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1. Suppose that H(T) = £ ane
z"inT'N (1-1)

n=l

is an integral modular form of dimensions — K, where K> 0, and Stufe N, which
vanishes at all the rational cusps of the fundamental region, and which is abso-
lutely convergent for y = $jr > 0. Then

H(T) = J^T)

where a, b, c, d are integers such that ad — be = 1.
Let F be the non-homogeneous congruence group of transformations for

which

and let ji be the index of F. Then the number of different functions H^T) is O//i,
where 0 is the total number of different non-homogeneous transformations
congruent modulo N. I t is known that*

where p is a prime factor of N, and

p = \ (N=l,2), p = l

THEORKM 1. | ax |
2+1 az |

2 + . . . +1 an |2 = an"
as n tends to infinity, where

the double integral being taken over any fundamental region of F.

* Cf. for example, F. Klein and R. Fricke, EUiptische Modidfunktionen, 1 (Leipzig,
1890), 396-7.
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358 R. A. RANKIN

THEOREM 2. an = 0{nu~*).

Theorem 2 is an immediate corollary from Theorem 1 and is a slight improve-
ment on the previous result obtained independently by Salie* and Davenporty,
viz.

for any e > 0. The method which is used here does not depend on the estimation
of Kloosterman sums.

2. Remarks. A. Theorems 1 and 2 give, when applied to the modular form

A(T) = eZniT n ( l -e2"^)2* = S T(n)e2ninT,
K = l 1 1 = 1

the result that T2( 1) + T2(2) + . . . + T
2{n) ~ an12,

and T(n) = 0(ra;¥),

where r(n) is Ramanujan's function, and a is given by (1-4) on substituting
/c = 12, fi = 1.

B. The results of the present paper hold, not only for ordinary modular forms,
but also for any modular relative invariant which satisfies

^T) = €(CT + d)~* Hi(~^ (ad-be =1),

where e is a constant of unit modulus depending only on a, b, c, d.

C. Let F(N) be the non-homogeneous principal congruence groupf, i.e. the
croup of transformations ,
6 ^ _ Q7-! + 6

T ~ CTi+d'

. , . . (a b\ (I 0\ , „
for which I j I = Irt ,1 m ° d •«•

\c dj \0 1/
Then the constant a in (1*4) may be written in the form

where O is given by (1-3), and D is any fundamental region of F(N). For D
contains OJ/i fundamental regions of F. This is the form in which we actually
obtain a in § 5.

* H. Sali6, "Zur Abschatzung der FourierkoeflSzienten ganzer Modulformen", Math.
Z. 36 (1931), 263-78.

t H. Davenport, "On certain exponential sums", J. reine angew. Math. 169 (1932),
158-76.

% Hauptkongruemgruppe.
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Ramanujari's function r(n) 359

3. We need the following lemmas.

LEMMA 1. If D is a fundamental region of the congruence group F(N) which
contains the point at infinity, then

[[y-y\H(r)\*dxdy
D

is absolutely convergent for any y.
This is an immediate consequence of the fact that H(T) vanishes at all the

rational vertices of D.

LEMMA 2. Ifr = x + iy, where y>0, then

exp j - ~-| m/?r + ny + XT+/I |
o \ pyy

where fl, y, w are positive, and A, /i are real, both series being absolutely convergent.
This lemma is easily obtained by applying the Poisson summation formula

twice to the first double series. By elementary methods of approximation, we
have

LEMMA 3. In the notation of Lemma 2,

where A^isa constant depending on /3,y but not on w, r.

LEMMA 4. / / %(n) is a primitive non-principal character modulo k, and if w,
are positive,

S 2
m=—co»=-oo

where e(x) is a constant of unit modulus depending only on
For putting n = njk+/i, where 0 ̂ ji < k, we have

I mn
S S ()

m= — oo n = — oo

ft—1 co oo w

S S exp _ _
m = - o o n , = — oo

|
/'"'if

PSP XXXV, 3 23
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360 R. A. RANKIN

by Lemma 2. And since x(n) is a primitive non-principal character*,

f
and this completes the proof of the lemma.

4. The case N = 1. We treat this case separately since the analysis is much
simpler.

4-1. Let/(s) be the function defined by the Dirichlet series

/(s)= £ -~^, (4-1-1)
7 1 = 1 ^

where the numbers an are the coefficients in (1-1). We prove first the following
theorem.

THEOREM 3. The function f(s) defined by (4-1-1) has the properties:
(i) The series (4-1-1) is absolutely convergent for cr = <81S>K.

(ii) f(s) may be continued as a meromorphic function over the whole plane.
(iii) f(s) has a simple pole of residue Kaats = K.
(iv) f(s) satisfies the functional equation

<l>(s) = S(2K— 1 —s), (4-1-2)

where <f>(s) = (2n)-*° T(s) T(s - K + l )£(2s-2* + 2)/(s).

(v) $(s) is regular over the whole plane except for simple poles at the points
s = K, and s = K—1.

By Parseval's theorem,
r* «

| H(x + iy) \2dx = 2 |an|!

Now r(s) = i u*-1e-vdu = (47m)8 j y*-1 e-*™v dy
Jo jo

for o~ > 0. Therefore
(47T)-8r(s)f(s) = S |an

l

I () \ y JIV1 () \2dxdy, (4-1-3)
s

say, where 8 is the strip y > 0, | x \ ^ \. The inversion of the order of integration is
justified, if a > K, since the integrals are dominated by their values for real s, and
since H(T) = O(y~iK) uniformlyf as y-> + 0. Hence (4-1-3) holds for OK. The
first part of Theorem 3 follows from this.

* Cf. E. Landau, Primzahlen, 1 (Leipzig, 1909), 483-92.
t This may be proved in several ways; cf., for example, E. Hecke, "t?ber Modul-

funktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung I" , Math.
Ann. 114 (1937), 1-28 (Satz 5).
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Ramanujari's function r(n)

Denote by D the fundamental region

The transformation

361

will be called an S-transformation if it maps points TX of D on to a region DT

lying in the strip 8. Since — a, — 6, — c, —d give the same transformation, we
suppose that

c>0, and d>0 if c = 0. (4-1-4)
Then, by (4-1-3),

for cr > K. But

y =

dxdy =

Vi

dx1dy1,

Hence s)f(s) = y ((T—-^
DTCSJJ 1 ^ ' I "-1

D

D

say, where

(4-1-5)

(4-1-6)

We now have to determine what the subclass of ^-transformations is. Suppose
that , i

r = y(Tl) = ^

is an /S-transformation. Then, since the point TX = oo of D corresponds to a
vertex of DT, i

and there can be equality only if c = 2, a = + 1, by (4-1-4) since ad — bc= 1.
If we are given any two integers c, d satisfying (4-1-4), and

(c,d) = l,

there exists exactly one <S-transformation T(TX) with these values of c, d.
23-2
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362 R. A. RANKIN

For (i), suppose that c#2. Then there is exactly one solution in a, b of the
equation ad — bc= 1 for which

a

and, since one vertex of the triangle DT given by this solution is inside 8, and
not on either of the lines | x | = £, the whole of DT must he in 8.

If (ii) c = 2, then a = + 1. Suppose that one of these solutions gives a triangle
DT in 8 touching x = — £, for example. Then the transformation

has the same c, d and maps Don to a triangle outside 8 touching x = \, and
therefore corresponds to the other solution. Hence if one solution produces an
/S-transformation the other does not, and vice versa.

From this we obtain

m=0 n=-oo | TnT + Th \

where the dash denotes that n = 1 if m = 0. Multiplying each side by

we have g(«) = 2£(28-2K+2)F(8,T) = £ S'
m = — oo n=—oo

where now the dash denotes that the meaningless term where m = n = 0 is to
be excluded. Put

oo oo t ifin

K(W) = K(W,T)= 2 £' exp - —

for w; > 0, and for points r of Z). By Lemma 2,

Now

( V\8-K+1 fa!

i | r(s-K+l)\mT + n\-28+2*-z=\ t««-*exp|
Hence, by (4-1-7) and (4-1-8),

"+1 I\8-K+1) g(«) = f "M^1-* Jf (W) dw (a > K)

(•00 /«1

= vf~K K(w) dw+\ yf-K{ur1K(ur1)+vr1-l}d
Ji Jo
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Ramanujari's function r{n) 363

The first term on the right-hand side of (4-1-9) is a regular function of s over the
whole plane, for all T of D, by Lemma 3. Hence £(s) is a regular function of s
over the whole plane except for a simple pole at s = K, and it is clear that
satisfies the functional equation

-i-S). (4-1-10)

From (4-1-5), (4-1-6), (4-1-7) and (4-1-9), we have, for <T>K,

- 2K + 2)f(s) = ((y*-* \ H{r) | 2 / > - K + 1)£(s)dxdy

-2 | H(T) I * j J > - K +

fjB-K+1

(S-K)(S-K+1)
\yK~21 Blr) \2dxdy

/ / •

D

)dxdydw. (4-1-11)

By Lemmas 1 and 3, this last term is absolutely convergent for all s, and hence
is a regular function of s over the whole plane. Therefore the left-hand side of
(4-1-11) is regular except for simple poles at s = K, S = K— 1; and, by (4-1-10),
it is easily seen that /(s) satisfies the functional equation

where 0(s) = (2n)-** T(s) / > - K +1) £(2s - 2K + 2)f(s).

Thus (4-1-11) defines/(«) as a meromorphic function with a simple pole at s = K
of residue . .K_x . .

KOC = 12 ( "j \y*-21 H(T) \2dxdy.

D

This agrees with (1-4) since the integral is invariant over any fundamental region.
The other parts of Theorem 3 follow since <f>(a) is regular except for poles at
8 = K, 8 = K— 1. In the strip

K— 1<O-<K — \,

f{a) may have poles corresponding to the complex zeros of £(2s — 2K + 2).

4-2. Proof of Theorems 1 and 2 for the case N = 1.

Let /
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364 R. A. RANKIN

It is a known result*, or may be deduced from Theorem 3t, that

S K I 8 = 0(3*). (4-2-1)

And since b{n) = 2 | am l
d?\n

where m = n/d2, it follows that
S &(») = O(xK). (4-2-2)

We now apply a general theorem of Landau to the results obtained in
Theorem 3. In the notation of bis paper J, put

Z(s) = Z0(s) =f(8+K-l)C{2s) = 2 ^
n=l

cn = b(n)n1-", fi=l.
Also, we have, by (4* 1-2),

for a < 0, and 2 | ere | A« = 0 ( 2 6(n) nl~K) = O(as),

by (4-2-2). It is also clear from (4-1-11) that
Z(a) = 0{e?W),

uniformly in any finite strip cr1 < cr < c2, as 11 | tends to infinity.
Hence Z(s) satisfies the conditions I, II, ...,VII, VIII' and IX of Landau's

theorem, with
7} = K+l-(K~l) = 2, .4 = 0, P = l ,

A , . 2 1 / - 1 3
g = °- K = / V n = 5'

Therefore we have

And from this it is easy to deduce that
£b(n) =

Now | an | 2 = ]

* Cf. for example, E. Hecke, loc. dt., Satz 7.
t By the Wiener-Ikehara theorem we can deduce at once from Theorem 3 that

See S. Bochner, "Ein Satz von Landau und Ikehara", Math. Z. 37 (1933), 1-9.
J E. Landau, "t)l)er die Anzahl der Gitterpunkte in gewissen Bereichen. I I " , Nachr.

Gea. Wiss. Gottingen (1915), pp. 209-43.
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RamanujarCs function r(n) 365

Hence 2 K I2 = S S 6 fe
n=£x n^ad'ln \»

S
x A

d«Vz

= ax" + O(x*-t) + 0{x?-*)

This completes the proof of Theorem 1, and therefore of Theorem 2, for the case
N =1.

5. The case N> 1.
5-1. Let V be the transformation

and let # ( T ) = ^ ( T ) = (cT + d)-* Hv l ^ ^ ) , (5-1-1)

C bH
Put %)=S

n=l
for some choice* of a, /ff, and letf

Then, if/(s) is defined as in (4-1-1), f(s) =/Ojl(s), and an = aol(n).

If ff(«.A:)=J21X(«)/o». (5-1-3)

where x is a character modulo N, then

Let ;̂0 be the principal character modulo N, and let X(ri) be the primitive
character modulo Nr which is associated with any x(n)> where N = ^ ^ 2 - X (n)
denotes the character conjugate to x(n)-

* I 'VaM I is n o ' dependent on a, ft.
•\ When (wi, n)>l , (m, n, N)=l, we denote by/m „ (s) the function jy t(s), where y=m,

( d N ) ( S ) l
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366 R. A. RANKIN

THEOREM 4. The function fYiS(s) defined by (5-1-2) has the following
properties:

(i) The series (5-1-2) is absolutely convergent for O~>K.

(ii) /r>J(s) may be continued as a meromorphic function over the whole plane.

(iii) fYig(s) has a simple pole of residue tax, at s = K.

(iv) g(s,x) satisfies the functional equation

( 2JT\ -2(2K-1-S) _ / X(m

•£) r(2K-i-8)r(K-8)H2K-28,X)2 n i -
N I d\N, p\d \ P**

(md,n,iV)=l

where e(X) is defined in Lemma 4. When x = Xo> X(n) = e(X) = -^i = 1>
all n.

(v) V X ̂  Xo> (̂*» X) *s O71 integral function of s over the whole plane.
(vi) 0(s, Xo) is regular except for simple poles at s = K—1, S = K.

(vii) |gr(s + /c-l)If(2«,x)| =

uniformly in any finite strip arj^^cr^^, as \t\->ao.

As in § 4-1 we have

I
n=l

and we obtain in the same manner

| ^F(x + iy) |2 4r,
J—IN

N>+mn)-°r(s)f7j(8)=^y°-l\Hv(T)\*dxdy {ax), (5-1
s

6)

where now S is the strip y ̂  0, | a; | < îV.
Let Z) be the fundamental region of the congruence group F(N), which lies

in S and contains the point at infinity, and let it be transformed into the region
DT by the transformation

la b\ la P\ , „
where ( , ) = [ s mod N.

\c d) \y SJ
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Ramanujari's function r(n) 367

The point TX = oo becomes the vertex T = a/c. Now consider any such region DT

for which this point is inside 8 or on its right-hand boundary; i.e.

N a N

Let D'T and D'^ be the parts of DT inside and outside 8 respectively. If Dj
exists, let E'i be the part of 8 congruent to D? by one of the transformations
T±N.

Given any two integers c, d satisfying

(c,d) = l, c = y{modN), d = S{modN),

there is exactly one transformation T(r1) with these values of c, d which trans-
forms D into a region DT of the kind just considered. For exactly one of the N
solutions in a, 6 of

ad-bc= 1, - < - ,

satisfies a = a (mod N), b=fi (mod N).

By (5-1-6)

N'+^n)-*r(s)f7fS(s) = I JjV8-11 HAT) \2dxdy,
Er

where ET = UT + E"T, since the strip S can be completely covered by regions of
the type ET, without overlapping. Applying the transformations Tfrj),
T^) + Nto the integrals

-i | HV(T) \*dxdy, jftf-i | Hv(r) \*dxdy,

D'T E"T

we have, as in § 4-1,

N*+*(4n)-T(a)fr,,(s) = pjjy*-1 \ H{r) \zX^(s,T)dxdy, (5-1-7)
D

for <r> K, by (5-1-1), where

m= — oo n=— co
m = y , n = J (mod

(m, n)=l

and p is 1 except when N = 2, in which case it is £. The difference in the two
cases is due to the fact that, when N = 2, — a, ~b, — c, — d give the same trans-
formation, and

(:: -H
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368 R. A. EANKIN

From (5-1-3), (5-1-7) and (5-1-8), we have

N°+i(4n)-°r(8)g(8,X) = pjjv8'11 H(T) \2G(s,T,x)dzdy, (5-1-9)
D

where Q(8,T,

m=— oo n = —oo |
(m, n ) = l

L(28-2K+2

X)

mA

,*>

°o ao V( 72,1

m-~ co n-~ oo W2-T -f- 71
m = 0 ( m o d i V )

T ~r~ W 1

co oo "vivhS

T{s,X,d)

8-2K+2 ^ '

•X"(»)

(5-1-10)

L(2S-2K + 2,X)'

say, where /i(d) is Mobius's function. The dash denotes that the term with
m = % = 0 i s t o b e excluded.

5-2. Define
N MX 2s-2/c+2

S ^ ( ) / ( ) (S2 1)
Nld N MX 2

=l n=l W/

where r/r is any character modulo k, kq divides JV, and Xa *a ^e principal character
modulo d. Then, by (5-1-7) and (5-1-8), we have

N'+m*)-r(s)j(s, f,q) =pjjy°-1J(s,T, #,q) | H(T) \2dxdy, (5-2-2)
D

for <T>K, where

( d\ 2S-2K+2 <o oo

- L(2s-2K + 2,fXd) S S
H/ m=-<*> »= —

(md, n ) = l

xjr(m)

= — oo n= — oo | "M»T T «• |
(n,

- y
— 2J

y f

by the Mobius inversion formula.
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By (5-1-10) and Lemma 4, we have

r(s-K+l)T(s,x,d)

369

/N1Ny\s-*+1

CO CO

OT= - oo n = - co

mod

= r
+ eft)#ij"

X(n)exV -
m=-«n=-a>

N

d

N

(5-2-4)

for a>K, when x^Xo- ^J Lemma 3, the right-hand side of (5-2-4) is an integral
function of s, and hence, by (5-1-10), so is

Therefore, by (5-1-9) and Lemmas 1 and 3, it follows that

^A r(s) I\S-K+1) L(2s - 2K + 2, x) g(', X)

is a regular function of s over the whole plane.
If x is t n e principal character Xo, w e have, putting N = Njd,

00 CO \

T{S,Xo>d)= 2 2 ' \m
| "t
\mm=~ oo n—— oo | " t

where the dash denotes that the term with m = n = 0 is to be omitted, and we
obtain

=

J

r
(

oo oo

O m=-oon=-oo

7TW(l^ 7TW(l

(5-2-5)

By Lemma 3, the first term on the right-hand side of (5-2-5) is an integral function
of s, and hence, as before, by (5-1-9), (5-1-10), (5-2-5), Lemmas 1 and 3, <j>(s,x0)
is a regular function of s over the whole plane except for simple poles at the
points 8 = K~ 1, and 8 = K. The residue of g(s, x0) at s = K is

(5-2-6)
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370 R. A. RANKIK

say. The value of a does not depend on the particular fundamental region
integrated over, and remains the same if Hv(r) is substituted for H(T) in the
integrand. Also it agrees with (1-4) in virtue of Remark C. I t follows from
(5-2-6) and (5-1-4) that/(a) has a pole of residue KOC at s = K, and, similarly, so has
/y,,(«) for any y, 8. Part (vii) of Theorem 4 follows from (5-1-9), (5-1-10), (5-2-4)
and (5*2-5). This completes the proof of the theorem with the exception of
part (iv).

By (5-2-5),

( Ny /NvV
,Xo,d)=[^) r(K-8)T(2K-l-8,Xa,d).

(5-2-7)
If cr<K- 1, we have, by (5-2-4) and (5-2-7),

X(m)f
nd

= e(X) N{(J^jK8 r(K - s) J(2K -1 - a, T, X, N2),

by (5-2-3), where N2 = N2/d. Therefore

e(X) /Nv^-2*-1 - —
r(s-K+l)T(S,x,d) = ^ \ ^ j r(K-8)J{2K-l-8,T,X,Na).

Hence, by (5-1-10),

O(s, T, X) L(2a -

And, by (5-1-9) and (5-2-2),

- K+l) L{2S-2K+2,X) g{s,

f L^-s-z i #(T) j2 j(2/c - 1 - s, T, X, N2) dx dyx

b
2ic-2g-l

x S
d\N,
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Ramanujari's function r(n) 371

Therefore, by (5-2-1),

-2s

m = l n = l
(mdl,n,N)=l

and (5-1-5) follows from this, since

Md)X(d)d2r_2s= n

5-3. Proof of Theorems 1 and 2 for N> 1. Let

co h(n

l,X)9(s,x) =
n = l

Then |oB|» = ^ j S d ( n , x ) , (5-3-1)

and <*(»,*) =

( 1 \ JV/ii N

i5 / m=ln=l n = l
(7wi1n>iV) = l

for or < 0. Then, as in § 4-2, we have

and 2>* n = O(a;). (5-3-3)

We now apply Landau's theorem, as before, taking

Z0(s) = g(s + K - 1,

Then /? = 1, cn = 6(«, X) re1-*, dn = 6(«,
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Also, by (5-1-5), we have

r(a) i\a+K-i) z{S) = r(i-S) r(K -«) z en

for <r< 0, and, by (5-3-3),

Then, by Theorem 4, Z(s) and Z0(a) satisfy conditions I, II, ..., VII, VIII'
and IX of Landau's theorem, with the same values of r/, A, P, g and K' as in
§ 4-2. And R{x)

say, by (5-2-6), where E(xo) = 1> a n ( i ®{x) = ° when x^Xo- Hence

From this it follows that*

2 6(n

Finally, by (5-3-2),

Z «*(»,*)= 2 Z&(£.

= Z

And therefore, by (5-3-1), Theorem 1 follows.

* This is trivial when K>£. It is true also for K ^ '{, since Landau's theorem can be ex-
tended to show that

S cnn" = R(a, x) + 0(a^'« log«aO,

for any real a> — jS, where R(a,x) is the sum of the residues of x'Z(a — o)/« in the strip
K'^CT-O^/3.

I write K' where Landau has K to avoid confusion with the dimension — K.
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