twisted cusp form., 94
clliptic curve, 364

Falar product expansion, 80, 92, 172,

173

for p= 0 curve. 174

[unetional equation, 83, 93, 94, 173,
176, 1R

half-plane of convergence, 34, 172, 183

Hocke, 1TL. LT3 LTH, LES
intogral representation. 24, 83, 91
leadding couvilicient. 364

Tocal of B atp, 171, T84, 185

[ndex

of an elliptic cuvve, 171, 172, 175, 183,
185
relations satisfied by coellicients. 80,
02
residue of. 93
special values of, 93
f-adic cobomology. 172
Lang, 8., 231. 275, 285, 185
Lang’s conjecture. height lower bound.
287
Laska's algorithm, 364
Laska, k.. 364
Latkice
associated to o Welerstrass equation,
33, 88, 89
Euclidean, 254
Hecke correspondence on, 68, 90
homothetic, 6, 9, 14, 37, 101, 103, 161
homot hety correspondence on, 68, 90
norinalized, 47
normalized basis,
of an abelian variety, 196, 198
of an elliptic curve. 408
oriented basis, 6, 9, 71, 72, 73, 89
set of all (L), 6. 36, 68, T4
sublattice, GT
sublattice of index ». 71, 72, 73
Lattice function, 74
associated Lo a modalar Function, 74,
79
Laurent series
for Flug). 49, 51
for g, 34, 51
for ¢, 39
peadic, 429
Lelschetz principle, 199, 163
Legendre relation. 41. 465, 469
Lehmer, V1. 61
T.ehner, J_, i}
L'Hapital’s rule, 45
[ichtenbaum, 5., 317, 338, 344
[.ie group
complex, 18
real, 420
Limit formula of Kronecker, 184
Linear equivalence
and height functions. 256
intersection index, 341
of divisors on a surface, 232
Linear fractional transformation, 294
Linear group. 292, 3456
Linearly equivalence, 339
Lipman, 1. 317
Littlewood. 1., 61
Liu, €., 390
Local L-series of £, 171, 184, 185
Lucal class tiell theory, 140, 145, 1449,
452
[.ocal degree 7., 461
Local equation for a divisor. 2132, 233
Lascal Feld
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Artin character, 405
different, 386
higher ramification group, 379
index function, 405
inerlia group. 350
maximal unramilied extension. 381
Swean character, 403
Lowal height function, 429
algorithm to compute, 475, 479
amsoriated Lo v, 461
comparison with naive heighi, 478
differential cquation for, 477
duplication formula. 4566, 475
existence of, ABLH-161, 4TH
archimedean absolule values, 467
nan-archimedean absolute values,
470, 375
integral over E{C), 477
is a Green's (unction, 477
15 continuous, 454G
= invariant under field extension. (156,
476
is well-definud, 456, 470
is zero [or almost all o 461
lower bonnd for, 450
multiplication formmula. 477
on fp{ ), 469, 478
on Tate curve £, 473, 475
over T, 464, 466. 477, 479, 480
over non-archimedean fields, 469 176
over peadic felds, 469-476, 478, 179,
480
wver %, 4TY
quasi-parallelogram law. 467, 176
triplication formnla, 463
Local interseclion index, 233
oL JF}:‘,._ 340, 341
on an arithmetic serface, 339
Local Néron height function
See Local height function
Local parameter, 19, 20, 29, 30. 85
Local ring
s discrete valuation ring, 232
of a curve an an arithinetic surface,
311, 314, 30
of & surface at a curve, 231
ol & surface at a point, 231
of arithmetic surface, 315
of group =chiems alonyg dentity, 327
regular, 302, 470, 397
regular of dimension two, 315
Localization. 179
Locally compact ficld, 476
Lockhart, P, 385
Logarithm
formal, 150, 182
principal branch, 44, 54, 56, 66

Magic, L

Main theoretn of complex muitiplication,

1537, 159, 166
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Manin. Yu., 247, 265, 269, 271, 275, 485
Mason. R.C, 277, 278
Masser, ., 27
hlatrix
incidence, 350, 302, 403, 486
Jacobian, 3300 401
Maxinal abelian extension
of exponent 3 unramilied outside S,
191
of quadratic imaginary field, 135
haximal unramified extension
albelian
See Hilbert class field
of a local Reld. 351
heromorphic function
s a, 23,35
on X{1]. 23, 35
on F1. 35
an H, 21
Mestre, J.-F., 272, 486
hinimal discritninant, 363, 364, J88, 38
greater thap conductor, 396
of an elliptic surface, 286
of isogenous curves, 453
over Z-adic field, 107
aver 3-adic field, 406
Sapiro’s conjecture, 287, 388
valuation one, 36%. 300
valuation two, 399
Minimal fibered surface, 244
birational map is morphism, 244
Minimal proper regular mocdel
components of special fiber, 384
connceted component, 326, 301, 401
identity component of special fiber,
326, 361
number of components of special fber.
463, and
of a curve. 317, 318, 314
of an elliptic curve, 325, 332, 333, 337,
350. 361, 400
reduction type, 332, 333, 363, 364
gpecial Gber, 330, 352, 103
Minimal surface. relatively. 233
Minimal Weierstrass equation, 321, 403,
478, 140
algorith, 364, W3
for p = 3. 406
for p = 4, 405
hlodular j-invariant
See j-invariant
MhModular curve X (1), 11
affine part Y(1), 14
complex structure on, 1H, M), 26, 25,
35
clsp, 14
differential forms on, 23, 28, 87
has genus sero, 200 2]
it a Hausdorf space, 18, 19
is a Ricmannu surface. 20, 32
s compact, 19
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Modnlar curve X{1) {continued)

ix connected, 21

Jj-function on, 23, 31, 536

local parameter. 200 21, 29, 30, 85
meromorphic functions on. 23, A5
open cover ol 20

order of a ditferential form, 28
projeciion is open toap, 19
topology on, 16, 1814

[ndex

[or elliptic suclaces, 276

for function fields, 230, 279

for split elliptic aurfaces. 2310 281
ineffective, 277

over finitely generated fields. 279
relative, 231, 281

weak, 190 195, 230

Morphizm

Inrational, 235

Modular curve X {11}, 190, 279
Modular <iscriminani

See Iseriminant.
NModular form. 23, 91 8ee also Modalar

diagonal, 3000 309, 327
divisor sssociatod to. 258
Grale, 306

lat, 304, 307

[unction. cusp form
action of Hocke operator. 76
dimension of =pace of . 31, 87
Fisenstein series s a. 25,31, 32
Fourier cocfficients of. 82 42

graph of, 300

of S-schemes, 207
Pproper, 305
separated. 305

smooth, 304, 305, 306, 320
universally elosed, 305
hMultiple fibers, 203
Multiplication map
continuous for v-adic topology, 460
on elliptic curve, 310
on gronp seheme, 3100 398
hndtiplication by an idele, 158, 170
Kudtiplication-by-n map on an elliptic

FomeTics abtachoed to, 93
size of Fourier coefficients, 82, 92
space of (Al 31087
space of is generated by (G, Gy, 88
spaces with dimension one, 33
Modular function. 24, 91
See alse j-invariant; modular form;
cusp formn

J i""l a, 3'1_ . swrface, 266
action ol Hecke uperator, 76, 70, Bl Multiplication-by-r map on G/%. 152,
associaled differential form, 28 31, 87, 153

o1 Multiplicative group, 128, 131, 398, 399

assoctated lattice funclion, 74
eigenfunction for Hoecke operator. 77
formula for ocder. 30

Lourier serics. 241, 76, 147
holomorphic at oo, 24

meromorphic at =, 24

of weight zero. 341, 33, 182

order at o, 24

value at oc. 24, 32

exponeutial roap, 151
formal, 119, 431
over a lield. 291, 203, 383
over K. 308
over &, 308
over T, 30K
rational points of, 292
Sa-valued points, 397
; - Tate moxdule of. 352
weight of. 24 tarsion subgroup, 131
why even weight. 24 Multiplicative reduction, 287, 369, 388,
Modular group 1(1), G-14 U
See also Action of SLe{Z] an H
penerated by S and 77, 14, 24, 62, 85
is a free product, 14, 85
Mlodular polynumial
examples, 148
Foo 144, 146, LR 182
&, 181, 182
iy, 144, 116G
size of coeflicients, 181 Nigao. K., 272
honster group, 6 Nakai-Moishezon eriterion, 258, 261, 2483
hMontgotnery, H., 487 24
Mordell, L.J., 1. 79 Nakayama'y lemroa, 103
Mordel]l conjecture, 271 Namikawa. Y., 355, J86
Mordell-Well group Natural map. 197, 198
Fuclidean structare, 247 Negation map, on an elliptic curve. 320
lattice structure. 251 Névon., A, 231, 265, 272, AR2, 104, 440,
Mordetl-Weil theorem 1X5
bannd for rank, 279 MNéron height function
fon abelinn varieties. 1o See Local height funetion

conductor. 381
Méron wmadel, 403
non-split. 171, 378
spht. 171 362, 377, 379
Lorsion for, 453
Multiplicity of fibral components, 313
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Néran-Kodaira classification of fibers,
350 352
Néron mappiug property. 319, 329, 333,
338
Néron madel, 319, 361
addition formula on Welerstrass cqua-
tion. 323
aulomorphisin of, 400
connecled component. 326, 361, 401
dual isopeny, 100
existence, 325, 332, 335, 337
extension of group law, 332, 235
generic fiber, 319
gronp of components, 330, 362, 363,
F64. 3TY, k2, 86
group of sections, 319
group scheme action, 336, 400
identily component is Welerstrass
aqualion. 362, 378
identity component of special filwer,
326, 361
identity section. 326
sogeny, 400
nmltiplicative veduction, 405

negation map on Weierstrass equation,

325
Néron mapping property. 319, 320
nat proper, 319
of Jacobian variety, 350, 486
of Tate curve £, 435
over a strictly Henselian ring, 402
over strictly lenselian ring. 332, 335
special fiber, 330, 361, 100, 435
subgronp schere. 401
translation map, 100
uniquensss, 319
unramified base extension, 320
Weierstrass equation. 321, 320, 362,
369, 3TE, A9, 400
Néron notation for special fiber, 353
Néron-Ogg-Shafarevicll criterion, 140,
151, 148, 1700 362, 381, 383
Nérom-Severi group
of an elliptic surface. 254
rank, 2054
Nice scheme. 311, 399
Node, 287, 370
Non-linearity, textual. 217
Nan-pertect field. 187
Non-singular arithmetic surface, 311
Non-singular point,

o fiber of arithmetic surtace, 315, 351,

399
ou reduction, 362, 374
on scherne
See Regular point
Non-gingular scheme
Hee Regular scheme
Non-split multiplicative reduction. 378.
390

Norin rmap

L)

compatibility with reciprocity map.
1:20)
of fields. 444
an ideles, 119
Normal law. 334, 335
associativity, 334, 355
induces group law, 334, 337
on syinmetric product of o corve. 402
Normal scheme. 311
principal divisor on, 328
Normalized basis, 7
Nommalized eigenfunction. T8, 79, 80. G2,
a3
See alse Figenfunction
Normalized elliptic curve (F,[-]), 87,
131, 134
Normalized lattice. 47
Nullstellensatz, 259
Number field
abelinn extension, 128
See also Class feld theory
Artin ruap, 117, 1148, 154
decomposition group. 116
ideal class group, 99. 180
idele group. 114
maximal abelian extension, 120, 121
of class number one, 138, 141
{¢), 138
unit group of, 191
Zp-extension, 186
Numerical equivalence, 186

Oge, AL, 355 389, 487
Ogg's formula, 363, 364, 387, 389, 396,
47
One-cocyele on elliptic surface, 2841
Croe-parameter family of elliplic curves,
188, 200
COperator
Hecke
See Hecke operator
homothety, 68, 90
Order
al o¢ ol a modular function, 24
conductor of, 178
non-maximal, 160, 178, 180
of a differential form, 27
Grdinary rednetion, 179, 184
Oriented basis. 6, 9, 71, 72, 74, 80
QOrthogonal group, 396
special, 396
Osterle, )., 274

peadic analysis. 424, 429
p-adic field, 423

SQUATCS Imy, 442
p-adic pericd. 364
p-adic Tate module, 186
p-primary comnponent. 157
g2 See Weierstrass o (unction
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Parallelogram law, 218
for height. 213
Path independent integral. 198
Perfect lield, 330, 332
Feriod map, 43
Perind, p-adic. 3td
Periodic second Bernoulli polynomial,
ER
Periods, 37
Petersson, H., 61, 80
Petersson imner prodoct, %2
Hecke operators are sell-adjoint, 92
Ficard group
See also Jacobian variety
divisor class of degree zero, 197
elements of finite order, 192, 195, 199
indluced homomorphisim. 255
b5 ldleal class group. 192
of P2, 232 282
of P, 282
of a curve, 402
of a Rbered surface, 284
of a surface, 232
of curve of genns two, 357
of hvperelliptic curve, 287
IPoints
of a group scherne, 309, 387
of a scheme, 298, 304, 397
Polar divisor on normal scheme, 328
Positive divisor, 441
associated height, 285
Potential good reduction. 140, 148, 151,
176, 383, 447
Power divisor funclion o
Bee oy
Prime ideal
it arithmetic progression, 118, 123
in ideal class, 118, 123
inerl, 134
split, 1384
splits completely, 117, 118, 179
Primitive Thrichlet character, 93
Primitive root of unity, 21, 23, 29, 154
Principal branch
of logarithm. 44, 34, 56, 66
of square root, 63, 67
Principal divisor, 232
an an arithmetic surface, 339
Principal ideal, 132
congruent to 1 modulo o, 117
Pro-finite topology, 120, 152
Pro-p group. 150, 182
FProdurt
fibor, 209
restricted. 119
Product expansion of sine function, 56,
Bl
Projection morphisin on fiber product,
200
Projective closure of a scheme, 371
Frojective line
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arithmetic genus, 343, 352
arithinetic surface, 312
proper over A, 312
smooth over K, 312
Projective plane, Picard group of, 232,
2AK2
Projective scheme, 15 proper, 303, 322
Projective space
height on, 255
over 4 ring. 2848
over a scheme, 301, 303, 322
Picard group of, 282
Proper arithmetic surface, 311, 316, 317.
351
Proper group scheme, 327
FProper morphism. 297, 305
intuitive definition, 301
valuative criterion, 303, 317, 329, 333
Proper regular model
mimitnal, 325, 332, 335, 347, 369, 100
of a curve. 317
Proper schome. 3120 321, 329, 3649
group, A27
mapr from smooth scheme, 328
projective scheme s, 3003, 322
Proper S-scheme, 301, 305

q-expansion
See also Fourder coeflicients
of Bernoulli polynomial, 480
of diseriminant A, 5% 409, 467, 468
of g2 and gy, 109
Uf Cr‘-y\.,_ 55
of j-invariant. 5%, 144, 145, 146, 410
of & modular function, 24, 53, 1582
of g and ', A7, 50, 109
of Weiersirass o function, 53, 467
of Weierstrass { funetion, 52
Cuadratic characteor, 410, 444
Quadratic ficld, non-maximal order, 178
150
(nadratic form. canonical height. 454
Quadratic imaginary field
(i), 138
ahelian extension of, 128, 135
algorithin to campute ideal class
group. 83
Hilhert class Reld of, 95, 121, 122, 142,
166, 181
ideal class group, 85
maximal abelian extension, 135
of class number one, 138, 141
ring of integers, 85
Quadratic transformation, 244
Quagi-parallelogram law, 213, 467, 476
explicit ©(1) estimate, 280
Quasi-period homomorphism, 11, 43, -4,
52, 3. 65. 59, 112, 164, 165, 166
See also Legendre relation
formula for, 41
Quasi-periodicity ol £. 40
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Quaternion algebra, 130

CQuaternion proup, 401

Quatient topology. 83
an X(1). 18, 19

Rumamijan | 5., 61. 79
Ramanujan conjecture, 61, 81
Ramannjan ¥ function, 59. 60. 482
prowth properties, 1
multiplicative identities. 61, 79
special values, 6()
Ramification index, 283
Ramification. wild, 380
Rank
high over {J. 272
of Néran-Severi group. 234
upper bound. 279
Rank one wmodule. 102, 138, 186
Hational map. 203
hirational isomorphism, 204
blowing-up, 204, 235
domain of definition. 204, 279
dominany, 204, 222, 228

from smoolh scheme to proper schemoe,

328
image. 204
is algebraie, 204, 279
is irreducible, 204, 280
naive definition. 204
of elliptic surfaces, 206
of varieiies, 132
Hay class field, 117, [1#, 120, 135, 161
conductor of, 117, 118, 129, 135
idelic characterization, 120, 162
rmodulo unit ideal, 118
of IJ(i). 138, 180
of Q{+/=3), 180
primes splitting completely, 118
Haynaud, Kl 350, 486
Real Lie gronp, 420
Reciprocity
Artin, 117
Drecdekined, 67, 90

map, 120, 152, 153, 165, 166. 168, 169,

[v4

Reduction map

injective on torsion, 162

surjectivily, 330, 333, 337. 40t
Reduction

adiitive, 171, 287, 381. 388, 399, 403

had, 321

good, 287, 321, 329, 381, 383, 388

multiplicative. 171, 287, 360, 381, 348,

403
non-singular points, 362, 370
non-split multiplicative, 399
of a =cheme, 300
of an isageny, 124
of Weierstrass equation, 362, 378
ordinary. 179
serni-stable, 388
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split multiplicative, 399
Reduction type. 3532, 3533, 363, 364
oveor d-adic feld, 406, 407
Hegular
arithmetic surface, 311
differential form, 27
in codimension one, 311
Hegular arithmetic surface, 316, 317,
331. 370, 309
not-singular point on fiber, 313, 3531,
3uy
smooth part, 316, 318, 321, 325, 332,
335. 361, 362, 364, 378, 399, 400
Welerstrass cquation, 399
Regular local ring, 302, 370
localization is regular, 397
of dimension one, 328
of dimension two, 315
Rogular mode], mintal proper, 326,
332, 335, 337, 400
Regular point. 302
on a scheme, 397
Begular scheme, 302, 398, 399
example, 313
intwilive definitiorn, 301
ol dimension one, 302
smooth part, 3430
Welensirass equation, 304
Regulator. height, 273
Beimann conditions, 196, 198
Relative differentials, 306
Retative dimension of a smoolh mor-
phism. 305
Relatively minitmal fibered surface, 243
Relatively minimal surface. 235
Representation
irreducible, 405
of lype Eg. 189
lesidue symbaol. Gth-power, 177
Resolution of singularities. 235
Restricted product, 119
Resultant. 458
Risinann £ function, 25. 35, 171
functional equation, 83
special vaines, 26, 33, 57
Riemann hypothesis for varietios over
finite fields, 61, 81
Riemann surface. 14, 19, 23. 27
See also Curve
dilferential 1-forms on, 27, 43
meromorphic k-forms on, 27
Riemann-Roch theorem, 28, 30, 42, 87,
198, 226, 238, 345, 430
Rigid analysis, 430
Rigidity lemma. 2096, 306

Ring of integers of a quadratic imaginary

field, 85
Ring
Krull dimension of. 361
of correspondences, 70
regular local, 302



F-morphizim. 207
Raohrlich, )., 483
Buol lattice of lvpe E,,. 254
Root of unity
pritaitive. 21, 23. 29, 154
group scheme of, 397, 305
Ruosen, M., 385, 185
H-sehemne, 297
goneric fiber, 300
reduction modulo poo3go
se1 of fl-valued puints, 208
Ruled surface, 236
H-valued points, 293
of an alfine schepw, 293

sidg). 110
alternative form, 112
silg) ALL. 425
S, T2, 143
order of, 72
5. 181
wrder of, 151
7 See Wederstrass ¢ function
Fi, 90, 61
Saito, I 3R89, 390
Scheme, 134
dinension. 32
oxcellont, 311
fiber product, 299
lintte tvpe, 311
lat.. 311
generic filer. 300
generic point. 304
group. 36
imtepral. 311
nice, A3
not-singular point. 302
norimal, 311, 32
of Dedekined damain, 502
over w base ring. 207
over & base S, 297
progjectivee closnre, 371
proper, 305, 321, 322, 524, 399
recduction wodulo p.o 300
regular, 301, 39%, 300
regular of dimenzion one., 302
regular point. 302, 307
simooth, 328, 397, 401
stooth part. 399
structure sheal on, 307
Schuwidt. W., 277
Sehneider, T, 108
Schirelmann’s Theorem., 429
Secord Bernoulli polynomial. 468, 473,
ATHR, IR0
Second kiwd dillerential form, 43
Section
divisor of a, 245
to a morphism, 202
to an elliptic surface, 202
to an Sescheme, 298, 309, 307

Dnddex

Segre embedding, 261
Self-inlerscetion, 234, 238, 243, 2873, 342,
349, 351
equals tinus one, 314, 352
Semi-stable reduction, 388
Separated morphism. 300
Serre, J-Po 1300 149, 261, 381, 417, 487
Serre’s theorem, 20|
Shafaravich, TR, 317, 348, 341
Shatuz, 5. 187
Sheal
globhal sections, 3097
of relative differentials. 306
Shirnura, ., 93
Shioda, T., 189, 217, 201, 156
Sicgel, O 62, 27h. 27R
Sign of functional eqpuation. 176
Silvermar, 0L 265, 266, 269, 271, 277,
278, 385, 186G, 187
Sine function. 36, 68
Singular fiber, 203
Singular j-invariant, 104
Singular point, 171
on fiber, 311
on special fiber. 325
S-integers
cffcctive methods, 277, 288
of o fimction field, 275
points on an ellipltic suetace, 275
5Ly
See Special linear group
Smoath arithinetic surface, 311, 316
Suonth movphisin, 305, 306
compusitiog ol 304, 320
intuitive definition, 34
of relative dimension zero, 306
Smiooth scheme, 312, 3097, 3949
map to proper schome, 328
morplizim 1o group schewne, 327, 343,
37
over a DV, 301
surjectivity of reduction, 330, 383, 337,
101
Welerstrass equalion. 321, 324, 562,
369, 3TE, 509, 200
Smooth special fiber, 4011
S-marphisi, 2097, 200
Special liber
dual to Dynkin diagram. 353
Cladols action on, 353
group of components, 363, 364
dentity component, 326, 361
incidence matrix, 350. 402, 103, 456
Kaodalra notation, 3554
nultiplicity ane componeani=, N2
Néron uolation. 353
number of cormponents, 363, 364
al an arithmetic sarface, 311, 314, 361,
399
ol blow-up. 317, 371
of curve of genus two. 333
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of minitnal proper regular model, 35,
452403
of Néron model, 3560, 361
over a DV R, ()
sipngular points, 325
smooth. 101
Special linear proup, 8, 292
See also Action of SLa(Z) on R
action on Dy, 72
reduction mod N, B
Special orthogonal sroups, 396
Specialization map, 271
constructing high rank curves, 272
for height, 263, 2066, 269, 281, 286
is a homomorphizm, 271
% Infpective, 271, 281
on split elliptic surface, 271
Spectram ol a ring, 259
Split cllipric swrface, 220, 286
canorical heighs on, 28|
characterization of, 220, 22X, 280
has constant. 7. 221, 280
if indinitely many bhounded height
prints, 222
Mordell-Weil theorem, 231, 281
specialization map is Injective, 281
specialization of height. 281
Split wmltiplicative reduction. 362, 377,
BT830
Split prime, 184
Sporadic groups, 61
Square-(ree conductor. 388
S-scheme, 297
fiber prochct, 2494
nurphist of, 207
proper, Al
set ol T-valued points=. 2958, 300, 397
=01 of sections, 208, 304, 397
smneoth, 301
Stahilizer, 11
Stark, .. 141
Strict. Henselization, 337
faithfully flat. 338
fraction ticlil. 332
of o DVIRL 331
universal mapping property. 332, 401
Strictly Honschan riug. 330, 402
denyity of reductiotn, 330, 333, 337
Grale lopology, 332
Néronw model over, 332, 3435
Structure sheaf, 397
Swun, telescoping, 269
S-unit equation over function fiefds, 27%
ingular j-tonvariant, 104
aular reduction, 184

See alse Fibersd surface: Elliptic
surfice; Aritloned e sarface
adjunerion formula, 234
anne divisor on, 258
divisor, 231

n23

exeeptional curve, 236
{ibered. 236
intersection palring, 233, 238
linear equivalence of divisors, 232
lncal ring at a curve. 231
local ring at a point, 23]
IMicard group of, 232
primeipal divisor, 232
relatively minimal, 235
resolution of singularities, 235
rmled, 230G

Swan character, 403

Svumetric produoet, 229
of o curve, 197, 402

Symplectic groups., 396

Szpire, L., 388, 486G

Sepire's conjecture, 388
function ficld analogue, 287, 388
used to bound torston, 453

Tame part of the conductor, 380, 381,
405
invariant under isogeny. 4
Pangent line, 422429 472
Tate. I., 110, 149, 173, 265, 269, 3061,
381,423, 441, 434, 135, 454, 486, 487
Tate cupve 423, 141 444
See alse Blliptic curves over p-odic
fields
diseriminant of, 377, 423, 424, 473
filtration ol rational points, 130, 450
formal group of, 131
formmda for 5. 111
formula for diserimninant. 411
-invariant. 441
has splic maltiplicative redaction, 377,
141
wogeny of, 431, 453
J-imvariant of. 423, 425, 138, 473
local height on, 473
Néron model, 377, 435
reduction module 90, 377, 430, 142
scheme associated to, 377, 431
surjectivity of p-adic nutformization.
420 438
Lorsion subgroup. 445
unilormization compatible with Qalois,
121
uniformization aver p-adic fields. 141,
3TT. 123, 450, 173, 480
Wolerstrass equation, 23, 12060 312,
473
Weil-Chatelet group, 152
Tate module. 530
action of Frobenios, 172
of a OM elliptic carve, [48. 140, 179
of o lield, 452
of an abelian group, 382
of an elliptic curve, 452
of the additive group, 382
of the mnltiplicative group. 382
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Tale module {confinued)
p-adic. 1586
Weil pairing, 125
Tate's p-adic uniforinization theorem,
377, 411
Tate’s algorithro, 353, 361, 364-368. 337,
389,035
minimal Welerstrass eguation, 364
multiplicative reduction, 377
verification. J6O-377
T(n), Yer Ramanujan 7 function
Tehebaotaray density theorem. 161
Telescoping sum. 269, 460
Theorem 9 of Hilbert, 193
Theta finction e, ¢). 112, 426
peaclic, 42% 473
functional equation. 412, 429, 474
relation 1o X{w. g) and Y{u, ), 412,
429, 174
relation Lo Welcrsitass o function, 4112
Third kind differcutial [orn, 43
Topological group, 85, 119
Topological space, irreducible, 280
Topology
atale, 332
o a valued field, 455
on an elliptic curve, 435
pro-finite, |20 182
Torsion module is sum of p-primary con-
ponents, 157, 170
Torsion point
boundeduess conjectare, 453
ficld generated by, 128, 135, 383
forces guod /multiplicative reduction,
45%
ol multiplicative group, 131
ol order eleven, 190, 279
al vrder five, 278
of order seven. 27,
on Chl curve form free modale, 102,
138
on O elliptic enrves, 102, 135
an elliplic carves over peadic flelds,
353 445
reduction is mgective on, 162
Torsion subgroup of Plcard group. 192,
185, 199
Teonally lmaginary field, 116
Transcendence of §, 18
Translation map, 536
on a group schemne, 336
on an elliptic surfnee, 245, 248, 251
an elliplic corve, 310
on group schere, 310, 337, 400
on Néron model, 200
Transvection, 445, 447
Transversal inlersection, 232, 282
Triangle ineguality. 459, 471
Triplication lorimula, tor lacal helght. 463
Twist
of a cusp fonin, %1

Index

of an elliptic curve, 414, 439
of an L series, 94

Uecna, K., 355, 4806
Uniformization Theorew, 6, 3. 35, 88,
96 196, 411, 413
of elliptic curves over p-adic fields, 423,
44]
ol elliplic curves over B, 116
Uniformizer, 27
tor & curve on an arithmetic surface,
339
[Unit disk. holoimorphic automorphism of,
22
Unit group
of a [unction fHeld, 192
of a mumnber field, 191
Universal farnily. point of arder eleven,
190, 279
Lniversal property of fiber product, 2048
Universally closed morphism, 305
Unrarmified extension
cyclotomic, 383
generated by torsion, 3873
of discrete valuation ring, 35%
Voramificd Ordssencharacter, 1G58, 173,
174
Upper half plane H. 7
action of §T.2(Z). 9
differential form on, 26
exlended (H*)
Ser. Lxtended upper half plane
fundarental domain for SL2{2) ac-
tton. 10, 14, 25, 42
stabdizer of o point. 11

e-adic topology
multiplication map is continwows. 460
on a Acld, 155
an an elliplic carve, 455, 176
Valuation
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