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1. Suppose that H(r)= X a,e?niN (1-1)

n=1
is an integral modular form of dimensions —«, where « > 0, and Stufe N, which

vanishes at all the rational cusps of the fundamental region, and which is abso-
lutely convergent for y = 37> 0. Then

H(r) = Hyr) = (cr+d>-~Hi(

where a, b, ¢, d are integers such that ad —bc = 1.
Let I' be the non-homogeneous congruence group of transformations for

which
H(r) = (er+d)~ H(ZT’—:_’s) ,

and let # be the index of I". Then the number of different functions H,(r) is G/u,
where @ is the total number of different non-homogeneous transformations
congruent modulo N. It is known that*

N3 1
G== (1——), 1-3
2PPII-IIV P? (2-3)
where p is a prime factor of N, and
p=t (N=12), p=1 (N>2)

THEOREM 1. |a,|®+|ag|®+...+|a,|? = an*+ O(n<-t)
as n tends to infinity, where

a7+b), (1-2)

cT+d

x—1
o = 12 nb s [ vt He oy, (1-4)

the double integral being taken over any fundamental region of I.

* Cf. for example, F. Klein and R. Fricke, Elliptische Modulfunktionen, 1 (Leipzig,
1890), 395-7.
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358 R. A. RANKIN
THEOREM 2. a, = O(n¥<1),

Theorem 2 is an immediate corollary from Theorem 1 and is a slight improve-
ment on the previous result obtained independently by Salié* and Davenportt,

V1z.
a, = O(n“_*ﬂ):

for any € > 0. The method which is used here does not depend on the estimation
of Kloosterman sums.

2. Remarks. A. Theorems 1 and 2 give, when applied to the modular form

@ ©
A(T) = g2nir H (1_e21n'91)24 — Z T(n) e21n'n‘r,
v=1 n=1

the result that 7(1)+73(2)+ ... + 73(n) ~ani?,

and 7(n) = On*¥),

where 7(n) is Ramanujan’s function, and « is given by (1-4) on substituting
k=12, p=1.

B. The results of the present paper hold, not only for ordinary modular forms,
but also for any modular relative invariant which satisfies

—emfar+b e
H\(1) = e(cT +4d) H"(c_—1+d) (ad—be = 1),

where ¢ is a constant of unit modulus depending only on a, b, ¢, d.

C. Let I'(N) be the non-homogeneous principal congruence groupf, i.e. the

group of transformations _arytb

~ertd’

. a b\ _(1 O
for which (c d)=(0 1)modN.

Then the constant « in (1-4) may be written in the form

477)<1
a= l2mé%%—mgy‘—z|ﬂ(f) |2dzdy, (2-1)

where @ is given by (1-3), and D is any fundamental region of I'(N). For D
contains G/u fundamental regions of I'. This is the form in which we actually
obtain « in §5.

* H. Salié, ‘“Zur Abschiitzung der Fourierkoeffizienten ganzer Modulformen®, Math.

Z. 36 (1931), 263-78. °
1 H. Davenport, ““On certain exponential sums”, J. reine angew. Math. 169 (1932),

158-176.
1 Hauptkongruenzgruppe.
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Ramanujan’s function 1(n) 359
3. We need the following lemmas.

Lemma 1. If D is a fundamental region of the congruence group I'(N) which
contains the point at infinity, then

fo v~ | Hr) |Pdwdy

18 absolutely convergent for any y.
This is an immediate consequence of the fact that H(r) vanishes at all the
rational vertices of D.

Lemma 2. If r = x+ iy, where y > 0, then

E} Z exp{—;———lmﬂ1+ny+/l'r+,u|2}

m=—oOn=—uw
= alm_fiwn*}iwexp{ By ywlmﬂ‘r+n7 |2+%—1;(mﬂ/4—-ny/\)},
where f, vy, w are positive, and A, p are real, both series being absolutely convergent.
This lemma is easily obtained by applying the Poisson summation formula
twice to the first double series. By elementary methods of approximation, we
have

Lemwma 3. In the notation of Lemma 2,
Y X ex {—— mpT+n 2}
m=—won=—ow P ﬂ'}’yl IB I
< 1+ Al(l + w1 + y—iw—i + y}w—i) (e—"ﬂywlz‘)' + e—”w/2ﬂ71l)’
where A, is a constant depending on 8, v but not on w, 7.
LeMMA 4. If x(n) 8 a primitive non-principal character modulo k, and if w, #

are positive,

§ § x(n)exp{—/%[mﬂ'r+n|2}

M=— 0 n=—c0
k} © -] _ 2
S F 3 Fmexp| -z [mpreakl?),
where €(x) is a constant of unit modulus depending only on x.
For putting n = n,k + x, where 0 < <k, we have

Z Z x(n)exp{ ;c'v |mﬂ1+n|2}

M=—0A=—0w

Zx(/t) 53 exp{—"—wlmﬂwnlkwlz}

M=—®nN,=—0

2 Bxw E 5 exp- g mprnk|s+ 2mink),

M= 0 n=—o
PSP XXXV, 3 23
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360 R. A. RANRIN

by Lemma 2. And since y(n) is a primitive non-principal character*,
k-1
2 x(w) emimulk = e(x) k¥x(m),
#=0

and this completes the proof of the lemma.
4. The case N = 1. We treat this case separately since the analysis is much

simpler.
4:1. Let f(s) be the function defined by the Dirichlet series
_ ol 1
f(s) = I (4-1-1)

where the numbers a,, are the coefficients in (1-1). We prove first the following
theorem.
TEEOREM 3. The function f(s) defined by (4-1-1) has the properties:
(i) The series (4-1-1) is absolutely convergent for o = Rs> k.
(ii) f(s) may be continued as a meromorphic function over the whole plane.
(iii) f(s) has a simple pole of residue ko at s = k.
(iv) f(s) satisfies the functional equation
3(s) = §(2x—1—3), (41-2)
where B(8) = (2m)~2B1I'(s) I'(s — k + 1) {(28 — 2k + 2) f(s).
(v) P(s) is regular over the whole plane except for simple poles at the points
s=k,and s =xk—1.

By Parseval’s theorem,
¥ ©
[[ 1B+ = £ o, e >0
-+ n=1

Now I’( 8) =j us—le—vdy — (471'7&)3 ys—l e—4mny dy
0 0
for o > 0. Therefore
(@) TEf(0) = 5 a2 "t etrmvay
n=1 0

= f:ys‘ J.;| H(r)|?dady = ifys—l |H(r) Pdzdy, (4-13)

say, where § is the strip ¥ > 0, | # | < . The inversion of the order of integration is
justified, if o > «, since the integrals are dominated by their values for real s, and
since H(7) = O(y~**) uniformly{ as y—+0. Hence (4-1-3) holds for o> «. The
first part of Theorem 3 follows from this.

* Cf. E. Landau, Primzahlen, 1 (Leipzig, 1909), 483-92.

+ This may be proved in several ways; cf., for example, E. Hecke, *“{'ber Modul-
funktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung 1", Math.
Ann. 114 (1937), 1-28 (Satz 5).
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Ramanujan’s function 1(n) 361
Denote by D the fundamental region

|z]<3 22+221
The transformation
ar,+b

1'=T(Tl)=m,

(ad—bc = 1),

will be called an S-transformation if it maps points 7, of D on to a region D,
lying in the strip S. Since —a, —b, —¢, —d give the same transformation, we

suppose that
c>0, and d>0 if ¢c=0. (4-1-4)
Then, by (4-1-3),

(4m)—t I'(s) f(s) =DT§SJ~J3/3*1 | H(t) |2dx dy,
Dr

for o>k But  H(r) = (e, +d) H(r),

_ Y1
Y= fen+a®
2
dzdy = ’%’i‘ dz,dy,,
dri | a e ar, +b | 1
dry|  jery+d (et +d)R| |er+d 2
8—1
Bonce  (umT()fe) = 3 [[ ol Hen rdndy
D
- {fr 1@ 1 Pe.ndsay, (4-1:5)
D
1
say, where F(s,7) = EC]SW (o> «). (4-1-6)

We now have to determine what the subclass of S-transformations is. Suppose

that
7= T(r) = ar,+b
ety +d
is an S-transformation. Then, since the point 7, = co of D corresponds to a
vertex of Dy, |a
~Ig ,},
le

and there can be equality only if ¢ = 2, @ = + 1, by (4-1-4) since ad —bc = 1.
If we are given any two integers c, d satisfying (4-1-4), and

(c,d) =1,

there exists exactly one S-transformation 7'(r,) with these values of ¢, d.
23-2
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362 R. A. RaNnkIN

For (i), suppose that ¢ 2. Then there is exactly one solution in a, b of the
equation ad — bc = 1 for which

<4,

and, since one vertex of the triangle D, given by this solution is inside S, and
not on either of the lines | 2| = 4, the whole of D, must lie in §.

If (ii) ¢ = 2, then @ = + 1. Suppose that one of these solutions gives a triangle
Dy in 8 touching x = — }, for example. Then the transformation

T(ry)+1

has the same ¢, d and maps D on to a triangle outside S touching z = 4, and
therefore corresponds to the other solution. Hence if one solution produces an
S-transformation the other does not, and vice versa.
From this we obtain
(] -] 1
F (s7)= X >

m=0 'n,=—(m-I--;'L;:_q}_7‘1,—|2"2—;"}'—2
(m,n)=1

where the dash denotes that » = 1 if m = 0. Multiplying each side by
2¢(28 - 2« + 2),

a
c

(0>x),

we have §(s) = 2{(2s—2x+2) F(s,7) = § Zc‘-o' .

M=—00 f=— W’ (4-1-7)

where now the dash denotes that the meaningless term where m =n = 0 is to
be excluded. Put

K(’W) =K(’w,1)= 2 2' exp{_ﬁulmf_i_nlz}
M=—® n=—oc Yy
for w> 0, and for points 7 of D. By Lemma 2,
1 1
‘*K(’”’=a{‘+"(a)}- (4:1-8)

Now

Y 8—k+1 w© W
(;,) I'(s—k+1) | mr +n |-2o+22 =f w’"‘exp{—; |mr+n|2} dw.
0

Hence, by (4-1-7) and (4-1-8),

(:;—Ir)g-‘(+1 I'(s—k+1)§(s) = f:w’—" Kw)dw (o>k)
= J‘mw"-" K(w)dw+ f:w-"{w—lK (w)+wt—1}dw
1

= f mK(w) (w* + w1 dw+ (4-1-9)
1

1
(8—-k)(s—k+1)’
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Ramanujan’s function 1(n) 363

The first term on the right-hand side of (4-1-9) is a regular function of s over the
whole plane, for all 7 of D, by Lemma 3. Hence £(s) is a regular function of s
over the. whole plane except for a simple pole at s = «, and it is clear that £(s)
satisfies the functional equation

8—«k+1 K—8
(-’71,) T Ms—x+1)£s) = (?71,) Dk—s)E2k—1—5).  (41-10)
From (4-1-5), (4:1-6), (4-1:7) and (4-1-9), we have, for o >k,

2(4m)2 I'(s) I'(s — k + 1) §(28 — 2k + 2) f(s) =ffy3‘1 | H(r) |2 (s —x + 1) £(s) dz dy
D

= 71~9—K+1.U~y""2 | H(7)|? {F(s —Kk+1)£(s) (%)S_KH} dz dy
D

ré—x+1 )
B <—~><———+T>lf,f?’ 2| H(r)|*dz dy
e ff?/""z | H(r) IZFK () (W + w—-Y) dzdy dw. (4-1-11)
D 1

By Lemmas 1 and 3, this last term is absolutely convergent for all s, and hence
is a regular function of s over the whole plane. Therefore the left-hand side of
(4-1-11) is regular except for simple poles at s = x, s = k—1; and, by (4-1-10),
it is easily seen that f(s) satisfies the functional equation

#(s) = $(2k—1-s),
where @(s) = 2m)"2I(8) I'(s—k+1)§(28 -2k + 2) f(s).

Thus (4-1-11) defines f(s) as a meromorphic function with a simple pole at s = «
of residue (4

ﬂ)x—l 2
y<2| H(r) |*dx dy.
|

This agrees with (1-4) since the integral is invariant over any fundamental region.
The other parts of Theorem 3 follow since ¢(s) is regular except for poles at
8 = Kk, 8 = k— 1. In the strip

ke = 12

k—l<o<k—1%,
f(s) may have poles corresponding to the complex zeros of {(2s— 2« +2).

4-2. Proof of Theorems 1 and 2 for the case N = 1.

Let f(8)&(2s—2x+2) = E b(n)

n=1 ne )
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364 R. A. RANKIN
It is a known result*, or may be deduced from Theorem 3, that

Z |a, |2 = O(zx). (4-2-1)
And since b(n) = X | a,, |2d*2,
@n
where m = n/d?, it follows that
Y b(n) = O(zx). (42-2)
n<x

We now apply a general theorem of Landau to the results obtained in
Theorem 3. In the notation of his paper], put
2(6) = Zfs) = fls + k=1)g(20) = 3 20,
¢, = bn)nl—=, g= l.
Also, we have, by (4-1-2),
I6) I+~ 1) Z(s) = T(1=5) I~ 5) 3 e,

for <0, and Y | en|An = O( X b(n)nt—=) = O(z),
An<z nEr

by (4-2-2). 1t is also clear from (4-1-11) that
Z(s) = O(er),
uniformly in any finite strip o; <o <0y, as | ¢ | tends to infinity.
Hence Z(s) satisfies the conditions I, II, ..., VII, VIII’ and IX of Landau’s
theorem, with
py=k+l—(k~1)=2, A=0 P=1,

o, 27—-1 3
9=0"« ’927;+1 3’

R(x) = kal(2)x = 3n?kax.
Therefore we have
2 cp = X b(n)n'~* = }ntkax + O(at). (4-2-3)

n<x n<T
And from this it is easy to deduce that
3 b(n) = % azs+ O(x<1).

n<x
Now la,|2= 3 b(dﬁz) u(d) d2-2.
din

* Cf. for example, E. Hecke, loc. cit., Satz 7.
t By the Wiener-Ikehara theorem we can deduce at once from Theorem 3 that

Y |lap|P~azr, X b, ~ indaax.
nEr n<z

See S. Bochner, “Ein Satz von Landau und Ikehara’, Math. Z. 37 (1933), 1-9.
t E. Landau, “Uber die Anzahl der Gitterpunkte in gewissen Bereichen. I1%, Nachr.

Ges. Wiss. Gottingen (1915), pp. 209-43.
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Ramanujan’s function 1(n) 365

Hence Sl = 3 5b(5)u@a

n<x n<z d*

= 3 pd)d*? 3 bA)
A<z/d?

d<vz

=, 2‘/ u(@) {3m? axrd—2 + Ozt d-3)}

= azf + O(z*—1) + O(z<-1)
= ox* + O(a*t).

This completes the proof of Theorem 1, and therefore of Theorem 2, for the case
N=1.

5. Thecase N > 1.
5-1. Let V be the transformation

= Vi) =2 @s-py- ),

and let H(t) = Hy(1) = (ct+d)~H), (Z—:;) , (5-1-1)
for (: 3) = (: /;) mod N.
Put By(r) = 5 a,q(n) cirinti¥
for some choice* of «, £, and let} "

Jre(8) = I—al";(,,ﬂz (6:1-2)
Then, if f(s) is defined as in (4-1-1), f(s) = fo.1(8), and a,, = ay,(n).
It 96,20 = T, 1) fonle), (51:3)
where y is a character modulo N, then

16) = 5735 7y 26,0 (5:1-4)

Let x, be the principal character modulo N, and let X(n) be the primitive
character modulo N, which is associated with any y(n), where N = N,N,. ¥ (n)
denotes the character conjugate to x(n).

* | a, 5(n) | is not dependent on «, £.
t When (m, n)>1, (m, n, N)=1, we denote by f, , (8) the function f, 4(s), where y=m,
8=n (mod N), (y,8)=1.
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366 R. A. RaNkIN
THEOREM 4. The function f,4s) defined by (51-2) has the following
properties:
(i) The series (5-1-2) is absolutely convergent for o > k.
(i) f,,s(8) may be continued as a meromorphic function over the whole plane.
(iii) f,,s(s) has a simple pole of residue ka at s = k.
(iv) g(s, x) satisfies the functional equation

2\~

#6.x) = (F) T Tle—x+ 1) (28— 26+ 2, 0905, )

_ 277\ —A2c—1—5) B p)

= ¢(X) (N) Ir'2k—1-8)I'(k—s) L(2K—28’X)d§v. 1}"[’1 ( —p—'zx—zs)
X(p) 1 /{d\=-2Nd N _ .

me./a( -p”-ml)ﬁ(ﬁg) B % X(m)fpa,n(2—=1=5),  (515)

(md, n, N)=1
where €(X) is defined in Lemma 4. When x = Xy, X(n) =¢€(X) =N, =1, for
all n.
(v) If x # Xo> (8, X) 18 an integral function of s over the whole plane.
(vi) &(8,x0) 28 r.egular except for simple polesat s = k—1,8 = k.
(vii) | gs+x—1) L(2s,3) | = O(er),

uniformly in any finite strip oy < 0 <0y, as |t | —co.

As in §4-1 we have

N

N £ |aum 2o = [ | By (ari) s,
n=1 N

and we obtain in the same manner

No+(4m)~ T(s)f, o(6) = f fyHlHV(r)l*dxdy (e>6),  (516)
S

where now 8§ is the stripy >0, |z | <}N.

Let D be the fundamental region of the congruence group I'(N), which lies
in S and contains the point at infinity, and let it be transformed into the region
D, by the transformation

ar,+b

7=T(1)) = or 1 d (ad—bc = 1),
a by _[ax f
where (c d)=(y 8) mod N,
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Ramanujan’s function 7(n) 367

The point 7; = o becomes the vertex 7 = a/c. Now consider any such region D
for which this point is inside S or on its right-hand boundary; i.e.
N a N
- E < E < E .

Let D7 and D7 be the parts of D, inside and outside S respectively. If D7
exists, let £7 be the part of S congruent to D7 by one of the transformations
T+ N.

Given any two integers ¢, d satisfying

(¢;d) =1, c=7y (mod N), d=46 (mod N),

there is exactly one transformation 7'(r;) with these values of ¢, d which trans-
forms D into a region D, of the kind just considered. For exactly one of the N
solutions in a, b of

ad—bc =1, 2 <§,
c 2
satisfies a=a (mod N), b=pf (mod N).

By (5-1-6)
N4y~ T(5), () = ;:f f ¥t | Hy(r) |2dz dy,
Er

where E, = D+ E7, since the strip S can be completely covered by regions of
the type E,, without overlapping. Applying the transformations 7'(ty),
T(1,) ¥ N to the integrals

f f y*1| Hy(7) |2dzdy, ”y"‘l | Hp(7) |2dz dy,
D'y E’r

we have, agin §4-1,
Neam) = T fyale) = p [y | HO) A o) ddy,  (51)
for o>k, by (5-1-1), where i
Aals)= 33 X

M wne—w | MT+n BT
m=y, n=32 (mod N)
(m, n)=1

(5:1-8)

and p is 1 except when N = 2, in which case it is 4. The difference in the two
cases is due to the fact that, when N = 2, —a, —b, —¢, —d give the same trans-

formation, and
—a —b\_(a f
(—c —d)=(y 8)mod2.
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368 R. A. RANKIN
From (5-1-3), (5-1-7) and (5-1-8), we have

N+ (4m)=* I'(s) (s, X) = p”ys-l | H(7) |2 G(s, 7, x)dady,  (5'1-9)
D

h v R X(n)
where G(S:T:X) m=—~z—con=z—m|m"'+n|20_2x+2 (0’>K)
m=0 (mod N)
(m,n)=1
-y 3 x(n)
_’m=2—oo n=z_:«, | mNT + n |28-%+2
(m, n)=1
- 3 3 x(n)
L(28—2k+2,X) mit oo no2 oo | MNT 4 n |26~ 242
- 1 ® 2 X(n)
= L@zt g pa O B X R rnd [

(5:1-10)
-5 mMd)X(d)  T(s,x.4d)
div, d¥ 2 L(2s—2k+2,x)’
say, where u(d) is MObius’s function. The dash denotes that the term with
m = n = 0 is to be excluded.

5:2. Define

. Nid N /d\28—2x+2

s = S E@s-2c+29x) £ 5 (8T vmifaale)  (52D)
dlg m=1 n=1 \g

(md,n, N)=1
where ¥ is any character modulo %, kg divides N, and yx, is the principal character
modulo d. Then, by (5-1-7) and (5-1-8), we have

N T6)jo, 0) = p [0, 7,910 | H) Pawdy, (522
D

for o > x, where
_ (_i 28-2x+2 . . ) © —_—_M—_
Horw = S(5) Bes-mrzyx) 55 ot

m=—w0 n=—aoK

(md, n)=1

Y ) e T N 4 )
“ﬁ(a) o o2 [mdr 4 [P
(n, d)=1
-S Sud) ¥ % AL
Aadld MmO mgr +ndy
I () 523

mem o neew | MGT + 1 |BF2’

by the Mo&bius inversion formula.
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Ramanujan’s function 1(n) 369

By (5-1-10) and Lemma 4, we have
(MNy

8—Kk-+1 d
= ) I's—k+1)T(s,x,d)

}dw

}dw

+e(x)N*fmw"'s‘1 § E‘, X (m)exp _ mwd mli'r+nN 2} dw
! 1 m=—o n=—o NlNy d 1
(5-2-4)

for o >k, when y # ¥,- By Lemma 3, the right-hand side of (5-2-4) is an integral
function of s, and hence, by (5:1-10), so is

I(s—x+1) L(2s~ 2+ 2) G(s, T, X).
Therefore, by (5:1:9) and Lemmas 1 and 3, it follows that

0 © © ,wd N
=| w~* X =
Jo Y X X(n)exp { NNy mo T+

m=—o n=—0n

m-=T+n

mwd N
" NNy| d

= fw*-“ 5 E: X(n)exp

m=— n=—u

P(s,x) = (%—)—28 I'(s)(s—k+1) L(28— 2k + 2, X) g(8, X)

is a regular function of s over the whole plane.
If y is the principal character x,, we have, putting N = N/d,

1
T(S, Xo: d) = 2 2 | le‘r +n |28-—2x+2’

Mm=- 0 n=— 0

where the dash denotes that the term with m = n = 0 is to be omitted, and we

obtain
Ny 8—x+41 © ©
("—d-) I’(s—K+1)T(s,xo,d)=f w3 Z exp{———|mN*r+n|2}dw
m=—ow n=-©
1
— —K —8—1 —_— -
_.f (WP 4+ wr—e-1) =z_mn=§1wexp{ |mNT+n| }dw+(s—x)(s-—x+1)'
(5:2+5)

By Lemma, 3, the first term on the right-hand side of (5-2-5) is an integral function
of s, and hence, as before, by (5-1-9), (5-1-10), (5-2-5), Lemmas 1 and 3, ¢(s, x,)
is a regular function of s over the whole plane except for simple poles at the
points 8 = k—1, and & = «. The residue of g(s, xo) at s = x is

N-amy o pd) (e
P T) L2, xo) it AN H *|H(r) |*dedy

471
— 24p l-\(,y%«(—,dvs(N)pI”Iv (1-5) fD [ B Pz ay
= kagp(N), (5:2:6)
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370 R. A. RANKIN

say. The value of o does not depend on the particular fundamental region
integrated over, and remains the same if Hy(7) is substituted for H(r) in the
integrand. Also it agrees with (1-4) in virtue of Remark G. It follows from
(5-2-6) and (5-1-4) that f(8) has a pole of residue xa at 8 = x, and, similarly, so has
fy.4(s) for any y, 8. Part (vii) of Theorem 4 follows from (5-1-9), (5:1-10), (5-2-4)
and (5-2-5). This completes the proof of the theorem with the exception of
part (iv).

By (5-2-5),
Ny\e—=« N
(,,—3) " Do —k+1) T(s, X0, ) = (T"l’) T(k—8) T(2x—1—s, Xy, d).

(5-27)
If o <x—1, we have, by (5-2-4) and (5-2-7),

—x4-1
(Nle)’ " Ie—x+1) T(s,%.9)

nd _
NNy S & X(m)
) Tik-s) T % |m1V_‘r+an |2x—2s

m=—cwn=—co

= e(X)N{(

- = = Xm
- 0N o B F o Sl

= ¢(X) N{(m) s1’(,<-s) J(@2k—1-s,7,X,N,),

by (5-2-3), where N, = N,/d. Therefore

I's—k+1)T(s,x,d) = e\(/;)(Ny)”‘ e I'k—8)J(2k—1—8,7,X,N,).

Hence, by (5:1-10),
Qs,7,x) L(2s—2k+2,x) (s—k+1)

€ X(d) (Ny\x—2s-1 o =
= \;i)dl% ,u(d)d ( )(Ty) Ik—8)J(2k—1—s,1,X,N,).

And, by (5-1-9) and (5-2-2),
Nt (am)—2 I'(s) (s —x+ 1) L(28—2x+ 2, x) 9(3, X)
e(X) wd) X(d) (N2
=S T 3 HEEE(2)

xjjyzk—-"—z |H(r)|2J(2k—1—8,7,X,N,)dzdy

_ &(X)
A

<3 ,u,(d)dX (d) N2x—s(4n)~2+1j(26 — 1~ 3, X, N,).

d\|N,

( )2‘_28_1 I'ik—38)I'(2k~1—3s)
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Ramanujan’s function 7(n) 371
Therefore, by (5-2-1),

2m\—2
(7\7‘) I(s) (s~ k+1) L(28 — 26+ 2, X) (s, X)
e(X) 277\~ Hek—1—8)
-
_ e( X) (2_7,)—2(2::-—1—8)
VA

dd \%-2sNid, N
(%)

I'2k—1-8)I'k—s) T E(d)d—x(d)j(ZK— 1-5,X,N,)
din,

T(2x=1-5)T(c~8) 3 #d) dX(d)dd.lNL(2K 25, Xxa,)

N,
and (5-1-5) follows from this, since

5 HOXD e g |,
dd,| N, d PIN,/d,

X(p) )

T p28—2%+1)°
P +

5-3. Proof of Theorems 1 and 2 for N > 1. Let

ns

L2s—2%+2,096,%) = 3 22X (550,
l

g(s8,x) = > d(: X)
Then |a,|?= ;;S(_N) %d(n, x)s (5-3-1)
and dn, 20 = 3 b( oo ) ) ) ane  (532)
X = g\ '

Nid N uo 8
Put L2-28) T d>= ] (1+p2},_1) X X fuaalk—8)= ot

d|N, PINJd m=1n=1 1 N2°

for 0 < 0. Then, as in §4-2, we have
> l a“y,d(n) |2 = 0(zx)9
n<z

and X nh, = O(z). (5-3-3)

n<z
We now apply Landau’s theorem, as before, taking
Z(s) = g(s+«—1,x) L(2s,x),
Zy(8) = gla+x—1, xo) L(28, x0)-
Then B=1, c,=bnx)nt= d,=>bn,x,)nt~

Downloaded from http:/www.cambridge.org/core. University of Leeds, on 15 Sep 2016 at 13:12:28, subject to the Cambridge Core terms of use, available
at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0305004100021101


http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0305004100021101
http:/www.cambridge.org/core

372 R. A. RaNgIN

Also, by (5-1-5), we have
() (s +K—~1) Z(s) = I(1—8) [(x—5) 5. e, 45,
for o< 0, and, by (5-3-3), o
2 e A = O(Znh ) = O(=).

Angz
Then, by Theorem 4, Z(s) and Z(s) satisfy conditions I, II, ..., VII, VIIT
and IX of Landau’s theorem, with the same values of 7, 4, P, g and «’ as in

§4-2. And R(zx) = kaxd(N) L(2, x,) E(x) = vk,
say, by (5:2-6), where E(x,) = 1, and E(x) = 0 when ¥ £ x,. Hence
b)) Cp = = b(n, X) nl—* = YKk + O(x?.)

n<T nEr

From this it follows that*
3 b(n, x) = yz* + O(x<-1).

n<r

Finally, by (5-3-2),
Sdmx) = 5 3 b 5x) wd) x@ a2

n<x n<e d

= X u@)x(d)d*2 3 bA,x)
ad<vz A<gz/d?

=d<§zﬂ(d) x(@) {yz<d~2+ O(x<-t d-1)}

= Tta O+ 0

= ag(N) E(x) 2~ + O(z<4).
And therefore, by (5-3-1), Theorem 1 follows.

* This is trivial when «>%. It is true also for « < 2, since Landau’s theorem can be ex-
tended to show that
X ¢,n® = R(a,x) + O(x* 43 logfx),
n<r
for any real a>—f, where R(a,z) is the sum of the residues of z*Z(s—a)/s in the strip

K<o—a<$.
I write «’ where Landau has «x to avoid confusion with the dimension ~— «.
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