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It is a very sad moment for me to write this "Geleitwort" to thc English 
translation of Jiirgen Neukirch's book on Algebraic Number Theory. It would 
have been so much better, if he could have done this himself. 

But it is also very difficult for me to write this "Geleitwort": The book 
contains Neukirch's Preface to the German edition. There he himself speaks 
about his intentions, the content of the book and his personal view of the subject. 
What else can be said? 

It becomes clear from his Preface that Number Theory was Neukirch's 
favorite subject in mathematics. He was enthusiastic about it, and he was also 
able to implant this enthusiasm into the minds of his students. 

He attracted them, they gathered around him in Regensburg. He told them 
that the subject and its beauty justified the highest effort and so they were always 
eager and motivated to discuss and to learn the newest developments in number 
theory and arithmetic algebraic geometry. I remember very well the many 
occasions when this equipe showed up in the meetings of the "Oberwolfach 
Arbeitsgemeinschaft" and demonstrated their strength (mathematically and on 
the soccer field). 

During the meetings of the "Oberwolfach Arbeitsgemeinschaft" people 
come together to learn a subject which is not necessarily their own speciality. 
Always at the end, when the most difficult talks had to be delivered, the 
Regensburg crew took over. In the meantime many members of this team teach 
at German universities. 

We find this charisma of Jurgen Neukirch in the book. It will be a motivating 
source for young students to study Algebraic Number Theory, and I am sure 
that it will attract many of them. 

At Neukirch's funeral his daughter Christiane recited the poem which she 
often heard from her father: Herr von Ribbeck auf Ribbeck im Havelland by 
Theodor Fontane. It tells the story of a nobleman who always generously gives 
away the pears from his garden to the children. When he dies he asks for a 
pear to be put in his grave, so that later the children can pick the pears from the 
growing tree. 

This is - I believe - a good way of thinking of Neukirch's book: There are 
seeds in it for a tree to grow from which the "children" can pick fruits in the 
time to come. 

G. Harder 



Translator's Note 

When I first accepted Jurgen Neukirch's request to translate his Algebraische 
Zuhlentheorie, back in 1991, no-one imagined that he would not live to see the 
English edition. He did see the raw version of the translation (I gave him the 
last chapters in the Fall of 1996), and he still had time to go carefully through 
the first four chapters of it. 

The bulk of the text consists of detailed technical mathematical prosc 
and was thus straightforward to translate, even though the author's desire 
to integrate involved arguments and displayed formulae into comprehensive 
sentences could not simply be copied into English. However, Jiirgen Neukirch 
had peppered his book with more meditative paragraphs which make rathcr 
serious use of the German language. When I started to work on the translation, 
he warned me that in every one of these passages, he was not seeking poetic 
beauty, but only the precisely adequate expression of an idea. It is for the reader 
to judge whether I managed to render his ideas faithfully. 

There is one neologism that I propose in this translation, with Jurgen 
Neukirch's blessing: I call replete divisor, ideal, etc., what is usually called 
Arakelov divisor, etc. (a terminology that Neukirch had avoided in the German 
edition). Time will deliver its verdict. 

I am much indebted to Frazer Jarvis for going through my entire manuscript, 
thus saving the English language from various infractions. But needless to say, 
I alone am responsible for all deficiencies that remain. 

After Jurgen Neukirch's untimely death early in 1997, it was Ms Eva- 
Maria Strobe1 who took it upon herself to finish as best she could what Jurgen 
Neukirch had to leave undone. She had already applied her infinite care and 
patience to the original German book, and she had assisted Jiirgen Neukirch in 
proofreading the first four chapters of the translation. Without her knowledge, 
responsibility, and energy, this book would not be what it is. In particular, a 
fair number of small corrections and modifications of the German original that 
had been accumulated thanks to attentive readers, were taken into account for 
this English edition. Kay Wingberg graciously helped to check a few of them. 
We sincerely hope that the book published here would have made its author 
happy. 

Hearty thanks go to Raymond Seroul, Strasbourg, for applying his wonderful 
expertise of TEX to the final preparation of the camera-ready manuscript. 



viii Translator's Note 

Thanks go to the Springer staff for seeing this project through until it was 
finally completed. Among them I want to thank especially Joachim Heinze for 
interfering rarely, but effectively, over the years, with the realization of this 
translation. 
' 

Strasbourg, March 1999 Norbert Schappacher 

Preface to the German Edition 

Number Theory, among the mathematical disciplines, occupies an idealized 
position, similar to the one that mathematics holds among the sciences. Under 
no obligation to serve needs that do not originate within itself, it is essentially 
autonomous in setting its goals, and thus manages to protect its undisturbed 
harmony. The possibility of formulating its basic problems simply, the peculiar 
clarity of its statements, the arcane touch in its laws, be they discovered or 
undiscovered, merely divined; last but not least, the charm of its particularly 
satisfactory ways of reasoning - all these features have at all times attracted 
to number theory a community of dedicated followers. 

But different number theorists may dedicate themselves differently to their 
science. Some will push the theoretical development only as far as is neccssnry 
for the concrete result they desire. Others will strive for a more universal, 
conceptual clarity, never tiring of searching for the deep-lying reasons behind 
the apparent variety of arithmetic phenomena. Both attitudes are justified, and 
they grow particularly effective through the mutual inspirational influence they 
exert on one another. Several beautiful textbooks illustrate the success of the 
first attitude, which is oriented towards specific problems. Among them, let 
us pick out in particular Number Theory by S.I. BOREVICZ and I.R. $ A F A R ~ V / ~ .  

[14]: a book which is extremely rich in content, yet easy to read, and which 
we especially recommend to the reader. 

The present book was conceived with a different objective in mind. It does 
provide the student with an essentially self-contained introduction to the theory 
of algebraic number fields, presupposing only basic algebra (it starts with 
the equation 2 = 1 + 1). But unlike the textbooks alluded to above, it 
progressively emphasizes theoretical aspects that rely on modern concepts. 
Still, in doing so, a special effort is made to limit the amount of abstraction 
used, in order that the reader should not lose sight of the concrete goals of 
number theory proper. The desire to present number theory as much as possible 
from a unified theoretical point of view seems imperative today, as a result of 
the revolutionary development that number theory has undergone in the last 
decades in conjunction with 'arithmetic algebraic geometry'. The immense 
success that this new geometric perspective has brought about - for instance, 
in the context of the Weil conjectures, the Mordell conjecture, of problems 
related to the conjectures of Birch and Swinnerton-Dyer - is largely based on 
the unconditional and universal application of the conceptual approach. 
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It is true that those impressive results can hardly be touched upon in this 
book because they require higher dimensional theories, whereas the book 
deliberately confines itself to the theory of algebraic number fields, i.e., to 
the 1-dimensional case. But I thought it necessary to present the theory in a 
way which takes these developments into account, taking them as the distant 
focus, borrowing emphases and arguments from the higher point of view, thus 

, integrating the theory of algebraic number fields into the higher dimensional 
theory - or at least avoiding any obstruction to such an integration. This is 
why I preferred, whenever it was feasible, the functorial point of view and the 
more far-reaching argument to the clever trick, and made a particular effort to 
place geometric interpretation to the fore, in the spirit of the theory of algebraic 
curves. 

Let me forego the usual habit of describing the content of each individual 
I chapter in this foreword; simply turning pages will yield the same information 
in a more entertaining manner. I would however like to emphasize a few basic 
principles that have guided me while writing the book. The first chapter lays 
down the foundations of the global theory and the second of the local theory of 
algebraic number fields. These foundations are finally summed up in the first 
three sections of chapter 111, the aim of which is to present the perfect analogy of 
the classical notions and results with the theory of algebraic curves and the idea 
of the Riemann-Roch theorem. The presentation is dominated by "Arakelov's 
point of view", which has acquired much importance in recent years. It is 
probably the first time that this approach, with all its intricate normalizations, 
has received an extensive treatment in a textbook. But I finally decided not 

,to employ the term "Arakelov divisor" although it is now widely used. This 
would have entailed attaching the name of Arakelov to many other concepts, 
introducing too heavy a terminology for this elementary material. My decision 
seemed all the more justified as ARAKEUJV himself introduced his divisors only 
for arithmetic surfaces. The corresponding idea in the number field case goes 
back to HASSE, and is clearly highlighted for instance in S. LANG'S textbook [94]. 

It was not without hesitation that I decided to include Class Field Theory in 
chapters IV-VI. Since my book [I071 on this subject had been published not 
long before, another treatment of this theory posed obvious questions. But in the 
end, after long consideration, there was simply no other choice. A sourcebook 
on algebraic number fields without the crowning conclusion of class field theory 
with its important consequences for the theory of L-series would have appeared 
like a torso, suffering from an unacceptable lack of completeness. This also 
gave me the opportunity to modify and emend my earlier treatment, to enrich 
that somewhat dry presentation with quite a few examples, to refer ahead with 
some remarks, and to add beneficial exercises. 

A lot of work went into the last chapter on zeta functions and L-series. These 
functions have gained central importance in recent decades, but textbooks do 
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not pay sufficient attention to them. I did not, however, include TATE'S approach 
to Hecke L-series, which is based on harmonic analysis, although it would have 
suited the more conceptual orientation of the book perfectly well. In fact, the 
clarity of TATE'S own presentation could hardly be improved upon, and it has also 
been sufficiently repeated in other places. Instead I have preferred to turn back 
to HECKE'S approach, which is not easy to understand in the original version, 
but for all its various advantages cried out for a modern treatment. This having 
been done, there was the obvious opportunity of giving a thorough presentation 
O~ARTIN'S L-series with their functional equation - which surprisingly has not 
been undertaken in any existing textbook. 

It was a difficult decision to exclude Iwasawa Theory, a relatively recent 
theory totally germane toalgebraic number fields, the subject of this book. Since 
it mirrors important geometric properties of algebraic curves, i t  would havc 
been a particularly beautiful vindication of our oft-repeated thesis that number 
theory is geometry. I do believe, however, that in this case the geometric aspect 
becomes truly convincing only if one uses dale cohomology - which can 
neither be assumed nor reasonably developed here. Perhaps the dissatisfaction 
with this exclusion will be strong enough to bring about a sequel to the present 
volume, devoted to the cohomology of algebraic number fields. 

From the very start the book was not just intended as a modern sourcebook 
on algebraic number theory, but also as a convenient textbook for a course. 
This intention was increasingly jeopardized by the unexpected growth of the 
material which had to be covered in view of the intrinsic necessities of the 
theory. Yet I think that the book has not lost that character. In fact, it has passed 
a first test in this respect. With a bit of careful planning, the basic content of the 
first three chapters can easily be presented in one academic year (if possible 
including infinite Galois theory). The following term will then provide scarce. 
yet sufficient room for the class field theory of chapters IV-VI. 

Sections 11-14 of chapter I may mostly be dropped from an introductory 
course. Although the results of section 12 on orders are irrelevant for the 
sequel, I consider its insertion in the book particularly important. For one thing, 
orders constitute the rings of multipliers, which play an eminent role in many 
diophantine problems. But most importantly, they represent the analogues 
of singular algebraic curves. As cohomology theory becomes increasingly 
important for algebraic number fields, and since this is even more true of 
algebraic K-theory, which cannot be constructed without singular schemes, 
the time has come to give orders an adequate treatment. 

In chapter 11, the special treatment of henselian fields in section 6 may be 
restricted to complete valued fields, and thus joined with section 4. If pressed 
for time. section 10 on higher ramification mav be omitted comnletelv. 
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The first three sections of chapter 111 should be presented in the lectures since 
they highlight a new approach to classical results of algebraic number theory. 
The subsequent theory concerning the theorem of Grothendieck-Riemann- 
Roch is a nice subject for a student seminar rather than for an introductory 
course. 

Finally, in presenting class field theory, it saves considerable time if the 
I 

students are already familiar with profinite groups and infinite Galois theory. 
sections 4-7 of chapter V, on formal groups, Lubin-Tate theory and the theory 
of higher ramification may be omitted. Cutting out even more, chapter V, 3, on 
the Hilbert symbol, and VI, 7 and 8, still leaves a fully-fledged theory, which 
is however unsatisfactory because it remains in the abstract realm, and is never 
linked to classical problems. 

A word on the exercises at the end of the sections. Some of them are not so 
much exercises, but additional remarks which did not fit well into the main text. 
The reader is encouraged to prove his versatility in looking up the literature. 
I should also point out that I have not actually done all the exercises myself, 
so that there might be occasional mistakes in the way they are posed. If such a 
case'arises, it is for the reader to find the correct formulation. May the reader's 
reaction to such a possible slip of the author be mitigated by Goethe's distich: 

"Irrtum verlat  uns nie, doch ziehet ein hoher Bediirfnis 
Immer den strebenden Geist leise zur Wahrheit hinan." * 

During the writing of this book I have been helped in many ways. I thank 
the Springer Verlag for considering my wishes with generosity. My students I. 
KAUSZ, B. KOCK, P.  KOLCZE, TH. MOSER, M.  SPIESS have critically examined larger 
or smaller parts, which led to numerous improvements and made it possible to 
avoid mistakes and ambiguities. To my friends W-D. GEYER, G.  TAMME, and K. 
WINGBERG I owe much valuable advice from which the book has profited, and 
it was C. DENINGER and U. JANNSEN who suggested that I give a new treatment 
of Hecke's theory of theta series and L-series. I owe a great debt of gratitude 
to Mrs. EVA-MARIA STROBEL. She drew the pictures and helped me with the 
proofreading and the formatting of the text, never tiring of going into the 
minutest detail. Let me heartily thank all those who assisted me, and also those 
who are not named here. Tremendous thanks are due to Mrs. MARTINA HERTL 
who did the typesetting of the manuscript in Tfl. That the book can appear is 
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I essentially due to her competence, to the unfailing and lund willingness with 
which she worked through the long handwritten manuscript, and through the 
many modifications, additions, and corrections, always prepared to give her 

I best. 

Regensburg, February 1992 Jiirgen Neukirch 

* Error is ever with us. Yet some angelic need 
Gently coaxes our striving mind upwards, towards truth. 

(Translation suggested by BARRY MAZUR.) 
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Chapter I 

Algebraic Integers 

3 1. The Gaussian Integers 

The equations 

2 =  1 + 1 ,  5 = 1 + 4 ,  1 3 = 4 + 9 ,  1 7 = 1 + 1 6 ,  2 9 = 4 + 2 5 ,  3 7 = 1 + 3 6  

show the first prime numbers that can be represented as a sum of two squares. 
Except for 2, they are all = 1 mod 4, and it is true in general that any odd 
prime number of the form p  = a2 + b2 satisfies p  = 1 mod 4, because 
perfect squares are = 0 or = 1 mod 4. This is obvious. What is not obvious 
is the remarkable fact that the converse also holds: 

(1.1) Theorem. For all prime numbers p  # 2, one has: 

p = a 2 + b 2  ( a , b € Z )  t-' p ~ l m o d 4 .  

The natural explanation of this arithmetic law concerning the ring Z  of 
rational integers is found in the larger domain of the gaussian integers 

Z [ i ] = { a + b i I a , b ~ Z } ,  i = a .  

In this ring, the equation p  = x2 + Y 2  turns into the product decomposition 

p = ( x  + i y ) (x  - i y ) ,  

so that the problem is now when and how a prime number p  E Z  factors 
in Z [ i l .  The answer to this question is based on the following result about 
unique factorization in Z [ i ] .  

(1.2) Proposition. The ring Z [ i ]  is euclidean, therefore in particular facto- 
rial. 

Proof: We show that Z [ i ]  is euclidean with respect to the function Z [ i ]  + 
N U (0), a H (ctl2. SO, for a,  E Z [ i ] ,  B # 0, one has to verify the 
existence of gaussian integers y ,  p such that 

a = Y B  + P and lp12 < 1812. 
It clearly suffices to find y  E Z [ i ]  such that I - y 1 < 1. Now, the 

B 



2 Chapter I. Algebraic Integers 

g a u & m  integers form a lattice in the complex plane C (the points with 
integer coordinates with respect to the basis 1, i ) .  The complex number s 
lies in some mesh of the lattice and its distance from the nearest lattice point 
is not greater than half the length of the diagonal of the mesh, i.e. id!. 

1 Therefore there exists an element y E Z [ i ]  with 1 5 - y 1 j c 1. 
B 

Based on this result about the ring Z [ i ] ,  theorem (1.1) now follows like 
this: it is sufficient to show that a prime number p = 1  mod 4 of Z  does 
not remain a prime element in the ring Z [ i ] .  Indeed, if this is proved, then 
therq exists a decomposition 

p = a . p  

into two non-units a ,  B of Z [ i ] .  The norm of z  = x + i y  is defined by 

N ( x  + i y )  = ( x  + i y ) ( x  - i y )  = x 2  + y 2 ,  

i.e., by N  ( z )  = 1z 1 2 .  It is multiplicative, so that one has 

P 2 =  N ( a ) . N ( / ? ) .  

Since a  and /? are not units, it follows that N ( a ) ,  N ( B )  # 1 (see exercise I ) ,  
and therefore p = N ( a )  = a2 + b2 ,  where we put a  = a  + hi.  

Finally, in order to prove that a rational prime of the form p  = 1 + 4n 
cannot be a prime element in Z [ i ] ,  we note that the congruence 

-1 r x 2  mod 

admits a solution, namely x  = (2n)  !. Indeed, since -1  r (p  - 1) ! mod p 
by Wilson's theorem, one has 

2 = [ ( 2 n ) ! ] [ ( - 1 ) ~ " ( 2 n ) ! ]  = [ ( 2 n ) ! ]  mod p .  

Thus we have p l x 2  + 1 = ( x  + i ) ( x  - i ) .  But since 5 f 1- $ Z [ i ] ,  p does 
P P 

not divide any of the factors x  + i ,  x  - i ,  and is therefore not a prime element 
in the factorial ring Z [ i ] .  

The example of the equation p = x2+y2 shows that even quite elementary 
questions about rational integers may lead to the consideration of higher 
domains of integers. But it was not so much for this equation that we have 
introduced the ring Z [ i ] ,  but rather in order to preface the general theory 
of algebraic integers with a concrete example. For the same reason we will 
now look at this ring a bit more closely. 

5 1. The Gaussian Integers 3 

When developing the theory of divisibility for a ring, two basic problems 
are most prominent: on the one hand, to determine the units of the ring in 
question, on the other, its prime elements. The answer to the first question 
in the present case is particularly easy. A number a  = a  + bi E Z [ i ]  is a 
unit if and only if its norm is 1:  

N ( a )  := (a  + i b ) ( a  - i b )  = a2 + b2 = 1 

(exercise l), i.e., if either a2 = 1 ,  b2 = 0, or a2 = 0, b2 = 1 .  We thus obtain 
the 

(1.3) Proposition. The group of units of the ring Z [ i ]  consists of the fourth 
roots of unity, 

Z [ i ] *  = { I ,  - 1, i ,  - i ) .  

In order to answer the question for primes, i.e., irreducible elements of 
the ring Z [ i ] ,  we first recall that two elements a , B  in a ring are called 
associated, symbolically a  -- B,  if they differ only by a unit factor, and 
that every element associated to an irreducible element n is also irreducible. 
Using theorem ( 1 . 1 )  we obtain the following precise list of all prime numbers 
of Z [ i ] .  

(1.4) Theorem. The prime elements n of Z [ i ] ,  up to associated elements, 
are given as follows. 

( 1 )  n = l + i ,  

( 2 )  n = a + b i  ~ i t h a ~ + b ~ = ~ , ~ ~ 1 m o d 4 , a > I h 1 > 0 ,  

( 3 ) n = p ,  p r 3 m o d 4 .  

Here, p  denotes a prime number of Z .  

Proof: Numbers as in (1 )  or ( 2 )  are prime because a decomposition n = a .B 
in Z [ i ]  implies an equation 

with some prime number p. Hence either N ( a )  = 1 or N ( B )  = 1, so that 
either a  or ,!? is a unit. 

Numbers n = p ,  where p r 3 mod 4, are prime in Z [ i ] ,  because 
a decomposition p = a  . B into non-units a, j3 would imply that p2 = 
N ( a )  . N ( B ) ,  so that p = N ( a )  = N ( a  + b i )  = a2 + b2 ,  which according 
to ( 1  . l )  would yield p r 1 mod 4. 
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This being said, we have to check that an arbitrary prime element n 
of Z [ i ]  is associated to one of those listed. First of all, the decomposition 

N ( n )  = TT . T i  = p1 . . . p , ,  

with rational primes pi, shows that n 1 p for some p = pi. This gives 
N(n)  1 N ( p )  = p2 ,  so that either N ( n )  = p or N ( n )  = p2.  In the case 
N(n)  = p we get n = a + bi with a2 + b2 = p, so n is of type (2)  or, 
if p = 2, it is associated to 1 + i .  On the other hand, if N ( n )  = p 2 ,  
then n is associated to p since p / n  is an integer with norm one and 
thus a unit. Moreover, p = 3 mod 4 has to hold in this case because 
otherwise we would have p = 2 or p E 1 mod 4 and because of (1.1) 
p = a2 + b2 = (a + bi)(a - bi)  could not be prime. This completes the 
proof. 0 

The proposition also settles completely the question of how prime num- 
bers p E Z decompose in Z [ i ] .  The prime 2 = ( 1  + i ) ( l  - i )  is associated to 
the square of the prime element 1 + i .  Indeed, the identity 1 - i = - i ( l  + i )  
shows that 2 - ( 1  + i)'. The prime numbers p = 1 mod 4 split into two 
conjugate prime factors 

p = (a + bi)(a - b i ) ,  
and the prime numbers p E 3 mod 4 remain prime in Z [ i ] .  

The gaussian integers play the same r6le in the field 

~ ( i ) = ( a + b i I a , b ~ Q }  

as the rational integers do in the field Q .  So they should be viewed as the 
"integers" in Q ( i ) .  This notion of integrality is relative to the coordinates of 
the basis 1 ,  i. However, we also have the following characterization of the 
gaussian integers, which is independent of a choice of basis. 

(1.5) Proposition. Z [ i ]  consists precisely of those elements of the extension 
field Q ( i )  of Q which satisfy a monic polynomial equation 

x 2 + a x + b = 0  

with coefficients a ,  b E Z .  

Proof: An element a! = c + id E Q ( i )  is a zero of the polynomial 

x2 + a x  + b E Q [ x ]  with a = -2c, b = c 2 + d 2 .  

I f  c and d are rational integers, then so are a and b. Conversely, if a and b 
are integers, then so are 2c and 2d. From ( 2 ~ ) ~  + (2d)2 = 4b r 0 mod 4 it 
follows that ( 2 ~ ) ~  1 (24' = 0 mod 4,  since squares are always r 0 or = 1. 
Henqe c and d are integers. 0 

5 2.  Integrality 5 

The last proposition leads us to the general notion of an algebraic integer 
as being an element satisfying a monic polynomial equation with rational 
integer coefficients. For the domain of the gaussian integers we have obtained 
in this section a complete answer to the question of the units, the question 
of prime elements, and to the question of unique factorization. 

These questions indicate already the fundamental problems in the general 
theory of algebraic integers. But the answers we found in the special 
case Z [ i ]  are not typical. Novel features will present themselves instead. 

Exercise 1. a E Z[i] is a unit if and only if N ( a )  = 1. 

Exercise 2. Show that, in the ring Z[i], the relation cup = E Y " ,  for a ,  B relatively 
prime numbers and E a unit, implies a = &'tn and = ~ " f ,  with E ' ,  E" units. 

Exercise 3. Show that the integer solutions of the equation 
x2 + y2 = z 2  

such that x ,  y ,  z > 0 and ( x ,  y , z )  = 1 ("pythagorean triples") are all given, up to 
possible permutation of x  and y ,  by the formuk 

x = u 2 - v 2 ,  y = 2 u v ,  z = u 2 + v 2 ,  

where u ,  v  E Z, u  > v > 0, ( u ,  v )  = 1, u ,  v  not both odd. 

Hint: Use exercise 2 to show that necessarily x  + i y  = &a2 with a unit E and with 
a = u  + i v  E Z[i]. 

Exercise 4. Show that the ring Z[i] cannot be ordered. 

Exercise 5. Show that the only units of the ring Z [ n ]  = Z + Z a ,  for any 
rational integer d > 1, are f 1.  

Exercise 6. Show that the ring Z[&] = Z + z&, for any squarefree rational 
integer d > 1, has infinitely many units. 

Exercise 7. Show that the ring z[&] = Z + Z& is euclidean. Show furthermore 
that its units are given by &(1 + A)", n E Z, and determine its prime elements. 

5 2. Integrality 

An algebraic number field is a finite field extension K of Q. The ele- 
ments of K are called algebraic numbers. An algebraic number is called 
integral, or an algebraic integer, if it is a zero of a monic polynomial 
f (x) E Z [ x ] .  This notion of integrality applies not only to algebraic num- 
bers, but occurs in many different contexts and therefore has to be treated 
in full generality. 
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In what follows, rings are always understood to be commutative rings 
with 1. 

(2.1) Definition. Let A B be an extension of rings. An element b E B is 
called integral over A, if it satisfies a monic equation 

x n + a l x n - I + - . . + a , = O ,  n > 1 ,  

with coefficients ai E A. The ring B is called integral over A if all elements 
b E B are integral over A. 

It is desirable, but strangely enough not immediately obvious, that the 
sum and the product of two elements which are integral over A are again 
integral. This will be a consequence of the following abstract reinterpretation 
of q e  notion of integrality. 

(2.2) Proposition. Finitely many elements bl , . . . , b, E B are all integral 
over'A if and only if the ring A[bl, . . . , b,] viewed as an A-module is finitely 
gentbred. 

~b prove this we make use of the following result of linear algebra. 
I 

(2.31 Proposition (Row-Column Expansion). Let A = (a;j) be an (r x r )  - 
matrix with entries in an arbitrary ring, and let A* = (a,?j) be the adjoint 

marfix, i.e., a *  = (-l)'+J det(Aij), where the matrix Aij is obtained from A 
' J  

by deleting the i -th column and the j -th row. Then one has 

AA* = A*A = det(A)E, 

where E denotes the unit matrix of rank r .  For any vector x = (XI, . . . , x,), 
this yields the implication 

Proof of proposition (2.2): Let b E B be integral over A and f (x) E A[x] 
a monic polynomial of degree n 2 1 such that f (b) = 0. For an arbitrary 
polynomial g(x) E A[x] we may then write 

g(x) = (x) + r(x), 

with q (x) , r (x) E A[x] and deg(r (x)) < n, so that one has 

Thus A[b] is generated as A-module by 1, b, . . . , bn-I 

5 2. Integrality 
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More generally, if b l ,  . . . , b, E B are integral over A ,  then the fact that 
A[bl, . . . , b,] is of finite type over A follows by induction on n .  Indeed, 
since b, is integral over R = A[bl, . . . , bn-l], what we have just shown 
implies that R[b,] = A[bl, . . . , b,] is finitely generated over R, hence also 
over A, if we assume, by induction, that R is an A-module of finite type. 

Conversely, assume that the A-module A[bl, . . . , b,] is finitely generated 
and that wl, . . . , w, is a system of generators. Then, for any element 
b E A[bl, . . . , b,], one finds that 

From (2.3) we see that det(bE - (aij)) w; = 0, i = 1 ,  . . . , r (here E is the 
I 

unit matrix of rank r), and since 1 can be written 1 = clw1 + . . . + c,.~,. , the 
identity det(bE - (aij)) = 0 gives us a monic equation for h with coefficients 
in A. This shows that b is indeed integral over A. 0 

I 

According to this proposition, if bl ,  . . . , b, E B are integral over A ,  
then so is any element b of A[bl, . . . , b,], because A[bl, . . . , b,, b] = 
A[bl, . . . , b,] is a finitely generated A-module. In particular, given two 
integral elements bl , bz E B, then bl + b2 and bl b2 are also integral over A.  
At the same time we obtain the 

(2.4) Proposition. Let A B 5 C be two ring extensions. If C is integral 
over B and B is integral over A, then C is integral over A. 

Proof: Take c E C, and let cn + bl en-' + . . . + b, = 0 be an equation with 
coefficients in B. Write R = A[bl, . . . , b,]. Then R[c] is a finitely generated 
R-module. If B is integral over A, then R[c] is even finitely generated 
over A, since R is finitely generated over A. Thus c is integral over A. 

From what we have proven, the set of all elements 

A =  { b  E B I b integral over A ]  

in a ring extension A E B forms a ring. It is called the integral closure 
of A in B. A is said to be integrally closed in B if A = A. It is immediate 
from (2.4) that the integral closure Xis  itself integrally closed in B. If A is an 
integral domain with field of fractions K ,  then the integral closure A of A 
in K is called the normalization of A, and A is simply called integrally 
closed if A = A. For instance, every factorial ring is integrally closed. 
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In fact, if a l b  E K (a,  b  E A)  is integral over A, i.e., 

vtrith ai E A, then 

Therefore each prime element ~r which divides b  also divides a. Assuming 
a l b  to be reduced, this implies a l b  E A. 

We now turn to a more specialized situation. Let A be an integral 
domain which is integrally closed, K its field of fractions, L ( K  a finite 
field extension, and B the integral closure of A in L. According to (2.4), B 
is'automatically integrally closed. Each element B E L  is of the form 

b  
B = - 7  ~ E B , ~ E A ,  

a  
because if 

then b  = an@ is integral over A,  an integral equation 

being obtained from the equation for B by multiplication by a:-'. Further- 
more, the fact that A is integrally closed has the effect that an element B E L 
is Sntegral over A if and only if its minimal polynomial p(x)  takes its coef- 
ficients in A. In fact, let B be a zero of the monic polynomial g(x)  E A[x] .  
Then p(x )  divides g(x )  in K [ x l ,  so that all zeroes P I ,  . . . , Bn of p(x )  
are integral over A, hence the same holds for all the coefficients, in other 
words p(x )  E A[x] .  

The trace and the norm in the field extension L 1 K furnish important tools 
for the study of the integral elements in L. We recall the 

(2.5) Definition. The trace and norm of an element x E L  are defined to be 
the trace and determinant, respectively, of the endomorphism 

of the K -vector space L  : 

5 2. Integrality 

In the characteristic polynomial 

f x ( t )  = det(t id -Tx) = tn  - altn-' + . . . + (-l)"an E K [ t]  

of T,, n = [L  : K ] ,  we recognize the trace and the norm as 

a1 = T ~ L / K ( X )  and an = NL(K(x ) .  

Since Tx+y = Tx + Ty and Txy = Tx o Tr,  we obtain homomorphisms 

TrLIK  : L  + K and N L I K  : L* + K*.  

In the case where the extension L 1 K is separable, the trace and norm admit 
the following Galois-theoretic interpretation. 

(2.6) Proposition. If L  1 K is a separable extension and a  : L 4 varies 
over the different K -embeddings of L  into an algebraic closure K of K , then 
we have 

(i) = n c t  - 0x1,  
u 

(ii) T Y L ~ K ( X )  = C U X ,  
u 

(iii) NL ( x )  = n a x .  
a 

Proof: The characteristic polynomial fx ( t )  is a power 

fx( t )  = px ( t ) d ,  d = [ L  : K ( x ) ]  , 

of the minimal polynomial 

of x. In fact, l , x ,  . . . , Xm-l is a basis of K ( x ) J K ,  and if a , ,  . . . , ad is a 
basis of L I K  ( x )  , then 

is a basis of L  I K .  The matrix of the linear transformation Tx : y I-+ xy with 
respect to this basis has obviously only blocks along the diagonal, each of 
them equal to 
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The corresponding characteristic polynomial is easily checked to be 

se that finally f, ( t )  = p, ( t ) d .  

The set HomK(L, K )  of all K-embeddings of L is partitioned by the 
equivalence relation 

into m equivalence classes of d elements each. If a , ,  . . . , a, is a system of 
representatives, then we find 

and f,(t) = n:==,(t - q x l d  = fly=, nu-,(t - OX) = n,(t  - ax) .  This 
proves (i), and therefore also (ii) and (iii), after Vieti 0 

(2.7) Corollary. In a tower of finite field extensions K 5 L M, one has I 

T ~ L I K  ~ T ~ M I L  = T ~ M I K  , NLIK 0 NMIL = N M I K .  

Proof: We assume that MI K is separable. The set H o r n ~ ( M ,  K) of K - 1 
I 

embeddings of M is partitioned by the relation 

into m = [L : K]  equivalence classes. If a , ,  . . . , a, is a system of represen- 
tatives, then H O ~ ~  (L, K) = {ail I i = 1, . . . , m), and we find I 

Likewise for the norm. 
I 

I 

We will not need the inseparable case for the sequel. However it follows 
easily from what we have shown above, by passing to the maximal separable 
subextension MS JK. Indeed, for the inseparable degree [M : K]; = I 

[M : MS] one has [M : K]i = [M : L]; [L : KIi and I 
I 

(see [143], vol. I, chap. 11, $10). 
I 
1 

The discriminant of a basis a [ ,  . . . , cm of a separable extension L I K is 
defined by 

2 d(a1, . . . , a n )  = det((aiaj)) , 

where ai , i = 1, . . . , n ,  varies over the K -embeddings L + K. Because of 
the relation 

T ~ L ~ K  (ffiffj) = C(akffi)(akffj), 
k 

the matrix (TrLIK(aiaj)) is the product of the matrices (aka;)' and ( a p i ) .  
Thus one may also write 

d (a l ,  . . . , a,) = d e t ( ~ r ~ 1 ~  (ffiffj)).  

In the special case of a basis of type 1,8, . . . , 8"-' one gets 

where Qi = gig. This is seen by successively multiplying each of the first 
(n - 1) columns in the Vandermonde matrix 

by 8, and subtracting it from the following. 

(2.8) Proposition. If L (K  is separable and a , ,  . . . , a, is a basis, then the 
discriminant 

d(a1, . . ., an) # 0 ,  

is a nondegenerate bilinear form on the K -vector space L. 

Proof: We first show that the bilinear form (x, y) = Tr(xy) is nondegenerate. 
Let 8 be a primitive element for L 1 K , i.e., L = K (0). Then 1,8,  . . . , 6"-' 
is a basis with respect to which the form (x, y) is given by the matrix 
M = ( ~ r ~ ~ ~  ( ~ ~ - ' e j - ~ ) ) ~ ,  ..., n.  It is nondegenerate because, for 8; = o; 8 ,  
we have 

det(M) = d(l,B, . . . , en-') = n ( @  - 8,12 # 0 .  
i < j  

If a ] ,  . . . , a, is an arbitrary basis of L I K ,  then the bilinear form (x, y )  with 
respect to this basis is given by the matrix M = (TrL1K (ai a,)). From the 
above it follows that d ( q ,  . . . , a n )  = det(M) # 0. 0 
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After this review from the theory of fields, we return to the integrally 
closed integral domain A with field of fractions K ,  and to its integral 
closure B in the finite separable extension L J K .  If x E B is an integral 
element of L ,  then all of its conjugates a x  are also integral. Taking into 
account that A is integrally closed, i.e., A = B n K ,  (2.6) implies that 

T ~ L I K ( x ) ,  NLIK(X) E A. 

Furthermore, for the group of units of B over A ,  we obtain the relation 

x E B* NL]K(X) E A*. 

For if aNLIK(x)  = 1, a E A, then 1 = a n ,  a x  = yx for some y E B. The 
discriminant is often useful because of the following 

(2.9) Lemma. Let a , ,  . . . , a, be a basis of L I K which is contained in B , of 
discriminant d = d ( q ,  . . . , a,). Then one has 

d B  G Aal + + Aa,. 

Proof: If a = a l a l  +.  . . +a,cr, E B,  U j  E K ,  then the aj are a solution of 
the system of linear equations 

T ~ L ~ K  (aia) = xTrL/K(aiaj)aj,  
J 

and, as TrLI~(cria) E A, they are given as the quotient of an element of A 
by the determinant det(Tr~(K (aiaj)) = d. Therefore da j  E A, and thus 

A system of elements wl, . . . , w, E B such that each b E B can be 
written uniquely as a linear combination 

b =a lwl  + . . - + a n o n  

with coefficients ai E A, is called an integral basis of B over A (or: 
A-basis of B). Since such an integral basis is automatically a basis 

of, L I K ,  its length n always equals the degree [L : K] of the field extension. 
The existence of an integral basis signifies that B is a free A-module 
of rank n = [L : K]. In general, such an integral basis does not exist. 
If, however, A is a principal ideal domain, then one has the following more 
general 

I 

(2.10) Proposition. If L (K  is separable and A is a principal ideal domain, 
then every finitely generated B -submodule M # 0 of L is a free A module of 
rank [L : K] . In particular, B admits an integral basis over A. 

5 2. Integrality 13 

Proof: Let M # 0 be a finitely generated B -submodule of L and a , . . . , a,, 
a basis of L I K. Multiplying by an element of A, we may arrange for the a, 
to lie in B. By (2.9), we then have dB G Aal + . .. + Aa,, in particular, 
rank(B) _( [L : K], and since a system of generators of the A-module B is 
also a system of generators of the K-module L,  we have rank(B) = [L : K]. 
Let p1, . . . , pCLr E M be a system of generators of the B -module M.  There 
exists an a E A, a # 0, such that up i  E B, i = 1, . . . , r ,  so that a M  5 B. 
Then 

a d M  5 d B  G Aal +. . .+  Aa, = Mo. 

According to the main theorem on finitely generated modules over principal 
ideal domains, since Mo is a free A-module, so is a d  M, and hence also M. 
Finally, 

[L : K]  = rank(B) 5 rank(M) = rank(ad M) 5 rank(Mo) = [L : K], 

hence rank(M) = [L : K]. 0 

It is in general a difficult problem to produce integral bases. In concrete 
situations it can also be an important one. This is why the following 
proposition is interesting. Instead of integral bases of the integral closure B 
of A in L, we will now simply speak of integral bases of the extension L 1 K .  

(2.11) Proposition. Let L (K  and L1( K be two Galois extensions of degree n , 
resp. n', such that L n L' = K. Let wl, . . . , w,, resp. w;, . . . , w:,,, be an 
integral basis of L 1 K ,  resp. L'J K ,  with discriminant d ,  resp. d'. Suppose that 
d and d' are relatively prime in the sense that xd  f x'd' = 1, for suitable 
x.  x' E A. Then w; wi is an integral basis of LL', of discriminant d"'df". 

Proof: As L fl L' = K,  we have [LLf : K]  = nn', so the nn' products w;wji 

do form a basis of L L1(K. Now let a be an integral element of L L', and 
write 

We have to show that ai, E A. Put Bj = xi aij w;. Let G(LL1(L') = 
{a , ,  . . . , a,} and G(LLIJL) = {o;, . . . , a;,}. Thus 

G(LLIJK) = {aka; 1 k = 1, . . . , n, l = 1, . . . , n'} . 

Putting 
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one finds det ( T ) ~  = d' and 
a = T b .  

Write T* for the adjoint matrix of T. Then row-column expansion (2.3) gives 

'Since T* and a have integral entries in LL', the multiple d'b has integral 
'entries in L ,  namely d'p, = xi d'a;, o;. Thus dlai, E A. Swapping the rbles 
of (w;) and (wj), one checks in the same manner that dai, E A ,  so that 

aij = xda;, + x'd'a;, E A .  
I 
Therefore oi w; is indeed an integral basis of L L' I K. We compute the 
discriminant A of this integral basis. Since G(LLIIK) = {aka; I k = 
1 ,  .. . , n, l = 1, . . . , n'), it is the square of the determinant of the 
(nn' x nnl)-matrix 

This matrix is itself an (n' x n')-matrix with entries (n x n)-matrices of which 
the ( l ,  j)-entry is the matrix Qa io j  where Q = ( ~ k o i ) .  In other words, 

Here E denotes the (n x n)-unit matrix. By changing indices the second 
matrix may be transformed to look like the first one. This yields 

Remark: It follows from the proof that the proposition is valid for arbitrary 
separable extensions (not necessarily Galois), if one assumes instead of 
L n L' = K that L and L' are linearly disjoint. 

The chief application of our considerations on integrality will concern the 
integral closure OK K of Z 5 Q in an algebraic number field K. By 
proposition (2. lo), every finitely generated oK -submodule a of K admits 
a Z-basis a1 , . . . , a,, 

a = Z a l  +.. .+ Za,. 

The discriminant 
2 

d(a l ,  . . . , a,) = det((ap,)) 

is independent of the choice of a Z-basis; if a ; ,  . . . , ah is another basis, 
then the base change matrix T = (ai,), a: = x, aijaj,  as well as its inverse, 
has integral entries. It therefore has determinant f 1 ,  so that indeed 

d(ai ,  . . . , a;) = d e t ( ~ ) ~ d ( a , ,  . . . , a,) = d ( a l ,  . . . , a,).  

We may therefore write 

d(a) = d(a l ,  . . . , a,). 

In the special case of an integral basis o l ,  . . . , W, of OK we obtain the 
discriminant of the algebraic number field K ,  

dK = d(oK)  = d(wI, . . . , w,). 

In general, one has the 

(2.12) Proposition. I f  a c a' are two nonzero finitely generated OK -sub- 
modules o f  K, then the index (a' : a) is finite and satisfies 

d(a) = (a' : a)' d(al). 

All we have to show is that the index (a' : a) equals the absolute value 
of the determinant of the base change matrix passing from a Z-basis of a 
to a Z-basis of a'. This proof is part of the well-known theory of finitely 
generated Z -modules. 

Exercise 1. Is an algebraic integer? 

Exercise 2. Show that, if the integral domain A is integrally closed, then so is the 
polynomial ring A[t]. 

Exercise 3. In the polynomial ring A = Q[X, Y], consider the principal ideal 
p = (X2 - Y3). Show that p is a prime ideal, but Alp  is not integrally closed. 

Exercise 4. Let D be a squarefree rational integer # 0, 1 and d the discriminant of 
the quadratic number field K = Q ( f i ) .  Show that 

d = D ,  i f D r 1  m o d 4 ,  

and that an integral basis of K is given by (1, fi) in the second case, by 
( 1 ,  (1 + a)) in the first case, and by (1, i (d + a)) in both cases. 

Exercise 5. Show that ( 1 , 3 ,  3 ' )  is an integral basis of ~ ( 3 ) .  

Exercise 6. Show that (1,0, i (6 + 6')) is an integral basis of Q(O), O3 - 6' - 4 = 0. 

Exercise 7. The discriminant dK of an algebraic number field K is always = 0 mod 4 
or E 1 mod 4 (Stickelberger's discriminant relation). 

Hint: The determinant det(o;.w,) of an integral basis w, is a sum of terms, each 
prefixed by a positive or a negative sign. Writing P ,  resp. N ,  for the sum of the 
positive, resp. negative terms, one finds dK = ( P  - N)' = (P + N)' - 4 P N .  
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prime numbers" would hold. For instance, in the example of 

21 = 3 . 7 = ( 1 + 2 - ) ( I - 2 - ) ,  

Being a generalization of the ring Z 5 0,  the ring O K  of integers of an 
algebraic number field K is at the center of all our considerations. As in Z, 
every non-unit a! # 0  can be factored in OK into a product of irreducible 

I elements. For if a! is not itself irreducible, then it can be written as a product 
of two non-units a! = p y. Then by § 2,  one has 

and the prime decomposition of a follows by induction from those of p 
and y. However, contrary to what happens in the rings Z and Z[i], the 
uniqueness of prime factorization does not hold in general. 

Example : The ring of integers of the field K = Q(- ) is given by 5 2 ,  
exercise 4 ,  as OK = Z + Z G .  In this ring, the rational integer 21 can be 

1 
decomposed in two ways, 

21 = 3 . 7 = ( 1 + 2 - ) . ( 1 - 2 1 / - - 5 ) .  

All factors occurring here are irreducible in O K .  For if one had, for 
instance, 3  = a @ ,  with a ,  @ non-units, then 9 = NKIQ(a) N K Q ( @ )  would 
imply N K I Q ( ~ )  = f  3 .  But the equation 

has no solutions in Z. In the same way it is seen that 7 ,  1 + 2 G ,  and 
1 - 2- are irreducible. As the fractions 

do not belong to O K ,  the numbers 3 and 7  are not associated to 1 + 2- 
or 1 - 2 a .  The two prime factorizations of 21 are therefore essentially 
different. 

Realizing the failure of unique factorization in general has led to one of the 
grand events in the history of number theory, the discovery of ideal theory by 
EDUARD KUMMER. Inspired by the discovery of complex numbers, Kummer's 
idea was that the integers of K would have to admit an embedding into a 
bigger domain of "ideal numbers" where unique factorization into "ideal 

This would resolve the above non-uniqueness into the wonderfully unique 
factorization 

21 = ( P l P 2 ) ( P 3 P 4 )  = ( ~ l P 3 ) ( ~ 2 ~ 4 ) .  

I 

Kummer's concept of "ideal numbers" was later replaced by that of ideals 
of the ring O K .  The reason for this is easily seen: whatever an ideal number 
a  should be defined to be, it ought to be linked to certain numbers a E O K  

by a divisibility relation a  I a  satisfying the following rules, for a ,  h, h E O K ,  

a l a  and a lh  j a l a f  h ;  a la  =+ alha. 

And an ideal number a  should be determined by the totality of its divisors 
in O K  

a = { a ~ o ~ l a l a } .  - 
But in view of the rules for divisibility, this set is an ideal of O K .  

This is the reason why RICHARD DEDEKIND re-introduced Kummer's "ideal 
numbers" as being the ideals of O K .  Once this is done, the divisibility 
relation a  ( a  can simply be defined by the inclusion a  E a, and more generally 
the divisibility relation a  1 b between two ideals by b 2 a. In what follows, 
we will study this notion of divisibility more closely. The basic theorem here 

I is the following. 
I 

I (3.1) Theorem. The ring O K  is noetherian, integrally closed, and every prime 
ideal p # 0  is a maximal ideal. 

Proof: O K  is noetherian because every ideal a  is a finitely generated Z- 
module by (2.10), and therefore a  fortiori a finitely generated O K  -module. 
By 92,  OK is also integrally closed, being the integral closure of Z i n  K .  
It thus remains to show that each prime ideal p # 0  is maximal. Now, p n Z 
is a nonzero prime ideal (p) in Z: the primality is clear, and if y E p ,  y # 0 ,  
and 

yn +a l y" - '  + . - . + a ,  = 0  
is an equation for y with ai E Z,  a, # 0 ,  then a, E p n Z. The integral 
domain E = uK/p  arises from K = Z/pZ by adjoining algebraic elements 
and is therefore again a field (recall the fact that ~ [ a ]  = ~ ( a ) ,  if a is 
algebraic). Therefore p is a maximal ideal. 0 
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The three properties of the ring OK which we have just proven lay the 
foundation of the whole theory of divisibility of its ideals. This theory was 
developed by Dedekind, which suggested the following 

(3.2) Definition. A noetherian, integrally closed integral domain in which 
every nonzero prime ideal is maximal is called a Dedekind domain. 

Just as the rings of the form OK may be viewed as generalizations of the 
ring Z, the Dedekind domains may be viewed as generalized principal ideal 
domains. Indeed, if A is a principal ideal domain with field of fractions K ,  
and L 1 K is a finite field extension, then the integral closure B of A in L is, 
in general, not a principal ideal domain, but always a Dedekind domain, as 
we shall show further on. 

Instead of the ring OK we will now consider an arbitrary Dedekind 
domain o, and we denote by K the field of fractions of o. Given two 
ideals a and b of o (or more generally of an arbitrary ring), the divisibility 
relation a1 b is defined by b 5 a, and the sum of the ideals by 

a + b = { a + b ( a ~ a , b ~  b } .  

This is the smallest ideal containing a as well as b, in other words, it is 
the greatest common divisor gcd(a, 6) of a and 6. By the same token the 
intersection a n  b is the lcm (least common multiple) of a and b. We define 
the product of a and b by 

With respect to this multiplication the ideals of o will grant us what the 
elements alone may refuse to provide: the unique prime factorization. 

(33) Theorem. Every ideal a of o different from (0) and (1) admits a 
factorization 

a = pl . . .p ,  

into nonzero prime ideals pi of o which is unique up to the order of the factors. 

This theorem is of course perfectly in line with the invention of "ideal 
numbers". Still, the fact that it holds is remarkable because its proof is far 
from straightforward, and unveils a deeper principle governing the arithmetic 
in 0. We prepare the proof proper by two lemmas. 
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(3.4) Lemma. For every ideal a # 0 of o there exist nonzero prime ideals 
P I ,  ~ 2 ,  . . ., Pr such that 

a S PIP,...^,.. 

Proof: Suppose the set !?Jl of those ideals which do not fulfill this condition 
is nonempty. As o is noetherian, every ascending chain of ideals becomes 
stationary. Therefore !?Jl is inductively ordered with respect to inclusion and 
thus admits a maximal element a. This cannot be a prime ideal, so there exist 
elements b1,b2 E o such that blb2 E a, but bl, b2 $ a. Put al = (b , )  + a, 
a2 = (b2) + a. Then a 5 al,  a 5 a2 and a1 a2 G a. By the maxirnality of a ,  
both a1 and a2 contain a product of prime ideals, and the product of these 
products is contained in a, a contradiction. 0 

(3.5) Lemma. Let p be a prime ideal of o and define 

Then one has ap-' := { X i  aixi I ai E a,  xi E p-l) # a, forevery ideal a # 0. 

Proof: Let a E p, a # 0, and plpz . . . p r  (a) 2 p, with r as small as 
possible. Then one of the pi, say pl, is contained in p, and so pl = p because 
PI is a maximal ideal. (Indeed, if none of the pi were contained in p, then 
for every i there would exist ai E pi \ p such that a1 . . .a,- E p. But p is 
prime.) Since p2.s .pr (a), there exists b E p2.. .p,. such that b $ ao, 
i.e., a-'b $ o .  On the other hand we have bp 5 (a), i.e., a- 'bp 2 o, and 
thus a-'6 E p-I. It follows that p-' # o. 

Now let a # 0 be an ideal of o and a1, . . . , a, a system of generators. 
Let us assume that ap-' = a. Then for every x E p-I, 

Writing A for the matrix (x8ij-aij) we obtain A(al,  . . . , a,)' = 0. By (2.3), 
the determinant d = det(A) satisfies d a l  = . . - = da, = 0 and thus d = 0. 
It follows that x is integral over o, being a zero of the monic polynomial 
f (X) = det(X8ij -aij) E o[X]. Therefore x E 0 .  This means that p-' = 0 ,  

I a contradiction. 0 

Proof of (3.3): I. Existence of the prime ideal factorization. Let ?lR be the 
set of all ideals different from (0) and (1) which do not admit a prime ideal 
decomposition. If t132 is nonempty, then we argue as for (3.4) that there exists 
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a maximal element a in 9Jl. It is contained in a maximal ideal p, and the 
inclusion o E p-I gives us 

By (3.3,  one has a 5 ap-I and p 5 p p-' G o .  Since p is a maximal ideal, 
it follows that p p-' = o .  In view of the maximality of a in ?3Jl and since 
a # p, i.e., ap-I # o, the ideal ap-I admits a prime ideal decomposition 
ap-I = pl . . .p, ,  and so does a = ap-I p = pl -. -prp, a contradiction. 

11. Uniqueness of the prime ideal factorization. For a prime ideal p one has: 
a b G p = + a E p  or b E p , i . e . , p i a b + p l a o r p I b . L e t  

be two prime ideal factorizations of a. Then pl divides a factor qi, say ql, 
and being maximal equals ql. We multiply by p,' and obtain, in view of 
PI  # PI  PI' = 0, that 

Pz..-Pr = q2. . -qs-  

Continuing like this we see that r = s and, possibly after renumbering, 
pi = qi, for all i = 1, . . . , r .  0 

, Grouping together the occurrences of the same prime ideals in the prime 
ideal factorization of an ideal a # 0 of o, gives a product representation 

,In the sequel such an identity will be automatically understood to signify 
lthat the pi are pairwise distinct. If in particular a is a principal ideal (a), 
'then - following the tradition which tends to attribute to the ideals the r61e 
I 
of  "ideal numbers" - we will write with a slight abuse of notation 

J~imilar l~,  the notation a 1 a is often used instead of a 1 (a) and (a, 6) = 1 
is written for two relatively prime ideals, instead of the correct formula 
(a, b) = a + b = o. For a product a = a l  . . . a, of relatively prime ideals 
a,, . . . , a,, one has an analogue of the well-known "Chinese Remainder 
Theorem" from elementary number theory. We may formulate this result for 
an arbitrary ring taking into account that 

Indeed, since ai 1 a,  i = 1, . . . , n,  we find on the one hand that a ai, 
and for a E ni ai we find that ai I a ,  and therefore, the factors being relatively 
prime, we get a = a1 . . a, 1 a ,  i.e., a E a. 

(3.6) Chinese Remainder Theorem. Let a [ ,  . . . , a,, be ideals in o ring 0 

such that ai + a, = o for i # j. Then, if a = n:, a;, one has 

Proof: The canonical homomorphism 

has kernel a = ni ai. It therefore suffices to show that it is surjective. 
For this, let xi mod ai E o/a i ,  i = 1, . . . , n ,  be given. If n = 2, we 
may write 1 = a1 + a2, ai E ai, and putting x = x2al + X I  a2 we get 
x = xi mod ai, i = 1,2. 

If n > 2, we may find as before an element yl E o such that 
n 

yl r 1 m o d a l ,  yl =Ornod r) ai ,  
i =2 

and, by the same token, elements y2, . . . , yn such that 

P u t t i n g x = x l y l + - . . + x n y n  w e f i n d x r x i  m o d a i , i =  1, . . . ,  n.This 
proves the surjectivity. 0 

Now let o be again a Dedekind domain. Just as for nonzero numbers, we 
may obtain inverses for the nonzero ideals of o by introducing the notion 
of fractional ideal in the field of fractions K. 

(3.7) Definition. A fractional ideal of K is a finitely generated o-submod- 
ulea # 0 ofK.  

For instance, an element a E K* defines the fractional "principal ideal" 
(a) = ao .  Obviously, since o is noetherian, an o-submodule a # 0 of K is 
a fractional ideal if and only if there exists c E o ,  c # 0, such that ca g 0 

is an ideal of the ring o. Fractional ideals are multiplied in the same way 
as ideals in o. For distinction the latter may henceforth be called integral 
ideals of K.  

(3.8) Proposition. The fractional ideals form an abelian group, the ideal 
group JK of K .  The identity element is (1) = o ,  and the inverse of a is 
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Proof: One obviously has associativity, commutativity and a(1) = a. For 
a prime ideal p, (3.5) says that p 5 pp-' and therefore pp-' = o 
because p is maximal. Consequently, if a = p1 . - pI. is an integral ideal, 
then b = p;' . . - p;' is an inverse. ba = o implies that b c a-I. Conversely, 
if xa 2 o, then xab b, so x E b because ab = o. Thus we have b = a-'. 
Finally, if a is an arbitrary fractional ideal and c E o, c # 0, is such that 
ca 2 o, then (ca)-' = c-'a-' is the inverse of ca, so aa-' = o. 0 

(3.9) Corollary. Every fractional ideal a admits a unique representation as a 
product 

I a =  n p V p  

P 

with up E Z and up = 0 for almost all p. In other words, JK is the free abelian 
group on the set of nonzero prime ideals p of o. 

Proof: Every fractional ideal a is a quotient a = b/c of two integral ideals b 
and c, which by (3.3) have a prime decomposition. Therefore a has a prime 
decomposition of the type stated in the corollary. By (3.3), it is unique if a 
is integral, and therefore clearly also in general. 0 

The fractional principal ideals (a) = ao ,  a E K*, form a subgroup of the 
group of ideals JK, which will be denoted PK. The quotient group 

is called the ideal class group, or class group for short, of K.  Along with 
the group of units o* of o, it fits into the exact sequence 

where the arrow in the middle is given by a I+ (a). So the class group 
CIK measures the expansion that takes place when we pass from numbers 
to ideals, whereas the unit group o* measures the contraction in the 
same process. This immediately raises the problem of understanding these 
groups o* and CIK more thoroughly. For general Dedekind domains they 
may turn out to be completely arbitrary groups. For the ring OK of integers 
in a number field K ,  however, one obtains important finiteness theorems, 
which are fundamental for the further development of number theory. But 
these results cannot be had for nothing. They will be obtained by viewing 
the numbers geometrically as lattice points in space. For this we will now 
prepare the necessary concepts, which all come from linear algebra. 

Exercise 1. Decompose 33 + 1 l n  into irreducible integral elements of Q(J--?). 

Exercise 2. Show that 

5 4 = 2 . 3 3 =  
1 3 + p  1 3 - r n  

2 2  
are two essentially different decompositions into irreducible integral elements of 
QtW). 
Exercise 3. Let d be squarefree and p a prime number not dividing 2d. Let o  be the 
ring of integers of Q(&). Show that ( p )  = p  o  is a prime ideal of o  if and only if 
the congruence x2 = d mod p  has no solution. 

Exercise 4. A Dedekind domain with a finite number of prime ideals is a principal 
ideal domain. 

Hint: If a  = p;' . . . p: # 0 is an ideal, then choose elements n, E pi \pZ and apply 
the Chinese remainder theorem for the cosets n: mod p,?'. 

Exercise 5. The quotient ring o l a  of a Dedekind domain by an ideal a  # 0 is a 
principal ideal domain. 

Hint: For a  = pn the only proper ideals of o l a  are given by p/pr', . . . , pJi-'/pl'. 
Choose n E p \ p2 and show that pV = on" + pn. 

Exercise 6. Every ideal of a Dedekind domain can be generated by two elements. 

Hint: Use exercise 5. 

Exercise 7. In a noetherian ring R in which every prime ideal is maximal, each 
descending chain of ideals a, 1 a2 2 . . . becomes stationary. 

Hint: Show as in (3.4) that (0) is a product . . . p, of prime ideals and that the 
chain R 2 PI 2 plp2 1 . . . 1 p~ . . . pr = (0) can be refined into a composition 
series. 

Exercise 8. Let m be a nonzero integral ideal of the Dedekind domain o. Show that 
in every ideal class of C I K ,  there exists an integral ideal prime to m. 

Exercise 9. Let o  be an integral domain in which all nonzero ideals admit a unique 
factorization into prime ideals. Show that o  is a Dedekind domain. 

Exercise 10. The fractional ideals a  of a Dedekind domain o  are projective o- 

modules, i.e., given any surjective homomorphism M & N of o-rnodulcs, cach 

homomorphism a --% N can be lifted to a homomorphism h : a  + M such that 
f o h = g .  

5 4. Lattices 

In 8 1, when solving the basic problems concerning the gaussian integers, 
we used at a crucial place the inclusion 

Z[i] E C 
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and considered the integers of Q ( i )  as lattice points in the complex plane. 
This point of view has been generalized to arbitrary number fields by 
HERMANN MINKOWSKI (1864-1909) and has led to results which make up an 
essential part of the foundations of algebraic number theory. In order to 
develop Minkowski's theory we first have to introduce the general notion of 
lattice and study some of its basic properties. 

(4.1) Definition. Let V be an n -dimensional R -vector space. A lattice in V 
is a subgroup of the form 

r = z v l  + . . . + Z V ,  

with linearly independent vectors vl , . . . , v, of V. The m -tuple ( v l ,  . . . , v,) 
is called a basis and the set 

@ = { x ~ v ~ + . . . + x ~ v ~ I x ~ E R , O ~ X ~  ( 1 )  

a fundamental mesh of the lattice. The lattice is called complete or a Z -  
structure of V . if m = n. 

The completeness of the lattice is obviously tantamount to the fact that 
the set of all translates @ + y ,  y E r ,  of the fundamental mesh covers the 
entire space V. 

The above definition makes use of a choice of linearly independent I 

vectors. But we will need a characterization of lattices which is independent I 

of such a choice. Note that, first of all, a lattice is a finitely generated I 
subgroup of V. But not every finitely generated subgroup is a lattice - for 

I 

I 

instance Z + Z& R  is not. But each lattice r = Zv l  + . . . + Zv,, 
1 

has the special property of being a discrete subgroup of V. This is to say 
that every point y E r is an isolated point in the sense that there exists a 
neighbourhood which contains no other points of r. In fact, if 1 

y =alvl  +- a amurn E r ,  

then, extending v l ,  . . . , v, to a basis v l ,  . . . , v, of V, the set 

{ x I v I + . . . + x , v ~ I x ~ E R ,  Ja i -x i I  < l f o r i = l  ,..., m} 

clearly is such a neighbourhood. This property is indeed characteristic. 
I I 

(4.2) Proposition. A subgroup r 2 V is a lattice if and only if it is discrete. 
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Proof: Let f be a discrete subgroup of V. Then f is closed. For let U be an 
arbitrary neighbourhood of 0. Then there exists a neighbourhood U'  5 U of 0 
such that every difference of elements of U' lies in U. If there were an n- q! r 
belonging to the closure of r ,  then we could find in the neighbourhood s+U' 
of x two distinct elements y,, M E f ,  SO that 0 # yl - M E U'  - U' c U .  
Thus 0 would not be an isolated point, a contradiction. 

Let Vo be the linear subspace of V which is spanned by the set f, and 
let m be its dimension. Then we may choose a basis u . . . , u, of Vo which 
is contained in f, and form the complete lattice 

of Vo. We claim that the index ( r  : ro)  is finite. To see this, let y; E f vary 
over a system of representatives of the cosets in r/ro. Since To is complete 
in Vo, the translates + y ,  y E ro ,  of the fundamental mesh 

cover the entire space Vo. We may therefore write 

AS the pi = Yi - Yoi E r lie discretely in the bounded set Qo, they have to 
be finite in number. In fact, the intersection of with the closure of Oo is 
compact and discrete, hence finite. 

Putting now q = ( f  : fo ) ,  we have q f  E: To, whence 

By the main theorem on finitely generated abelian groups, f therefore 
admits a Z-basis vl ,  . . . , v,., r 5 m, i.e., f = Zv l  + . . .  + Zu,.. The 
vectors v l ,  . . . , v, are also R-linearly independent because they span the 
m-dimensional space Vo. This shows that f is a lattice. 0 

Next we prove a criterion which will tell us when a lattice in the space V - 
given, say, as a discrete subgroup r G V - is complete. 

(4.3) Lemma. A lattice f in V is complete ifand onlyif there exists a bounded 
subset M G V such that the collection of all translates M + y ,  y  E f , covers 
the entire space V . 
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Proof: If r = Zvl + . . . + Zv, is complete, then one may take M to be the 
fundamental mesh @ = (xlvl + +x,v, I 0 5 xi < 1). 

Conversely, let M be a bounded subset of V whose translates M + y ,  
for y E f, cover V. Let Vo be the subspace spanned by T .  We have to 
show that V = Vo. So let v E V. Since V = UyEr(M + y)  we may write, 
for each v E N, 

v v = a , + y , ,  ~ v E M ,  y , ~ r G V o .  

Since M is bounded, ;a, converges to zero, and since Vo is closed, 

Now let V be a euclidean vector space, i.e., an R-vector space of finite 
dimension n equipped with a symmetric, positive definite bilinear form 

( , ) : V x V - - + R .  

Then we have on V a notion of volume - more precisely a Haar measure. 
The  cube spanned by an orthonormal basis el, . . . , en has volume 1, 

more generally, the parallelepiped spanned by n linearly independent 
'vectors vl , . . . , v, , 

i has volume 
vol(@) = I det A I , 

where A = (aik) is the matrix of the base change from el, . . . , en to 
v1, . . . , v,, SO that vi = Ck aikek. Since 

we also have the invariant notation 
1 /2 

VO~(@)  = I det((vi, v,)) 1 . 

Let r be the lattice spanned by vl, . . . , v,. Then @ is a fundamental 
mesh of r ,  and we write for short 

I voi(r)  = VO~(Q) .  
This does not depend on the choice of a basis vl, . . . , v, of the lattice 
because the transition matrix passing to a different basis, as well as its 
,inverse, has integer coefficients, and therefore has determinant f 1 so that 
the set @ is transformed into a set of the same volume. 

We now come to the most important theorem about lattices. A subset X 
of V is called centrally symmetric, if, given any point x E X, the point -x 
.also belongs to X. It is called convex if, given any two points x ,  y E X,  the 
whole line segment (ty + (1 - t)x I 0 5 t 5 1) joining x with y is contained 
in X. With these definitions we have 

(4.4) Minkowski's Lattice Point Theorem. Let r be a complete lattice in 
the euclidean vector space V and X a centrally symmetric, convex subset of V . 
Suppose that 

VOI(X) > 2" voi(r) .  

Then X contains at least one nonzero lattice point y E f 

Proof: It is enough to show that there exist two distinct lattice points 
yl, y~ E r such that 

In fact, choosing a point in this intersection, 

we obtain an element 
1 1 

y = y1 - y2 = -X2 - -XI, 
2 2 

which is the center of the line segment joining x2 and -XI, and therefore 
belongs to X n r. 

Now, if the sets ;X + y ,  y E r ,  were painvise disjoint, then the same 
would be true of their intersections @ n( ;  X+ y) with a fundamental mesh @ 
of r ,  i.e., we would have 

But translation of @ n ( i X  + y) by -y creates the set (@ - y) n iX of 
equal volume, and the @ - y ,  y 6 r ,  cover the entire space V ,  therefore 
also the set i ~ .  Consequently we would obtain 

which contradicts the hypothesis. 0 

Exercise 1. Show that a lattice r in Rn is complete if and only if the quotient R n / f  [ is compact. 

Exercise 2. Show that Minkowski's lattice point theorem cannot be improved, 
by giving an example of a centrally symmetric convex set X 5 V such that 
vol(X) = 2" vol ( r )  which does not contain any nonzero point of the lattice r.  
If X is compact, however, then the statement (4.4) does remain true in the case of 
equality. 
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Exercise 3 (Minkowski's Theorem on Linear Forms). Let 

be real linear forms such that det(aij) # 0, and let cl, . . . , c, be positive real numbers 
such that c,  . . . cn > I det(aij)l. Show that there exist integers ml, . . . , m, E Z such 
that 

L i (  . ) < c  i = 1, ..., n. 
Hint: Use Minkowski's lattice point theorem. 

5 5. Minkowski Theory 

, The basic idea in Minkowski's treatment of an algebraic number field K IQ 
of degree n is to interpret its numbers as points in n-dimensional space. This 
explains why his theory has been called "Geometry of Numbers." It seems 
appropriate, however, to follow the current trend and call it "Minkowski 
Theory" instead, because in the meantime a geometric approach to number 
theory has been developed which is quite different in nature and much 
more comprehensive. We will explain this in $ 13. In the present section, 
we consider the canonical mapping 

which results from the n complex embeddings t : K + @. The @-vector 
space Kc is equipped with the hermitian scalar product 
! 

(*) ( x ~ Y )  = C x r L r .  
5 

Let us recall that a hermitian scalar product is given by a form H(x, y) 
which is linear in the first variable and satisfies H (x, y) = H (y , x) as well 
as H (x,x) > 0 for x # 0. In the sequel we always view Kc as a hermitian 
space, with respect to the "standard metric" (*). 

The Galois group G ( @  IR) is generated by complex conjugation 

The notation F will be justified only later (see chap. 111, $4). F acts on the 
one hand on the factors of the product nr C, but on the other hand it also 
acts on the indexing set of t 's;  to each embedding t : K + @ corresponds 
its complex conjugate t : K + C. Altogether, this defines an involution 

which, on the points z = (2,) E Kc, is given by 

The scalar product ( , ) is equivariant under F ,  that is 

(Fx ,  Fy)  = F ( x , y ) .  

Finally, we have on the @-vector space Kc = n, @ the linear map 

given as the sum of the coordinates. It is also F-invariant. The composite 

gives the usual trace of K IQ (see (2.6), (ii)), 

We now concentrate on the R-vector space 

Kw = K@+ = 

consisting of the G(@(R)-invariant, i.e., F-invariant, points of Kc. These 
are the points (2,) such that z,- = Z,. An explicit description of KR will be 
given anon. Since t a  = ta for a E K ,  one has F ( j a )  = j a .  This yields a 
mapping 

j :  K -4 KR. 

The restriction of the hermitian scalar product ( , ) from Kc to Kw gives a 
scalar product 

( , ) : K w x K ~ + E X  

on the EX-vector space KR. Indeed, for x,  y E KR, one has (x, y)  E R in 
view of the relations F (x ,y )  = (Fx ,  Fy)  = (x, y), (x,y)  = (G) = (y , . r ) ,  
and, in any case, (x,x)  > 0 for x # 0. 

We call the euclidean vector space 

the Minkowski space, its scalar product ( , ) the canonical metric, and 
the associated Haar measure (see $4, p. 26) the canonical measure. Since 
Tr o F = F o Tr we have on Kw the R-linear map 

Tr :  Kw + R ,  
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and its composite with j : K + KR is again the usual trace of K 10, 

TrKIQ(a) = Tr(ja) . 

! Remark: We mention in passing - it will not be used in the sequel - that 
the mapping j : K + KR identifies the vector space KR with the tensor 
product K @Q R ,  

Likewise, K @Q C 7 Kc. In this approach, the inclusion Kw Kc 
corresponds to the canonical mapping K @Q R + K @Q C which is induced 
by the inclusion R L, C. F corresponds to F(a  @ z) = a @ T. 

An explicit description of the Minkowski space Kw can be given in the 
following manner. Some of the embeddings t : K + C are real in that they 
land already in R ,  and others are complex, i.e., not real. Let 

be the real embeddings. The complex ones come in pairs 

of complex conjugate embeddings. Thus n = r + 2s. We choose from each 
pair some fixed complex embedding, and let p vary over the family of real 
embeddings and a over the family of chosen complex embeddings. Since F 
leaves the p invariant, but exchanges the a, 5, we have 

This gives the 

(5.1) Proposition. There is an isomorphism 

given by the rule (2,) I-+ (x,) where 

xp = zp,  xu = Re(z,), x,- =Im(z,). 

This isomorphism transforms the canonical metn'c ( , ) into the scalarproduct 

where CY, = 1, resp. a, = 2, if t is real, resp. complex. 

5 5. Minkowski Theory 3 1 

Proof: The map is clearly an isomorphism. If z = (z,) . . = (x, + iy,), 
Z' = (z:) = (x: + iy:) E KR, then zpTb = xpx;, and in vlew of y, = x,- 
and y i  = xb, one gets 

z,?: + z,-2; = z,Z& + T,zL = 2Re(z,Tk) = 2(x,xL + x,-x;). 

This proves the claim concerning the scalar products. 0 

The scalar product (x, y) = Cr arxry,  transfers the canonical measure 
from Kw to I W " + ~ ~ .  It obviously differs from the standard Lebesgue meas- 
ure by 

volcanonical(X) = 2S v0h.ebesgue(f (XI) . 
Minkowski himself worked with the Lebesgue measure on IW'+~", and 
most textbooks follow suit. The corresponding measure on Ka is the one 

I determined by the scalar product 

This scalar product may therefore be called the Minkowski metric on KIN.  
But we will systematically work with the canonical metric, and denote by 
vol the corresponding canonical measure. 

I 

The mapping J : K + KR gives us the following lattices in Minkowski 
space Kw . 

(5.2) Proposition. If a # 0 is an ideal of OK, then f = j a  is a complete 
lattice in Kw. Its fundamental mesh has volume 

vol(r)  = (OK : a).  

Proof: Let a1, . . . , a, be a Z-basis of a, so that f = Z ;aI + . . . + Z ja,,. 
We choose a numbering of the embeddings t : K + C, t l ,  . . . , r,,, and 
form the matrix A = (teai). Then, according to (2.12), we have 

2 2 d(a) = d(a l ,  . . . , a,) = (det A) = (OK : a ) 2 d ( 6 ~ )  = (OK : a) d ~ ,  

and on the other hand 

( ( j a i ,  jak)) = ( C  ~ a i  teak) = A A ~ .  
e=1 

This indeed yields 

vol(r)  = I det((jai, jak))l  ' I 2  = I det Al = (ox : a ) .  I7 

Using this proposition, Minkowski's lattice point theorem now gives the 
following result, which is what we chiefly intend to use in our applications 
to number theory. 
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(5.3) Theorem. Let a # 0 be an integral ideal of K ,  and let c, > 0, for 
t E Hom(K , C), be real numbers such that c, = c, and 

2 where A = ( j y )  'm. Then there exists a E a, a # 0, such that 

Proof: The set X = ((z,) E Kw I lzr 1 < c,} is centrally symmetric and 
convex. Its volume vol(X) can be computed via the map (5.1) 

given by xp = zp, xu = Re(zu), x,- = Im(z,). It comes out to be 2, times 
the Lebesgue-volume of the image 

This gives 

VO~(X) = 2, V O ~ ~ ~ , , ,  ( f ( x ) )  = 2' n(2cp) ~ ( X C ; )  = 2r+snS n Cr . 
P a 5 

Now using (5.2), we obtain 

:Thus the hypothesis of Minkowski's lattice point theorem is satisfied. So 
there does indeed exist a lattice point j a  E X, a # 0, a E a; in other 

'words 1 tal  < c,. 0 

; There is also a multiplicative version of Minkowski theory. It is based 
on the homomorphism 

The multiplicative group KG admits the homomorphism 

N : KG ---+ C* 

given by the product of the coordinates. The composite 

Ej 5. Minkowski Theory 

In order to produce a lattice from the multiplicative theory, we use the 
logarithm to pass from multiplicative to additive groups 

It induces a surjective homomorphism 

and we obtain the commutative diagram 

The involution F  E G(CJW) acts on all groups in this diagram, trivially 
on K*, on Kc as before, and on the points x = (x,) E n, IW by (Fx), = x,. 
One clearly has 

F o j = j ,  F o C = C o F ,  N o F = F o N ,  T r o F = T r ,  

i.e., the homomorphisms of the diagram are G ((C IE) -homomorphisms. We 
now pass everywhere to the fixed modules under G(@IR) and obtain the 
diagram 

J e K*- K; A [ n , ~ ] +  

The W-vector space [ n, R] + is explicitly given as follows. Separate us 
before the embeddings t : K + C into real ones, pl, . . . , ,or, and pairs 
of complex conjugate ones, al, 51, . . . , a,, 5,. We obtain a decomposition 
which is analogous to the one we saw above for [ n, @ ] +, 

The factor [ W x W ]+ now consists of the points (x, x ) ,  and we identify it 
with R by the map (x, x) I+ 2x. In this way we obtain an isomorphism 

[na]+ 5 R ~ + ~ ,  
5 
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which again transforms the map Tr : [ n, W ] + + W into the usual map 

given by the sum of the coordinates. Identifying [ n, R ] + with Rr+', the 
homomorphism 

c : K; -, Itr+' 

is given by 

Exercise 1. Write down a constant A which depends only on K such that every 
integral ideal a # 0 of K contains an element a # 0 satisfying 

Ira1 < A(oK : a)'In for all r E Hom(K,@), n = [K : 01. 
Exercise 2. Show that the convex, centrally symmetric set 

X = { ( Z ~ ) E K W )  C l z r l  < t ]  
r 

has volume vol(X) = 2'xs 5 (see chap. 111, (2.15)): 

Exercise 3. Show that in every ideal a # 0 of OK there exists an a # 0 such that 

I N K I Q ( ~ ) I  5 M(OK : a) ,  
n !  4 

where M = - (-) Sm (the so-called Minkowski bound). 
nn n 

Hint: Use exercise 2 to proceed as in (5.3), and make use of the inequality between 
arithmetic and geometric means, 

5 6. The Class Number 

As a first application of Minkowski theory, we are going to show that the 
ideal class group C ~ K  = JKIPK of an algebraic number field K is finite. 
In order to count the ideals a # 0 of the ring OK we consider their absolute 
norm 

! 
%(a) = (OK : a ) .  

(Throughout this book the case of the zero ideal a = 0 is often tacitly 
excluded, when its consideration would visibly make no sense.) This index 
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is finite by (2.12), and the name is justified by the special case of a principal 
ideal (a)  of O K ,  where we have the identity 

Indeed, if w l ,  . . . , w,, is a Z-basis of o K ,  then a! w l ,  . . . , a! w,, is a Z-basis of 
(a)  = ~ O K ,  and if A = ( a i j )  denotes the transition matrix, cr w; = C a;,, o,, 
then, as was pointed out already in $ 2 ,  one has I det(A) I = (oK : ( a ) )  as 
well as det(A) = N K I Q ( a )  by definition. 

(6.1) Proposition. If a = p ; ' .  - . p: is the prime factorization of an ideal 
a # 0, then one has 

%(a) = % ( p l ) v l  . . . ' 32 (p , )V1 . .  

Proof: By the Chinese remainder theorem (3.6), one has 

O K / a = O K / ~ ; '  @ . . ' @ O K / ~ ? .  

We are thus reduced to considering the case where a is a prime power p V .  
In the chain 

3 p 2 >  . . . 2 p V  P -  - 

one has pi # pi+' because of the unique prime factorization, and each 
quotient p i / p i + '  is an oK/p-vector space of dimension 1. In fact, if a E 

pi \ pi+' and b = (a) + p i + ' ,  then pi 2 b 2 pi+' and consequently pi = 6, 
because otherwise b' = bp-' would be a proper divisor of p = pi+' p- ' .  Thus 
Z = a mod pi+' is a basis of the oK/p-vector space p i / p ' + ' .  So we have 
pi / p i + '  2 oK / p  and therefore 

n(pv) = ( O K  : p v )  = (OK : p ) ( p  : p 2 )  ' '  ' (pv - '  : p v )  = %(p)'. 0 

The proposition immediately implies the multiplicativity 

%(ab) = %(a)%(b) 

of the absolute norm. It may therefore be extended to a homomorphism 

% :  JK --+R: 

defined on all fractional ideals a = np p u p ,  up E Z. The following lemma, 
a consequence of (5.3), is crucial for the finiteness of the ideal class group. 

(6.2) Lemma. In every ideal a # 0 of O K  there exists an a E a, a # 0, such 
that 
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Proof: Given E > 0, we choose positive real numbers c,, for r E 

Hom(K, C), such that c, = c,- and 

Then by (5.3) we find an element a E a ,  a # 0, satisfying l tal  < c,. Thus 

I 
I N K ~ Q ( ~ ) I  = n l.01 < ( ; ) ' m a ( a )  + & .  

This being true for all & > 0 and since I NKlq(a) l  is always a positive integer, 
there has to exist an a E a,  a # 0, such that 

(6.3) Theorem. The ideal class group CIK = JK / PK is finite. Its order 

h K  = (JK : P K )  

is called the class number of K. 

Proof: If p # 0 is a prime ideal of OK and p n Z = pZ,  then o K / p  is a 
finite field extension of Z / p Z  of degree, say, f 2 1 ,  and we have 

Given p ,  there are only finitely many prime ideals p such that p n Z = pZ ,  
because this means that p I (p). It follows that there are only finitely many 
prime ideals p of bounded absolute norm. Since every integral ideal admits 
a representation a = p y' . - . p,V' where vi > 0 and 

there are altogether only a finite number of ideals a of OK with bounded 
absolute norm %(a) 5 M. 

It therefore suffices to show that each class [a]  E CIK contains an integral 
ideal a1 satisfying 

For this, choose an arbitrary representative a of the class, and a y E O K ,  

y # 0, such that b = y a-' E OK. By (6.2),  there exists a E b, a # 0, such 
that 

I N x l Q h ) l  . %(b)-' = % ( ( u ) b - l )  = %(ab- l )  5 M . 
The ideal a' = ab-' = a y  -'a E [a]  therefore has the required property. 0 
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i The theorem of the finiteness of the class number h K  means that passing 
from numbers to ideals has not thrust us into unlimited new territory. The 

I most favourable case occurs of course when hK = 1. This means that O K  

is a principal ideal domain, i.e., that prime factorization of elements in the 
classical sense holds. In general, however, one has h K  > 1. For instance, 
we know now that the only imaginary quadratic fields ()(a), d squarefree 
and < 0, which have class number 1 are those with 

Among real quadratic fields, class number 1 is more common. In the range 
2 5 d < 100 for instance, it occurs for 

d = 2,3,5,6,7,11,13,14,17,19,21,22,23,29, 
31,33,37,38,41,43,46,47,53,57,59,61, 
62,67,69,71,73,77,83,86,89,93,94,97. 

It is conjectured that there are infinitely many real quadratic fields of class 
number 1. But we do not even yet know whether there are infinitely many 
algebraic number fields (of arbitrary degree) with class number 1. It was 
found time and again in innumerable investigations that the ideal class groups 
CIK behave completely unpredictably, both in their size and their structure. 
An exception to this lack of rule is KENKICHI IWASAWA'S discovery that the 
p-part of the class number of the field of pn-th roots of unity obeys a very 
strict law when n varies (see [136],  th. 13.13). 

In the case of the field of p-th roots of unity, the question whether the 
class number is divisible by p has played a very important special r61e 
because it is intimately linked to the celebrated Fermat's Last Theorem 
according to which the equation 

for p 2 3 has no solutions in integers # 0 .  In a similar way as the sums of 
two squares x2 + Y 2  = ( X  + i y ) ( x  - i y )  lead to studying the gaussian integers, 
the decomposition of x p f y p  by means of a p-th root of unity J # 1 leads to 
a problem in the ring Z [ { ]  of integers of Q ( { ) .  The equation yp = z" - s'' 
there turns into the identity 

Thus, assuming the existence of a solution, one obtains two multiplicative 
decompositions of the same number in Z[{]. One can show that this 
contradicts the unique factorization - provided that this holds in the 
ring Z [ { ] .  Supposing erroneously that this was the case in general - in 
other words that the class number h p  of the field Q ( { )  were always equal 
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to 1 - some actually thought they had proved "Fermat's Last Theorem" in 
this way. KUMMER, however, did not fall into this trap. Instead, he proved that 
the arguments we have indicated can be salvaged if one only assumes p { h,, 
instead of h p  = 1. In this case he called a prime number p regular, otherwise 
irregular. He even showed that p is regular if and only if the numerators 
of the Bernoulli numbers B Z ,  B4, . . . , Bp-3 are not divisible by p. Among 
the first 25 prime numbers < 100 only three are irregular: 37, 59, and 67. 
We still do not know today whether there are infinitely many regular prime 
numbers. 

The connection with Fermat's last theorem has at last become obsolete. 
Following a surprising discovery by the mathematician GERHARD FREY, who 
established a link with the theory of elliptic curves, it was KENNETH RIBET, 
who managed to reduce Fermat's statement to another, much more important 
conjecture, the Taniyama-Shimura-Weil Conjecture. This was proved in 
sufficient generality in 1994 by ANDREW WILES, after many years of work, 
and with a helping hand from RICHARD TAYLOR. See [144]. 

The regular and irregular prime numbers do however continue to be 
important. 

Exercise 1. How many integral ideals a are there with the given norm %(a) = n ?  

Exercise 2. Show that the quadratic fields with discriminant 5, 8, 11, - 3, - 4, -7, 
-8, - 11 have class number 1. 

Exercise 3. Show that in every ideal class of an algebraic number field K of degree n ,  
there exists an integral ideal a such that 

Hint: Using exercise 3, $5, proceed as in the proof of (6.3). 

Exercise 4. Show that the absolute value of the discriminant IdK I is > 1 for every 
algebraic number field K  # Q (Minkowski's theorem on the discriminant, see 
chap. 111, (2.17)). 

Exercise 5. Show that the absolute value of the discriminant IdK I tends to co with 
the degree n of the field. 

Exercise 6. Let a be an integral ideal of K and am = (a).  Show that a becomes a 
principal ideal in the field L = K ( z ) ,  in the sense that a o ~  = (a). 

Exercise 7. Show that, for every number field K ,  there exists a finite extension L 
such that every ideal of K becomes a principal ideal. 

5 7. Dirichlet's Unit Theorem 

After considering the ideal class group C ~ K ,  we now turn to the second 
I 

main problem posed by the ring o~ of integers of an algebraic number 
field K ,  the group of units 0;. It contains the finite group p ( K )  of the 
roots of unity that lie in K ,  but in general is not itself finite. Its size is in 
fact determined by the number r of real embeddings p : K -+ W and the 
number s of pairs a,  a : K + C of complex conjugate embeddings. In order 
to describe the group, we use the diagram which was set up in $ 5 :  

In the upper part of the diagram we consider the subgroups 

0; = { E  E O K  I N K I Q ( & )  = f l } ,  the group of units, 

S = { y E K; I N ( y )  = f I }  , the "norm-one surface", 

H = { x E [ n R]  '1 Tr(x)  = 0 )  , the "trace-zero hyperplane" 
5 

We obtain the homomorphisms 
e 

o ; A S - + H  

and the composite h := l o j : 0; -+ H .  The image will be denoted by 

r = h ( o ; )  c H ,  

and we obtain the 

(7.1) Proposition. The sequence 

is exact. 

Proof: We have to show that p ( K )  is the kernel of A. For E p ( K )  and 

t : K + C any embedding, we find log It[ 1 = log 1 = 0, so that certainly 

1 p ( K )  E ker(h). Conversely, let E E o; be an element in the kernel, so 
that A(&) = [ ( j ~ )  = 0. This means that I ~ E J  = I for each embedding 
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t : K -, @, so that js = ( t s )  lies in a bounded domain of the EX- 
vector space KR. On the other hand, js is a point of the lattice j o ~  of Ka 
(see (5.2)). Therefore the kernel of h can contain only a finite number of 
elements, and thus, being a finite group, contains only roots of unity in K*. 

0 

Given this proposition, it remains to determine the group f. For this, we 
need the following 

(7.2) Lemma. Up to multiplication by units there are only finitely many 
elements a E OK ofgiven norm NKlq(a)  = a .  

Proof: Let a E Z, a > 1. In every one of the finitely many cosets of 
og/aoK there exists, up to multiplication by units, at most one element a 
such that IN (a)  1 = INK p ~ ( a )  I = a. For if B = a + a y , y E OK, is another 
one, then 

B because N(p)//3 E OK, and by the same token g = 1 h y E OK. 
i.e., /3 is associated to a. Therefore, up to multiplication by units, there 
are at most ( o g  : ~ O K )  elements of norm f a .  0 

(7.3) Theorem. The group r is a complete lattice in the (r + s - 1)-  
dimensional vector space H, and is therefore isomorphic to z'+~-'. 

I 

: Proof: We first show that f = A ( o ~ )  is a lattice in H,  i.e., a discrete 
i 
I subgroup. The mapping h : ok -+ H arises by restricting the mapping 

K* n C *  5 n ~ .  
5 r 

and it suffices to show that, for any c > 0, the bounded domain ((x,) E nT W I Ix, I 5 C) contains only finitely many points of r = C(jofv). Since 
C((z,)) = (log IZ,~), the preimage of this domain with respect to C is the 
bounded domain 

It contains only finitely many elements of the set jofv because this is a 
subset of the lattice joK in [ n, C] + (see (5.2)). Therefore f is a lattice. 

5 7. Dirichlet's Unit Theorem 4 1 

We now show that f is a complete lattice in H. This is the principal 
claim of the theorem. We apply the criterion (4.3). So we have to find a 
bounded set M G H such that 

We construct this set through its preimage with respect to the surjective 
homomorphism 

C:S--+ H. 

More precisely, we will construct a bounded set T in the norm-one surface S ,  
the multiplicative translations Tj&, E E 02,  of which cover all of S: 

For x = (x,) E T,  it will follow that the absolute values (x, 1 are bounded 
from above and also away from zero, because n, Ix, I = 1. Thus M = t ( T )  
will also be bounded. We choose real numbers c, > 0, for t E Hom(K, @), 
satisfying c, = c? and 

and we consider the set 

For an arbitrary point y = (y,) E S, it follows that 

where ci = c, (y, 1, and one has ci = ck and n, c i  = n, c,  = C because 
nr lyrI = IN(y)l = I. Then, by (5.3), there is a point 

Now, according to lemma (7.2), we may pick a system a , ,  . . . , a~ E O K ,  

a; # 0, in such a way that every a E OK with 0 < INKIQ(a)(  5 C is 
associated to one of these numbers. The set 

then has the required property: since X is bounded, so is X(ja;)-' and 
therefore also T ,  and we have 
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In fact, if y E S, we find by the above an a E O K ,  a # 0, such that 
ja E Xy-l, so ja = xy-' for some x E X. Since 

i a is associated to some a;, a; = &a, E E 0;. Consequently 

: Since y, j~ E S, one finds xja;' E S n ~ja,:' 5 T ,  and thus y E Tjs. 

From proposition (7.1) and theorem (7.3) we immediately deduce Dirich- 
let's unit theorem in its classical form. 

(7.4) Theorem. The group of units o; of oK is the direct product of the finite 
cyclic group p(K) and a free abelian group of rank r + s - 1. 

In other words: there exist units 81, . . . , E ~ ,  t = r + s - 1, called 
fundamental units, such that any other unit E can be written uniquely as a 
product 

vr E=J&? - . .  Et 
, with a root of unity J and integers v;. 

Proof: In the exact sequence 
1 1 + p(K) + O; -+ f + 0 

r is a free abelian group of rank t = r + s - 1 by (7.3). Let vl, . . . , vl be 
a Z-basis of f, let E I ,  . . . , E ,  E O; be preimages of the vi, and let A E o i  
be the subgroup generated by the Ei. Then A is mapped isomorphically onto 
r by A, i.e., one has p(K) r l  A = (1) and therefore o; = p(K) x A. 

Identifying [ fl, R] + = Rr+' (see $5, p. 33), H becomes a subspace of 
' the euclidean space Rr+.' and thus itself a euclidean space. We may therefore 

speak of the volume of the fundamental mesh vol(A(o;)) of the unit lattice 
r = A(o;) C H, and will now compute it. Let E I ,  . . . , E,, t = r + s - 1, 
be a system of fundamental units and @ the fundamental mesh of the unit 
lattice A(o;), spanned by the vectors A(&,), . . . , A(&,) E H . The vector 
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is obviously orthogonal to H and has length 1. The t-dimensional volume 
of @ therefore equals the ( t  + 1)-dimensional volume of the parallelepiped 
spanned by Lo, . . . , in Itt+'. But this has volume 

A01 A'(&') . . .  
kdet ( ; ; 

Aot+1 At+l(&l) . . . )\-t+l(&t) 
Adding all rows to a fixed one, say the i-th row, this row has only zeroes, 
except for the first entry, which equals m. We therefore get the 

(7.5) Proposition. The volume of the fundamental mesh of the unit lat- 
tice A(o; ) in H is 

vo l (A(o~))  = R , 

where R is the absolute value of the determinant of an arbitrary minor of rank 
' t  = r + s - 1 of the following matrix: 

This absolute value R is called the regulator of the field K. 

The importance of the regulator will only be demonstrated later (see 
chap. VII, $5). 

Exercise 1. Let D > 1 be a squarefree integer and d  the discriminant of the rcal 
quadratic number field K = ~(a) (see $2,  exercise 4). Let x l  , y l  be the uniquely 
determined rational integer solution of the equation 

x 2 - d y 2 =  - 4 ,  

or - in case this equation has no rational integer solutions - of the equation 

xZ - d y 2  = 4 ,  

for which X I ,  yl z 0 are as small as possible. Then 

is a fundamental unit of K.  (The pair of equations x 2  - d y 2  = h 4  is called Pell's 
equation.) 

Exercise 2. Check the following table of fundamental units E ,  for ()(a): 
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, Hint: Check one by one for y = 1,2,3, . . ., whether one of the numbers dy2 ~4 is a 
square x2 .  By the unit theorem this is bound to happen, with the plus sign. However, 
for fixed y, let preference be given to the minus sign. Then the first case, in this 
order, where dy: 4 = x : ,  gives the fundamental unit s~ = (xl + yl&)/2. 

Exercise 3. The Battle of Hastings (October 14, 1066). 
"The men of Harold stood well together, as their wont was, and formed thirteen 
squares, with a like number of men in every square thereof, and woe to the hardy 
Norman who ventured to enter their redoubts; for a single blow of a Saxon war- 
hatched would break his lance and cut through his coat of mail.. . When Harold 
threw himself into the fray the Saxons were one mighty square of men, shouting the 
battle-cries, 'Ut!', 'Olicrosse!', 'Godemite!'." [Fictitious historical text, following 
essentially problem no. 129 in: H.E. Dundeney, Amusements in Mathematics, 19 17 
(Dover reprints 1958 and 1970).] 
Question. How many troops does this suggest Harold I1 had at the battle of Hastings? 

Exercise 4. Let < be a primitive p-th root of unity, p an odd prime number. Show 
that Z[(]* = (<)Z[< +<-'I*. Show that Z[+]* = (f ck( l  + +)" 1 0 5 k < 5, n E Z], 
if p = 5. 

Exercise 5. Let < be a primitive rn-th root of unity, rn >_ 3. Show that the numbers 
!& for (k. rn) = 1 are units in the ring of integers of the field Q(<). The subgroup 
of the group of units they generate is called the group of cyclotomic units. 

Exercise 6. Let K be a totally real number field, i.e., X = Hom(K, C )  = Horn(K, R) ,  
and let T be a proper nonempty subset of X. Then there exists a unit E satisfying 
O c  rs < 1 for r ~ T , a n d  r e >  1 f o r r  $ T .  

Hint: Apply Minkowski's lattice point theorem to the unit lattice in trace-zero space. 

5 8. Extensions of Dedekind Domains 

Having studied the ideal class group and the group of units of the ring OK 

of integers of a number field K ,  we now propose to make a first survey of 
the set of prime ideals of OK. They are often referred to as the prime ideals 
of K - an imprecise manner of speaking which is, however, not likely to 
cause any misunderstanding. 

Every prime ideal p # 0 of OK contains a rational prime number p (see 
03, p. 17) and is therefore a divisor of the ideal p o ~ .  Hence the question 
arises as to how a prime number p factors into prime ideals of the ring OK.  

We treat this problem in a more general context, starting from an arbitrary 
Dedekind domain o at the base instead of Z, and taking instead of o~ the 
integral closure 0 of o in a finite extension of its field of fractions. 
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(8.1) Proposition. Let o be a Dedekind domain with field of fractions K , let 
L 1 K be a finite extension of K and 0 the integral closure of o in L .  Then 0 
is again a Dedekind domain. 

Proof: Being the integral closure of o ,  O is integrally closed. The fact that 
the nonzero prime ideals p of 0 are maximal is proved similarly as in the 
case o = Z (see (3.1)): p = Q fl o is a nonzero prime ideal of o. Thus 
the integral domain O/93 is an extension of the field o/p, and therefore has 
itself to be a field, because if it were not, then it would admit a nonzero 
prime ideal whose intersection with o/p would again be a nonzero prime 
ideal in o/p. It remains to show that 0 is noetherian. In the case that is of 
chief interest to us, namely, if LlK is a separable extension, the proof is 
very easy. Let a , ,  . . . , a, be a basis of L 1 K contained in 0 ,  of discriminant 
d = d(a l ,  . . . , a,). Then d # 0 by (2.8), and (2.9) tells us that O is 
contained in the finitely generated o-module ocr,/d + . . . + oa,/d. Every 
ideal of 0 is also contained in this finitely generated o-module, and thcrcforc 
is itself an o-module of finite type, hence a fortiori a finitely generated O- 
module. This shows that O is noetherian, provided L 1 K is separable. We 
ask the reader's permission to content ourselves for the time being with 
this case. We shall come back to the general case on a more convenient 
occasion. In fact, we shall give the proof in a more general framework 
in § 12 (see (12.8)). 0 

For a prime ideal p of a one always has 

P ~ # O .  
In fact, let n E p \ p2 (p f 0), so that n o  = pa with p + a, hence p + a  = u.  
Writing 1 = b f s ,  with b E P  ands  E a, we finds 4 p and sp G pa=zru .  
If one had p 0  = 0, then it would follow that SO = s p 0  G no, so that 
s = nx for some x E 0 n K = o ,  i.e., s E p, a contradiction. 

A prime ideal p # 0 of the ring o decomposes in 0 in a unique way into 
a product of prime ideals, 

pO = '$1 . . . 93;. 
Instead of pO we will often write simply p. The prime ideals !$?; occurring in 
the decomposition are precisely those prime ideals !J3 of 0 which lie over p 
in the sense that one has the relation 

p = q n o .  

This we also denote for short by ??3 1 p, and we call !J3 a prime divisor of p. 
The exponent ei is called the ramification index, and the degree of the field 
extension 

fi = [O/??3i : O/P] 
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is called the inertia degree of y; over p. If the extension L (K is separable, 
the numbers e;, fi and the degree n = [L : K] are connected by the 
following law. 

(8.2) Proposition. Let L I K be separable. Then we have the fundamental 
identity 

Proof: The proof is based on the Chinese remainder theorem 

O/pO and O/Q? are vector spaces over the field K = o/p, and it suffices 
to show that 

d i i  (OlpO) = n and dim, (O/f$??) = ei fi . 
In order to prove the first identity, let wl, . . . , om E O be representatives 
of a basis G l ,  . . . , G, of 0 / p 0  over K (we have seen in the proof of (8.1) 
that O is a finitely generated o-module, so certainly dim,(O/pO) < 00). 
It is sufficient to show that wl, . . . , om is a basis of LIK. Assume the 
wl, . . . , w, are linearly dependent over K ,  and hence also over o .  Then 
there are elements a l ,  . . . , a, E o not all zero such that 

Consider the ideal a = (a,, . . . , a,) of o and find a E a-I such that 
a 4 a-'p, hence a a  $,l p. Then the elements aal ,  . . . , aa, lie in o ,  but not 
all belong to p. The congruence 

a a l q  + + aamwm = 0 mod p 

thus gives us a linear dependence among the GI,  . . . , G, over K ,  a contra- 
diction. The wl, . . . , om are therefore linearly independent over K. 

In order to show that the oi are a basis of L ( K ,  we consider the o- 
modules M = ool + . . . + om, and N = O/M. Since O = M + p 0 ,  
we have pN = N. As L J K  is separable, 0, and hence also N ,  are finitely 
generated o-modules (see p. 45). If a l ,  . . . , a, is a system of generators 
of N, then 

ai = aijolj for aij  E p . 
i 

Let A be the matrix (ai,) - I, where I is the unit matrix of rank s, and let 
' B be the adjoint matrix of A, whose entries are the minors of rank (s - 1) 
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of A. Then one has A(al,  . . . , a,)' = 0 and BA = d l ,  with d = det(A), 
(see (2.3)). Hence 

0 = BA(al, . . . , a,)' = (da l ,  . . . , da,)', 

and therefore d N  = 0, i.e., d O  E M = owl + . . .  + ow,. We have 
d # 0, because expanding the determinant d = det((a;,) - I )  we find d = 
(-I), mod p because aij E p. It follows that L = dL = Kwl + . . . + Kw,,. 
wl , . . . , wm is therefore indeed a basis of L (K .  

In order to prove the second identity, let us consider the descending chain 

of K-vector spaces. The successive quotients ?J3y/yY+' in this chain are 
isomorphic to O/Y;, for if a! E !J3! !JlY+', then the homomorphism 

has kernel yi and is surjective because !j?Y is the gcd of 5J3:(+' and 
(a) = a 0  SO that !)?: = a 0  + p;". Since fi = [O/Vi : K ] ,  we obtain 
dirn,(y:/~Y+') = fi and therefore 

Suppose now that the separable extension L IK is given by a primitive 
element 0 E 0 with minimal polynomial 

so that L = K(0). We may then deduce a result about the nature of the 
decomposition of p in O which, albeit not complete, does show characteristic 
phenomena and a striking simplicity. It is incomplete in that a finite number 
of prime ideals are excluded; only those relatively prime to the conductor of 
the ring o[8] can be considered. This conductor is defined to be the biggest 
ideal 5 of 0 which is contained in o[0]. In other words 

Since 0 is a finitely generated o-module (see proof of (8. I ) ) ,  one has 3 # 0. 

(8.3) Proposition. Let p be aprime ideal of o which is relatively prime to the 
conductor 5 of o[0], and let 
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be the factorization of the polynomial p(X) = p(X) mod p into irreducibles 
pi (X) = pi (X) mod p over the residue class field alp, with all p; (X) E o[X] 
monic. Then 

Pi =pO+pi(8)0 ,  i = 1 ,  ..., r ,  
are the different prime ideals o f 0  above p. The inertia degree J; ot 'q;  is lhc 
degree of pi (X), and one has 

p =p;'...!p:. 

Proof: Writing O1 = 0[8] and 5 = o/p, we have a canonical isomorphism 
01p0 z 0'1p0' r a[x] /(p(x)) . 

The first isomorphism follows from the relative primality pO + 5 = 0 .  As 
5 O', it follows that O = pO + 0', i.e., the homomorphism 0' +- O/pO 
is surjective. It has kernel pO n O', which equals pO1. Since (p, 5 fl o) = 1, 
it follows that pO fl 0' = (p + 5) (pO n 0') c pO'. 

The second isomorphism is deduced from the surjective homomorphism 

oEXl --, ax1 /(F(X)) . 
Its kernel is the ideal generated by p and p(X), and in view of 0' = o[8] = 
o[X] /(p(X)) , we have O'/pO1 S Z[X] /(p(X)). 

I Since p(X) = nr=l pi(X)ei, the Chinese remainder theorem finally gives 
the isomorphism 

5[xl / ( ~ ( x ) )  " 6 s [ x l /  ( ~ i ( x ) ) " .  
i= l  

This shows that the prime ideals of the ring R = B[X] /(p(X)) are the 
principal ideals (pi) generated by the pi (X) mod p(X), for i = 1, . . . , r., 
that the degree [R/(p;) : b] equals the degree of the polynomial pi (X), and 
that r 

(01 = (p) = n (pi lei . 
i=l  

In view of the isomorphism b[X] /(p(X)) Z O/pC3, f (X) w f (O), the 
same situation holds in the ring = O/pO. Thus the prime ideals gi of 

correspond to the prime ideals (pi), and --  they are the principal ideals 
generated by the pi(@ mod pO. The degree [ O/Pi : 51 is the degree of the 
polynomial pi (X), and we have (0) = nf=, g:. Now let Pi = pO+pi (8)O 
be the preimage of pi with respect to the canonical homomorphism 

0 ---, O/pO. 
' Then Pi, for i = 1, . . . , r ,  varies over the prime ideals of O above p. 
fi = [O/(;Pi : o/p] is the degree of the polynomial Fi(X). Furthermore qfl 
is the preimage of q7 (because ei = #{gV ( v E MJ), and PO 2 nJS1 T?, 
so that p 0 ( nr=, !$37 and therefore pO = nf= ~7 because e; f; = n.  

0 
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The prime ideal p is said to split completely (or to be totally split) in L ,  
if in the decomposition 

p = q ; ' . . . q ? ,  

onc has I .  = I I  = [L : K], SO that ei = j; = 1 for all i = 1 ,  . . . , I . .  p is 
called nonsplit, or indecomposed, if r = 1, i.e., if there is only a single 
prime ideal of L over p. From the fundamental identity 

we now understand the name of inertia degree: the smaller this degree is, 
the more the ideal p will be tend to factor into different prime ideals. 

The prime ideal Pi in the decomposition p = n;_, 9"'s called 
unramified over o (or over K) if ei = 1 and if the residue class field 
extension 0/Pi lo/p is separable. If not, it is called ramified, and totally 
ramified if furthermore fi = 1. The prime ideal p is called unramified i f  
all Pi are unramified, otherwise it is called ramified. The extension L ( K  
itself is called unramified if all prime ideals p of K are unramified in L.  

The case where a prime ideal p of K is ramified in L is an exceptional 
phenomenon. In fact, we have the 

(8.4) Proposition. 1fL I K is separable, then there are only finitely many prime 
ideals of K which are ramified in L. 

Proof: Let 8 E O be a primitive element for L ,  i.e., L = K (Q), and let 
p(X) E o[X] be its minimal polynomial. Let 

d =d(1,8, ..., en-') = n(Oi -0j)2 E o 
i < j  

be the discriminant of p(X) (see $2, p. 11). Then every prime ideal p of K 
which is relatively prime to d and to the conductor 5 of o[O] is unramified. 
In fact, by (8.3), the ramification indices ei equal 1 as soon as they are equal 
to 1 in the factorization of p(X) = p(X) mod p in alp, so certainly if p(X) 
has no multiple roots. But this is the case since the discriminant d = d mod p 
of p(X) is nonzero. The residue class field extensions O/Pi (alp are 
generated by 8 = 8 mod Pi and therefore separable. Hence p is unramified. 

0 

The precise description of the ramified prime ideals is given by the 
discriminant of 010. It is defined to be the ideal i, of o which is generated by 
the discriminants d(wl, . . . , w,) of all bases wl,  . . . , w,, of L I K contained 
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in 0. We will show in chapter 111, fi 2 that the prime divisors of are exactly 
the prime ideals which ramify in L. 

Example: The law of decomposition of prime numbers p in a quadratic 
number field Q(@) is intimately related to Gauss's famous quadratic 
reciprocity law. The latter concerns the problem of integer solutions of the 
equation 

2 x + b y = a ,  ( a , b ~ Z ) ,  
the simplest among the nontrivial diophantine equations. The theory of this 
equation reduces immediately to the case where b is an odd prime number 
p and (a, p) = 1 (exercise 6). Let us assume this for the sequel. We are 
then facing the question as to whether a is a quadratic residue mod p, 
i.e., whether the congruence 

x2 = a mod p 

does or does not have a solution. In other words, we want to know if 
,the equation X~ = 5,  for a given element ii = a mod p E IF;, admits 
a solution in the field F, or not. For this one introduces the Legendre 

symbol (f), which, for every rational number a relatively prime to p ,  is 
. . 

defined to be - = 1 or - 1, according as x2 = a mod p has or does not (3 
have a solution. This symbol is multiplicative, 

This is because the group FT, is cyclic of order p - 1 and the subgroup F ; ~  of 

squares has index 2, i.e., IFT,/F: Z 2 /22 .  Since (;) = 1 t) 5 E P:, 

one also has 
I (:) 1 a ?  mod p .  

In the case of squarefree a ,  the Legendre symbol bears the following 

relation with prime factorization. 
( f ) 

(;) = 1 signifies that 

x2  - a  = (x - a ) (x  + a )  mod p 

for some ar E 2. The conductor of Z[@] in the ring of integers of Q(fi) is 
a divisor of 2 (see 92, exercise 4). We may therefore apply proposition (8.3) 
and obtain the 

(8.5) Proposition. For squarefree a and (p,  2a) = 1, we have the equivalence 

( % ) = 1 0 p is torally split in a(& ) . 

For the Legendre symbol, one has the following remarkable law, which 
like none other has left its mark on the development of algebraic number 
theory. 

(8.6) Theorem (Gauss's Reciprocity Law). For two distinct odd prime 
numbers t and p ,  the following identity holds: 

One also has the two "supplementary theorems" 

P - 1  Proof: (2) = (- 1) 9 mod p implies (9) = (- 1) T since p # 2. 

2 In order to determine (p), we work in the ring Z[i] of gaussian integers. 

Since (1 + i)2 = 2i, we find 

( I + i ) p = ( l + i ) ( ( l + i ) 2 ) ?  = ( I + i ) i e I ! ~ $ ! ,  

2 and since (1 +i)P I 1 +in  mod p and ( F )  = 2 9  mod p ,  it follows that 

(:)(I + i ) i q  1 1  + i ( - 1 ) 9  mod p .  

From this, an easy computation yields 

P-  1 P+ I (:) 1 ( - 1 1 7  mod p,  resp. (:) = ( - l ) 7  mod p ,  

P 2 - 1  p - I p + l  / ' + I  1 7 -  I if - 
2 8 4 2 - -- - I is even, resp. odd. Since - = - - - 

p2-1 
4 2 ' W e  

2 deduce (-) = ( - l ) T .  
P 

In order to prove the first formula, we work in the ring Z[{J, whcl-c ( is  
a primitive l-th root of unity. We consider the Gauss sum 

and show that 
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For this, let a and b vary over the group (Z / tZ ) * ,  put c = ab-' and deduce 

from the identity (q) = ($) that 

Now xc ( f )  = 0, as one sees by multiplying the sum with a symbol = 

-1, and putting 6 = {"-I gives Eb { h ( c - l )  = 
(3 

t + p +  ...+p = -1, 

from which we indeed find that 

This, together with the congruence ($) E tq mod p and the identity 
e - I  (2)  = (- 1) T . implies 

On the other hand one has 

r p  - X ( : ) P ~ P  ( 9 )  F(?){"P - ( 9 ) r  mod p , 

so that 

Multiplying by t and dividing by f l yields the claim. 

We have proved Gauss's reciprocity law by a rather contrived calculation. 
In 5 10, however, we will recognize the true reason why it holds in the law 
of decomposition of primes in the field Q ( C )  of l-th roots of unity. The 
Gauss sums do have a higher theoretical significance, though, as will become 
apparent later (see VII, 5 2 and 9 6). 

Exercise 1. If a and b are ideals of U, then one has a = a (3 f l  0 and 
a I b  w a01 b 0 .  

Exercise 2. For every integral ideal M of 0, there exists a 0 E (3 such that the 
*conductor 5 = {a  E 0 I a 0  E o [ 0 ] }  is prime to M and such that L = K ( 0 ) .  

Exercise 3. If a prime ideal p of K is totally split in two separable extensions L ( K  
and L'I K ,  then it is  also totally split in the composite extension. 
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Exercise 4. A prime ideal p of K is totally split in the separable extension L I K if 
and only if it is totally split in the Galois closure N I K of L I K.  

Exercise 5. For a number field K the statement of proposition (8.3) concerning the 
prime decomposition in the extension K ( 0 )  holds for all prime ideals p f (0 : o[B]). 

Exercise 6. Given a positive integer b > 1, an integer a  relatively prime to h is a 
quadratic residue mod b if and only if it is a quadratic residue modulo each prime 
divisor p of h, and if a  = I mod 4 when 4)h, 8 '1 h, resp. a = I mod 8 when 81h. 

Exercise 7. Let (a ,  p )  = 1 and av = r,  mod p ,  v = 1, . . . , p - 1,O < r., < p. Then 
the r,  give a permutation n of the numbers 1, . . . , p - 1. Show that sgn ~r = ( a ) .  

P 

&" - &In 
Exercise 8. Let a, = - I + &  J5 , where E = -, &' = - 

2 ( ( I , ,  is the 11-th 
Fibonacci number). If p is a prime number # 2 , 5 ,  then one has 

P a / > = ( , )  m o d p .  

3 Exercise 9. Study the Legendre symbol (-) as a function of p > 3. Show that the 
P 

property of 3 being a quadratic residue or nonresidue mod p depends only on the 
class of p mod 12. 

Exercise 10. Show that the number of solutions of x2 = a mod p equals I + ( ;) . 

Exercise 11. Show that the number of solutions of the congruence ax2 + ha + (, = 
h2 - 4ac 0 mod p ,  where (a, p) = I ,  equals 1 + (---Zj--). 

5 9. Hilbert's Ramification Theory 

The question of prime decomposition in a finite extension L 1 K takes 
a particularly interesting and important turn once we assume L 1 K to be a 
Galois extension. The prime ideals are then subject to the action of the Galois 

The "ramification theory" that arises from this assumption has been intro- 
duced into number theory by DAVID HILBERT (1862-1943). Given a in the 
ring 0 of integral elements of L, the conjugate aa,  for every a E G ,  also 
belongs to 0, i.e., G acts on 0. If is a prime ideal of 0 above p,  then 
so is a p ,  for each a  E G,  because 

The ideals a p ,  for a  E G, are called the prime ideals conjugate to g. 
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(9.1) Proposition. The Galois group G acts transitively on the set of all prime 
ideals 9 of O lying above p, i.e., these prime ideals are all conjugates of each 
other. 

Proof: Let p and p' be two prime ideals above p. Assume p' # u p  for 
any a E G .  By the Chinese remainder theorem there exists x E O such that 

x ~ O m o d ! J ? '  and x = l m o d u ! Q  forall U E G .  

Then the norm NLIK(x) = naEG a x  belongs to P' n o = p. On the other 
hand, x $ u p  for any a E G,  hence a x  $ fj3 for any a E G. Consequently naEG a x  4 p n o = p, a contradiction. 0 

(9.2) Definition. If 9 is a prime ideal of 0 ,  then the subgroup 

~ q = { a ~ ~ I a p = q ]  
is called the decomposition group of p over K .  The fixed field 

Z ~ = { X E L I ~ X = X  f o r a l l a ~ ~ ~ ]  

is called the decomposition field of p over K. 

The decomposition group encodes in group-theoretic language the number 
of different prime ideals into which a prime ideal p of o decomposes in 0. 
For if is one of them and a varies over a system of representatives 
of the cosets in GIGq,  then a !J? varies over the different prime ideals 
above p, each one occurring precisely once, i.e., their number equals the 
index (G : Gq). In particular, one has 

G p  = 1 &+ Zp = L e=$ p is totally split, 

Gq = G e ZT = K e p is nonsplit. 

The decomposition group of a prime ideal a conjugate to '$ is the 
conjugate subgroup 

Gap = a ~q a-l. 

I In fact, for t E G,  one has the equivalences 

(j a-'ta E G ~  e t ~ a ~ q a - ' .  

1 Remark: The decomposition group regulates the prime decomposition also 
in the case of a non-Galois extension. For subgroups U and V of a group G,  

v consider the equivalence relation in G defined by 

a - a '  e a ' = u a v  f o r u ~ U , v ~ V  
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The corresponding equivalence classes 

UaV = {uav  ( u E U, v E V ]  

are called the double cosets of G modd U, V. The set of these double cosets, 
which form a partition of G,  is denoted U\G/V. 

Now let L I K be an arbitrary separable extension, and embed it into a 
Galois extension NI K with Galois group G. In G,  consider the subgroup 
H = G(N IL). Let p be a prime ideal of K and Pp the set of prime ideals 
of L above p. If !# is a prime ideal of N above p, then the rule 

H \ G / G q  ---+ P p ,  H a G q  I-+ a p 33 L ,  

gives a well-defined bijection. The proof is left to the reader. 

In the Galois case, the inertia degrees f,, . . . , f, and the ramification 
indices el, . . . , e, in the prime decomposition 

p = 9;' ...p: 

of a prime ideal p of K are both independent of i ,  

f, = ... = fr = f ,  el = . . .=  e, = e .  

In fact, writing = pl, we find pi = a;p for suitable ai E G ,  and the 
isomorphism CJj : O + O induces an isomorphism 

so that 

f j = [ O / ~ i p : o / p ]  = [ 0 / p : ~ / p ] ,  i = 1 ,  . . . ,  r .  

Furthermore, since ai (p0)  = p 0 ,  we deduce from 

$3'' IPO * a i (Pv )  l u i ( p 0  ++ (a ip)"  l P O  
the equality of the e;, i = 1, . . . , r. Thus the prime decomposition of p in 0 
takes on the following simple form in the Galois case: 

P = 
a 

where a varies over a system of representatives of GIGT. The decomposi- 
tion field Z q  of !J3 over K has the following significance for the decompo- 
sition of p and the invariants e and f .  

(9.3) Proposition. Let pz = !J3 n Zp be the prime ideal of Zq below p .  
Then we have: 

(i) pz is nonsplit in L ,  i.e., p is the onlyprime ideal of L above p z .  

(ii) ?J3 over Zq  has ramification index e and inertia degree f .  

(iii) The ramification index and the inertia degree of pz over K both equal 1 .  
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Proof: (i) Since G ( L  ( Zy) = G v ,  the prime ideals above 'J3z are the a Q ,  
for a E G ( L  IZv) ,  and they are all equal to Q .  
(ii) Since in the Galois case, ramification indices and inertia degrees are 
independent of the prime divisor, the fundamental identity in this case reads 

n = e f r ,  

where n := #G,  r = ( G  : Gq.3). We see therefore that #GP = [ L  : Z p ]  = ef. 
Let e', resp. e", be the ramification index of Q  over Zq.3, resp. of Q z  over K.  
Then p = v$ . . . in ZP and Qz = pet in L ,  so that p = !@"'. . . . , i.e., 
e  = e'e". One also obviously gets the analogous identity for the inertia 
'degrees f  = f' f  ". The fundamental identity for the decomposition of Qz 
;in L then reads [ L  : Z p ]  = e' f ' ,  i.e., we have e'f '  = e f ,  and therefore 
e l = e ,  f ' =  f , e l ' =  f l ' =  1. 0 

The ramification index e  and the inertia degree f  admit a further 
interesting group-theoretic interpretation. Since a 0 = 0 and aQ = Q ,  
every a E G p  induces an automorphism 

of the residue class field O/'J3. Putting K ( Q )  = O / Q  and ~ ( p )  = o/p, we 
obtain the 

(9.4) Proposition. The extension K ('J3) J K  ( p )  is normal and admits a surjective 
homomorphism 

Gq.3 -+ G ( K ( Q ) I K ( P ) ) .  

I 
Proof: The inertia degree of V z  over K  equals 1, i.e., Zrp has the same 
residue class field ~ ( p )  as K with respect to p. Therefore we may, and 
do, assume that Zq.3 = K ,  i.e., Gq.3 = G .  Let 8  E 0 be a representative 
of an element 8 E K (Q) and f  ( x ) ,  resp. E ( x ) ,  the minimal polynomial 
of 8  over K ,  resp. of 8 over ~ ( p ) .  Then 3 = 8  mod Q is a zero of the 
polynomial Y ( x )  = f  ( X )  mod p ,  i.e., g(X) divides f ( x ) .  Since L J  K is 
normal, f  (X) splits over 0 into linear factors. Hence T ( X )  splits into linear 
factors over K ( Q ) ,  and the same is true of g(X). In other words, K (3) I K ( p )  
is a normal extension. 

Now let 8 be a primitive element for the maximal separable subextension 
of K (P) IK ( P I  and 
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Then a8 is a root of g ( X ) ,  and hence of f ( x ) ,  i.e., there exists a zero 0' 
of f (X) such that 8' = mod Q .  8' is a conjugate of 8 ,  i.e., 8' = a 8 
for some a E G ( L J K ) .  Since a 8  = 5 8 mod Q ,  the automorphism a is 
mapped by the homomorphism in question to a. This proves the surjectivity. 

0 

(9.5) Definition. The kernel IQ C G p  of the homomorphism 

G p  ---+ G ( K ( Q ) I K ( P ) )  

is called the inertia group of Q  over K .  The fixed field 

T ~ = { x E L ~ ~ x = x  f o r a l l a ~ l ~ }  

is called the inertia field of Q  over K. 

This inertia field Tq.3 appears in the tower of fields 

K c Z p E T p 5 L 7  

and we have the exact sequence 

1 ---, Iq.3 --, G p  -+ G  ( K ( W  10)) --, 1 . 
Its properties are expressed in the 

(9.6) Proposition. The extension T p ( Z p  is normal, and one has 

G V p l z p )  S G ( K ( P ) I K ( P ) ) ,  G(LlTqd=Iq.3. 

If the residue field extension K (9) 1 K ( p )  is separable, then one has 

#Ip = [ L  : Tp]  = e ,  ( G p  : Ip)  = [Tp : Z p ]  = f .  

In this case one finds for the prime ideal VT of T p  below Q :  

(i) The ramification index of Q  over Q T  is e and the inertia degree is I .  

(ii) The ramification index of QT over Q z  is 1, and the inertia degree is f .  

Proof: The first two claims follow from the identity #GT = ef. SO we only 
have to show statements (i) and (ii). Using the fundamental identity, they all 
follow from ~ ( 9 ~ )  = ~ ( 9 ) .  AS the inertia group Ip of !J3 over K is also the 
inertia group of 'J3 over Tv, it follows from an application of proposition (9.4) 
to the extension L  ITp that G ( K  (Q) ( K  ( 9 ~ ) )  = 1 ,  hence K ( ' J ~ T )  = K (Q). 0 
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In the diagram 
1 

K A z ~ - ~ T ~ & L  
1 f 1 

we have indicated the ramification indices of the individual field extensions 
on top, and the inertia degrees on the bottom. In the special case where the 
residue field extension K(V) I K ( ~ )  is separable we find 

= 1 TT = L p is unramified in L  . 

I In this case the Galois group G(K(~ )~K(P) )  2 GT of the residue class field 
I extension may be viewed as a subgroup of G = G(L I K). 

Hilbert's ramification theory, with its various refinements and generaliza- 
tions, belongs naturally to the theory of valuations, which we will develop 
in the next chapter (see chap. 11, 09). 

Exercise 1. If L I K is a Galois extension of algebraic number fields with noncyclic 
Galois group, then there are at most finitely many nonsplit prime ideals of K .  

Exercise 2. If LI K is a Galois extension of algebraic number fields, and !?3 a prime 
ideal which is unramified over K (i.e,, p = ~ I I  K is unramified in L), then there is 
one and only one automorphism q ~ q  E G(L I K )  such that 

1 q p a  r a 9  mod !?3 fora l la  E 0 ,  

where q = [~(y)  : ~ ( p ) ] .  It is called the Frobenius automorphism. The decompo- 
sition group G p  is cyclic and q q  is a generator of Gp.  

Exercise 3. Let L l K  be a solvable extension of prime degree p (not necessarily 
Galois). If the unramified prime ideal p in L has two prime factors (P and g' of 
degree 1, then it is already totally split (theorem of F.K. SCHMIDT). 

Hint: Use the following result of GALOIS (see [75], chap. 11, $3): if G is a transitive 
solvable permutation group of prime degree p, then there is no nontrivial permutation 
a E G which fixes two distinct letters. 

Exercise 4. Let L I K be a finite (not necessarily Galois) extension of algebraic number 
fields and N I K the normal closure of L I K .  Show that a prime ideal p of K is totally 
split in L if and only if it is totally split in N. 

Hint: Use the double coset decomposition H\G/G9, where G = G(N I K ) ,  H = 
G(N IL) and Gq is the decomposition group of a prime ideal !$3 over p. 

5 10. Cyclotomic Fields 

The concepts and results of the theory as far as it has now been 
developed have reached a degree of abstraction which we will now balance 
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by something more concrete. We will put the insights of the general theory 
to the task and make them more explicit in the example of the n-th 
cyclotomic field Q(0, where ( is a primitive n-th root of unity. Among 
all number fields, this field occupies a special, central place. So studying it 
does not only furnish a worthwhile example but in fact an essential building 
block for the further theory. 

It will be our first goal to determine explicitly the ring of integers of the 
field Q(() .  For this we need the 

(10.1) Lemma. Let n be a prime power Cu and put h = 1 - J. Then the 
principal ideal (A) in the ring o of integers of Q(J) is a prime ideal of degree 1 , 
and we have 

f2 0 = (Aid, where d = p(CU) = [Q(() : Q] 

Furthermore, the basis 1, J, . . . , cd-' of Q(J) (Q has the discriminant 

Proof: The minimal polynomial of J over Q is the n-th cyclotomic poly- 
nomial 

Putting X = 1, we obtain the identity 

1 - <S  
- But 1 - {g = ~ ~ ( 1  - J), for the algebraic integer E~ = - - 

1 - <  
1 + J + . . . + (g-'. If g1 is an integer such that gg' r 1 mod t u ,  then 

is integral as well, i.e., E~ is a unit. Consequently C = ~ ( 1  - J)v(~") ,  with 
the unit E = ng &g, hence Co = (A)"'"). Since [a(() : Q]  = p(P'). the 
fundamental identlty (8.2) shows that (A) is a prime ideal of degree 1 .  

Let 5 = (1, . . . , (d be the conjugates of {. Then the cyclotomic 
polynomial is &(X) = nf=, (X - a )  and (see 42, p. 11) 
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t 
Differentiating the equation 

and substituting ( for X yields 

(8  - 1)4;(0 = l v r l ?  

with the primitive l - th  root of unity 8 = {"-I. But N Q ( ~ ) ~ Q ( {  - 1) = f e.  
so that 

*eeu- l  
NQ(oQ(F - 1 )  = N Q ( F ) I Q ( ~  - l)eu-l  = 

Observing that {-' has norm f 1 we obtain 

with s = l V - ' ( v l  - v  - 1 ) .  C] 

The ring of integers of Q ( { )  is now determined, for arbitrary n ,  as follows. 

(10.2) Proposition. A Z-basis of the ring o of integers of Q ( < )  is given by 
<d-1 I , { ,  ..., , with d  = p (n )  , in other words, 

Proof: We first prove the proposition in the case where n  is a prime 
power C V .  Since d(1 ,  C, . . . , cd- ' )  = f ts,  (2.9) gives us 

Putting h  = 1 - (, lemma (10.1) tells us that o l h o  Z Z I l Z ,  so that 
o = Z + Ao, and a fortiori 

Multiplying this by h and substituting the result ho = h20 + h Z [ < ] ,  we 
obtain 

x20 + Z[(] = 0. 

Iterating this procedure, we find 

h t o + Z [ ( ]  = o for all t 2 1 .  
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For t = s (p(lV) this implies, in view of l o  = (see (10.1)), that 

In the general case, let n  = l;' . . . @'. Then - {"''~ is a primitive Y:" -th I - 
root of unity, and one has 

and Q ( [ l )  . . Q({i-I )  fl Q(( i )  = Q. By what we have just seen, for each 
di-1 i = 1, . . . , r ,  the elements I , & ,  . . . , 1;. , where di = ( p ( ~ , ? ) ,  form an 

integral basis of Q ( t )  lQ. Since the discriminants d ( 1 ,  t , . . . . - I  ) = f $ 
are pairwise relatively prime, we conclude successively from (2.11) that the 
elements . . c / ,  with jj = 0 ,  . . . , di - I ,  form an integral basis of 
Q(( ) IQ.  But each one of these elements is a power of {. Therefore every 
cr E o may be written as a polynomial cr = f ({) with coefficients in Z. 
Since 5- has degree (p(n) over Q ,  the degree of the polynomial f ({) may be 
reduced to p(n)  - 1. In this way one obtains a representation 

Knowing that Z [ { ]  is the ring of integers of the field Q ( { )  we are now in 
a position to state explicitly the law of decomposition of prime numbers p 
into prime ideals of Q(<) .  It is of the most beautiful simplicity. 

(10.3) Proposition. Let n  = n,, pVp be the prime factorization of n  and, for 
every prime number p, Jet fp be the smallest positive integer such that 

p f p  E 1 mod n/pVp 

Then one has in Q  (0 the factorization 

p  = ( p ,  . . . pr)"(pYP), 

where p ,  , . . . , pr are distinct prime ideals, all of degree ,f,,. 

Proof: Since o = Z [ < ] ,  the conductor of Z [ { ]  equals 1 ,  and we may 
apply proposition (8.3) to any prime number p. As a consequence, every p  
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decomposes into prime ideals in exactly the same way as the minimal 
polynomial & ( X )  of { factors into irreducible polynomials mod p. All we 
have to show is therefore that 

d P V P )  
&(XI   pi(^) . - . p r ( X ) )  mod P ,  

where pl ( X ) ,  . . . , pr (X) are distinct irreducible polynomials over Z / p Z  of 
degree fp .  In order to see this, put n = pVpm. As ti;., resp. q j ,  varies over 
primitive roots of unity of order m ,  resp. pup, the products ti q, vary precisely 
over the primitive n-th roots of unity, i.e., one has the decomposition over o :  

Since x p V p  - 1 3 (X - l )pvp  mod p ,  one has r j j  = 1 mod p, for any prime 
ideal p 1 p .  In other words, 

& ( X )  E f l ( x  - & ) q ( p v P )  = & ( x ) v ( p v P )  mod p . 
i 

This implies the congruence 

+n ( X )  & ( X ) ~ ( P ~ ~ )  mod p  . 

Observing that fp  is the smallest positive integer such that p f p  - 1 mod m ,  
it is obvious that this congruence reduces us to the case where p  f n ,  and 
hence qo(pVp) = ~ ( 1 )  = 1 .  

As the characteristic p  of o / p  does not divide n, the polynomials Xn - 1 
and nxn-'  have no common root in alp. So Xn - 1 mod p has no 
multiple roots. We therefore see that passing to the quotient o -+ o / p  
maps the group pn of n-th roots of unity bijectively onto the group 
of n-th roots of unity of alp. In particular, the primitive n-th root of 
unity ( modulo p remains a primitive n-th root of unity. The smallest 

'extension field of IFp = Z / p Z  containing it is the field F p f p ,  because its 
multiplicative group P* is cyclic of order p f p - l .  Fpfp is therefore the 

p f p  
field of decomposition of the reduced cyclotomic polynomial 

Being a divisor of Xn - 1 mod p ,  this polynomial has no multiple roots, 
and if 

7 n  ( X I  = (XI . . . p r  ( X )  
is its factorization into irreducibles over P p ,  then every pi ( X )  is the minimal 
polynomial of a primitive n-th root of unity E F i g .  Its degree is 

therefore fp .  This proves the proposition. 0 

Let us emphasize two special cases of the above law of decomposition: 
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(10.4) Corollary. A prime number p  is ramified in Q ( < )  if and only if 

except in the case where p  = 2 = (4 ,  n ) .  A prime number p # 2 is totally 
split in Q ( ( )  if and only if 

p = 1 modn.  

The completeness of these results concerning the integral basis and the 
I 

decomposition of primes in the field Q ( < )  will not be matched by our study 
of the group of units and the ideal class group. The problems arising in this 
context are in fact among the most difficult problems posed by algebraic 
number theory. At the same time one encounters here plenty of astonishing 
laws which are the subject of a theory which has been developed only 
recently, Iwasawa theory. 

The law of decomposition (10.3) in the cyclotomic field provides the 
I proper explanation of Gauss's reciprocity law (8.6). This is based on the 

following 

(10.5) Proposition. Let f! and p  be odd prime numbers, C* = (- 1) C,  and 
< a primitive f! -th root of unity. Then one has: 

p  is totally split in Q(&)  p  splits in Q ( { )  into an even 
number of prime ideals. 

Proof: The little computation in $ 8 ,  p. 51 has shown us that C* = t2  with 

t = C  aE(z/lz,* (f)<", SO that ~ ( f i )  i Q ( { ) .  If p  is totally split in 

~ ( f i ) ,  say p  = ~ 1 ~ 2 ,  then some automorphism a of Q ( { )  such that 
a p l  = p2 transforms the set of all prime ideals lying above p l  bijectively 
into the set of prime ideals above p2. Therefore the number of prime ideals 
of Q ( { )  above p  is even. Now assume conversely that this is the case. Then 
the index of the decomposition group G p ,  or in other words, the degree 
[Zp : Q ]  of the decomposition field of a prime ideal p of Q ( < )  over p,  

is even. Since G(Q({ ) IQ)  is cyclic, it follows that ~ ( f i )  G Zp. The 
inertia degree of p n Zp over Q  is 1 by (9.3), hence also the inertia degree 
of p n Q ( @ ) .  This implies that p  is totally split in ~ ( f i ) .  0 

From this proposition we obtain the reciprocity law for two odd prime 
numbers f! and u,  
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as follows. It suffices to show that 

(f) = ($1. 
In fact, the completely elementary result ($) = (- 1) 9 (see § 8, p. 5 1) 

1 then gives 

e* By (8.5) and (10.5). we know that (p) = 1 if and only if p decomposes 
in the field Q( ( )  of l-th roots of unity into an even number of prime ideals. 

e - I  By (10.3), this number is r = -, where f is the smallest positive integer 
f 

such that pf E 1 mod l ,  i.e., r is even if and only if f is a divisor 
e - i  of -. But this is tantamount to the condition p(e- ' ) /2  = 1 mod l. Since 

2 
e - r  an element in the cyclic group IF; has an order dividing - 

2 
if and only if 

it belongs to IFi2, the last congruence is equivalent to ( l )  = 1. So we do e e* have ( -) = ( 11) as claimed. 
P e 

Historically, Gauss's reciprocity law marked the beginning of algebraic 
,number theory. It was discovered by EULER, but first proven by GAUSS. The 
quest for similar laws conceming higher power residues, i.e., the congruences 
x n  = a mod p, with n > 2, dominated number theory for a long time. 
Since this problem required working with the 11-th cyclotoniic field, KUMMI:K'S 
attempts to solve it led to his seminal discovery of ideal theory. We have 
developed the basics of this theory in the preceding sections and tested it 
successfully in the example of cyclotomic fields. The further development 
of this theory has led to a totally comprehensive generalization of Gauss's 
reciprocity law, Artin's reciprocity law, one of the high points in the history 
of number theory, and of compelling charm. This law is the main theorem 
of class field theory, which we will develop in chapters IV-VI. 

I 

Exercise 1. (Dirichlet's Prime Number Theorem). For every natural number n there 
are infinitely many prime numbers p = 1 mod n. 

Hint: Assume there are only finitely many. Let P be their product and consider the 
n-th cyclotomic polynomial @,,. Not all numbers @,,(xnP), for x E Z, can equal 1. 
Let p I@,,(xnP) for suitable x. Deduce a contradiction from this. (Dirichlet's prime 
number theorem is valid more generally for prime numbers p = a mod n ,  provided 
(a,n) = 1 (see VII, (5.14) and VII, 5 13)). 

Exercise 2. For every finite abelian group A there exists a Galois cxtcnsion LIQ 
with Galois group G(L IQ) 2 A. 

Hint: Use exercise 1. 

Exercise 3. Every quadratic number field Q(&) is contained in some cyclotomic 
field Q({,,), <, a primitive n-th root of unity. 

Exercise 4. Describe the quadratic subfields of Q(<,,)IQ, i n  the case where n is odd. 

Exercise 5. Show that Q ( m ) ,  Q(&), Q ( a )  are the quadratic subfields of 
Q(<,,)IQ for n = 2q ,  q 2 3. 

5 11. Localization 

To "localize" means to form quotients, the most familiar case being the 
passage from an integral domain A to its field of fractions 

More generally, choosing instead of A \ (0) any nonempty S  G A \ (0) 
which is closed under multiplication, one again obtains a ring structure on 
the set 

The most important special case of such a multiplicative subset is the 
complement S = A \ p of a prime ideal p of A. In this case one writes A ,  
instead of A S - ' ,  and one calls the ring A p  the localization of A at p .  When 
dealing with problems that involve a single prime ideal p of A at a time i t  is 
often expedient to replace A by the localization Ap.  This procedure forgets 
everything that has nothing to do with p ,  and brings out more clearly all the 
properties conceming p. For instance, the mapping 

gives a 1-1-correspondence between the prime ideals q p of A and the 
prime ideals of Ap.  More generally for any multiplicative set S ,  one has rhe 

(11.1) Proposition. The mappings 

are mutually inverse 1-1 -correspondences between the prime ideals q 5 A \ S 
of  A and the prime ideals 8 of AS- ' .  
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Proof: If q  5 A  \ S is a prime ideal of A, then 
I 

12 = q ~ - l  = 1 %  1 q  E q, s  E S )  

0 0' is a prime ideal of A S - ' .  Indeed, in obvious notation, the relation T 7  E Q ,  
i.e., f!d = implies that s"aal = qss' E q .  Therefore aa' E q ,  because 

ss' S" ' 
s" $! q, and hence a  or a' belong to q, which shows that or $ belong 
to D. Furthermore one has 

q = O n A ,  
since = a  E 12 f l  A  implies q  = a s  E q ,  whence a  E q  because s  $! q. 

Conversely, let 12 be an arbitrary prime ideal of AS- ' .  Then q  = 12 fl A  
is obviously a prime ideal of A ,  and one has q g A  \ S. In fact, if q  were 

1 I to contain an s  E S,  then we would have 1 = s  . , E 12 because , E A S - ' .  
'Furthermore one has 

12 = = s - ' .  
I For if E L?, then u  = . s  E L? fl A  = q, hence = U S  E q S - ' .  The 

mappings q  t+ qS-' and 12 I+ 12 II A  are therefore inverses of each other, 
which proves the proposition. 0 

Usually S will be the complement of a union UPEX p over a set X of 
prime ideals of A. In this case one writes 

instead of AS-'.  The prime ideals of A ( X )  correspond by ( 1 1 . 1 )  1-1 to 
the prime ideals of A  which are contained in UpEX p ,  all the others are 
being eliminated when passing from A  to A ( X ) .  For instance, if X is finite 
or omits only finitely many prime ideals of A, then only the prime ideals 
from X  survive in A  ( X ) .  

In the case that X  consists of only one prime ideal p ,  the ring A ( X )  is 
the localization 

f 
A , = { ?  I f 9 g ~ A .  7 $ O m o d p }  

of A  at p .  Here we have the 

(11.2) Corollary. If p is aprime ideal of A, then Ap is a local ring, i.e., Ap has 
a unique maximal ideal, namely m p  = pAp.  There is a canonical embedding 

A l p  - Aplmp, 
identifying A p / m p  with the field of fractions of Alp .  In particular, if p is a 
maximal ideal of A ,  then one has 

Alp" Z Ap/m:  forn >_ 1. 
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Proof: Since the ideals of Ap correspond 1-1 to the ideals of A  contained 
in p ,  the ideal m p  = pAp is the unique maximal ideal. Let us consider the 
homomorphism 

J' : A/$' --+ A p / n $ ,  u mod pl' t-+ u nlod 111: 

For n = 1 ,  f is injective because p = m p  n A. Hence A p / m p A p  becomes the 
field of fractions of Alp.  Let p be maximal and n 2 I .  For evcry s E A \ p 
one has p" + s A  = A, i.e., F = s  mod pn is a unit in Alp". For n = 1 this 
is clear from the maximality of p ,  and for n 1 1 it follows by induction: 
A = pn-' + s A  + p = pA = p(pn- '  + s A )  5 p" + s A  j p" + s A  = A. 

Injectivity o f f :  let a E A  be such that a  E m:, i.e., a  = hls  with h E pi', 
s  4 p .  Then as  = b E p n ,  so that ZS = 0 in Alp", and hence 5 = 0 in A l p n .  

Surjectivity of f :  let a l s  E A p r  a  E A, s  4 p .  Then by the above, there 
exists an a' E A  such that a  = a's mod p n .  Therefore a l s  = a' mod p" A , ,  
i.e., a l s  mod m; lies in the image of f ' .  n 

In a local ring with maximal ideal m, every element a 4 m is a unit. 
Indeed, since the principal ideal ( a )  is not contained in any other maximal 
ideal, it has to be the whole ring. So we have 

The simplest local rings, except for fields, are discrete valuation rings. 

(11.3) Definition. A discrete valuation ring is a principal ideal domain o with 
a unique maximal ideal p # 0. 

The maximal ideal is of the form p = ( n )  = no, for some prime 
element n .  Since every element not contained in p is a unit, it follows 
that, up to associated elements, n is the only prime element of o. Every 
nonzero element of o may therefore be written as E T", for some F: E n*, 
and n >_ 0. More generally, every element u # 0 of the tield of I'ractiom K 
may be uniquely written as 

a  = e n n ,  E E o*, n E Z .  

The exponent n is called the valuation of a .  It is denoted v ( a ) ,  and it  is 
obviously characterized by the equation 

( a )  = pU(' ) .  

The valuation is a function 

v : K * - + Z  
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Extending it to K by the convention v(0)  = oo, a simple calculation shows 
that it satisfies the conditions 

v(ab) = v(a)  + v ( b ) ,  v(a + b )  1 min( v(a) ,  v ( b ) )  . 
This innocuous looking function gives rise to a theory which will occupy all 
of the next chapter. 

The discrete valuation rings arise as localizations of Dedekind domains. 
This is a consequence of the 

(11.4) Proposition. If o is a Dedekind domain, and S o \ (0) is a m r i l l i -  
plicative subset, then o S-' is also a Dedekind domain. . 

Proof: Let 8 be an ideal of 0s-I and a = 8 n o .  Then 8 =  a S-I , because 
a 

E 8 r7 0 = a, so that if E 8 , a  E o and s E S, then one has a = s .  - 
a 1 = a . ,  E as- ' .  As a is finitely generated, so is 8 ,  i.e., oS-' is noetherian. 
It follows from (11.1) that every prime ideal of OS-' is maximal, because 
this holds in 0. Finally, US-' is integrally closed, for if x E K satisfies the 
equation 

a 1 an xn + -xn-' + . . . + - = 0  
SI Sn 

with coefficients $ E OS-', then multiplying it with the n-th power 
of s = sl . . . sn shows that sx is integral over 0, whence sx  E o and 
therefore x E oS-I. This shows that oS-' is a Dedekind domain. 0 

' (11.5) Proposition. Let o be a noetherian integral domain. 0 is a Dedekind 
domain if and only if, for all prime ideals p # 0 ,  the localizations o,, are 
discrete valuation rings. 

Proof: If o is a Dedekind domain, then so are the localizations op. The 
maximal ideal m = pop is the only nonzero prime ideal of op. Therefore, 
choosing any n E m \ m2, one necessarily finds (n) = m, and furthermore 
mn = (nn). Thus op is a principal ideal domain, and hence a discrete 
valuation ring. 

Letting p vary over all prime ideals # 0  of 0 ,  we find in any case that 

For if 5 E np o p ,  with a ,  b  E o ,  then 
b 
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is an ideal which cannot be contained in any prime ideal of 0. In fact, for 
a c any p, we may write - = , with c E o, s 4 p ,  so that sa = hc, hence 
h 

s E a \ p. As a is not contained in any maximal ideal, it follows that a = o, 
a hence a = 1 . a  E h o ,  i.e., - E o. 
h 

Suppose now that the op are discrete valuation rings. Being principal ideal 
domains, they are integrally closed (see §2), so o = n,, op is also integrally 
closed. Finally, from (1 1 .1 )  i t  follows that every prime ideal p # 0 of o is 
maximal because this is so in a,. Therefore o is a Dedekind domain. 

For n Dcdckind domain o, we have for each prime idcal p # 0 [hc tliscrctc 
valuation ring a,, and the corresponding valuation 

I) , , :  K* + z 
of the field of fractions. The significance of these valuations lies in their 
relation to the prime ideal factorization. If x  E K* and 

is the prime factorization of the principal ideal ( x ) ,  then, for each p ,  one has 

up = vp ( x ) .  

In fact, for a fixed prime ideal q # 0  of o ,  the first equation above implies 
(because p o, = o, for p + q) that 

XO, = (n pup) 0, = qvwq = miq.  
P 

Hence indeed v,(x) = vq In view of this relation, the valuations v,, are also 
called exponential valuations. 

The reader should check that the localization of the ring Z at the prime 
ideal ( p )  = pZ is given by 

The maximal ideal pZ(,) consists of all fractions a l h  satisfying 11 I a ,  p f h,  
and the group of units consists of all fractions a / b  satisfying p { ah .  The 
valuation associated to Z(,), 

is called the p-adic valuation of Q. The valuation v,,(x) of an element 
x  E Q* is given by 

up(x)  = v ,  

where x  = pva/b  with integers a ,  b  relatively prime to p. 
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To end this section, we now want to compare a Dedekind domain o to 
the ring 

f 
o(X) = (g I f , g  E 0, g + 0 mod p for p E X I ,  

where X is a set of prime ideals # 0 of o which contains almost all 
prime ideals of o. By (11.1), the prime ideals # 0 of o(X)  are given as 
px = po(X), for p E X, and it is easily checked that o and o(X) have the 
same localizations 

o p  = o(X)px. 

We denote by Cl(o),  resp. Cl(o(X)), the ideal class groups of o ,  resp. 
o(X). They, as well as the groups of units o* and o(X)*, are related by the 
following 

(11.6) Proposition. There is a canonical exact sequence 

and one has K *lo: S Z. 

Proof: The first arrow is inclusion and the second one is induced by the 
inclusion o(X)* +- K*, followed by the projections K* -+ K*/o;. If 
a E o(X)* belongs to the kernel, then a E op for p $ X, and also for p E X 
because op = O ( X ) ~ ~ ,  hence a E np o: = o* (see the argument in the 
proof of (11.5)). This shows the exactness at o(X)*. The arrow 

@ K*/o t  --+ Cl(o) 

! 
P@ 

is induced by mapping 

where up  : K* +- Z is the exponential valuation of K associated to o p .  Let 
epgX ap mod o; be an element in the kernel, i.e., 

for some a! E K*. Because of unique prime factorization, this means that 
up(@) = 0 for p E X, and vp(ctp) = vp(a) for p $ X. It follows 
that a! E npEx 0; = o(X)* and a! = ap mod o;. This shows exactness 
in the middle. The arrow 
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comes from mapping a I+ ao(X). The classes of prime ideals p E X 
are mapped onto the classes of prime ideals of o(X). Since Cl(o(X))  is 
generated by these classes, the arrow is surjective. For p $ X we have 
po(X) = (I),  and this means that the kernel consists of the classes of the 
ideals npgx pup. This, however, is visibly the image of the preceding arrow. 
Therefore the whole sequence is exact. Finally, the valuation up : K *  + Z 
produces the isomorphism K*/o; S Z. 0 

For the ring of integers OK of an algebraic number field K ,  the proposition 
yields the following results. Let S denote a finite set of prime ideals of 
(not any more a multiplicative subset), and let X be the set of all prime 
ideals that do not belong to S. We put 

The units of this ring are called the S-units, and the group C I ~  = ~ l ( o i )  
the S-class group of K.  

(11.7) Corollary. For the group K~ = (o;)* of S-units of K there is an 
isomorphism 

K S  2 p ( ~ )  Z#S+r+s-l 

where I .  and s are defined as in Q 5 ,  p. 30. 

Proof: The torsion subgroup of K~ is the group p (K)  of roots of unity 
in K.  Since Cl(o) is finite, we obtain the following identities from the exact 
sequence (11.6) and from (7.4): 

 rank(^ ') = rank(ok) + rank( @ Z) = #S + r + s - 1.  
PES 

This proves the corollary. 

(11.8) Corollary. The S-class group ~ 1 :  = Cl(o;) is finite. 

Exercise 1. Let A be an arbitrary ring, not necessarily an integral domain, Ict M be 
an A-module and S a multiplicatively closed subset of A such that 0 6 S. In M x S 
consider the equivalence relation 

( m ,  s) -- (m',  s ' )  3 s" E S such that sl'(s'm - sm') = 0 .  
- 

Show that the set Ms of equivalence classes ( m , s )  forms an A-module, and that - 
M -+ Ms, a H (a, I ) ,  is a homomorphism. In particular, As is a ring. It is called 
the localization of A with respect to S. 
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Exercise 2. Show that, in  the above situation, the prime ideals of As correspond 1-1 
to the prime ideals of A which are disjoint from S. If p 5 A and ps As correspond 
in this way, then As/ps is the localization of Alp with respect to the image of S. 

Exercise 3. Let f  : M  --+ N  be a homomorphism of A-modules. Then the following 
conditions are equivalent: 

(i) f  is injective (surjective). 
I 

(ii) f p  : M ,  -+ N p  is injective (surjective) for every prime ideal p. 

(iii) f ,  : M ,  -+ N ,  is injective (surjective) for every maximal ideal m. 

Exercise 4. Let S and T be two multiplicative subsets of A, and T* the image of T 
in As. Then one has AS7 2 (AS).I.*. 

Exercise 5. Let f  : A -+ B be a homomorphism of rings and S a niultiplicatively 
closed subset such that f (S) c B*. Then f induces a homomorphism As -+ B. 

Exercise 6. Let A be an integral domain. If the localization As is integral over A .  
then A s  = A .  

Exercise 7 (Nakayama's Lemma). Let A be a local ring with maximal ideal m, let M 
be an A-module and N  c M  a submodule such that M I N  is finitely generated. Then 
one has the implication: 

3 12. Orders 

The ring OK of integers of an algebraic number field K is our chief 
interest because of its excellent property of being a Dedekind domain. Due 
to important theoretical as well as practical circumstances, however, one is 
pushed to devise a theory of greater generality which comprises also the 
theory of rings of algebraic integers which, like the ring 

are not necessarily integrally closed. These rings are the so-called orders. 

(12.1) Definition. Let K (Q be an algebraic number field of degree n.  An order 
of K is a subring o of OK which contains an integral basis of'lengll~ 11 .  Tl~e  
ring OK is called the maximal order of K .  

5 12. Orders 

In concrete tenns, orders are obtained as rings of the form 

where a l ,  . . . , a,. are integers such that K = Q ( a 1 ,  . . . , a,.). Being a 
submodule of the free Z-module O K ,  o does of course admit a Z-basis 
which, as Qo = K ,  has to be at the same time a basis of K JQ, and therefore 
has length n. Orders arise often as rings of multipliers, and as such have their 
practical applications. For instance, if a , ,  . . . , a, is any basis of K IQ and 
M = Zal  + . . . + Za, ,  then 

is an order. The theoretical significance of orders, however, lies in the fact 
that they admit "singularities", which are excluded as long as only Dedekind 
domains with their "regular" localizations op are considered. We will explain 
what this means in the next section. 

In the preceding section we studied the localizations of a Dedekind 
domain O K .  They are extension rings of OK which are integrally closed. 
yet no longer integral over Z. Now we study orders. They are subrings 
of OK which are integral over Z, yet no longer integrally closed. As a 
common generalization of both types of rings let us consider for now all 
one-dimensional noetherian integral domains. These are the noetherian 
integral domains in which every prime ideal p # 0 is a maximal ideal. 
The term "one-dimensional" refers to the general definition of the Krull 
dimension of a ring as being the maximal length d of a chain of prime 
ideals po 5 p1 5 . . .  pd. 

(12.2) Proposition. An order o of K is a one-dimensional noetherian integral 
domain. 

Proof: Since o is a finitely generated Z-module of rank n = [K : Q1, 
every ideal a is also a finitely generated Z-module, and afur-tior-i a fini~cly 
generated o-module. This shows that o is noetherian. If p # O is n pr-imc 
ideal and a E p n Z, a # 0, then ao G p G o, i.e., p and o have the same 
rank n. Therefore o/p is a finite integral domain, hence a field, and thus p 
is a maximal ideal. 0 

In what follows, we always let o be a one-dimensional nocthcri~un intcgral 
domain and K its field of fractions. We set out by proving the following 
stronger version of the Chinese remainder theorem. 
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(12.3) Proposition. If a # 0 is an ideal of o ,  then 

Proof: Let iip = o n sop. For almost all p one has p 2 a and therefore 
sop = o p ,  hence Z L p  = o. Furthermore, one has a = np Zip = nP2, Z i p .  
Indeed, for any a E (-),tip, the ideal b = {.r E o 1 so E a )  does not belong 
to any of the maximal ideals p (in fact, one has spa E a for any sp $ p), 
consequently, b = o ,  i.e., a = 1 . a E a, as claimed. ( 1 1 . 1 )  implies that, 
if p 2 a, then p is the only prime ideal containing iip. Therefore, given two 
distinct prime ideals p and q of o, the ideal iip+iiq cannot be contained in any 
maximal ideal, whence 6, + 6,  = o. The Chinese remainder theorem (3.6) 
now gives the isomorphism 

and we have o/ap = op /ao , ,  because p = p mod Zip is the only maximal 
ideal of o/i ip .  0 

For the ring o ,  the fractional ideals of o ,  in other words, the finitely 
generated nonzero o-submodules of the field of fractions K ,  no longer form 
a group - unless o happens to be Dedekind. The way out is to restrict 
attention to the invertible ideals, i.e., to those fractional ideals a of o for 
which there exists a fractional ideal b such that 

These form an abelian group, for trivial reasons. The inverse of a is still the 
fractional ideal 

a-' = ( x  E K I xa g o } ,  

because it is the biggest ideal such that aa-' g o. The invertible ideals of o 
may be characterized as those fractional ideals which are "locally" principal: 

(12.4) Proposition. A fractional ideal a of o is invertible if and only if, for 
every prime ideal p # 0, 

ap = aop 
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Proof: Let a be an invertible ideal and a b = o. Then 1 = C:..=, a,h, 
with a; E a, b; E b, and not all sib; E op can lie in the maximal ideal 
pop. Suppose a l b l  is a unit in o p  Then ap = slop because, for s E a,, 
xbl  E: apb = op, hence x  = xb l (b la l ) - ' a l  E slop. 

Conversely, assume ap = aop  is a principal ideal ape,, a, E K *, for 
every p. Then we may and do assume that ap  E a. We claim that the 
fractional ideal a-' = {x  E K I xa G o)  is an inverse for a. If this were not 
the case, then we would have a maximal ideal p such that an-' 2 p c o. 

b Let a , ,  . . . , a, be generators of a. As ai E u p  o p ,  we may write ai = a,?, 
with bi E o ,  si E 0 \ p .  Then sia; E apo .  Putting s  = $ 1  . . . s,, , we have 
sai E a p o  for i = 1, . .. , n,  hence sap'a 5 o and therefore sap' E a- ' .  
Consequently, s  = sa;'ap E a-'a E p, a contradiction. 0 

We denote the group of invertible ideals of o by J ( o ) .  It contains the 
group P ( o )  of fractional principal ideals a o ,  a  E K*. 

(12.5) Definition. The quotient group 

is called the Picard group of the ring o. 

In the case where o is a Dedekind domain, the Picard group is of course 
nothing but the ideal class group C I K .  In general, we have the following 
description for J (0) and Pic(o).  

(12.6) Proposition. The correspondence a t-+ (a,,) = (aoy)  yicltls 211 

isomorphism 
.I (0) G @ P ( o p ) .  

P 

Identifying the subgroup P (o) with its image in the direct sum one gets 

Proof: For every a E J ( o ) ,  ap = aop  is a principal ideal by ( 12.4), and we 
have ap = up for almost all p because a lies in only finitely many maximal 
ideals p. We therefore obtain a homomorphism 

is a fractional principal ideal of op. 
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It is injective, for if ap = op for all p, then a G o = o (see the proof 
p P 

of (11.5)), and one has to have a = o because otherwise there would exist 
a maximal ideal p such that a E p c o, i.e., ap E pop # up. In order to 
prove surjectivity, let (apop) E P(op )  be given. Then the o-submodule 

of K is a fractional ideal. Indeed, since apop = op for almost all p ,  there is 
some c E o such that cap E op for all p, i.e., ca E np op = 0 .  We have to 
show that one has 

aop  = a p o p  

for every p. The inclusion is trivial. In order to show that a p o p  S ao,, let 
us choose c E o ,  c # 0, such that ca;'aq E o for the finitely many q which 
satisfy aplaq $4 o,. By the Chinese remainder theorem (12.3), we may find 
a E o such that 

a = c mod p and a E cap i aqoq  for q # p 

Then E = ac-I is a unit in op and a,& E nq a q o q  = a, hence 

Passing from the ring o to its normalization 6 ,  i.e., to the integral closure 
of o in K ,  one obtains a Dedekind domain. This is not all that easy to prove, 
however, because 6 is in general not a finitely generated o-module. But at 
any rate we have the 

(12.7) Lemma. Let o be a one-dimensional noetherian integral domain and 6 
its normalization. Then, for each ideal a # 0 of o ,  the quotient 6 / a d  is a finitely 
generated o -module. 

Proof: Let a E a, a # 0. Then 6 l a 6  is a quotient of 6 laB.  It thus suffices 
, to show that 6 l a 6  is a finitely generated o-module. With this end, consider 
in o the descending chain of ideals containing a o  

a, = ( a m 6  r l  o ,  a o ) .  

This chain becomes stationary. In fact, the prime ideals of the ring o / a o  
are not only maximal but also minimal in the sense that o l a o  is a zero- 
dimensional noetherian ring. In such a ring every descending chain of ideals 
becomes stationary (see $ 3 ,  exercise 7). If the chain a,, = a,?, mod a o  is 
stationary at n ,  then so is the chain a,. We show that, for this n,  we have 

6 E a-"o + aB. 

5 12. Orders 77 

b Let B = , E 8 ,  b ,c  E o. Apply the descending chain condition to the 
ring o l c o  and the chain of ideals (am), where = a mod co. Then 
(-h a ) - - (ah+'), i.e., we find some x E o such that a h  = xuhf '  mod c o ,  

hence (1 - xa)ah E co ,  and therefore 

Let h be the smallest positive integer such that B E (I-"o + ~ 6 .  11 rhcll 
suffices to show that h 5 n. Assume 12 > n. Writing 

we have u = ah(j3 - aii) E a h 6  n o E a/, = a/,+, because 17 > n .  hence 
u = a h +  '2 '  + a d ,  u' E 0 ,  f i l  E 6. Substituting this into (z)  givcs 

This contradicts the minimality of h. So we do have 6 a-'lo + 06. 
6 / a 6  thus becomes a submodule of the o-module (a-"o + a6)/u?1 

generated by awn  mod a 8 .  It is therefore itself a finitely generated o-module, 
q.e.d. 0 

(12.8) Proposition (KRULL-AKIZUKI). Let o be a one-dimensional noetherinn 
integral domain with field of fractions K.  Let L ( K  be a finite extension and 0 
the integral closure of o in L. Then 0 is a Dedekind domain. 

Proof: The facts that 0 is integrally closed and that every nonzero prime 
ideal is maximal, are deduced as in (3.1). It remains to show that 0 is 
noetherian. Let wl, . . . , w, be a basis of L ( K  which is contained in  0. 
Then the ring = o [ q ,  . . . , on] is a finitely generated o-module and in 
particular is noetherian since o is noetherian. We argue as before that 00 is 
one-dimensional and are thus reduced to the case L = K .  So let U be an 
ideal of 0 and a E 'L1 n o, a # 0; then by the above lemma O/aO is a 
finitely generated o-module. Since o is noetherian, so is the o-submodule 
U/aO, and also the 0-module 2l. 0 

Remark: The above proof is taken from KAPLANSKY'S book [82] (see also 
[loll). It shows at the same time that proposition (8.1), which we had proved 
only in the case of a separable extension L J K ,  is valid for general finite 
extensions of the field of fractions of a Dedekind domain. 
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Next we want to compare the one-dimensional noetherian integral do- 
main o with its normalization 8. The fact that 6 is a Dedekind domain is 
evident and does not require the lengthy proof of (12.8) provided we make 
the following hypothesis: 

(*) o is an integral domain whose normalization 6 is a finitely generated 
o-module. 

This condition will be assumed for all that follows. It avoids pathological 
situations and is satisfied in all interesting cases, in particular for the orders 

, in an algebraic number field. 
The groups of units and the Picard groups of o and 6 are compared with 

each other by the following 

(12.9) Proposition. One has the canonical exact sequence 

In the sum, p varies over the prime ideals # 0 of o and ap denotes the integral 
closure of op in K. 

I 
Proof: If I? varies over the prime ideals of 6, we know from (12.6) that 

If p is a prime ideal of o ,  then p 6  splits in the Dedekind domain 6 into a 
product 

p6  = Ff '  . . .@?, 

i.e., there are only finitely many prime ideals of 6 above p. The same holds 
for the integral closure dp of op .  Since every nonzero prime ideal of 6,, 
has to lie above pop,  the localization ep has only a finite number of prime 
ideals and is therefore a principal ideal domain (see 3, exercise 4). In view 
of (12.6), i t  follows that 

and therefore 

J ( 6 )  2 $ @ P(6gi) Y @ P ( a p )  
P P l P  P 
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Observing that P(R) 2 K*/R* for any integral domain R with field of 
I 

fractions K ,  we obtain the commutative exact diagram 

For such a diagram one has in complete generality the well-known snake 
lemma: the diagram gives in a canonical way an exact sequence 

relating the kernels and cokernels of a ,  @, y (see [23], chap. 111, 5 3, 
lemma 3.3). In our particular case, a ,  B ,  and therefore also y ,  are surjective, 
whereas 

ker(a) = 6*/o* and 

This then yields the exact sequence 

A prime ideal p # 0 of o is called regular if op is integrally closed, and 
thus a discrete valuation ring. For the regular prime ideals, the summands 
6;j/oi in (12.9) are trivial. There are only finitely many non-regular prime 
ideals of o, namely the divisors of the conductor of 0. This is by definition 
the biggest ideal of 6 which is contained in o, in other words, 

Since ?> is a finitely generated o-module, we have f # 0. 

(12.10) Proposition. For any prime ideal p # 0 of o one has 

p f f e==> p is regular. 

If this is the case, then f i  = p 6  is a prime ideal of 6 and u p  = Be. 



80 Chapter I. Algebraic Integers 

Proof: Assume p { f, i.e., p 2 f, and let t E f \ p .  Then t B  E. o ,  hence 
1 6 ;O 5 0,. If rn = pop is the maximal ideal of up then, putting 

f i  = m n 6 ,  f i  is a prime ideal of d such that p E 6 n o ,  hence p = 6 fl o 
because p is maximal. Trivially, op E 6 ~ ,  and if conversely E BB,  for 
a E 6 ,  s E 6 \ 6, then ta E o and t s  E o \ p, hence = E Op. 

t S 

Therefore op = 6 ~ .  Thus, by (11.5), op is a valuation ring, i.e., p is regular. 
One has furthermore that f i  = p6. In fact, 6 is the only prime ideal of 6 

above p .  For if 4 is another one, then 6,j = up E. ail, and therefore 

hence f i  = 21. Consequently, pd = $' ,  with e >_ I, and furthermore 
m = pop = (p6)op = fieup = me, i.e., e = 1 and thus 6 = pd. 

Conversely, assume op is a discrete valuation ring. Being a principal 
ideal domain, it is integrally closed, and since 6 is integral over o ,  hence u 
fortiori over opt we have 6 5 op. Let X I ,  . . . , x, be a system of generators 
of the o-module 8. We may write x; = :, with a; E o ,  s; E 0 \ p. Setting 
s = sl . . . s ,  E o \ p, we find s x l ,  . . . , sx, E o and therefore sd  E o ,  i.e., 
s E f \ p. It follows that p f f. 0 

We now obtain the following simple description for the sum ep 6;/0; 
in (12.9). 

(12.11) Proposition. ep d*p/o+p Z ( d / f ) * / ( o / f ) * .  

Proof: We apply the Chinese remainder theorem (12.3) repeatedly. We have 

The integral closure d p  of op possesses only the finitely many prime ideals 
that lie above pop. They give the localizations 6 @ ,  where 6 varies over the 
prime ideals above p of the ring 6. At the same time, Bp is the localization 
of 3 with respect to the multiplicative subset 6 \ F. Since f is an ideal of 6 ,  
it follows that fgp = fop. The Chinese remainder theorem yields 

and 
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Passing to unit groups, we get from (1) and (2)  that 

(3) ( 6 / f ) * / ( o / f > *  2 $ (qJf6p>*/(op/fop)* 
P 

For f p we now consider the homomorphism 

It is surjective. In fact, if E mod fdp is a unit in d p / f d p ,  then E is a unit in fip. 
This is so because the units in any ring are precisely those elements that are 
not contained in any maximal ideal, and the preimages of the maximal ideals 
of 6,,/f6,, give precisely all the maximal ideals of a,, since pap. 
The kernel of (D is a subgroup of 6; which is contained in o P ,  and which 
contains o;. It is therefore equal to O F  We now conclude that 

This remains true also for p 2 f because then both sides are equal to I 
according to (12.10). The claim of the proposition now follows from (3). 

Our study of one-dimensional noetherian integral domains was motivated 
by the consideration of orders. For them, (12.9) and (12.11) imply the 
following generalization of Dirichlet's unit theorem and of the theorem on 
the finiteness of the class group. 

(12.12) Theorem. Let o be an order in an algebraic number field K , c ? ~  the 
maximal order, and f the conductor of o. 

Then the groups ok lo* and Pic(o) are finite and one has 

# Pic(o) = hK #(OK / f ) *  

(ok : o*) #(o / f )*  

where h~ is the class number of K .  In particular, one has that 

Proof: By (12.9) and (12.11), and since Pic(oK)  = e l K ,  we have the exact 
sequence 

1 --+ ok/o* -+ ( o ~ / f ) * / ( o / f ) *  ---t Pic(o) + CIK -+ 1 .  

This gives the claim. 0 
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The definition of the Picard group of a one-dimensional noetherian integral 
domain o avoids the problem of the uniqueness of prime ideal decomposition 
by restricting attention to the invertible ideals, and thus leaving aside 
the information carried by noninvertibles. But there is another important 
generalization of the ideal class group which does take into account all prime 
ideals of o. It is based on an artificial re-introduction of the uniqueness of 
prime decomposition. This group is called the divisor class group, or Chow 
group of o .  Its definition starts from the free abelian group 

on the set of all maximal ideals p of o (i.e., the set of all prime ideals # 0). 
This group is called the divisor group of o. Its elements are formal sums 

with np E Z and np = 0 for almost all p, called divisors (or 0-cycles). 
Corollary (3.9) simply says that, in the case of a Dedekind domain, the 
divisor group Div(o) and the group of ideals are canonically isomorphic. 
The additive notation and the name of the group stem from function theory 
where divisors for analytic functions play the same r6le as ideals do for 
algebraic numbers (see chap. 111, $3). 

In order to define the divisor class group we have to associate to every 
f E K* a "principal divisor" div( f ). We use the case of a Dedekind domain 
to guide us. There the principal ideal (f)  was given by 

, where up : K* + Z is the p-adic exponential valuation associated to the 
valuation ring op. In general, op is not anymore a discrete valuation ring. 
Nevertheless, op defines a homomorphism 

which generalizes the valuation function. If f = a /b  E K * ,  with a ,  b E o ,  
then we put 

ordp(f = to, (op/aop> - lop (op/bop), 

where top(M) denotes the length of an op-module M, i.e., the maximal 
length of a strictly decreasing chain 

of op-submodules. In the special case where op is a discrete valuation ring 
with maximal ideal m, the value v = vp(a) of a E o p ,  for a # 0, is given 
by the equation 

a o p  = mu. 

I It is equal to the length of the op-module op/mV,  because the longest chain 
of submodules is 

I , Thus the function ordp agrees with the exponential valuation v P  in this case. 

I The property of the function ordp to be a homomorphism follows from 
the fact (which is easily proved) that the length function lop is multiplicative 
on short exact sequences of op-modules. 

Using the functions ordp : K* -t Z, we can now associate to every 
I element f E K* the divisor 

and thus obtain a canonical homomorphism 

div : K* ---+ Div(o) 

The elements div(f) are called principal divisors. They form a subgroup 
P ( o )  of Div(o). Two divisors D and D' which differ only by a principal 
divisor are called rationally equivalent. 

(12.13) Definition. The quotient group 

CH ' (0) = Div(o)/P(o) 

is called the divisor class group or Chow group of o .  

The Chow group is related to the Picard group by a canonical homomor- 
phism 

div : Pic(o) .--, CH' (o)  

which is defined as follows. If a is an invertible ideal, then, by (12.4), a o , ,  
for any prime ideal p # 0 ,  is a principal ideal apop ,  up E K*,  and we put 

This gives us a homomorphism 

div : J ( o )  --+ Div(o) 

of the ideal group J ( o )  which takes principal ideals into principal divisors, 
and therefore induces a homomorphism 

div : Pic(o) -+ CH'  (0).  

In the special case of a Dedekind domain we obtain: 
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(12.14) Proposition. If o is a Dedekind domain, then 

div : Pic(o) ---t CH' (o) 

is an isomorphism. 

Exercise 1. Show that 
c t x , Y l / ( x Y  - X ) ,  C [ X , Y ] / ( X Y  - 1). 

are one-dimensional noetherian rings. Which ones are integral domains? Determine 
their normalizations. 

Hint: For instance in the last example, put t  = X / Y  and show that the homomor- 
phism C [ X ,  Y ]  + @ [ t ] ,  X H t2  - 1 ,  Y  H r( t2  - I ) ,  has kernel ( Y 2  - X 2  - X 3 ) .  

Exercise 2. Let a and b be positive integers that are not perfect squares. Show that the 
fundamental unit of the order Z + Z& of the field Q(&)  is also the fundamental 
unit of the order Z  + Z& + Z a  + Z& a in the field Q(&, a). 
Exercise 3. Let K be a number field of degree n = [ K  : Q ] .  A complete module 
in K is a subgroup of the form 

M = Z a l  +. . .+  Za,, 

where q ,  . . . ,a, are linearly independent elements of K .  Show that the ring of 
multipliers 

o = { ~ E K ~ ~ M ~ M }  

is an order in K ,  but in general not the maximal order. 

Exercise 4. Determine the ring of multipliers o of the complete module M = 
Z + ~ f i  in ~ ( f i ) .  Show that E = 1 + is a fundamental unit of 0. Determine 

, all integer solutions of "Pell's equation" 
x 2  - 2 y 2  = 7 .  

Hint: N ( x  + y f i )  = x 2  - 2 y 2 ,  N ( 3  + a) = N ( 5  + 3 a )  = 7 .  

Exercise 5. In a one-dimensional noetherian integral domain the regular prime 
ideals # 0 are precisely the invertible prime ideals. 

5 13. One-dimensional Schemes 

The first approach to the theory of algebraic number fields is dominated 
"1 by the methods of arithmetic and algebra. But the theory may also be treated 

fundamentally from a geometric point of view, which will bring out novel 
aspects in a variety of ways. This geometric interpretation hinges on the 
possibility of viewing numbers as functions on a topological space. 

I In order to explain this, let us start from polynomials 
I 

with complex coefficients a, E G ,  which may be immediately interpreted 

i as functions on the complex plane. This property may be formulated in a 
purely algebraic way as follows. Let a E G  be a point in the complex plane. 
The set of all functions f ( x )  in the polynomial ring @ [ X I  which vanish at 
the point a forms the maximal ideal p = ( x  - a )  of G [ x ] .  In this way the 
points of the complex plane correspond 1 - 1 to the maximal ideals of @ [ 1. 

1 
We denote the set of all these maximal ideals by 

We may view M  as a new kind of space and may interpret the elements f (.v) 
of the ring @ [ X I  as functions on M  as follows. For every point p = ( 1  - rr )  
of M  we have the canonical isomorphism 

which sends the residue class f  ( x )  mod p to f  (a ) .  We may thus view this 
residue class 

f ( v )  := f  ( x )  mod P E K ( P )  
in the residue class field ~ ( p )  = @ [ x ] / p  as the "value" of f' at the point 
p E M. The topology on G  cannot be transferred to M  by algebraic means. 
All that can be salvaged algebraically are the point sets defined by equations 
of the form 

f ( x )  = 0 
(i.e., only the finite sets and M  itself). These sets are defined to be the closed 
subsets. In the new formulation they are the sets 

V ( f )  = ( P  E M ( f ( v )  = 0 ]  = { P  E M I  P 1 ( . f ( x ) ) ] .  

The algebraic interpretation of functions given above leads to the fol- 
lowing geometric perception of completely general rings. For an arbitrary 
ring 0, one introduces the spectrum 

as being the set of all prime ideals p of o. The Zariski topology on X is 
defined by stipulating that the sets 

be the closed sets, where a varies over the ideals of o. This does make X into 
a topological space (observe that V ( a )  U V ( b )  = V(ab) )  which, howcvcr. is 
usually not Hausdorff. The closed points correspond to the maximal ideals 
of o. 
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The elements f E o now play the r6le of functions on the topological 
space X: the "value" of f at the point p is defined to be 

and is an element of the residue class field ~ ( p ) ,  i.e., in the field of fractions 
I of olp.  So the values of f do not in general lie in a single field. 

Admitting also the non-maximal prime ideals as non-closed points, turns 
out to be extremely useful - and has an intuitive reason as well. For instance 
in the case of the ring o = @[XI, the point p = (0) has residue class 
field ~ ( p )  = @(x). The "value" of a polynomial f E @[XI at this point 
is f (x) itself, viewed as an element of @ ( x ) .  This element should be thought 
of as the value of f at the unknown place x - which one may imagine to 
be everywhere or nowhere at all. This intuition complies with the fact that 
the closure of the point p = (0) in the Zariski topology of X is the total 
space X. This is why p is also called the generic point of X. 

'Example: The space X = Spec@) may be represented by a line. 

2 3 5 7 11 generic point 

For every prime number one has a closed point, and there is also the generic 
point (O), the closure of which is the total space X. The nonempty open sets 
in X are obtained by throwing out finitely many prime numbers pl , . . . , p,, . 
The integers a E Z are viewed as functions on X by defining the value of a 
at the point (p) to be the residue class 

a(p)  = a mod p E Z /pZ  

The fields of values are then 

Thus every prime field occurs exactly once. 

An important refinement of the geometric interpretation of elements of 
the ring o as functions on the space X = Spec(o) is obtained by forming 
the structure sheaf ox. This means the following. Let U f 0 be an open 
subset of X. If o is a one-dimensional integral domain, then the ring of 
"regular functions" on U is given by 

in other words, it is the localization of o with respect to the multiplicative 
I set S = o \ UpEU p (see 9 11). In the general case, o (U)  is defined to 

consist of all elements 

I s = (s,) E n 0, 
PGU 

which locally are quotients of two elements of o. More precisely, this means 
that for every p E U, there exists a neighbourhood V g U of p ,  and element? 
J', g E C) such that, for each q E V ,  one has g(q) # 0 and s, = j ' l g  
in o,. These quotients have to be understood in the more general sense 
of commutative algebra (see 9 11, exercise 1). We leave it to the reader to 

I 

check that one gets back the above definition in the case of a one-dimensional 
integral domain o .  

If V U are two open sets of X,  then the projection 

induces a homomorphism 

called the restriction from U to V. The system of rings o(U) and mappings 
puv is a sheaf on X. This notion means the following. 

(13.1) Definition. Let X be a topological space. A presheaf 3 of abelian 
groups (rings, etc.) consists of the following data. 

( 1 ) For every open set U, an abelian group (a ring, etc.) F(U) is given. 

(2) For every inclusion U E V , a homomorphism pu v : 3 ( U )  -+ F(V)  is 
given, which is called restriction. 

These data are subject to the following conditions: 

(a) 3 ( 0 >  = 0, 

(b) puu is the identity id : 3 ( U )  + F(U) ,  

The elements s E F(U)  are called the sections of the presheaf 3 over U .  
If V S U, then one usually writes puv(s) = s 1 ". The definition of a 
presheaf can be reformulated most concisely in the language of categories. 
The open sets of the topological space X form a category X., in which only 
inclusions are admitted as morphisms. A presheaf of abelian groups (rings) 
is then simply a contravariant functor 

3 : XtOp -+ (ah),  (rings) 

into the category of abelian groups (resp. rings) such that 3(L/l) = 0. 
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(13.2) Definition. A presheaf 3 on the topological space X is called a sheaf 
if, for all open coverings (U;} of the open sets U,  one has: 

( i )  If s ,  .st E 3 ( U  ) ; ~ r c  two scctior~s sucli that s 1 ", = s t  1 ", Ibr all i , thcn 
S = s'. 

(ii) Ifs; E 3(U;)  is a family of sections such that 

S; I u;nu, = s j  I u, nu, 

for all i , j, then there exists a section s E 3 ( U  ) such that s I ui = s i  for all i . 

The stalk of the sheaf 3 at the point x E X is defined to be the direct 
limit (see chap. IV, 0 2) 

where U varies over all open neighbourhoods of x. In other words, two 
sections su E F(U) and sv E 3 ( V )  are called equivalent in the disjoint 
union UU,, 3 ( U )  if there exists a neighbourhood W 5 U n V of x such 
that su 1 w = sv ( w . The equivalence classes are called germs of sections 
at x .  They are the elements of &. 

We now return to the spectrum X = Spec(o) of a ring o and obtain the 

(13.3) Proposition. The rings o(U),  together with the restriction mappings 
puv ,  form a sheaf on X. It is denoted by o x  and called the structure sheaf 
on X. The stalk of ox at the point p E X is the localization o p ,  i.e., 

TV 

0x.p = up. 

The proof of this proposition follows immediately from the definitions. 
The couple (X ,ox )  is called an affine scheme. Usually, however, the 
structure sheaf o x  is dropped from the notation. Now let 

be a homomorphism of rings and X = Spec(o), X' = Spec(ol). Then p 
induces a continuous map 

f : X' -+ x ,  f (p') := &(pl), 

and, for every open subset U of X,  a homomorphism 

f; : o (U) -+o(U1) ,  S H S O  f l u / ,  

where U' = f -'(U). The maps f; have the following two properties. 

a) If V c U are open sets, then the diagram 
G 

0(U)  - O(Ut) 

is commutative. 
b) For p' E U '  C X'  and (1 E o(U)  one has 

A continuous map f : X' + X together with a family of homomorphisms 
fi; : o(U) + o(U') which satisfy conditions a) and b) is called a morphism 
from the scheme X' to the scheme X. When referring to such a morphism, 
the maps f; are usually not written explicitly. One can show that every 
morphism between two affine schemes X' = Spec(ol) and X = Spec(o) is 
induced in the way described above by a ring homomorphism cp : 0 -t o'. 

The proofs of the above claims are easy, although some of them are a bit 
lengthy. The notion of scheme is the basis of a very extensive theory which 
occupies a central place in mathematics. As introductions into this important 
discipline let us recommend the books [5  11 and [104]. 

We will now confine ourselves to considering noetherian integral do- 
mains o of dimension _( 1, and propose to illustrate geometrically, via the 
scheme-theoretic interpretation, some of the facts treated in prcvious scc- 

tions. 

1. Fields. If K is a field, then the scheme Spec(K) consists of a single point 
(0) on top of which the field itself sits as the structure sheaf. One must 
not think that these one-point schemes are all the same because they differ 
essentially in their structure sheaves. 

2. Valuation rings. If o is a discrete valuation ring with maximal ideal p ,  
then the scheme X = Spec(u) consists of two points, the closed point x = p 
with residue class field ~ ( p )  = o/p, and the generic point q = (0) with 
residue class field ~ ( q )  = K ,  the field of fractions of o .  One should think 
of X as a point x with an infinitesimal neighbourhood described by the 
generic point q : 

x 17 
This intuition is justified by the following observation. 
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X" = Spec(d), then the inclusion o c, 6 induces a morphism f : 2 + X .  

Since d is a Dedekind domain, the scheme X" is to be considered as smooth. 
If pd = 67 . . . @:' is the prime factorization of p in 6, then F l ,  . . . , f i r  are 
the different points of 2 that are mapped to p by f .  One can show that p 
is a regular point of X - in the sense that o, is a discrete valuation ring - 
if and only if r = 1,  el = 1 and f i  = (6/b1 : o/p) = 1. 

6. Extensions. Let o be a Dedekind domain with field of fractions K .  
'Let L l K  be a finite separable extension, and (3 the integral closure of o 
in L. Let Y = Spec(o), X = Spec(O), and 

the morphism induced by the inclusion o c, 0. If p is a maximal ideal of o 
and 

p ( 3 = q q '  ...p,e' 

the prime decomposition of p in 0, then !Q1, . . . , !& are the different points 
of X which are mapped to p by f .  The morphism f is a "ramified covering." 
It is graphically represented by the following picture: 

Y ' ramified points t 
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for the ring @[XI). Then, from the fundamental identity xi e; f, = n ,  there 
are exactly n = [ L  : K] points '$31, . . . , !Q,, of X lying above each point p 
of Y ,  except when p is ramified in o .  At a point p of ramitication, several 
of the points ql, . . . , !Q, coalesce. This also explains the terminology of 
ideals that "ramify." 

If L J  K  is Galois with Galois group G = G(L 1 K),  then every auto- 
morphism a E G induces via a : (3 + 0 an automorphism of schemes 
a : X -+ X. Since the ring o is fixed, the diagram 

is commutative. Such an automorphism is called a covering transformation 
of the ramified covering X/Y. The group of covering transformations is 
denoted by Auty (X). We thus have a canonical isomorphism 

G(L1K) 2 Auty(X). 

In chap. 11, $7, we will see that the composite of two unramified extensions 
of K is again unramified. The composite E ,  taken inside some algebraic 
closure K of K ,  of all unramified extensions L J  K is called the maximal 
unramified extension of K .  The integral closure 6 of o in is still a one- 
dimensional integral domain, but in general no longer noetherian, and, as a 
rule, there will be infinitely mEny prime ideals lying above a given prime 
ideal p # 0 of o .  The scheme Y = Spec(6) with the morphism 

is called the universal covering of Y. It plays the same r61e for schemes - 
that the universal covering space X + X of a topological seace plays in 
topology. There the group of covering transformations Autx (X) is canoni- 
cally isomorphic to the fundamental group nl (X). Therefore we define in 
our present context the fundamental group of the scheme Y by 

n,(Y> = ~ u t y ( F )  = G ( ~ J K ) .  

This establishes a first link of Galois theory with classical topology. This 
link is pursued much further in Ctale topology. 

The geometric point of view of algebraic number fields explnincd in this 
section is corroborated very convincingly by the theory of function fields of 
algebraic curves over a finite field I F p .  In fact, a very close analogy exists 
between both theories. 

This picture, however, is a fair rendering of the algebraic situation only 
in the case where the residue class fields of o are algebraically closed (like 
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5 14. Function Fields 

We conclude this chapter with a brief sketch of the theory of function 
fields. They represent a striking analogy with algebraic number fields, and 
since they are immediately related to geometry, they actually serve as an 
important model for the theory of algebraic number fields. 

The ring Z of integers with its field of fractions Q exhibits obvious 
analogies with the polynomial ring Fp[t] over the field Fp with p elements 
and its field of fractions Fp(t).  Like Z, Fp[t] is also a principal ideal domain. 
/The prime numbers correspond to the monic irreducible polynomials p(t) E 
Fp[t]. Like the prime numbers they have finite fields Fpd, d = deg(p(t)), 
as their residue class rings. The difference is, however, that now all these 
fields have the same characteristic. The geometric character of the ring Fp[t] 
becomes much more apparent in that, for an element f = f (t) E Fp[t], the 
value of f at a point p = (p(t)) of the affine scheme X = Spec(F,[t]) is 
actually given by the value f (a) E Fp,  if p(t) = t - a ,  or more generally 
by f (a) E Fpd, if a! E Fpd is a zero of p(t). This is due to the isomorphism 

which takes the residue class f (p) = f mod p to f (a). In the analogy be- 
tween, on the one hand, the progression of the prime numbers 2,3,5,7,  . . . , 
and the growing of the cardinalities p ,  p2, p3, p4, . . . of the residue fields 
Fpd on the other, resides one of the most profound mysteries of arithmetic. 

One obtains the same arithmetic theory for the finite extensions K of IFp([) 
as for algebraic number fields. This is clear from what we have developed 
for arbitrary one-dimensional noetherian integral domains. But the crucial 
difference with the number field case is seen in that the function field K 
hides away a finite number of further prime ideals, besides the prime ideals 
of o, which must be taken into account in a fully-fledged development of 
the theory. 

This phenomenon appears already for the rational function field Fp(t), 
where it is due to the fact that the choice of the unknown t which determines 
the ring of integrality Fp[t] is totally arbitrary. A different choice, say 
t' = l l t ,  determines a completely different ring Fp[l/t] ,  and thus completely 
different prime ideals. It is therefore crucial to build a theory which is 
independent of such choices. This may be done either via the theory of 
valuations, or scheme theoretically, i.e., in a geometric way. 

Let us first sketch the more nai've method, via the theory of valuations. 
Let K be a finite extension of Fp(t) and o the integral closure of Fp[t] in K. 

By I I ,  for every prime ideal p # 0 of o there is an associated normalized 
discrete valuation, i.e., a surjective function 

satisfying the properties 

(i) up@) = 00, 

(ii) up (ah) = vp(a) + vp(b), 

(iii) vp(a + b) 1 min{vp(a), vp(b)). 

The relation between the valuations and the prime decomposition in the 
Dedekind domain o is given by 

(a) = n P up(a). 

P 

The definition of a discrete valuation of K does not require the subring o to 
be given in advance, and in fact, aside from those arising from u, there are 
finitely many other discrete valuations of K.  In the case of the field IF,,(t) 
there is one more valuation, besides the ones associated to the prime idcals 

f 
p = ( p ( t ) )  of Fp[t], namely, the degree valuation v,. For E IF,,(t), 

, f ,  g E F,[t], it is defined by 

It is associated to the prime ideal p = yFp[y] of the ring Fp[y], whcrc 
y = l l t .  One can show that this exhausts all normalized valuations of the 
field Fp(t). 

For an arbitrary finite extension K of Fp(t), instead of restricting attention 
to prime ideals, one now considers all normalized discrete valuations v y  of K 
in the above sense, where the index p has kept only a symbolic value. As 
an analogue of the ideal group we form the "divisor group", i.e., the frcc 
abelian group generated by these symbols, 

Div(K) = ( C n p p  I np E Z, np = 0 for almost all p} 

We consider the mapping 

the image of which is written 'P(K), and we define the divisor class group 
of K by 

Cl(K) = Div(K)/P(K) . 
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Unlike the ideal class group of an algebraic number field, this group is not 
finite. Rather, one has the canonical homomorphism 

deg : Cl(K) -+ Z ,  

which associates to the class of p the degree deg(p) = [ ~ ( p )  : F,,] of the 
residue class field of the valuation ring of p, and which associates to the 
class of an arbitrary divisor a = xp npp the sum 

def.(a) = up deg(p). 
P 

For a principal divisor div( f ), f E K*, we find by an easy calculation that 
deg(div(f)) = 0, so that the mapping deg is indeed well-defined. As an 
analogue of the finiteness of the class number of an algebraic number field, 
one obtains here the fact that, if not Cl(K) itself, the kernel CI'(K) of 
deg is finite. The infinitude of the class group of function fields must not 
be considered as strange. On the contrary, it is rather the finiteness in the 
number field case that should be regarded as a deficiency which calls for 
correction. The adequate appreciation of this situation and its amendment 
will be explained in chap. 111, 5 1. 

The ideal, completely satisfactory framework for the theory of function 
fields is provided by the notion of scheme. In the last section we introduced 
affine schemes as pairs (X, o x )  consisting of a topological space X = 
Spec(o) and a sheaf of rings ox on X. More generally, a scheme is a 
topological space X with a sheaf of rings ox such that, for every point of X,  
there exists a neighbourhood U which, together with the restriction o u  of 
the sheaf ox to U,  is isomorphic to an affine scheme in the sense of 9 13. 
This generalization of affine schemes is the correct notion for a function 
field K.  It shows all prime ideals at once, and misses none. 

In the case K = Fp(t) for instance, the corresponding scheme (X, o x )  
is obtained by gluing the two rings A = Fp[u] and B = Fp[v], or 
more precisely the two affine schemes U = Spec(A) and V = Spec(B). 
Removing from U the point po = (u), and the point p, = (v) from V ,  
one has U-{pol = Spec(Fp[u, up']), V-{p,} = Spec(lFp[v, v-I]), and the 
isomorphism f : Fp[u, u-' ] -+ Fp[v, U - I  1, u I-+ v-I, yields a bijection 

(D : v - {P,} --+ u - {PO} 7 P - f %I. 
We now identify in the union U U V the points of V - {p,] with those 
of U -{pol by means of 40, and obtain a topological space X. It is immediately 
obvious how to obtain a sheaf of rings o x  on X from the two sheaves o u  
and ov. Removing from X the point p,, resp. po, one gets canonical 
isomorphisms 

( x - b l ,  ox-(p,l) 2 (U? o"), (x-(POL ox-,pol) 2 ( v ,  (3") . 
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The pair (X, o x )  is the scheme corresponding to the field F,(t). I t  is called 
the projective line over F,, and denoted P;,,. 

More generally, one may similarly associate a scheme (X,  ox) to an 
arbitrary extension K (Fp(t). For the precise description of this procedure 
we refer the reader to [51]. 
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The Theory of Valuations 

5 1. The p-adic Numbers 

The p-adic numbers were invented at the beginning of the twentieth 
century by the mathematician KURT HENSEL (I 861-1 94 1 )  with a vicw to 
introduce into number theory the powerful method of power series expansion 
which plays such a predominant r6le in function theory. The idea originated 
from the observation made in the last chapter that the numbers j' E Z may 
be viewed in analogy with the polynomials f (z) E @[z] as functions on the 
space X of prime numbers in Z ,  associating to them their "value" at the 
point p E X ,  i.e., the element 

in the residue class field ~ ( p )  = ZlpZ.  
This point of view suggests the further question: whether not only the 

"value" of the integer f E Z at p, but also the higher derivatives of f can be 
reasonably defined. In the case of the polynomials f (z) E C[z], the higher 
derivatives at the point z = a are given by the coefficients of the expansion 

and more generally, for rational functions f (z) = :(') / I ( : )  E C ( z ) .  with 

g,  h E C[z], they are defined by the Taylor expansion 

provided there is no pole at z = a ,  i.e., as long as ( z  - a )  { h ( z ) .  The fact that 
such an expansion can also be written down, relative to a prime number p 
in Z, for any rational number f E Q as long as it lies in the local ring 

leads us to the notion of p-adic number. First, every positive integer f E N 
admits a p-adic expansion 
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with coefficients ai in ( O , 1 ,  . . . , p - I ) ,  i.e., in a fixed system of represent- 
atives of the "field of values" ~ ( p )  = F,,. This representation is clearly 
unique. It is computed explicitly by successively dividing by p ,  forming the 
following system of equations: 

f = a o + p f l *  

fl = a1 + ~ f 2 7  

fn-l  = an-1 + pfn 3 

fn = a n .  
Here aj  E {O,1, . . . , p - I} denotes the representative of fi mod p E ZlpZ .  
Jn concrete cases, one sometimes writes the number f simply as the sequence 
of digits ao, ala2. . . a n ,  for instance 

216 = 0,0011011 (2-adic), 

2 16 = 0,0022 (3-adic), 

216 = 1,331 (5-adic) . 
As soon as one tries to write down such p-adic expansions also for negative 
integers, let alone for fractions, one is forced to allow infinite series 

This notation should at first be understood in a purely formal sense, i.e., 
)zy=O aVpV simply stands for the sequence of partial sums 

11-1 

s n =  C a v p v ,  n = 1 , 2 ,  . . .  
v=o 

(1.1) Definition. Fix a prime number p. A p-adic integer is a formal infinite 
series 

a o + a i p + a 2 p 2 + . . .  , 
where 0 5 ai < p ,  for all i = 0,1 ,2 ,  . . . The set of all p-adic integers is 
denoted by Z ,, . 

The p-adic expansion of an arbitrary number f E Z(p) results from the 
following proposition about the residue classes in Z/pnZ.  

(1.2) Proposition. The residue classes a mod pn  E Z / p n Z  can be uniquely 
represented in the form 

Proof (induction on n): This is clear for n = 1. Assume the statement is 
proved for n - 1. Then we have a unique representation 

for some integer g. If g = an-l mod p such that 0 _( an-, < p, then a,,- 
is uniquely determined by a ,  and the congruence of the proposition holds. 

0 

Every integer f and, more generally, every rational number f E Z(,,) the 
denominator of which is not divisible by p,  defines a sequence of residue 
classes 

sn = f modpn e Z / p n Z ,  n =  1,2, . . . ,  

for which we find, by the preceding proposition, 

SI  = a0 mod p ,  
2 S2 = ao + a l p  mod p , 

2 1 S~ = a0 + a l p  + a2p  mod p - ,  etc., 

with uniquely determined coefficients ao, a ] ,  a2, . . . E (0, 1 ,  . . . , p - 1 } which 
keep their meaning from one line to the next. The sequence of numbers 

defines a p-adic integer 

We call it the p-adic expansion of f .  

In analogy with the Laurent series f ( z )  = x;=-,, a,(z - a)* ,  we now 
extend the domain of p-adic integers into that of the formal series 

00 

C (I,P'~ = a-,,,p - " l + . . . + a - i p - I  + a o + a l p + . . . ,  
v=-n1 

where m E Z and 0 5 a, < p. Such series we call simply p-adic numbers 
and we write Q,, for the set of all these p-adic numbers. If f E Q is any 
rational number, then we write 

g -m f = p where g , h  E Z .  ( g h . p )  = I .  

and if 
a o + a l p f  a 2 p 2 + . .  
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is the p-adic expansion of g ,  then we attach to f the p-adic number 
h 

, as its p-adic expansion. 
In this way we obtain a canonical mapping 

which takes Z into Z, and is injective. For if a ,  b E Z have the same p-adic 
expansion, then a - h is divisible by pn  for every n ,  and hence a = h. We 
now identify Q with its image in Q,, so that we may write Q g Q,, and 
Z G Zp. Thus, for every rational number f E 0, we obtain an identity 

This establishes the arithmetic analogue of the function-theoretic power series 
expansion for which we were looking. 

b) - - - 1 + p + p 2 + -  . 
1 - P  

In fact, 

1 = (1 + p + . . . + pn-')(l - p) + p n ,  
1 

hence -- = 1 + p + . . . + pn-' mod pn 
1 - P  

One can define addition and multiplication of p-adic numbers which 
turn Z,, into a ring, and Q, into its field of fractions. However, the direct 
approach, defining sum and product via the usual carry-over rules for digits, 
as one does it when dealing with real numbers as decimal fractions, leads 
into complications. They disappear once we use another representation of the 
p-adic numbers f = CFz0 a v p V ,  viewing them not as sequences of sums of 
integers 

n-1 
sn = C a v p V  E Z, 

v=o 

but rather as sequences of residue classes 

- 
sn = sn mod pn E Z/pnZ.  

The terms of such a sequence lie in different rings Z /pUZ,  bur lhesc arc 
related by the canonical projections 

and we find 

An (.TI,+ 1 = TI1 

In the direct product 

we now consider all elements (x,),,~ with the property that 

A,(X,+~) = xn for all n = 1,2,  . . . 

This set is called the projective limit of the rings Z/p"Z and is denoted 
by @ Z/pnZ.  In other words, we have 

n 

The modified representation of the p-adic numbers alluded to above now 
follows from the 

(1.3) Proposition. Associating to every p -adic integer 

the sequence of residue classes 

n-l 
Sn = C a v p V  mod pn E Z/pnZ,  

1 1 = 0  

yields a bijection 

Z, ; @I Z/pflZ. 
n 
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The proof is an immediate consequence of proposition (1.2). The projective 
limit @ Z / p n Z  offers the advantage of being clearly a ring. In fact, it is a 
subring of the direct product nzI Z/p"Z  where addition and mulfiplicnlion 
are defined componentwise. We identify Z ,  with @ Z/p l 'Z  and obtain the 
ring of p-adic integers Z p .  

Since every element f E Q,, admits a representation 

with g E Z,, addition and multiplication extend from Z p  to Q p  and Q,, 
becomes the field of fractions of Z p .  

In Z p ,  we found the rational integers a E Z  which were determined by 
the congruences 

0 5 ai < p. Making the identification 

the subset Z  is taken to the set of tuples 
03 

(a mod p,  a  mod p2, a mod p3,  . . .) E n Z / p n Z  
n=l 

and thereby is realized as a subring of Z,. We obtain Q as a subfield of the 
field Q, of p-adic numbers in the same way. 

Despite their origin in function-theoretic ideas, the p-adic numbers live 
up to their destiny entirely within arithmetic, more precisely at its classical 
heart, the Diophantine equations. Such an equation 

is given by a polynomial F  E Z [ x l ,  . . . , x,], and the question is whether 
it admits solutions in integers. This difficult problem can be weakened by 
considering, instead of the equation, all the congruences 

F ( x l ,  . . ., x,) = 0 mod m. 

By the Chinese remainder theorem, this amounts to considering the 
: congruences 

F(x1, . . . ,  x,) ~ O m o d  pV 

modulo all prime powers. The hope is to obtain in this way information about 
the original equation. This plethora of congruences is now synthesized again 
into a single equation by means of the p-adic numbers. In fact, one has the 
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(1.4) Proposition. Let F ( x l ,  . . . , x,) be a polynomial with integer coeffi- 
cients, and fix a prime number p. The congruence 

F ( x l ,  . . . ,  x,) - 0 mod pu 

is solvable for arbitrary v 2 1 if and only if the equation 

is solvable in p -adic integers. 

Proof: As established above, we view the ring Z,, as the projective limit 

Viewed over the ring on the right, the equation F  = 0 splits up into 
components over the individual rings Z / p u Z ,  namely, the congruences 

F ( x l ,  . . . , xn)  = 0 mod p " .  

with ( x I V ) ) , , ~  E Z,, = lpJ Z / p Y Z ,  is a p-adic solution of the equation 
V 

F  ( x !  , . . . , x,) = 0, then the congruences are solved by 

( v )  Conversely, let a solution ( x ,  , . . . , xAu)) of the congruence 

F ( x l ,  . . . ,  x,) = O m o d p U  

be given for every v 2 1. If the elements ( x ! ~ ) ) , , ~ ~  E nZl Z/pi 'Z a-c 

already in lpJ Z / p u Z ,  for ail i = 1, . . . , n ,  then we have a p-adic solution 
of the equation F = 0. But this is not automatically the case. We will 

therefore extract a subsequence from the sequence (x ju) ,  . . . , xi"') which 
fits our needs. For simplicity of notation we only carry this out in the case 
n = 1, writing xu = xl('). The general case follows exactly the same pattern. 

In what follows, we view ( xu )  as a sequence in Z .  Since Z l p Z  is finite, 
there are infinitely many terms xu which mod p  are congruent to the same 
element yl E Z / p Z .  Hence we may choose a subsequence (x , ( , ' ) )  of {s,,) 
such that 

= - yl modp  and ~ ( x : ' ) )  ~ O m o d  p .  
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Likewise, we may extract from {x;')) a subsequence {xL2)} such that 

xS2) = y2 mod p2 and F (xS2)) = 0 mod p2 ,  

where y~ E iZlp2iZ evidently satisfies y2 r yl mod p. Continuing in this 
way, we obtain for each k >_ 1 a subsequence {xLk)) of {xik-')) the terms of 
which satisfy the congruences 

x?) E yk mod p b n d  F (xSk)) = 0 mod pk 

for some yk E 2Zlpk2Z such that 

The yi: define a p-adic integer y = (yk)kew E @I Z/pkZ  = Z, satisfying 
k 

F (yk) 0 mod p k 

for all k 2 I .  In other words, F(y)  = 0. 0 

Exercise 1. A p-adic number a = CEO=_, a,pv E Q, is a rational number if and 
only if the sequence of digits is periodic (possibly with a finite string before the first 
period). 

Hint: Write pma = b + c - P' O g b c p e . O < c < p n ,  1 - p " '  

Exercise 2. A p-adic integer a = a0 + a l p  + a2p2 + . . . is a unit in the ring Z, if 
and only if a0 # 0. 

Exercise 3. Show that the equation x2 = 2 has a solution in Z7. 

I Exercise 4. Write the numbers i and - as 5-adic numbers. 

Exercise 5. The field Q, of p-adic numbers has no automorphisms except the 
identity. 

Exercise 6. How is the addition, subtraction, multiplication and division of rational 
numbers reflected in the representation by p-adic digits? 

5 2. The p-adic Absolute Value 

The representation of a p-adic integer 

resembles very much the decimal fraction representation 

of a real number between 0 and 10. But it does not converge as the 
decimal fraction does. Nonetheless, the field Qp of p-adic numbers can 
be constructed from the field Q in the same fashion as the field of real 
numbers R. The key to this is to replace the ordinary absolute value by 
a new "p-adic" absolute value I I p  with respect to which the series ( I )  
converge so that the p-adic numbers appear in the usual manner as limits 
of Cauchy sequences of rational numbers. This approach was proposed by 
the Hungarian mathematician .I .  KURSCIMK. The p-adic absolutc vnluc I I,, i s  

defined as follows. 

h 
Let a = ,, h, c E Z be a nonzero rational number. We extract from I? and 

from c as high a power of the prime number p as possible, 

and we put 
1 

lalp = - 
pm 

Thus the p-adic value no longer measures the size of a number u E W .  
Instead it becomes small if the number is divisible by a high power of p.  
This elaborates on the idea suggested in (1.4) that an integer has to be 0 if i t  
is infinitely divisible by p. In particular, the summands of a p-adic series 
a0 + a ,  p + a2p2 + . . . form a sequence converging to 0 with respect to I 1,). 

The exponent m in the representation (2) of the number n is denoted 
by v,,(a), and one puts formally vp(0) = oo. This gives the function 

which is easily checked to satisfy the properties 

where x + oo = oo, oo + oo = oo and oo > x ,  for all x E E. The function 
v,, is called the p-adic exponential valuation of Q. The p-adic absolute 
value is given by 

I n  view of I), 2), 3), it  satisfies the conditions of a nortn on Q: 
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One can show that the absolute values ] l p  and I I essentially exhaust 
all norms on Q: any further norm is a power 1 ISp or 1 I S ,  for some real 
number s > 0 (see (3.7)). The usual absolute value I I is denoted in this 
context by 1 1,. The good reason for this will be explained in due course. In 
conjunction with the absolute values I I p ,  i t  satisfies the following important 
product formula: 

(2.1) Proposition. For every rational number a # 0, one has 

where p varies over all prime numbers as well as the symbol co. 

Proof: In the prime factorization 

of u ,  the exponent v, of p is precisely the exponential valuation v p ( a )  and 

the sign equals 5. The equation therefore reads 
b l m  

so that one has indeed nl, (a  I,, = 1 .  0 

The notation ( 1, for the ordinary absolute value is motivated by the 
analogy of the field of rational numbers Q with the rational function field 
k(t) over a finite field k, with which we started our considerations. Instead 
of Z, we have inside k ( t )  the polynomial ring k[t], the prime ideals p # 0 of 
which are given by the monic irreducible polynomials p(t) E k[t]. For every 
such p, one defines an absolute value 

I I p  : k(t) -+ 

as follows. Let f (t) = g(t), h (t) E k[t] be a nonzero rational function. 
h ( t )  ' 

We extract from g(t) and h(t) the highest possible power of the irreducible 
polynomial p(t) , 
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where qp = q d p ,  dp being the degree of the residue class field of p over k 
and q a fixed real number > 1. Furthermore we put up (0) = oo and (0  I p  = 0, 
and obtain for up and I I p  the same conditions l), 2), 3) as for up and 1 I,, 
above. In the case p = (t - a) for a E k, the valuation up(  f )  is clearly the 
order of the zero, resp. pole, of the function f = f (t) at t = a. 

But for the function field k(t), there is one more exponential valuation 

v, : k(t) -+ Z U (co), 

namely 

~ d f )  = deg(h) - deg(g), 

where f = # 0, g,  h E k[t]. It describes the order of zero, resp. polc. 
h 

of f ( t )  at the point at infinity oo, i.e., the order of zero, resp. pole, of 
the function f ( l / t )  at the point t = 0. It is associated to the prime ideal 
p = (lit) of the ring k( l / t l  5 k(t) in the same way as the exponcnti:~l 
valuations up are associated to the prime ideals p of k(t]. Putting 

the unique factorization in k(r) yields, as in (2.1) above, the formula 

where p varies over the prime ideals of k[t] as well as the symbol CQ, which 
now denotes the point at infinity (see chap. I, 5 14, p. 95). 

I n  view of the product formula (2. I ) ,  the above consideration shows that 
the ordinary absolute value I I of Q should be thought of as being associated 
to a virtual point at infinity. This point of view justifies the notation ( I,, 
obeys our constant leimzotiv to study numbers as functions from a geome~ric 
perspective, and it will fulfill the expectations thus raised in an ever growing 
and amazing manner. The decisive difference between the absoluk valuc 
I 1, of Q and the absolute value 1 1, of k(t) is, however, that the former 
is not derived from any exponential valuation vp attached to a prime ideal. 

Having introduced the p-adic absolute value I I,, on the field Q, let us 
now give a new definition of the field Qp of p-adic numbers, imitating the 
construction of the field of real numbers. We will verify afterwards that this 
new, analytic construction does agree with Hensel's definition, which was 
motivated by function theory. 
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A Cauchy sequence with respect to I l p  is by definition a sequence 
{x,} of rational numbers such that for every E > 0, there exists a positive 
integer no satisfying 

Example : Every formal series 

provides a Cauchy sequence via its partial sums 

because for n > m one has 
n- l  1 

Ixn - xm I ,  = 1 a v p v I p  5 m ~ : 2 n {  l a v ~ " l ~ }  I - . 
v=m P" 

A sequence {x,] in Q is called a nullsequence with respect to I 1 ,  if 
Ix, l p  is a sequence converging to 0 in the usual sense. 

Example: 1 ,  p, p2, p3, . 

The Cauchy sequences form a ring R ,  the nullsequences form a maximal 
ideal m, and we define afresh the field of p-adic numbers to be the residue 
class field 

Qp := R/m. 

We embed Q in Qp by associating to every element a E Q the residue 
class of the constant sequence (a, a,  a ,  . . . ). The p-adic absolute value ( I,, 
on Q is extended to Qp by giving the element x = {xn}  mod m E Rlm the 
absolute value 

lx lp  := lirn (x, I p  E R. 
n--to3 

This limit exists because { ( x , ( ~ ]  is a Cauchy sequence in R, and it is 
independent of the choice of the sequence {x,] within its class mod m 
because any p-adic nullsequence {y,} E m satisfies of course lirn lyn I,, = 0. 

n 3 0 0  

The p-adic exponential valuation up on Q extends to an exponential 
valuation 

up : Qp -+ Z U {co]. 

5 2. The p-adic Absolute Value I I I 

In fact, if x E Q, is the class of the Cauchy sequence {x,) where x,, # 0, 
then 

up(xn) = - log, Ixn I, 

either diverges to oo or is a Cauchy sequence in Z which eventually must 
become constant for large n because Z is discrete. We put 

up ( x )  = lirn up (x,) = up (x,) for n > n o .  
n+co 

Again we find for all x E Q, that 

l X l p  = p - u " ( . ~ ) .  

As for the field of real numbers one proves the 

(2.2) Proposition. The field Qp of p -adic numbers is complete wit11 respect 
to the absolute value I J p ,  ie. ,  every Cauchy sequence in Qp converges with 
respect to 1 I,. 

As well as the field R ,  we thus obtain for each prime number p a new 
field Qp with equal rights and standing, so that Q has given rise to the 
infinite family of fields 

An important special property of the p-adic absolute values 1 I,, lies in 
the fact that they do not only satisfy the usual triangle inequality, but also 
the stronger version 

This yields the following remarkable proposition, which gives us a new 
definition of the p-adic integers. 

(2.3) Proposition. The set 

is a subring of Q,,. It is the closure with respect to I I,, of the ring Z in fhc 
field Q,. 
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Proof: That Zp is closed under addition and multiplication follows from 

I x + ~ ~ p ( m a x { I - ~ ~ p ~ ~ ~ ~ p ]  and ~ x Y ~ ~ = \ ~ ~ / ~ ~ Y ~ / J ~  

If {x,) is a Cauchy sequence in Z and x = lirn x,, then (x, I p  ( 1 implies n-+w 
also (xIl, ( 1 ,  hence x E Z,,. Conversely, let x = lirn n.,, E Z,, for a 

n+oo 
Cauchy sequence (x, } in Q.  We saw above that one has lx I,, = Ix,, 11, 5 1 
for n > no, i.e., x,, = 5 ,  with a,,, h,, E Z,  (h,,, p )  = 1 .  Choosing for each 

h,, 
n > n o  a solution y,, E Z of the congruence b,,y,, = a,, mod p" yields 

1 Ix, - y, I,, 5 - and hence x = lirn y,, so that x belongs to the closure 
P" Il-+oo 

of Z. 0 

The group of units of Zp is obviously 

Z ; = { X E Z ~ I  l x l p = l } .  

Every element x E Q; admits a unique representation 

x = p m u  w i t h m ~ Z a n d u ~ Z T ) .  

For if vp(x) = m E Z,  then ~ ~ ( x p - ~ )  = 0, hence I ~ p - ~ l , ,  = 1, i.e., 
u = xp-m E Z i .  Furthermore we have the 

(2.4) Proposition. The nonzero ideals of the ring Zp are the principal ideals 

pnZp = { x  E Qp I vp(x) L n} , 

with n 2 0, and one has 

Z,/pnZp z Z/pflZ. 

,Proof: Let a # (0) be an ideal of Zp and x = pmu, u E Z i ,  an element 
of a with smallest possible m (since (xIp 5 1, one has m > 0). Then 
a = pmZp because y = p"ul E a, u' E Z i ,  implies n > m ,  hence 

' y = (pn-mu')pm E pmZp. The homomorphism 
I 

Z ---+ Zp/pnZp , a H a mod pnZp ,  i 

has kernel p n Z  and is surjective. Indeed, for every x E Zp,  there exists 
by (2.3) an a E Z such that 

i.e., vp(x - a )  > n ,  therefore x - a  E p"Zp and hence x r a mod p"Z,,. So 
we obtain an isomorphism 

We now want to establish the link with Hensel's definition of the ring Z,, 
and the field QI, which was given in 9 1.  There we defined the p-adic integers 
as formal series 

which we identified with sequences 

where s, was the partial sum 

These sequences constituted the projective limit 

We viewed the p-adic integers as elements of this ring. Since 

we obtain, for every n > 1, a surjective homomorphism 

It is clear that the family of these homomorphisms yields a homomorphism 

It is now possible to identify both definitions given for Zp  (and therefore 
also for Qp) via the 

(2.5) Proposition. The homomorphism 

Z,, --+ @ Z/p"Z 
n 

is an isomorphism. 
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Proof: If x E Z ,  is mapped to zero, this means that x E p n Z p  for all n > 1 ,  
1 i.e., ! x i p  5 - for all n 1 1, so that ( x i p  = 0  and thus x = 0.  This shows 

P" 
injectivity. 

An element of &I Z / p t l Z  is given by a sequence of partial sums 
n 

n-l 

s n =  C a v p V ,  O i a ,  < p .  
v=o 

We saw above that this sequence is a Cauchy sequence in Z p ,  and thus 
converges to an element 

Since 

one has x G sn mod pn for all n ,  i.e., x is mapped to the element of 
@ Z / p n Z  which is defined by the given sequence (s ,) , , ,~.  This shows 

n 
surjectivity. 

, We emphasize that the elements on the right hand side of the isomorphism 

are given formally by sequences of partial sums 

, On the left, however, these sequences converge with respect to the absolute 
value and yield the elements of Z p  in the familiar way, as convergent infinite 
series 

00 

x = C a v p V .  
I 

v=o 

Yet another, very elegant method to introduce the p-adic numbers comes 
about as follows. Let Z [ [ X ] ]  denote the ring of all formal power series 
CEO a i x i  with integer coefficients. Then one has the 

(2.6) Proposition. There is a canonical isomorphism 
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Proof: Consider the visibly surjective homomorphism Z [ [ X ] ]  -+ Z,, which 
to every formal power series C ~ = o a v X V  associates the convergent series 
~ ~ o a v p V .  The principal ideal (X - p )  clearly belongs to the kernel 
of this mapping. In order to show that it is the whole kernel, let 
f ( X )  = C ~ o a v ~ V  be a power series such that f ( p )  = CzO a U p V  = 0. 
Since Z p / p n Z ,  2 Z / p n Z ,  this means that 

for all n. We put, for n 2 1, 

Then we obtain successively 

I a0 = - P ~ O  , 

al = ho - p h  , 

a2 = b ~  - ph2, 

But this amounts to the equality 

(uo + alX + u 2 x 2  + .. . )  = ( X  - p)(ho + h l X  + b 2 x 2  + . . .  ), 

i.e., f ( X )  belongs to the principal ideal (X - p). 

Exercise I. 1 . r - y ( , >  I1-t-1,- ( y l , ( .  

Exercise 2. Let n be a natural number, n = a0 + a l p  + . . . + a,--lp'--' its p-adic 
expansion, with 0 5 a; < p ,  a n d s  = a o + a l + . . . + a , - I .  Show that v,(n!) = Z - 2  

p -  I '  

1 1 1  Exercise 3. The sequence 1, -, ---2, 7, . . . does not converge in QD, for any / I .  
10 10 10 

Exercise 4. Let E E 1 + pZp,  and let a = a0 + a l p  + a2pZ + . . . be a p-adic integer, 
and write s, = ao + a1 p + . . . + a,-, pn-I .  Show that the sequence ssn converges 
to a number ta in 1 + pZ,,. Show furthermore that 1 + pZ,, is thus turned into a 
multiplicative Z,-module. 

Exercise 5. For every a E Z ,  (a, p )  = 1,  the sequence ( a ~ " ) , , ~ ~  converges in Q,, 

Exercise 6. The fields Q,, and Q ,  are not isomorphic, unless p = (1. 

Exercise 7. The algebraic closure of Q, has infinite degree. 

Exercise 8. In the ring Z,,[[X]] of formal power series CE,, t r , .X "  OVCI. Z,,. 
one has the following division with remainder. Let .f', s E Z,,ll X I ]  and let 
f (X) = a. + a l X  + . . . such that pla, for v = 0, . . . , n - 1, but p { u,,. Then one 
may write in a unique way 

g = q f  +,., 
where q E Z,,[[X]], and r E Z,[X] is a polynomial of  degree 5 11 - 1 .  
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,Hint: Let r be the operator r ( C ~ o b h , X " )  = zE'=, bvXU-".  Show that U ( X )  = 
a,+a,+,X+. . . = r (  f  ( X ) )  is a unit in Z , [ [ X ] ]  and write f ( X )  = p P ( X ) + X n U ( X )  
with a polynomial P ( X )  of degree 5 n - 1. Show that 

is a well-defined power series in Z , [ [ X ] ]  such that r ( q f )  = r ( g ) .  

Exercise 9 (p-adic Weierstrass Preparation Theorem). Every nonzero power series 

admits a unique representation 

f  ( X I  = p " P ( X ) U ( X ) ,  

I where U ( X )  is a unit in Z , [ [ X ] ]  and P ( X )  E Z,[X]  is a monic polynomial 
satisfying P ( X )  r Xn mod p. 

3 3. Valuations 

The procedure we performed in the previous section with the field Q in 
order to obtain the p-adic numbers can be generalized to arbitrary fields 
using the concept of (multiplicative) valuation. 

(3.1) Definition. A valuation of a field K is a function 

1 ) : K - R  

enjoying the properties 

(i) 1x1 1 0 ,  and 1x1 = 0 e==> x = 0, 

(ii) IXYI = I x I I Y I ~  
(iii) Ix + y ( _( 1x1 + ly l  "triangle inequality". 

We tacitly exclude in the sequel the case where I ( is the trivial valuation 
of K which satisfies 1x1 = 1 for all x # 0. Defining the distance between 
two points x, y E K by 

d ( x ,  y) = Ix - Y I 
makes K into a metric space, and hence in particular a topological space. 

(3.2) Definition. Two valuations of K are called equivalent if they define 
the same topology on K.  

1 § 3. Valuations 

(3.3) Proposition. Two valuations I I I and 1 12 on K are equivalent if and 
only if there exists a real numbers > 0 such that one has 

1x11 = 1x1; 
I 

for all x E K .  

Proof: If I I I = I I;, with s > 0, then 1 I I and 1 12 are obviously equivalent. 
For a11 arbitrary valuation ( I on K, the inequality 1x1 < I is t:uir~uiiou~i~ to 

the condition that {x"],,,~ converges to zero in the topology dclincd by I 1 .  
Therefore if I I I and 1 12 are equivalent, one has the implication 

Now let y E K be a fixed element satisfying 1 y ( 1 > 1. Let x E K , x # 0. 
Then 1x1, = lylfY for some a E IW. Let m;/n;  be a sequence of rational 
numbers (with n, > 0) which converges to cr from above. Then we have 
1x11 = Jy(7 < lyl:""', hence 

so that Ix12 5 ~ y l ~ " " ' ,  and thus 1x12 5 IylT. Using a sequence m , / n ,  
which converges to a, from below (*) tells us that 1x12 > lyl;. So we have 
1x12 = ( ~ 1 ; .  For all x E K ,  x # 0, we therefore get 

The proof shows that the equivalence of ( I I and ( 12 is also equivalcnr 
to the condition 

1x11 < 1 ==+ 1x12 < 1. 

We use this for the proof of the following approximation theorem, which 
may be considered a variant of the Chinese remainder theorem. 

(3.4) Approximation Theorem. Let I ( I, . . . , I 1, be pairwise inequivalent 
valuations of the field K and let a!, . . . , a,, E K be given elernents. Then 
tor every E > 0 there exists an x E K such that 
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Proof: By the above remark, since I I I and I I,, are inequivalent, thcre 
exists a E K such that la1 I < 1 and lain 2 1. By the same token, there 
exists B E K such that I/3 I l l  < 1 and lB 1 1 2 1. Putting y = B/cr, one finds 
l y l ~  > 1 and Iyln < 1. 

We now prove by induction on n that there exists z E K such that 

lzl, 1 1  and IzI j< 1 f o r j = 2  , . . . ,  n .  

We have just done this for n = 2. Assume we have found z E K satisfying 

l z l l > l  and l z l j < l  f o r j = 2  , . . . ,  n - 1 .  

If (z 1, ( 1, then zm y will do, for m large. If however 1 z 1 n > 1, the sequence 
tm = zm/(l  + zm) will converge to 1 with respect to 1 ( I and I I,, and to 0 
with respect to 1 1 2 ,  . . . , ( Inpi. Hence, for m large, tn,y will suffice. 

The sequence zm/(l + zm) converges to 1 with respect to I I I and to 0 
with respect to 1 (2, . . . , ( 1,'. For every i we may construct in this way a zi 
which is very close to 1 with respect to I I;, and very close to 0 with respect 
to I I j  for j # i .  The element 

then satisfies the statement of the approximation theorem. 0 

(3.5) Definition. The valuation ( I is called nonarchimedean if In1 stays 
bounded, for all n E W. Otherwise it is called archimedean. 

(3.6) Proposition. The valuation I I is nonarchimedean if and only if it 
satisfies the strong triangle inequality 

Ix +yI  i max{lxl, I Y I } .  

Proof: If the strong triangle inequality holds, then one has 

In1 = I1 +. . .+  11 i 1.  

Conversely, let In1 N for all n E N. Let x , y  E K and suppose 1x1 2 Iyl. 
Then Ix 1'' (y I n - "  5 1.r I n  for v 2 0 and one gets 

hence 

< ~ ' l " ( 1  + n)'ln ~x 1 = ~ ' l ~ ( l  + n)'ln max{ b + y l  - 

1 
and thus Ix + yl 5 max{lxl, Iyl} by letting n + oo. 

3 3. Valuations 

Remark: The strong triangle inequality immediately implies that 

1x1 # I Y I  ==+ Ix + y l  = max(lxL I Y I } .  

One may extend the nonarchimedean valuation 1 I of K to a valuation of 
the function field K(t) in a canonical way by setting, for a polynomial 
f (t) = a0 + a l t  + . . . + antn ,  

I f  1 = max( lml> . . . > l ~ , l l }  - 
The triangle inequality 1 f  + gl 5 max() f 1 ,  J g ( )  is immediate. The proof 
that 1 f g  1 = 1 f  1 lgl is the same as the proof of Gauss's lemma for polynomials 
over factorial rings once we replace the content of f in this lemma by the 
absolute value I f  I. 

For the field Q,  we have the usual absolute value I 1, = I I ,  this being 
the archimedean valuation, and for each prime number p the nonarchimedean 
valuation 1 I,,. As a matter of fact: 

(3.7) Proposition. Every valuation of Q is equivalent to one of the valua- 
tions I I p  or 1 1,. 

Proof: Let I (  (1 be a nonarchimedean valuation of Q. Then 1111 J J  = 
11 1 +. . . + 111 _( 1, and there is a prime number p such that J J p  ( 1  < 1 because, 
if not, unique prime factorization would imply llxll = 1 for all x E Q*. The 
set 

is an ideal of Z satisfying p Z  E a # Z, and since pZ is a maximal ideal, 
we have a = pZ. If now a E Z and a = hp"' with p j h, so that h 9 a ,  then 
11 hll = 1 and hence 

IbII = llpllrn = 14% 
where s = - log [ I  p Ill log p .  Consequently 11 11 is equivalent to I I,, . 

Now let 1 1  1 )  be archimedean. Then one has, for every two natural numbers 
n ,m  > 1, 

In fact, we may write 

where a; E (0, 1 ,  . . . , n - 1) and nr 5 rn. Hence, observing that 
r 5 logm/logn and llaill = 111 + . . .  + 111 i ai 11111 i n,  one gets the 
inequality 

log ni 
I l l  5 i n i  5 a ;  I n r  (1 + n ~ l n l l ' ~ ~ ~ ~ ' ~ ' " ' "  

log n 
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Substituting here mk for m ,  taking k-th roots on both sides, and letting k 
tend to co, one finally obtains 

llm I I  L llnll logn7/'ogfl, or llm~~'/lo&m < - l l npJ&y 
Swapping m with n gives the identity (*). Putting c = Ilnll'/'~g" we have 
llnll = clOgn, and putting c = e" yields, for every positive rational number 

slogx - Ilxll=e -IxlS.  

Therefore 11 11 is equivalent to the usual absolute value I I on Q. 0 

Let I I be a nonarchimedean valuation of the field K.  Putting 

we obtain a function 
v : K - - . r R U { c o }  

verifying the properties 

(i) v ( x ) = c o ~ x = O ,  

where we fix the following conventions regarding elements a E R and the 
symboloo: a < c o , a + o o = o o , c o + c o = c o .  

A function v on K with these properties is called an exponential 
valuation of K .  We exclude the case of the trivial function v(x) = 0 
for x # 0, v(0) = co. Two exponential valuations vl and v2 of K are called 
equivalent if vl = sv2, for some real number s > 0. For every exponential 
valuation v we obtain a valuation in the sense of (3.1) by putting 

= q-u(") 

for some fixed real number q > 1. To distinguish it from v, we call ( 1 
an associated multiplicative valuation, or absolute value. Replacing v by 
an equivalent valuation sv (i.e., replacing q by q' = qS) changes ( ( into 
the equivalent multiplicative valuation I IS. The conditions (i), (ii), (iii) 
immediately imply the 

(3.8) Proposition. The subset 

~ = { x E K I v ( x ) > o }  = { X E K ~  I X I ~ I }  

is a ring with group of units 

o* = { X  E K I V(X) = 0 }  = { X  E K I 1x1 = 1) 

and the unique maximal ideal 

P = { X E K I V ( X ) > O }  = { X E K J I X I  < I } .  

5 3. Valuations 12 1 

o is an integral domain with field of fractions K and has the property that, 
for every x E K,  either x E o or x-' E o. Such a ring is called a valuation 
ring. Its only maximal ideal is p = {x E o I x-' 4 o}. The field o /p  is called 
the residue class field of o. A valuation ring is always integrally closed. For 
if x E K is integral over o, then there is an equation 

with a; E o and the hypothesis x $ o, so that x-' E o, would imply the 
contradiction x = -a, - a2x-' - . . . - a,,(x-')"-I E o .  

An exponential valuation v is called discrete if it admits a smallest 
positive value s. In this case, one finds 

v(K*) = s Z .  

It is called normalized if s = 1. Dividing by s we may always pass to a 
normalized valuation without changing the invariants o, o*, p. Having done 
so, an element 

n E o such that v(n) = 1 

is a prime element, and every element x E K* admits a unique representation 

with rn E iZ and u E o*. For if v(x) = m ,  then v(xn-"I) = 0, hence 
u = xn-" E o*. 

(3.9) Proposition. If v is a discrete exponential valuation of K ,  then 

o =  { x  E K I V(X) 2 0 1  

is a principal ideal domain, hence a discrete valuation ring (see I, (1 1.3)). 

Suppose v is normalized. Then the nonzero ideals of 0 are given by 

p n = n n o =  { X E  K I v ( x ) > _ n } ,  n > O ,  

where n is a prime element, i.e., v(n) = I.  One has 

pn/pn+' 2 o l p .  

Proof: Let a # 0 be an ideal of o and x # 0 an element in a with 
smallest possible value v(x) = n. Then x = u n n ,  u E o*, so that r"0 & a. 
If y = & n m  E a is arbitrary with E E o*, then rn = v(y) L n ,  hence 
y = ( ~ n " ' - " ) n ~  E n"o ,  so that a = n"o .  The isomorphism 

results from the correspondence a n n  w a mod p. 0 
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In a discretely valued field K the chain 

consisting of the ideals of the valuation ring o forms a basis of 
neighbourhoods of the zero element. Indeed, if v is a normalized exponential 
valuation and I I = qPu (q > 1) an associated multiplicative valuation, then 

As a basis of neighbourhoods of the element 1 of K * ,  we obtain in the 
same way the descending chain 

,* = ~ ( 0 )  -J u(') r, ~ ( 2 )  2 . . . - - 

'of subgroups 

of o*. (Observe that 1 +pn is closed under multiplication and that, if x E u ( n ) ,  
1 then so is x-' because (1 - x - ' I  = I x l - ' ~ x  - 11 = I1 - X I  < -.) u(") 

9"-' 
is called the n-th higher unit group and u(') the group of principal units. 
Regarding the successive quotients of the chain of higher unit groups, we 
have the 

t3.10) Proposition. o * / U ( " )  2 (o /pn)*  and u(")/u("+') S o / p ,  for 
n 2 I .  

Proof: The first isomorphism is induced by the canonical and obviously 
surjective homomorphism 

0* 4 (o/pn)*  , u w u mod pn, 

the kernel of which is u("). The second isomorphism is given, once we 
choose a prime element n, by the surjective homomorphism 

which has kernel u(~+ ' )  

Exercise 1. Show that (zl  = (z.T)'/* = ,/- is the only valuation of @ which 
extends the absolute value I 1 of R. 

Exercise 2. What is the relation between the Chinese remainder theorem and the 
approximation theorem (3.4)? 

Exercise 3. Let k  be a field and K = k ( t )  the function field in one variable. Show that 
the valuations up associated to the prime ideals p = ( p ( t ) )  of k [ t ] ,  together with the 
degree valuation v,, are the only valuations of K ,  up to equivalence. What are the 
residue class fields? 

Exercise 4. Let o be an arbitrary valuation ring with field of fractions K ,  
and let r = K*/o* .  Then r becomes a totally ordered group if we define 
x  mod 8* 2 y  mod 0* to mean x / y  E 0. 

Write f additively and show that the function 

v : K 4  r U ( c m ) ,  

~ ( 0 )  = CO, U (X )  = x mod o* for x  E K* ,  satisfies the conditions 

I )  u(x)  = 03 X = 0,  

2)  ~ ( x Y )  = u(x)  + V(Y ) ,  

3) v(x + y )  1 miri(v(x),  u (y )J .  

v is called a Krull valuation. 

§ 4. Completions 

(4.1) Definition. A valued field (K, ( I) is called complete if every Cauchy 
sequence {a, in K converges to an element a E K , i.e., 

lim la, -a1 = O .  
n-t oo 

Here, as usual, we call a Cauchy sequence if for every E > 0 
there exists N E N such that 

(a,, -a,,l < F forall n , m  2 N 

From any valued field (K, I 1) we get a complete valued field (z, I I )  by 
the process of completion. This completion is obtained in the same way as 
the field of real numbers is constructed from the field of rational numbers. 

Take the ring R of all Cauchy sequences of (K, I I), consider therein the 
maximal ideal m of all nullsequences with respect to ( 1, and define 

A 

K = Rim. 
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One embeds the field K into K^ by sending every a E K to the class of the 
consta? Cauchy sequence (a, a ,  a ,  . . . ). The valuation 1 I is extended from 
K to K by giving the element a E I? which is represented by the Cauchy 
sequence the absolute value 

This limit exists because I lall 1 - lanl 1 1 5 la,, - a,, I implies that lan I is a 
Cauchy sequence of real numbers. As in the case of the tield of real numbers, 
one proves that K^ is complete with respect to the extended I 1 ,  and that each 
a E is a limit of a sequence {an) in K.  Finally one proves the uniqueness 
of the completion (g, 1 1 ) :  if (2, I 1') is another complete valued field that 
contains (K, I I )  as a dense subfield, then mapping 

gives a K-isomorphism a : K^ -+ such that la1 = laal'. 

The fields R and C are the most familiar examples of complete fields. 
They are complete with respect to an archimedean valuation. Amazingly 
enough, there are no others of this type. More precisely we have the 

(4.2) Theorem (OSTROWSKI). Let K be a field which is complete with respect 
to an archimedean valuation 1 1. Then there is an isomorphism a from K 
onto R or cC satisfying 

for some fixed s E (0,1]. 

Proof: We may assume without loss of generality that R G K and that the 
valuation I I of K is an extension of the usual absolute value of R. In fact, 
replacing I I by I IS-' for a suitable s > 0, we may assume by (3.7) that the 
restriction of I I to Q is equal to the usual absolute value. Then taking the 
closure 6 in K we find that 6 is complete with respect to the restriction 
of I I to 6, in other words, it is a completion of (Q, I 1). In view of the 
uniqueness of completions, there is an isomorphism a : R -+ 6 such that 
la 1 = laa 1 as required. 

In order to prove that K = R or = C we show that each c E K satisfies 
a quadratic equation over R. For this, consider the continuous function 
f : @ -, R defined by 
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Note here that z + r ,  z? E R G K. Since lim f (z) = oo, f (z) has a 
2-+C*3 

minimum m. The set 

is hel-efore nonempty, bounded, and closed, and there is a zo E S s~ich that 
lzol > lzl for all z E S. It suffices to show that m = 0, because then one has 
the equation t2 - (zO + .TO)( + zOZO = 0. 

Assume n1 > 0. Consider the real polynomial 

where 0 < E < m ,  with the roots z l , Y l  E @. We have z l T l  = zofo  + s, 

hence ( z l  l > Izol and thus 

f (z l )  > m .  

For fixed n E N,  consider on the other hand the real polynomial 

with roots a l ,  . . . , az,, E C. It follows that G(zl) = 0; say, :I = c u l .  We 
may substitute ( f K into the polynomial 

211 

~ ( x ) '  = n (x2 - (a; + Z;)x + a ; ~ ; )  
i= l  

From this and the inequality 

2 I G ( ~ ) I  5 16 - (zo + 2o)c + zoZoIn + I - & I n  = f ( z ~ ) ~  + E" = m" + E". 

it follows that f (al)m2"-I 5 (mn + and hence 

For n -+ 00 we have f (a11 i m ,  which contradicts the inequality f (al  ) > n7 
proved before. 0 

In view of OSTROWSKI'S theorem, we will henceforth restrict attention to 
the case of nonarchimedean valuations. In this case it is usually expedient - 
both with regard to the substance and to practical technique - to work with 
the exponential valuations v rather than the multiplicative valuations. So let I! 
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be an exponential valuation of the field K.>t is canonically continued to an 
exponential valuation O of the completion K by setting 

6 (a) = lim ~ ( a , , ) ,  
n-+w 

where a = lim a, E K ,  a, E K. Observe here that the sequence v(a,,) 
n+w 

has to become stationary (provided a # 0) because, for n > no, one 
has O(a - a,) > O(a), so that it follows from the remark on p. 119 

v(a,) = ;(a, - a + a )  = min{ O(a, - a ) ,  6(a)} = 6(a).  

Therefore it follows that 

v(K*) = 6 ( t * ) ,  

and if v is discrete and normalized, then so is the extension 6. In the 
nonarchimedean case, for a sequence {a,,],,,w to be a Cauchy sequence, 
it suffices that a,+l - un be a nullsequence. In fact, v(a, - a,) 1 
minm5;<, { v ( ~ ~ + ~  - ai)). By the same token an infinite series x y = o  a, 
converges in K if and only if the sequence of its terms a, is a nullsequence. 
The following proposition is proved exactly as its analogue, proposition (2.4), 
in the special case (Q, v,). 

(4.3) Proposition. If o K,  resp. 8 K^, is the valuation ring of v, resp. 
of 8 ,  and p, resp. E, is the maximal ideal, then one has 

- - r y  01 P = alp 

and, if v is discrete, one has furthermore 

h A 

o / p n  2 o/pn for n > l .  

Generalizing the p-adic expansion to the case of an arbitrary discrete 
baluation v of the field K . we have the 

(4.4) Proposition. Let R o be a system of representatives for K = o / '  
such that 0 E R ,  and let n E o be a prime element. Then every x # 0 in K 
admits a unique representation as a convergent series 

2 x = 7 t m ( a o + a l n + a z n  +.. .> 

where ai E R ,  a0 # 0, m E Z. 

A - 
Proof: Let x = nn'u with u E 2. Since o l p  Z o/p, the class 1, mod 
has a unique representative a0 E R ,  a0 # 0. We thus have u = ao + n h I ,  
for some bl E z. Assume now that ao, . . . , anP l  E R have been found, 
satisfying 

u = a0 + a l n  + . . . + a,-lnn-l + xnb, 

for some b,, E 5, and that the ai are uniquely determined by this equation. 
A A 

Then the representative a, E R of b, mod n3 E o/p 2 o/p is also 
uniquely determined by u and we have b, = a, + n b , + ~ ,  for some h,+~ E 6. 
Hence 

In this way we find an infinite series xF=o a w n V  which is uniquely determined 
by u. It converges to u because the remainder term n"+'h,l+l tends to zero. O 

In the case of the field of rational numbers Q and the p-adic valuation v,, 
with its completion Q p ,  the numbers 0, 1, . . . , p - 1 form a system of 
representatives R for the residue class field Z/pZ of the valuation, and 
we get back the representation of p-adic numbers which has already been 
discussed in 3 2: 

where 0 ( a; < p and rn E Z. 
In the case of the rational function field k(t) and the valuation vp attached 

to a prime ideal p = ( t  - a )  of k[t] (see $2), we may take as a system of 
representatives R the field of coefficients k itself. The completion then turns 
out to be the field of formal power series k((x)), x = t - a,  consisting of 
all formal Laurent series 

with a; E k and rn E Z. The motivating analogy of the beginning of thi:, 
chapter, between power series and p-adic numbers, thus appears as two 
special instances of the same concrete mathematical situation. 

In 3 1 we identified the ring Z,, of p-adic integers as being the projective 
limit @I Z/pnZ.  We obtain a similar result in the general setting of 

valuation theory. To explain this, let K be complete with respect to a discrete 
valuation. Let o be the valuation ring with the maximal ideal p. We then 
have for every n 2 1 the canonical homomorphisms 
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This gives us a homomorphism 

into the projective limit 

Considering the rings o/pn as topological rings, for the discrete topology, 
gives us the product topology on nT=l  o/pn,  and the projective limit 
@ o/pn becomes a topological ring in a canonical way, being a closed 

n 
subset of the product (see chap. IV, $2). 

(4.5) Proposition. The canonical mapping 

is an isomorphism and a homeomorphism. The same is true for the mapping 

Proof: The map is injective since its kernel is r)zl pl' = (0). To prove 
surjectivity, let p = no  and let R g o ,  R 3 0, be a system of representatives 
of o/p. We saw in the proof of (4.4) (and in fact already in (1.2)) that the 
elements a mod pn E o/pn can be given uniquely in the form 

a -an + a l n  + . - . + a n - l n n - l  mod pn, 

where ai E R.  Each element s E & o/p" is therefore given by a sequence 
of sums n 

with fixed coefficients ai E R ,  and it is thus the image of the element 
x = lim sn = C ~ o a v n v  E o .  

n+03  

The sets Pn = nu,, o/pV form a basis of neighbourhoods of the zero 
element of nFl o/pV. Under the bijection 

the basis of neighbourhoods pn of zero in o is mapped onto the basis of 
neighbourhoods PI, n Q o/p"  of zero in Q alp". Thus the bijection i s  

v v 
a homeomorphism. It induces an isomorphism and homeomorphism on the 
group of units 

One of our chief concerns will be to study the finite extensions L I K of a 
complete valued field K .  This means that we have to turn to the question 01' 
factoring algebraic equations 

over complete valued fields. For this, Hensel's seminal "lemma" is of 
fundamental importance. Let K again be a field which is complete with 
respect to a nonarchimedean valuation 1 1. Let o be the corresponding 
valuation ring with maximal ideal p and residue class field K = o/p. 
We call a polynomial f(x)  = ao + alx + .. .  + anxn E o[x] primitive 
if f (x) $ 0 mod p, i.e., if 

(4.6) Hensel's Lemma. If a primitive polynomial f (x) E o[x] admits 
modulo p a factorization 

f (x) - g(x)h(x) mod p 

into relatively prime polynomials g ,  h E K[x], then f (x) admits a factoriza- 
tion 

f = s(x>lz(x> 

into polynomials g, h E o[x] such that deg(g) = deg(g) and 

g (x) r g(x) mod p and h(x) = h ( x )  mod p 

Proof: Let d = deg( f ), m = deg(g), hence d - m 2 deg(6). Let go, 
ho E o[x] be polynomials such that go = g mod p, ho - /z mod p and 
deg(go) = m ,  deg(h0) d - m. Since (g, h)  = 1, there exist polynomials 
a(x), b(x) E o[x] satisfying ago + bho E 1 mod p. Among the coefficients 
of the two polynomials f - goho and ago + bho - 1 E p[x] we pick one with 
minimum value and call it n. 
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Let us look for the polynomials g and h in the following form: 

where pi, qi E o [ x ]  are polynomials of degree < m ,  resp. _< d - rn. We then 
determine successively the polynomials 

g,-I = go + p ~ n  + .  . .  + p,-lnn-', 
I 

h,,-I = 110 + q l n  + . . .  +q,-lnn-' ,  

in such a way that one has 

Passing to the limit as n -+ oo, we will finally obtain the identity f = gh. 
For n = 1 the congruence is satisfied in view of our choice of n. Let us 
assume that it is already established for some n > 1. Then, in view of the 
relation 

g, = g,-I + pnnn ,  h ,  = A,-I + q,nl', 

the condition on g, , h ,  reduces to 

Dividing by x n  , this means 

gn-iqn + A H - I  p, % goq, + hop, = f ,  mod n , 

where f, = n-"(  f - g l I - ~ h I l - ~ )  E o[xI .  Since goa + hob - 1 mod n ,  one 
has 

goa f ,  + hobf, r f, mod n . 
At this point we would like to put q, = a f, and p, = bf,, but the degrees 
might be too big. For this reason, we write 

where deg(p,) < deg(go) = m. Since go = g mod p and deg(go) = deg(g), 
the highest coefficient of go is a unit; hence q ( x )  E o [ x ]  and we obtain the 
congruence 

go(af, + hoq) + hopfl % f ,  mod n . 
Omitting now from the polynomial a f ,  + hoq all coefficients divisible by n ,  
we get a polynomial q,, such that goq1, + hopll = f, mod n and which, in 
view of deg(f,,) 5 d ,  d e g W  = m and deg(hop,) < (d - m )  + m = d, has 
degree i d - m as required. 0 
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Example: The polynomial xp-I - 1 E Z p [ x ]  splits over the residue class field 
Z p / p Z p  = IFp into distinct linear factors. Applying (repeatedly) Hensel's 
lemma, we see that it also splits into linear factors over Z,,. We thus obtain thc 
astonishing result that the field Q p  of p-adic numbers contains the (p - I)-th 
roots of unity. These, together with 0, even form a system of representatives 
for the residue class field, which is closed under multiplication. 

(4.7) Corollary. Let the field K be complete with respect to the nonar- 
chimedean valuation I I .  Then, for every irreducible polynomial f (s) = 

a0 + a1x + - . + a,xn E K [ x ]  such that aoa, # 0, one has 

In particular, a, = 1 and a0 E o imply that f E o [ x ] .  

Proof: After multiplying by a suitable element of K we may assume that 
,f E o [ x ]  and 1 f I = 1. Let a,. be the first one among the coefficients 
ao, . . . , a, such that la, I = 1 .  In other words, we have 

If one had max((aol,  (a, I )  < 1, then 0 < r < n and the congruence would 
contradict Hensel's lemma. 0 

From this corollary we can now deduce the following theorem on 
extensions of valuations. 

(4.8) Theorem. Let K be complete with respect to the valuation I 1 .  
Then ( I may be extended in a unique way to a valuation of any given 
algebraic extension L ( K .  This extension is given by the formula 

when L I K  has finite degree n. In this case L is again complete. 

Proof: If the valuation I 1 is archimedean, then by Ostrowski's theorem, 
K = R or C. We have NClw(z) = zT = (z12 and the theorem is part 
of classical analysis. So let I I be nonarchimedean. Since every algebraic 
extension LIK is the union of its finite subextensions, we may assume that 
the degree n = [ L  : K ]  is finite. 
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Existence of the extended valuation: let o be the valuation ring of K and 0 
its integral closure in L .  Then one has 

The implication a E 0 =+ N L I ~ ( a )  E 0 is evident (see chap. I ,  $ 2, p. 12). 
Conversely, let a E L* and NL]K(CX) E o. Let 

be the minimal polynomial of a, over K.  Then NLIK (a)  = &ar  E 0, SO that 
laoJ _< 1,  i.e., ao E o. By (4.7) this gives f (x) E o[x], i.e., a E 0. 

For the function la 1 = y m ,  the conditions la, 1 = 0 a = 0 
and lap1 = la1 are obvious. The strong triangle inequality 

reduces, after dividing by a or B ,  to the implication 

and then, by (*), to a E 0 j a + 1 E 0, which is trivially true. Thus 
the formula la 1 = C/m does define a valuation of L and, restricted 
to K ,  it clearly gives back the given valuation. Equally obviously it has 0 
as its valuation ring. 

Uniqueness of the extended valuation: let ( 1' be another extension with 
valuation ring 0'. Let tJ3, resp. v, be the maximal ideal of 0, resp. 0'. We 
show that 0 5 0'. Let a E 0 \ 0' and let 

be the minimal polynomial of a over K .  Then one has a [ ,  . . . , ad E 0 and 
a-' E p', hence 1 = -ala- '  - . . . - ~ ~ ( c r - ' ) ~  E tJ3', a contradiction. 
This shows the inclusion U 2 0'. In other words, we have that 
la1 _< 1 + IaI' 5 1 and this implies that the valuations I  I and I I '  
are equivalent. For if they were not, then the approximation theorem (3.4) 
would allow us to find an a E L such that la1 _< 1 =+ Ial' > 1. Thus I I and 
( 1' are equal because they agree on K .  

The fact that L is again complete with respect to the extended valuation 
is deduced from the following general result. 0 

(4.9) Proposition. Let K be complete with respect to the valuation ( ( and 
let V be an n-dimensional normed vector space over K.  Then, for any basis 
vl, ..., vn of V themaximum norm 

is equivalent to the given norm on V. In particular, V is complete and the 
isomorphism 

Kn --+ V, (XI,  . . . , x,) t-+ X I U I  + . . .  + x , , u ~ ,  

is a homeomorphism. 

Proof: Let vl,  . . . , vn be a basis and ) I  11 be the corresponding maximum 
norm on V.  It suffices to show that, for every norm I I on V, there exist 
constants p, p' > 0 such that 

Then the norm I 1 defines the same topology on V as the norm 1 )  1 1 ,  
and we obtain the topological isomorphism Kn -+ V, (x i ,  . . . , x,,) w 
X I  vl+ . . . +xnvn. In fact, (1 11 is transformed into the maximum norm on K n .  

For p' we may obviously take I vl 1 + . . . + I vn 1. The existence of p is 
proved by induction on n. For n = 1 we may take p = J v l  I. Suppose that 
everything is proved for (n - 1)-dimensional vector spaces. Let 

so that V = Vi + Kvi. Then Vi is complete with respect to the restriction 
of I I by induction, hence it is closed in V .  Thus V; + v; is also closed. 
Since 0 $ U:=, (V; + v;), there exists a neighbourhood of 0 which is dis.joinr 
from Uy=,(V; + v;), i.e., there exists p > 0 such that 

I w ;  + U i l  > p for all lu; E V; and all i = I ,  . . . , 1 1 .  

For x = xlvl + . . . + xnvn # 0 and Ix, I = max{Ix, I), one finds 

so that one has Ix l > p Jx,. I = p llx ll. 0 

The fact that an exponential valuation v on K associated with I ( extends 
uniquely to L is a trivial consequence of theorem (4.8). The extension w is 
given by the formula 

if n = [L : K ]  < oo. 
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Exercise 1. An infinite algebraic extension of a complete field K is  ncvcr coniplclc. 

Exercise 2. Let Xo, X I ,  . . . be an infinite sequence of unknowns, p a fixed prime 

number and Wn = x,P" + P ~ r - l  + . . . + pnX,, n > 0. Show that there exist 
polynomials So, S I ,  . . . ; Po, PI. . . . E ZIXo, X I ,  . . . ; Yo, YI, . . . I  such that 

W ~ ( S O ~ S I ,  . . .  ) = W ~ ( X O , X I ,  . . . )+Wn(yo ,Y~,  ...), 

Exercise 3. Let A be a commutative ring. For a = (ao,al ,  . . .), b = (bo, b l ,  . . .), 
ai, b; E A, put 

a + h = ( S o ( a , h ) , S l ( a , h )  , . . .  ) ,  a . b = ( P o ( a , b ) , P I ( a , h )  , . . .  ) .  

Show that with these operations the vectors a = (ao ,a l ,  . . . )  form a commutative 
ring W(A) with 1. It is called the ring of Witt vectors over A. 

Exercise 4. Assume pA = 0. For every Witt vector a = (00, ul,  . . .) E W ( A )  
consider the "ghost components" 

a'"' = P"-l 
W, (a) = a:" + p a ,  + . . . + pna,, 

as well as the mappings V, F : W (A) -+ W (A) defined by 

Va = (O,ao,al ,  . . .) and F a  = ( a i , a p ,  . . .), 
called respectively "transfcr" ("Vcrschicbung" in Gcr~nan) and "Frobcriius". Show 
that 

( ~ ~ ) ( n )  = and a("' = ( ~ a ) ( " )  + pnan . 

Exercise 5. Let k be a field of characteristic p. Then V is a homomorphisni of the 
additive group of W(k) and F is a ring homomorphism, and one has 

V F a  = F V a  = p a .  

Exercise 6. If k is a perfect field of characteristic p, then W(k) is a complete 
discrete valuation ring with residue class field k. 

5 5. Local Fields 

Among all complete (nonarchimedean) valued fields, those arising as 
completions of a global field, i.e., of a finite extension of either Q or Fp(t),  
have the most eminent relevance for number theory. The valuation on such 
a completion is discrete and has a finite residue class field, as we shall see 
shortly. In contrast to the global fields, all fields which are complete with 
respect to a discrete valuation and have a finite residue class field are called 
local fields. For such a local field, the normalized exponential valuation is 
denoted by up, and I I p  denotes the absolute value normalized by 

I 

lxlp = q - u p ( X ) ,  

where q is the cardinality of the residue class field. 

(5.1) I'roposition. A local field K is locally compact. Its valuation ring o 
is compact. 

Proof: By (4.5) we have o 2 @ o / p n ,  both algebraically and topo- 
logically. Since pV/pV+l S o / p  (see (3.9)), the rings o / p n  are finite, 
hence compact. Being a closed subset of the compact product n?==, alp", 
it follows that the projective limit I& o / p n ,  and thus 0,  is also compact. 
For every a E K ,  the set a + o is an open, and at the same time compact 
neighbourhood, so that K is locally compact. 0 

In happy concord with the definition of global fields as the finite extensions 
of Q and FI,(t), we now obtain the following characterization of local fields. 

(5.2) Proposition. The local fields are precisely the finite extensior~s of tlic 
fields Qp and Fl, ((t)). 

Proof: A finik cx~cnsion K of k = QI, or k = IFl,((/)) is again coniplck. 
by (4.8), with respect to the extended valuation la1 = (1/-, 
which itself is obviously again discrete. Since K lk is of finite degrcc, 

- 
so is h e  residue class field extension K J I F ~ ,  for if T I ,  . . . , x,, E K 

are linearly independent, then any choice of preimages X I ,  . . . , x,, E K 
is linearly independent over k.  Indeed, dividing any nontrivial k-linear 
relation h l x l  + . .  . + h,,xn = 0, hi E k ,  by the coefficient h, with biggest 
absolute value, yields a linear combination with coefficients in the valuation 
ring of k with 1 as i-th coefficient, from which we obtain a nontrivial relation 
hlxl + . . . + hnxn = 0 by reducing to K. Therefore K is a local field. 

Conversely, let K be a local field, v its discrete exponential valuation, 
and p the characteristic of its residue class field K.  If K has characteristic 0. 
then the restriction of v to Q is equivalent to the p-adic valuation v,, of Q 
because v(p) > 0. In view of the completeness of K ,  the closure of Q in K 
is the completion of Q with respect to v,,, in other words Q, c K .  Tlic 
fact that K IQp is of finite degree results from the local compactness of' thc 
vector space K , by a general theorem of topological linear algebra (see I 1 8 I ,  
chap. I, $2, no 4, th. 3), but it also follows from (6.8) below. If on the other 
hand the characteristic of K is not equal to zero, then it has to equal p. 
In this case we find K = ~ ( ( t ) ) ,  for a prime element t of K (see p. 127), 
hence Fp((t)) K .  In fact, if K = IFp(a) and p ( X )  E Fl,[X] G K[X] is 
the minimal polynomial of a! over Pp,  then, by Hensel's lemma, p(X) splits 
over K into linear factors. We may therefore view K as a subfield of K ,  and 
then the elements of K turn out to be, by (4.4), the Laurent series in t with 
coefficients in K .  0 
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Remark : One can show that a field K  which is locally compact with respect 
to a nondiscrete topology is isomorphic either to R or @, or to a finite 
extension of Qp or F,((t)), i.e., to a local field (see [137], chap. I, 9: 3). 

We have just seen that the local fields of characteristic 17 are the power 

I 
series fields F,((t)), with q = pf.  The local fields of characteristic 0, i.e., 

1 the finite extensions K  IQ, of the fields of p-adic numbers Qp,  are called 
I p-adic number fields. For them one has an exponential function and a 

logarithm function. In contrast to the real and complex case, however, the 
former is not defined on all of K ,  whereas the latter is given on the whole 
multiplicative group K * .  For the definition of the logarithm we make use of 
the following fact. 

(5.3) Proposition. The multiplicative group of a local field K admits the 
decomposition 

K *  = (n)  x pq-1 x u ( ' ) .  

Here n is a prime element, (n)  = {nk I k E Z), q = #K is the number of 
elements in the residue class field K = o lp ,  and u(') = 1 + p is the group 
of principal units. 

Proof: For every a E K * ,  one has a unique representation a = n n u  with 
I n E Z, u E O* so that K* = (n)  x o*. Since the polynomial xP-' - 1 splits 

into linear factors over K  by Hensel's lemma, o* contains the group pq-' of 
(q - 1)-th roots of unity. The homomorphism o* -+ K * ,  u H u mod p,  has 
kernel u(') and maps pq-1 bijectively onto K*. Hence o* = pyPl x u( ') .  

(5.4) Proposition. For a p-adic number field K  there is a uniquely 
determined continuous homomorphism 

log : K* + K  

such that log p = 0 which on principal units (1 + x )  E u(') is given by the 
! series 

Proof: By $4, we can think of the p-adic valuation vp of Qp as extended 

to K .  Observing that vp(x) > 0, SO that c = > 1, and p u p ( v )  5 v ,  

giving vp(v) 5 1111 (with the usual logarithm), we compute the valuation of 
In n ... 

the terms xu/v of the series, 

This shows that xV/v  is a nullsequence, i.e., the logarithm series converges. 
It defines a homomorphism because 

is an identity of formal power series and all series in it converge provided 
I + x ,  I + y  E u ( ' ) .  

For every a E K * ,  choosing a prime element n ,  we have a unique 
representation 

a = nUp(%(a)(a), 

where up = evp is the normalized valuation of K ,  o ( a )  E p,-~, (a) E ( / ( ' I .  
I As suggested by the equation p = new (p) (p) ,  we define log n = - , log (p )  

and thus obtain the homomorphism log : K  * + K  by 

log a = vp (a)  log n + log (a) 

It is obviously continuous and has the property that log p = 0. If h : K * + K 
is any continuation of log : u( ' )  + K such that h(p) = 0, then we 

1 find that A(() = -h((q-') = 0 for each 6 E pq- , .  It follows that 
9 - 1  

0 = eh(n)  + h((p)) = eh(n) + log (p) ,  so that h(n)  = logn,  and thus 
h(a) = vp(a)h(n) + h((a)) = vp(a) log n + log (a) = log a ,  for all a E K *.  
log is therefore uniquely determined and independent of the choice of n. 

0 

(5.5) Proposition. Let K IQ,, be a p-adic number field with valuation ring 
o and maximal ideal p, and let p o  = pP. Then the power series 

x2 x3 z2 z3  
e x p ( ~ ) = I + ~ + - + - + . . .  and l o g ( l + z ) = : - - + - - . . .  . 

2! 3!  2 3 
e yield, for n > - two mutually inverse isomorphisms (and homeomor- 

I > -  I '  

We prepare the proof by the following elementary lemma. 
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(5.6) Lemma. Let v  = a; p' ,  0 _( ai < p ,  be the p  -adic expansion of 
I the natural number v  E N. Then 

Proof: Let [c] signify the biggest integer ( c. Then we have 

, Now we count how many numbers 1,2,  . . . , v  are divisible by p,  and then 
by p2 ,  etc. We find 

and hence 

Proof of (5.5): We again think of the p-adic valuation vl, of Q,) as k i n g  
extended to K.  Then v p  = evp is the normalized valuation of K .  For every 
natural number v  > 1, one has the estimate 

for if v  = pavo, with (vo,  p )  = 1 and a > 0, then 

1 For v,(z) > - , z  # 0 ,  i.e., v p ( z )  > "-, this yields 
P - 1  P - 1  

1  
U P ( ; )  - v p ( z )  = ( v -  l ) v p ( z ) - v p ( v )  > ( v -  I ) ( -  - - 2 0 ,  p - 1  v - 1  

e and thus vp(log(l  + z ) )  = up(z ) .  For n > - , log therefore maps u(") 

into pn. P - 1  

For the exponential series C ~ = o x v / v ! ,  we compute the valuations 
v p ( x V / v  !) as follows. Writing, for v  > 0, 

we get from (5.6) that 

Putting s, = a" + . . - + a,. this becomes 
v  - S ,  1 S u  

V P  (5) = v v p ( x )  - - = v(v,(x) - -) + -. 
P - 1  p - l  p - l  

For u p ( x )  > -", i.e., v,,(x) > - , this implies the convergence of' rhc 
P - 1  P -  1 

exponential series. If furthermore x  # 0 and v > 1, then one has 

v - 1  s , - 1  s , - 1  
- v p ( x )  = ( v  - l ) v p ( x )  - - + - 2 - 2 0  

p - 1  p - 1  p - l  
e Therefore v,,(exp(x) - 1) = v p ( x ) ,  i.e., for n > -, exp maps the group pll 

P - 1  @ 

into u ("). Furthermore, one has for v p ( x ) ,  v p ( z )  > - that 
P - 1  

for these are identities of formal power series and all of the series converge. 
This proves the proposition. 0 

For an arbitrary local field K ,  the group of principal units u ( ' )  is a Z I' - 

module (where p =  char(^)) in a canonical way, i.e., for every I + .I. E u("  
and every z  E Zp, one has the power ( 1  + x)' E u( ' ) .  This is a consequence 
of the fact that u(')/u("+') has order qn  for all n (where q = #o/p - the 
reason for this is that u(')/u('+') 2 alp, by (3.10), so that u ( ' ) / u ( " '  ' )  

is a Z/qHZ-module) and of the formulas 

This obviously extends the Z-module structure of u('). The function 

f ( z )  = (1 + x)' 

is continuous because the congruence z  = z' mod qnZp implies (1 + x)' = 
( 1  + x)" mod u("+'), so that the neighbourhood z  + qnZp of z  is mapped 
to the neighbourhood (1  +X)~U("+ ' )  of f ( z ) .  In particular, ( 1  + x)' may be 
expressed as the limit 

( 1  + x)' = 1+00 lim (1 + x)'; 

of ordinary powers ( 1  + x)'i, z; E Z,  if z  = ,lim z; 
1 4 0 0  

After this discussion we can now determine explicitly the structure of the 
locally compact multiplicative group K *  of a local field K .  
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(5.7) Proposition. Let K  be a local field and q = pf' the number of 
elements in the residue class field. Then the following hold. 

(i) If K has characteristic 0, then one has (both algebraically and 
topologically) 

where a > 0 and d = [K : Qp]. 

(ii) If K  has characteristic p ,  then one has (both algebraically and 
topologically) 

K *  Z Z @ Z / ( q -  ~ ) z @ z ; .  

Proof: By (5.3) we have (both algebraically and topologically) 

This reduces us to the computation of the Z,,-module u( ' ) .  

(i) Assume char(K) = 0. For n sufficiently big, (5.5) gives us the 
isomorphism 

log: u(") - pn = nno 2 o. 

Since log, exp, and f ( 2 )  = (1 + x)' are continuous, this is a topological 
isomorphism of Zp-modules. By chap.1, (2.9), o admits an integral basis 
a * ,  . . . , a d  over Zp, i.e., o = Zpa l  $ ' 0 -  $ Zpad Z z;. Therefore 

u(") 2 z;. Since the index (u(') : u(")) is finite and u(") is a finitely 
generated Zp-module of rank d, so is u( ') .  The torsion subgroup of u(')  is 
the group , L L ~ O  of roots of unity in K of p-power order. By the main theorem 

'on modules over principal ideal domains, there exists in u ( I )  a free, finitely 
generated, and therefore closed, Zp-submodule V of rank d such that 

both algebraically and topologically. 

(ii) If char(K) = p ,  we have K Z Fq((t)) (see p. 127) and 

The following argument is taken from the book [79] of K. IWASAWA. 

Let wl, . . . , of be a basis of IFq IFp. For every natural number n relatively 
prime to p we consider the continuous homomorphism 

5 5. Local Fields 

This function has the following properties. If m = npS, s 2 0, then 

f and, for a = (al, . . . , af )  E Z,,, 

1' 
gn((~)  n (1 +   it^)^' = 1 + wt" mod p"" 

i=l  

and hence, since we are in characteristic p ,  

gn(pSa) = g n ( a ) ~ S  E 1 + oPStm mod pnl" . 
f As a varies over the elements of Z, , o ,  and thus also d" , varies over thc ele- 

ments of Fq , and we get (1). Furthermore one has g, (pSa)  = 1 mod p"It' 
o = 0 b; = 0 mod p, for i = 1, . . . ,  f ai r O m o d  p ,  for 

f i = 1 ,  . . . , f a E pZ,, , and this amounts to (2). 
We now consider the continuous homomorphism of Zp -modules 

f where the product n(,, p)=l ZP is taken over all n 2 1 such that (n, p) = I ,  

each factor being a copy of z;. Observe that the product g(6) = n g,(a,,) 
converges because gn(an) E ~ ( " 1 .  Let m = npS, with (n, p) = 1,  be any 
natural number. As g n ( ~ i )  G g(A), it follows from (1) that each coset 
of U ( " ) / U ( ~ + ' )  is represented by an element of g(A). This means that ,?(A) 
is dense in u(]) .  Since A is compact and g is continuous, g is actually 
surjective. 

On the other hand, let 6 = (. . . , a,, . . .) E A, 6 # 0, i.e., a,, # 0 for 
some n.  Such an a, is of the form a, = pSBn with s = $(a,,) L 0, and 

f B,, E Z{ --, pZ,, . It now follows from (2) that 

Since the n are prime to p ,  all the m(an) have to be distinct, for all a,, # 0. 
Let n be the natural number, prime to p and such that an # 0, which 
satisfies m(an) < m(a,l), for all n' # n such that a,,! # 0. Then one has, for 
all n' # n ,  that 

( )  E U r n  where m = m(an) < m(a,,~).  

Consequently 
g(e) = gn(an) f 1 mod u("'+'), 

and so g(6) # 1. This shows the injectivity of g. Since A = z:, this proves 
the claim (ii). 0 
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(5.8) Corollary. If the natural number n is not divisible by the characteristic 
of K ,  then one finds the following indices for the subgroups of n-th 
powers K*" and Un in the multiplicative group K* and in the unit group U : 

n 
(K* : K*") = n(U : Un)  = -#pn(K) 

lnlp 

Proof: The first equality is a consequence of K* = (17) x U. By (5.7), we 
have 

U Z p ( K )  x z$, resp. U S p(K)  x z;, 
when char (K) = 0, resp. p > 0. From the exact sequence 

one has #pn(K) = #p(K)/p(K)". When char(K) = 0, this gives: 
dv n (U : Un) = # p n ( ~ ) # ( z ~ / n ~ ~ ) ~  = #pn(K)p P (  ) = #pn (K)/lnlp, 

andwhenchar(K) = ponegetssimply (U : Un) = #pn(K) = #p,,(K)IInlp 
because (n, p) = 1, i.e., nZ, = Z,. 0 

Exercise 1. The logarithm function can be continued to a continuous homomorphism 
I log : a, -t Q, and the exponential function to a continuous homomorphism 

-* 
I exp : S* 4 Q p ,  where jik = (X  E a, 1 v P ( x )  > L) and up is the unique 

I -P 
extension of the normalized valuation on Q,. 

Exercise 2. Let KIQ,  be a p-adic number field. For 1 + x  E U ( ' )  and z E Z, one 
has 

The series con\ierges even for x E K such that u p @ )  > 2?--- 
P - 1  

Exercise 3. Under the above hypotheses one has 

Exercise 4. For a p-adic number field K ,  every subgroup of finite index in K*  is 
both open and closed. 

Exercise 5. If K is a p-adic number field, then the groups K"', for n E W ,  form a 
basis of neighbourhoods of 1 in K*. 

Exercise 6. Let K  be a p-adic number field, v ,  the normalized exponential valuation 
of K ,  and dx the Haar measure on the locally compact additive group K ,  scaled so 

,that So dx = 1. Then one has v p ( a )  = SaO d x  Furthermore, 

is a Haar measure on the locally compact group K*. 

§ 6. Henselian Fields 

5 6. Henselian Fields 

Most results on complete valued fields can be derived from Hensel's 
lemma alone, without the full strength of completeness. This lemma is valid 
in a much bigger class of nonarchimedean valued fields than the comllete 
ones. For example, let (K, v) be a nonarchimedean valued field and ( K ,  O ) 
its completion. Let s, resp. 5, be the valuation rings of K ,  resp. g. We then 

A 

consider the separable closure K, of K in K ,  and the valuation ring o,, K, ,  
with maximal ideal p,, which is associated to the restriction of O to K,, 

Then Hensel's lemma holds in the ring o, as well as in the ring 5 even 
though K, will not, as a rule, be complete. When K, is algebraically closed 

h 

in K - hence in particular char(K) = 0 - this is immediately obvious 
(otherwise it follows from (6.6) and $ 6, exercise 3 below). Indeed, by (4.3) 
we have - 

0 l P  = o,lp, = ol P 3 

and if a primitive polynomial f (x) E o,[x] splits over o,/p, into 
relatively prime factors g(x), h(x), then we have by Hensel's lemma (4.6) a 
factorization in 

f (x) = g(x)h(x) 

such that g = ,ij modF, h = h modj?, deg(g) = deg(g). But this factorization 
already takes place over o, once the highest coefficient of g is chosen to be 
in o:, because the coefficients of f ,  and therefore also those of g and h are 
algebraic over K.  

The valued field K, is,called the henselization of the field K with respect 
to v .  It enjoys all the relevant algebraic properties of the completion K^. but 
offers the advantage of being itself an algebraic extension of K which can 
also be obtained in a purely algebraic manner, without the analytic recourse 
to the completion (see $9, exercise 4). The consequence is that taking the 
henselization of an infinite algebraic extension L ( K  is possible within the 
category of algebraic extensions. Let us define in general: 

(6.1) Definition. A henselian field is a field with a nonarchirnedean 
valuation v whose valuation ring o satisfies Hensel's lemma in the sense 
of (4.6). One also calls the valuation v or the valuation ring o henselian. 
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(6.2) Theorem. Let K be a henselian field with respect to the valua- 
tion I 1. Then I I admits one and only one extension to any given algebraic 
extension L I K .  It is given by 

if L lK has finite degree n. In any case, the valuation ring of the extended 
valuation is the integral closure of the valuation ring of K in L. 

The proof of this theorem is verbatim the same as in the case of a 
complete field (see (4.8)). What is remarkable about our current setting is 
that, conversely, the unique extendability also characterizes henselian fields. 
In order to prove this, we appeal to a method which allows us to express 
the valuations of the roots of a polynomial in terms of the valuations of 
the coefficients. It relies on the notion of Newton polygon, which arises as 
follows. 

Let v  be an arbitrary exponential valuation of the field K and let 

be a polynomial satisfying aoa,, # 0. To each term aixl we associate a point 
( i ,  v (a; ) )  E IR2, ignoring however the point ( i ,  GO) if ai = 0. We now take 
the lower convex envelope of the set of points 

This produces a polygonal chain which is called the Newton polygon of 
f ( x ) .  

The polygon consists of a sequence of line segments S I ,  S2, . . . whose 
slopes are strictly increasing, and which are subject to the following 
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(6.3) Proposition. Let f ( x )  = ao + alx + . . . + a,xn, aoa,, # 0, be a 
polynomial over the field K ,  v  an exponential valuation of K ,  and w an 
extension to the splitting field L o f f .  

If (r  , v(a,)) t, ( s ,  v (as ) )  is a line segment of slope -m occurring in the 
Newton polygon o f f ,  then f (x) has precisely s - I .  roots a ,  , . . . , of 
value 

Proof: Dividing by a, only shifts the polygon up or down. Thus we may 
assume that a, = 1. We number the roots a t ,  . . . , a, E L of f in such a 
way that 

w(a1) = ..- = w ( a s l )  = ml , 

where ml < m2 < . - .  < mt+,. Viewing the coefficients a; as elementary 
symmetric functions of the roots a j ,  we immediately find 

the latter because the value of the term al . . .a,, is smaller than that of all 
the others, 

and so on. From this result one concludes that the vertices of the Newton 
polygon, from right to left, are given by 
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The slope of the extreme right-hand line segment is 

We emphasize that, according to the preceding proposition, the Newton 
polygon consists of precisely one segment if and only if the roots a , ~  , . . . , a,,, 

of f all have the same value. In general, f (s) factors into a product according 
to the slopes -ttr,. < . . . < - r u  1 ,  

I' 

where 

Here the factor f j  corresponds to the (r - j + 1)-th segment of the Newton 
polygon, whose slope equals minus the value of the roots of f,. 

(6.4) Proposition. If the valuation v admits a unique extension w to the 
splitting field L o f f ,  then the factorization 

Proof: We may clearly assume that a,, = 1, The statement is obvious when 
f (x) is irreducible because then one has a; = cial for some a; E G (L I K ) ,  
and since, for any extension w of v ,  w o a; is another one, the uniqueness 
implies that w(a,;) = w (a ;a l )  = nl 1 ,  hence f (x) = f (x). 

The general case follows by induction on n. For n = 1 there is nothing to 
show. Let p(x) be the minimal polynomial of a1 and g(x) = f (x)/p(x) E 

K[x]. Since all roots of p(x) have the same value nil, p ( s )  is a divisor 
of f i  (x). Let gl  (x) = f i  (x)/p(x). The factorization of g(x) according to 
the slopes is r 

g(x) = gl(x) n fj(x).  
j =2 

Since deg(g) < deg( f ), it follows that fj (x) E K [x] for all j = 1, . . . , r .  

I 
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If the polynomial f is irreducible, then, by the above factorization result, 
there is only one slope, i.e., the Newton polygon consists of a single segment. 
The values of all coefficients lie on or above this line segment and we get the 

(6.5) Corollary. Let f (x )  = a0 + a l x  +. . .+a1,x1' E K[x] be an irreducible 
polynomial with a, # 0. Then, if I 1 is a nonarchimedean valuation of K 
with a unique extension to the splitting field, one has 

In (4.7) we deduced this result for complete fields from Henscl's Icmma 
and thus obtained the uniqueness of the extended valuation. Here we obtain 
i t ,  by contrast, as a consequence of the uniqueness of the extended valuation. 
We now proceed to deduce Hensel's lemma from the unique extendability. 

(6.6) Theorem. A nonarchimedean valued field (K,  I 1) is henselian if and 
only if the valuation 1 I can be uniquely extended to any algebraic extension. 

Proof: The fact that a henselian valuation 1 I extends uniquely was dealt 
with in (6.2). Let us assume conversely that I I admits one and only one 
extension to any given algebraic extension. We first show: 

Let f (x) = a0 + a ~ x  + . . . + a,xn E ~ [ x ]  be a primitive, irreducible 
polynomial such that aoa,, # 0, and let f (x)  = f (x) mod p E K [ x ] .  Then 
we have deg(7) = 0 or deg(7) = deg( f ), and we find 

for some irreducible polynomial @(x) E ~ [ x ]  and a constant a. 

As f is irreducible, the Newton polygon is a single line segment and thus 
( f ( = max{lao 1, la, I). We may assume that a, is a unit, because otherwise 
the Newton polygon is a segment which does not lie on the x-axis and rhis 
means that f (x) = 5". 

Let L1K be the splitting field of f (x) over K and 0 the valuation ring 
of the unique extension ( I to L ,  with maximal ideal Ip. For an arbitrary 
K -automorphism a E G = G(L I K) ,  we have laal = la1 for all a E L ,  
because I I and the composite 1 ( o a extend the same valuation. This shows 
that a 0  = 0, a q  = q. If a is a zero of f (x) and p its multiplicity, then 
aa E 0 for all a E G. Indeed, if a, g' 0 ,  then n, Jaa(p = I n, aa,[p > I 
would imply that the constant coefficient a" could not belong to o. Thus 
every a E G induces a K -automorphism Z of O / V ,  and the zeroes 55 = cT6 
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of y(x) are all conjugate over K. It follows that 7(x)  = Z(o(x)"', if p(x)  is 
the minimal polynomial of Zi! over K .  Since an E o*,  we have furthermore 
that deg(7) = deg( f ). 

Let now f (x) E ~ [ x ]  be an arbitrary primitive polynomial, and let 

be its factorization into irreducibles over K. Since 1 = I f  1 = n I fi I, 
multiplying the fi by suitable constants yields 1 fi 1 = 1. The f ,  (s) are 
therefore primitive, irreducible polynomials in o[x]. It follows that 

where deg(Ti) = 0 or deg(fi) = deg( f;), and 7 ;  is, up to a constant factor, 
the power of an irreducible polynomial. If 7 = i E  is a factorization into 
relatively prime polynomials g, 6 E ~ [ x ] ,  then we must have 

where a,6  E K and ( 1 ,  ..., r )  = I U J and deg(fi) = deg(fi) for i E I. 
We now put 

g = a n f i ,  h = b n f j ,  
i d  j d  

for a ,  b E o* such that a E a, b = 6 mod p and f = gh. 0 

We have introduced henselian fields by a condition of which the reader 
will find weaker versions in the literature, restricted to monic polynomials 
only. Both are equivalent as is shown by the following 

(6.7) Proposition. A nonarchimedean field (K, v) is henselian if any monic 
polynomial f (x) E o[x] which splits over the residue class field K = o/p as 

f (x) = g(x)E(x) mod p 

with relatively prime monic factors g(x), E(x) E K [XI, admits itselfa splitting 

f (x) = g(x)h(x) 

into monk factors g(x), h(x) E o[x] such that 

g(x) = g(x) mod p and h(x) = h(x) mod p 
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Proof (E. NART): We have just seen that the property of K to be henselian 
follows from the condition that the Newton polygon of every irreducible 
polynomial f (x) = a0 + alx + . . . + a,xn E K [ x ]  is a single line segment. 
It is therefore sufficient to show this. We may assume that a,, = 1.  Let L 1 K 
be the splitting field of f .  Then there is always an extension w of v to L .  
It is obtained for example by taking the completion K^ of K,  extending the 

- 
A 

valuation of K^ in a unique way to a valuation i7 of the algebraic closure K - 
of K^, embedding L into K^, and restricting i7 to L. It is also possible to get 
the extension w directly, without passing through the completion. For this 
we refer to [93], chap. XII, $4, th. 1. 

Assume now that the Newton polygon of f consists of more than one 
segment: 

T 

Let the last segment be given by the points (m, e) and ( n ,  0). If c = 0, we 
immediately have a contradiction. Because then we have v(a,) > 0, so that 
f (x) E ~ [ x ] ,  and a" = . . . = anl-l r 0 mod p ,  a,, + 0 mod p. Therelore 
f (x) -- (X"-"I + .. .  + a,,)Xn' mod p ,  with nz > 0 because there is more 
than one segment. In view of the condition of the proposition this contradicts 
the irreducibility of f .  

We will now reduce to e = 0 by a transformation. Let a E L be a root 
of f (x) of minimum value w(a) and let a E K such that v(a) = e.  We 
consider the characteristic polynomial g(x) of a - ' a"  E K(a) ,  1. = 1 1  - 117. 

If f (x)  = n;=,(x - a;), then g(x) = n!' (x - aria-I). Proposition (6.3) 
I = ]  

shows that the Newton polygon of g(x) also has more than one segment, the 
last one of slope 

Since g(x) is a power of the minimal polynomial of a- 'a",  hence of an 
irreducible polynomial, this produces the same contradiction as before. 0 

Let K be a field which is henselian with respect to the exponential 
valuation v. If L 1 K is a finite extension of degree n, then v extends uniquely 
to an exponential valuation w of L ,  namely 
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This follows from (6.2) by taking the logarithm. For the value groups and 
residue class fields of v  and w ,  one gets the inclusions 

The index 
e = e ( w  I v )  = ( w ( L * )  : v ( K * ) )  

is called the ramification index of the extension L ( K  and the degree 

1 
is called the inertia degree. If v ,  and hence w  = ,v o N L ~ K ,  is discrete 
and if o, p, n ,  resp. 0 , 9 ,  n ,  are the valuation ring, the maximal ideal and a 
pdme element of K ,  resp. L ,  then one has 

e = ( w ( l 7 ) Z  : v ( n ) Z ) ,  

so that v ( n )  = e w ( n ) ,  and we find 

lr = e n e ,  

for some unit E E O*. From this one deduces the familiar (see chap. I) 
interpretation of the ramification index: p 0 = ~r 0 = n e O  = pe, or 

(6.8) Proposition. One has [ L  : K ]  2 ef and the fundamental identity 

if v is discrete and L 1 K  is separable. 

Proof: Let w l ,  . . . , of be representatives of a basis of A ( K  and let 
no, . . . , ne-l E L* be elements the values of which represent the various 
cosets in w ( L * ) / v ( K * )  (the finiteness of e will be a consequence of what 
follows). If v  is discrete, we may choose for instance xi = ni . We show that 
thk elements 

w i n ; ,  j = l ,  . . . ,  f ,  i = O  , . . . ,  e - 1 ,  

are linearly independent over K ,  and in the discrete case form even a basis 
of LIK.  Let 

with aij E K.  Assume that not all a;,, = 0. Then there exist nonzero sums 
f si = Cjzl  sip,, and each time that si # 0 we find w ( s i )  E v ( K  *). In 

6. Henselian Fields 15 1 

fact, dividing si by the coefficient ai, of minimum value, we get a linear 
combination of the w l ,  . . . , of with coefficients in the valuation ring o K 
one of which equals 1. This linear combination is + 0 mod 9, hence a unit, 
so that w(s;)  = w(ai,) E v ( K * ) .  

In the sum sinj ,  two nonzero summands must have the same value, 
say w(s ;n ; )  = ~ ( ~ j n j ) ,  i # j ,  because otherwise it could not be zero 
(observe that w ( x )  # w ( y )  + w ( x  + y) = min{w(s),  w(y)}). I t  follows that 

~ ( n i )  = w ( n j )  + ~ ( s j )  - w ( s ~ )  r ~ ( n j )  mod u ( K * ) ,  

a contradiction. This shows the linear independence of the wjn; .  In particular, 
we have ef 5 [ L  : K ] .  

Assume now that v ,  and thus also w ,  is discrete and let l7 be a prime 
element in the valuation ring 0 of w .  We consider the o-module 

where ni  = l7' and show that M = 0, i.e., {ojni) is even an integral basis 
of O over 0 .  We put f 

J 

N = C ooj , 
j=l 

so that M = N + n N  +. . .+  n e - I N .  We find that 

O = N + I l C 3 ,  

because, for cr E 0 ,  we have cr - alwl + . . . + a f w f .  mod n u ,  a; E n. This 
implies 

so that 0 = M + pe = M + pC3. Since L ( K  is separable, (3 is a finitely 
generated o-module (see chap. I, (2.11)), and we conclude 0 = M from 
Nakayama's lemma (chap. I, 3 1 1 ,  exercise 7).  0 

Remark: We had already proved the identity [ L  : K ]  = ef in a somewhat 
different way in chap. I, (8.2), also in the case where v was discrete and 
L  I K separable. Both hypotheses are actually needed. But, strangely enough, 
the separability condition can be dropped once K  is complete with respect 
to the discrete valuation. In this case, one deduces the equality 0 = M in 
the above proof from 0 = M + p 0 ,  not by means of Nakayama's lemma, 
but rather like this: as pi M C M ,  we get successively 

for all v >_ 1,  and since {p"C?]"EN is a basis of neighbourhoods of zero in 0, 
M is dense in 0. Since c? is closed in K ,  (4.9) implies that M is closed in 0, 
so that M = 0. 
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Exercise 1. In a henselian field the zeroes of a polynomial are continuous functions 
of its coefficients. More precisely, one has: let f ( x )  E K [ x ]  be a monic polynomial 
of degree n and 

f ( x )  = n(.v - ai)"'l 
,=I 

its decomposition into linear factors, with mi 2 1, ai # a, for i # j. If the monic 
polynomial g(x)  of degree n has all coefficients sufficiently close to those of f ( s ) ,  
then it has r roots PI, . . . . B,. which approximate the al, . . . , a,, to any previously 
given precision. 

Exercise 2 (Krasner's Lemma). Let a E K be separable over K and let a = 
al. ...,a, be its conjugates over K.  If P E K is such that 

la-PI < la-al l  for i =2, . . . ,  n ,  

then one has K (a) 2 K (P). 

'~xercise 3. A field which is henselian with respect to two inequivalent valuations is 
separably closed (Theorem of EK. SCHMIDT). 

Exercise 4. A separably closed field K is henselian with respect to any 
nonarchimedean valuation. 

More generally, every valuation of K admits a unique extension to any purely 
inseparable extension L I K .  

1 Hint: If aP = a E K ,  one is forced to put w(a) = pv(a) .  

Exercise 5. Let K be a nonarchimedean valued field, o  the valuation ring, 
and p the maximal ideal. K is henselian if and only if every polynomial 
f ( x )  = xn + a,,-lxn-l + . . . + a. E o [ x ]  such that a. E p and a ,  $ p has a 
zero a  E p. 

,Hint: The Newton polygon. 
Remark: A local ring o with maximal ideal p is called henselian if Hensel's lemma 
in the sense of (6.7) holds for it. A characterization of these rings which is important 
in algebraic geometry is the following: 

A local ring o is henselian if and only if every finite commutative o-algebra A 
splits into a direct product A = n:=, A, of local rings A,. 

The proof is not straightforward, we refer to [103], chap. 1, $4, th. 4.2. 

5 7. Unramified and Tamely Ramified Extensions 

In this section we fix a base field K  which is henselian with respect to 
a nonarchimedean valuation v or I 1 .  As before, we denote the valuation 
ring, the maximal ideal and the residue class field by o ,  p , ~ ,  respectively. 
If LIK is an algebraic extension, then the corresponding invariants are 
labelled w,  0, Q, A, respectively. An especially important r6le among these 
extensions is played by the unramified extensions, which are defined as 
follows. 
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(7.1) Definition. A finite extension L  I K  is called unramified if' the 
extension A I K  of the residue class field is separable and one has 

[ L :  K] = [ A :  K]. 

An arbitrary algebraic extension L  I K  is called unramified if it is a union of 
finite unramified subextensions. 

Remark: This definition does not require K  to be henselian; it applies in 
all cases where v extends uniquely to L.  

(7.2) Proposition. Let L  I K  and K' 1 K  be two extensions inside an algebraic 
closure K and let L' = LK' .  Then one has 

L  I K  unramified L' I K' unramified. 

Each subextension of an unramified extension is unramified. 

Proof: The notations o, p, K ; o' ,  p', K ' ;  0, q, A ;  O', p, A' are self- 
explanatory. We may assume that LIK is finite. Then A ~ K  is also finite 
and, being separable, is therefore generated by a primitive element F, 
h = K(E). Let a, E 0 be a lifting, f (x) E o [ x ]  the minimal polynomial of cr 
and ,f(x) = f ( x )  mod p E K [ x ] .  Since 

one has L = K (a) and f (x) is the minimal polynomial of E over K .  

We thus have L' = K1(a). In order to prove that L'lK' is unramitied, 
let ~ ( x )  E o'rx] be the minimal polynomial of a over K'  and S ( \ )  = 
g ( x )  mod p' E ~ ' 1 x 1 .  Being a factor of f (x), g(x)  is separable and hence 
irreducible over K',  because otherwise g ( x )  is reducible by Hensel's lemma. 
We obtain 

[A' : K ' ]  5 [L' : K'] = deg(g) = deg(g) = [K'(z) : K'] 5 [A' : K ' ] .  

This implies [L' : K']  = [A' : K'], i.e., L'I K' is unramified. 

If L ]  K  is a subextension of the unramified extension L'I K, then i t  follows 
from what we have just proved that L'IL is unramified. Hence so is L I K ,  by 
the formula for the degree. 

(7.3) Corollary. The composite of two unrarnified extensions of K is again 
unramified. 
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Proof: It suffices to show this for two finite extensions LI K and L 1 ) K .  
L ( K  is unramified, hence so is L  L'J L', by (7.2). This implies that L  L1l K is 
unramified as well because separability is transitive and the degrees of field 
'(and residue field) extensions are multiplicative. 0 

(7.4) Definition. Let L  1 K  be an algebraic extension. Then the composite 
T  I K  of all unramified subextensions is called the maximal unramified 
subextension of L  I K .  

(7.5) Proposition. The residue class field of T  is the separable closure 
of K in the residue class field extension ~ J K  of L  J K ,  whereas the value 
group of T  equals that of K .  

Proof: Let ho be the residue class field of T and assume CT E h  is 
separable over K .  We have to show that Z  E ho. Let f ( x )  E K [ X ]  be the 
minimal polynomial of C and f (x) E o [ x ]  a monic polynomial such that 
7 = f mod p. Then f ( x )  is irreducible and by Hensel's lemma has a root a 
in L  such that Z  = a mod p, i.e., [ K ( a )  : K ]  = [ K ( Z )  : K ] .  This implies 
that K  (a )  I K  is unramified, so that K  ( a )  T ,  and thus Z  E ho. 

In order to prove w ( T * )  = v ( K * )  we may suppose LI K  to be finite. The 
claim then follows from 

The composite of all unramified extensions inside the algebraic closure K 
of K  is simply called the maximal unramified extension K,,IK of K  
(nr = 'non ramifike'). Its residue class field is the separable closure K s l ~ .  
K,, contains all roots of unity of order m not divisible by the characteristic 
of K because the separable polynomial xn' - 1 splits over K, and hence also 
over K,, , by Hensel's lemma. If K is a finite field, then the extension K,,. 1 K  
is even generated by these roots of unity because they generate 7 ,J  K .  

If the characteristic p  = char(x) of the residue class field is positive, then 
one has the following weaker notion accompanying that of an unramified 
extension. 

(7.6) Definition. An algebraic extension L  J K  is called tamely ramified 
if the extension A ~ K  of the residue class fields is separable and one has 
( [ L  : TI ,  p )  = 1 .  In the infinite case this latter condition is taken to mean 
that the degree of each finite subextension of L IT is prime to p. 
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As before, in this definition K need not be henselian. We apply it whenever 
the valuation v of K  has a unique extension to L. When the fundamental 
identity ef = [ L  : K ]  holds and A(K is separable, to say that the extension 
is unramified, resp. tamely ramified, simply amounts to saying that e = 1, 
resp. (e ,  p )  = I. 

(7.7) Proposition. A finite extension L 1 K  is tamely ramified if and only if' 
the ex tension L  I T is generated by radicals 

L  pi,, . . . ,  mx) 
such that (mi, p )  = 1. In this case the fundamental identity always holds: 

Proof: We may assume that K  = T  because LI K  is obviously tamely 
ramified if and only if LIT is tamely ramified, and if this is the case, thcn 
IT : K ]  = [ h  : K ]  = f .  Let L J K  be tamely ramified, so that K = h mi 
( [ L  : K ] ,  p )  = 1. We first show that e = I implies L  = K .  Let a E L \ K .  
Writing a = a!, . . . , a,, for the conjugates and u = Tr(a )  = Ci'j;, a; ,  
the element p = a - $a  E L\K has trace Tr(p )  = C:'-, pi = 0. Since 
v ( K * )  = w ( L * ) ,  we may choose a h  E K *  such that v (h )  = 71)(B) and obtain 
a un i t  a = P / h  E L\K with trace x:ll E; = 0. But the conjugates c.; have 
the same residue classes Ei in A, because h  = K .  Hence 0 = Cyl, E ;  = mB, 
and thus m r 0 mod p ,  which contradicts p + [ L  : K ]  and ml[L : K]. 

NOW let wl, . . . , or E w ( L * )  be a system of representatives for the 
quotient w ( L * ) / v ( K * )  and mi the order of wi mod u ( K * ) .  Since 
w ( L * )  = ~ V ( N L , K ( L * ) )  C ; V ( K * ) ,  where n = [L : K ] ,  we have m ; J n ,  so 
that (mi,  p )  = 1. Let yi E L* be an element such that w  ( y ; )  = w; . Then 
w ( ~ : ' )  = v ( c ; ) ,  with c; E K ,  so that y,m' = C ; E ;  for some unit z; in  L.  
As A. = K we may write E;  = biui, where 6; E K and u; is a unit i n  L 
which tends to 1 in A .  By Hensel's lemma the equation xnli - u; = 0 has a 
solution pi E L .  Putting a; = y;@,rl E L ,  we find w ( a ; )  = w; and 

where ai = cihi E K ,  i.e., we have ~ ( ~ f i ,  . . . , "'&) _C L.  By 
construction, both fields have the same value group and the same residue 
class field. So, by what we proved first, we have 

The inequality [ L  : K ]  5 e and thus, in view of (6.8), the equality 
[ L  : K ]  = e ,  now follows by induction on r-. If L I  = K ( " ' m ) ,  then 
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wl  E w ( L ; )  yields 

e ( L I I K )  = ( w ( L ; )  : v ( K * ) )  2 r n ~  2 [ L I  : Kl.  

Also e(L  I L  1 )  1 [ L  : L  I ] ,  because w ( L * ) / w  ( L  7 )  is generated by the residue 
classes of W*, . . . . w,. . Thus 

e  = e ( L ( L l ) e ( L l l K )  2 [ L  : L I ] [ L I  : K ]  = [ L  : K l .  

In order to prove that an extension L  = K ( " ' f i ,  . . . , "I-) is tamely 
ramified, it suffices to look at the case r = 1, i.e., L  = K("*), 
where (m,  p )  = I. The general case then follows by induction. We may 
assume without loss of generality that K is separably closed. This is seen 
by passing to the maximal unramified extension K1 = K,,., which has the 
separable closure K I  = K, of K as its residue class field. We obtain the 
following diagram 

L -  L 1 

I 
K -  

I 
K I  3 

where L  n K1 = T  = K and L1 = K I ( m f i ) .  If now L l l K l  is tamely 
ramified, then h1 I K ,  is separable; hence hl  = K I  and p  { [ L  : K 1 = 
.[L : K ]  = [ L  : T I ,  i.e., L IK is also tamely ramified. 

Let a  = m&. We may assume that [ L  : K ]  = [K("*) : K ]  = nz. 
In fact, if d  is the greatest divisor of m such that a = ard for some 

a' E K*,  and if m' = m l d ,  then a  = m& and [ K ( ~ & )  : K ]  = m'. Now 
let n = ord(w(a) mod v (K*) ) .  Since m w ( a )  = v(a)  E v ( K * ) ,  we have 
m = dn. Consequently w ( a n )  = v(b) ,  b  E K*,  and v (bd )  = w ( a m )  = v ( a ) ;  
thus am = a = &bd for some unit E in K .  As (d, p)  = 1,  the equation 
xd - E = 0 splits over the separably closed residue field K into distinct linear 
'factors, hence also over K by Hensel's lemma. Therefore am = bd = a 
for some new b  E K*. Since xm - a is irreducible, we have d = 1 ,  and 
hence m = n. Thus 

e ? n = [ L : K ] > e f  > e ,  

in other words f = 1,  and so h = K and p  4 n = e .  This shows that L  1 K is 
tamely ramified. 0 

(7.8) Corollary. Let L  I K  and K ' [ K  be two extensions inside the algebraic 
closure K I  K ,  and L' = L  Kt .  Then we have: 

L  I K  tamely ramified =$ L' 1 K' tamely ramified. 

Every subextension of a tamely ramified extension is tamely ramified. 

Proof: We may assume without loss of generality that L  1 K is finite and 
consider the diagram 

The inclusion T G T' follows from (7.2). If L ( K  is tamely ramified, 
then L  = T ( m f i ,  . . . , " w ) ,  ( m ; , p )  = 1 ;  hence L' = LK' = LT' = 
T 1 ( " ' f i ,  . . . , " I s ) ,  so that L'JK' is also tamely ramified, by (7.7). 

The claim concerning the subextensions follows exactly as in the 
unramified case. n 

(7.9) Corollary. The composite of tamely ramified extensions is tamely 
ramified. 

Proof: This follows from (7.8), exactly as (7.3) followed from (7.2) in the 
unramified case. 0 

(7.10) Definition. Let L J K  be an algebraic extension. Then the compos- 
ite V 1 K  of all tamely ramified subextensions is called the maximal tamely 
ramified subextension of L  ( K .  

Let w ( L * ) ( P )  denote the subgroup of all elements w E w(L*)  such 
that mw E v ( K * )  for some m satisfying ( m ,  p) = 1 .  The quotient group 
W ( L * ) ( P ) / V ( K * )  then consists of all elements of w ( L * ) / v ( K * )  whose order 
is prime to p. 

(7.11) Proposition. The maximal tamely ramified subextension V 1 K of' 
L  I K  has value group w ( V * )  = w(L*)( / ' )  and residue class field equal to 111c 
separable closure h, of K in h 1 K .  

Proof: We may restrict to the case of a finite extension LI K .  By 
passing from K to the maximal unramified subextension, we may assume 
by (7.5) that A, = K .  As p  4 e ( V I K )  = #w(V*) / v (K*) ,  we certainly 
have w(V*)  w(L*) ( / ' ) .  Conversely we find, as in the proof of (7.7), for 
every w E w(L*) (P)  a radical a  = m& E L  such that a E K ,  ( m ,  p )  = 1 and 
w ( a )  = W ,  so that one has a  E V ,  and w E w ( V * ) .  0 
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The results obtaincd in this section may be summarized i n  thc following 
picture : 

If LIK is finite and e = e'pa where (e', p)  = 1, then [V : TI = e'. The 
extension L I K is called totally (or purely) ramified if T = K ,  and wildly 
ramified if it is not tamely ramified, i.e., if V # L. 

Important Example: Consider the extension Qp({)lQp for a primitive 
n-th root of unity {. In the two cases (n, p)  = 1 and n = pS,  this extension 
behaves completely differently. Let us first look at the case (n, p)  = 1 and 
choose as our base field, instead of Qp,  any discretely valued complete field 
K with finite residue class field K = Fq, with q = pr.  

(7.12) Proposition. Let L = K ({), and let 01 o ,  resp. h IK, be the extension 
of valuation rings, resp. residue class fields, of L I K. Suppose that (n, p)  = 1. 
Then one has: 

(i) The extension L I K is unramified of degree f , where f is the smallest 
natural number such that q f  = 1 mod n. 

(ii) The Galois group G(L ( K )  is canonically isomorphic to G ( h 1 ~ )  and is 
generated by the automorphism (o : { H ( 4 .  

(iii) 0 = o[{]. 

Proof: (i) If @(X) is the minimal polynomial of < over K ,  then the 
reduction $(x) is the minimal polynomial of = { mod over K.  
Indeed, being a divisor of Xn - 7 ,  ?(x) is separable and by Hensel's 
lemma cannot split into factors. 4 and $ have the same degree, so that 
,[L : K] = [K(J) : K ]  = [A : K] =: f .  LIK is therefore unramified. The 
polynomial Xn - 1 splits over 0 and thus (because (n, p) = 1) over h into 
distinct linear factors, so that h = IFq/ contains the group pn of n-th roots 
of unity and is generated by it. Consequently f is the smallest number such 
that pn 5 F;,, i.e., such that n 1 q f  - 1. This shows (i). (ii) results trivially 
from this. 
(iii) Since L 1 K is unramified, we have pU = y, and since 1, {, . . . , (f-1 
!represents a basis of A I K ,  we have 0 = o[{] + pU, and 0 = o[(] by 
Nakayama's lemma. 0 

(7.13) I'roposition. Let { be a primitive p"' -th root of' unity. 711c11 uric Itus: 

(i) Qp (5) lQp is totally ramified of degree (o(pm) = ( p  - I ) ~ " ' - ' .  

(3 G(Ql,(OIQl,) 2 @/1f1Z)*. 
(iii) Zp [(I is the valuation ring of Qp ({). 

(iv) 1 - { is a prime element of Zp[{] with norm p. 

Proof: 6 = {''"I-' is a primitive p-th root of unity, i.e., 

Denoting by 4 the polynomial on the left, { - 1 is a root of the equation 
@(X + 1) = 0. But this is irreducible because it satisfies Eisenstein's criterion: 
@ ( I )  = p and $(X) E (xpm - l)/(xpm-I - 1) = (X - 1)~"'- '(p-I) mod p.  
It follows that [Qp({) : Qp] = (o(pm). The canonical injection G(QI,(()lQ,,) 
-+ (Z/pmZ)*, a I+ n(a),  where a{ = { n ( a ) ,  is therefore bijective, sincc 
both groups have order (o(pn'). Thus 

N Q , ~ ~ , I Q , ( ~  - = nu - a{) = = p .  
u 

Writing w for the extension of the normalized valuation up of QI,, we find 
furthermore that (o(pm)w({ - 1) = vp(p) = 1, i.e., QP(()IQp is totally 
ramified and ( - 1 is a prime element of Q,({). As in the proof of (6.8), 
it follows that Zp[{ - 11 = Zp[{] is the valuation ring of Qp(<) .  This 
concludes the proof. 0 

If {, is a primitive n-th root of unity and n = n'pn', with (n', p) = I ,  
then propositions (7.12) and (7.13) yield the following result for the maximal 
unramified and the maximal tamely ramified extension: 

Exercise 1. The maximal unramified extension of Q, is obtained by adjoining all 
roots of unity of order prime to p. 

Exercise 2. Let K be henselian and K,,IK the maximal unramified extension. 
Show that the subextensions of K,,(K correspond 1-1 to the subextensions of the 
separable closure K,$ I K .  
Exercise 3. Let L I K be totally and tamely ramified, and let A ,  resp. f ,  be the value 
group of L ,  resp. K .  Show that the intermediate fields of L ( K  correspond 1-1 to 
the subgroups of A/f. 
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§ 8. Extensions of Valuations 

Having seen that the henselian valuations extend uniquely to algebraic 
extensions we will now study the question of how a valuation v of a 
field K  extends to an algebraic extension in general. So let v be an arbitrary 
archimedean or nonarchimedean valuation. There is a little discrepancy in 

, notation here, because archimedean valuations manifest themselves only as 
absolute values while the letter v has hitherto been used for nonarchimedean 
exponential valuations. In spite of this, it will prove advantageous, and agrees 
with current usage, to employ the letter v simultaneously for both types of 
valuations, to denote the corresponding multiplicative valuation in both cases 
by I 1 ,  and the completion by K,. Where confusion lurks, we will supply 
clarifying remarks. 

For every valuation v of K we consider the completion K ,  and an 
algebraic closure K,  of K,. The canonical extension of v to K ,  is again 
denoted by v and the unique extension of this latter valuation to K,  by C. 

, Let L  ( K  be an algebraic extension. Choosing a K -embedding 

we obtain by restriction of C to r L  an extension 

of the valuation v to L.  In other words, if v ,  resp. 5, are given by the absolute 
values ( 1 ,, resp. ( 1 c ,  on K ,  K,, resp. K, ,  where I 1 ,  extends precisely the 
absolute value ( 1 ,  of K,, then we obtain on L  the multiplicative valuation 

The mapping t : L + K, is obviously continuous with respect to this 
valuation. It extends in a unique way to a continuous K -embedding 

t : L ,  --+ K,, 

where, in the case of an infinite extension L I K ,  L ,  does not mean the 
completion of L  with respect to w ,  but the union L ,  = Ui Liw of the 
completions L;,  of all finite subextensions L; 1 K of L I K .  This union 
will be henceforth called the localization of L  with respect to 711. When 
[L : K ]  < oo, r is given by the rule 

x = w - lim x,, 
11"Cc 

T X  := C - lim tx, ,  , 
I I + O  

where  is a w-Cauchy sequence in L ,  and hence { t ~ ~ ) , , ~  a C-Cauchy 
sequence in K,. Note here that the sequence tx,, converges in the finite 
complete extension t L  . K ,  of K,. We consider the diagram of fields 

The canonical extension of the valuation w from L  to L,,, is precisely the 
unique extension of the valuation v from K, to the extension L,,, I K,,. We 
have 

L ,  = LK,, 

because if LIK is finite, then the field L K ,  L ,  is complete by (4.8), 
contains the field L  and therefore has to be its completion. If L, ,  I K ,  has 
degree n < oo, then, by (4.8), the absolute values corresponding to v and w 
satisfy the relation 

1x1, = ji-. 
The field diagram (*) is of central importance for algebraic number theory. I t  
shows the passage from the "global extension" L  I K to the "local extension" 
L,, ( K ,  and thus represents one of the most important methods of algebraic 
number theory, the so-called local-to-global principle. This terminology 
arises from the case of a function field K ,  for example K = @ ( t ) ,  where the 
elements of the extension L  are algebraic functions on a Riemann surface, 
hence on a global object, whereas passing to K ,  and L ,  signifies looking at 
power series expansions, i.e., the local study of functions. The diagram (*) 
thus expresses in an abstract manner our original goal, to provide methods 
of function theory for use in the theory of numbers by means of valuations. 

We saw that every K-embedding r : L  -+ K,  gave us ~ u i  exlension 
w = C o t of v. For every automorphism a E G(K,(K, )  of K,  over K , ,  we 
obtain with the composite 

a new K -embedding t' = a o t of L. It will be said to be cw?jil,qnrc to s 

over K,. The following result gives us a complete description of the possible 
extensions of u to L. 

(8.1) Extension Theorem. Let L ( K  be an algebraic field extension and v a 
valuation of K. Then one has: 
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(i) Every extension w of the valuation v arises as the composite w = i7 o s 
for some K -embedding r : L + K,. 

(ii) Two extensions 5 o s and 5 o r' are equal if and only if s and r '  are 
conjugate over K ,, . 

Proof: (i) Let w be an extension of v to L and L,,, the localization of 
the canonical valuation, which is again denoted by w.  This is the unique 
extension of the valuation v from K, to L,. Choosing any K,-embedding 
5 : L,,, + K , ,  the valuation i7 o s has to coincide with w. The restriction 
of r to L is therefore a K -embedding r : L + K, such that w = 5 o t .  

(ii) Let s and a o s ,  with a E G (K, 1 K,), be two embeddings of L conjugate 
over K,. Since 5 is the only extension of the valuation v from K, to K,, 
one has 5 = iT o a ,  and thus 5 o t = i7 o (a  o r) .  The extensions induced to L 
by t and by a o r are therefore the same. 

Conversely, let r ,  t' : L ++ K, be two K-embeddings such that 
5 o t = 5 o r'. Let a : r L  + t 'L  be the K -isomorphism a = t' o t - ' .  
We can extend a to a K,-isomorphism 

Indeed, r L  is dense in t L  . K,, so every element x E t L  . K, can be written 
as a limit 

x = lim rx, 
n+bO 

for some sequence x, which belongs to a finite subextension of L. As 
i7 o r = i7 o r', the sequence r'x,, = arx,,  converges to an element 

a x  := lim a r x ,  
! 17 + 00 

in r'L . K,. Clearly the correspondence x H a x  does not depend on the 
choice of a sequence {x,}, and yields an isomorphism r L  . K, -% T'L . K, 
which leaves K,, fixed. Extending a to a K,,-automorphism ii E G(K,,J  K,,) 
gives r '  = d o r ,  so that r and t' are indeed conjugate over K,. 0 

Those who prefer to be given an extension L ( K  by an algebraic equation 
f (X) = 0 will appreciate the following concrete variant of the above 
extension theorem. 

Let L = K (a) be generated by the zero a of an irreducible polynomial 
f (X) E K[X] and let 
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be the decomposition o f f  (X)  into irreducible factors f l  (X), . . . , f ; .  (X) over 
the completion K,. Of course, the m; are one if f is separable. The K - 
embeddings r : L -+ K, are then given by the zeroes /3 of f (X) which lie 
in K,,: 

~ : L - - - + K , ,  r ( a ) = / 3 .  

Two embeddings r and r '  are conjugate over K, if and only if the zeroes s(cr) 
and r f ( a )  are conjugate over K , ,  i.e., if they are zeroes of the same irreducible 
factor fi. With (8.1), this gives the 

(8.2) Proposition. Suppose the extension L I K is generated by the zero cr 
of the irreducible polynomial f (X) E K [XI. 

Then the valuations wl, . . . , wr extending v to L correspond 1-1 to the 
irreducible factors f i  , . . . , fr in the decomposition 

f (XI = f~ (XIm' . . . fr(XImr 

of f over the completion K,. 

The extended valuation wi is explicitly obtained from the factor f ;  as 
follows: let a; E K, be a zero of f; and let 

r ; : L - + K , ,  at-ta; ,  

be the corresponding K -embedding of L into K,. Then one has 

t; extends to an isomorphism 

r; : L,, 7 K,(a;) 

on the completion L,,,, of L with respect to w,  

Let LI K be again an arbitrary finite extension. We will write u I i 1  1 0  

indicatc that u) is an extension of the valuation v of' K to L .  Thc inclu\ions 
L c, L, induce homomorphisms L @K K, + L, via a @ h n ah ,  and 
hence a canonical homomorphism 

To begin with, the tensor product is taken in the sense of vector spaces, i.e., the 
K -vector space L is lifted to a K,-vector space L@K K,. This latter, however, 
is in fact a K,-algebra, with the multiplication (a @ h)(al @ h') = aa '  @ hh', 
and cp is a homomorphism of K,-algebras. This homomorphism is the subject 
of the 
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(8.3) Proposition. If L I K is separable, then L € 3 ~  K, 2 nw ,, L W .  

Proof: Let a be a primitive element for LIK,  so that L = K (a),  and let 
f (X) E K [XI be its minimal polynomial. To every w 1 v ,  there corresponds an 
irreducible factor f,(X) E K,[X] of f (X), and in view of the separability, 
we have f (X) = nwl, f w  (X). Consider all the L, as embedded into an 
algebraic closure K, of K,, and denote by a,,, the image of a under L -+ L ,,,. 
Then we find L, = K,(a,) and J,(X) is the minimal polynomial of a, 
over K,. We now get a commutative diagram 

where the top arrow is an isomorphism by the Chinese remainder theorem. 
The arrow on the left is induced by X H a@ 1 and is an isomorphism because 
K[X]/(f) S K(a )  = L.  The arrow on the right is induced by X I+ a,,, 
and is an isomorphism because K,[X]/(f,) 2 KU(aw) = L,. Hence the 
bottom arrow is an isomorphism as well. 0 

(8.4) Corollary. If L 1 K is separable, then one has 

Proof: The first equation results from (8.3) since [L : K ]  = dimK (L) = 
dimK,(L @K K,). On both sides of the isomorphism 

let us consider the endomorphism: multiplication by a .  The characteristic 
polynomial of a on the K,-vector space L € 3 ~  K, is the same as that on the 
K -vector space L . Therefore 

char. polynomialL lK (a)  = n char. polynomialLw, K, (a) 
wlu  

This implies immediately the identities for the norm and the trace. 0 
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If v is a nonarchimedean valuation, then we define, as in the henselian 
case, the ramification index of an extension w ( v  by 

and the inertia degree by 

where A,, resp. K ,  is the residue class field of w,  resp. v. From (8.4) 
and (6.8), we obtain the fundamental identity of valuation theory: 

(8.5) Proposition. If v is discrete and L I K separable, then 

This proposition repeats what we have already seen in chap. 1. (8.3). 
working with the prime decomposition. If K is the field of fractions ol a 
Dedekind domain o, then to every nonzero prime ideal p of o is associated 
the p-adic valuation v,, of K ,  defined by vp(a) = u p ,  where ( a )  = np p " p  

(see chap. I, $11, p. 67). The valuation ring of v p  is the localization op. I f  0 
is the integral closure of o in L and if 

I 
is the prime decomposition of p in L,  then the valuations w, = ,, vu, , 
i = 1, . . . , r ,  are precisely the extensions of v = v p  to L, e; are the 
corresponding ramification indices and fi = [0/vi : o/p] the inertia 
degrees. The fundamental identity 

has thus been established in two different ways. The raison d'Ctre of valuation 
theory, however, is not to reformulate ideal-theoretic knowledge, but rather, 
as has been stressed earlier, to provide the possibility of passing from 
the extension L I K to the various completions L ,  I K, where much simpler 
arithmetic laws apply. Let us also emphasize once more that completions 
may always be replaced with henselizations. 

Exercise 1. Up to equivalence, the valuations of the field Q(*) are ~ iven  as 
follows. 

1 )  la + hz/JII = la + h f i l  and la + h&12 = la - h A l  are the archimedcan 
valuations. 
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2 )  If p = 2  or 5  or a prime number # 2 , 5  such that ( $) = - I ,  then there is 

exactly one extension of I 1, to Q ( & ) ,  namely 

' 3) If p is a prime number # 2.5 such that ( f )  = 1, then there are two 

extensions of 1, to Q ( & ) ,  namely 

l a + b & l p , = l a + b y l , ,  resp. l a + b & l p , = l a - b y ( , ,  

where y is a solution of .r2 - 5  = 0 in Q,,. 

Exercise 2. Determine the valuations of the field Q ( i )  of the Gaussian numbers 

Exercise 3. How many extensions to ~ ( z )  does the archimedean absolute value ( ( 
of Q admit? 

Exercise 4. Let L ( K  be a finite separable extension, o the valuation ring of a 
discrete valuation v and? its integral closure in L. If w J v  varies over the extensions 
of v to L and a,, resp. U,, , are the valuation rings of the completions K,, resp. L,, 
then one has 

o@& z n6,. 
wlu 

Exercise 5. How does proposition (8.2) relate to Dedekind's proposition, 
chap. I, (8.3)? 

Exercise 6. Let LIK be a finite field extension, v a nonarchimedean exponential 
valuation, and w an extension to L .  If U is the integral closure of the valuation ring 0 

of v in L ,  then the localization OV of 0 at the prime ideal = ( a  E 0 I w ( a )  > 0 )  
is the valuation ring of w. 

5 9. Galois Theory of Valuations 

, We now consider Galois extensions L  1 K  and study the effect of the Galois 
action on the extended valuations w  1 v. This leads to a direct generalization of 
"Hilbert's ramification theory" - see chap. I, $9 ,  where we studied, instead 
of valuations v ,  the prime ideals p and their decomposition p = . . . p,e' in 
Gplois extensions of algebraic number fields. The arguments stay the same, 
so we may be rather brief here. However, we formulate and prove all results 
for extensions that are not necessarily finite, using infinite Galois theory. The 
reader who happens not to know this theory should feel free to assume all 
extensions in this section to be finite. On the other hand, we treat infinite 
Galois theory also in chap. IV, $ 1  below. Its main result can be put in a 
nutshell like this: 

In the case of a Galois extension L  I K  of infinite degree, the main theorem 
of ordinary Galois theory, concerning the 1-1 correspondence between 
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the intermediate fields of L J K  and the subgroups of the Galois group 
G ( L  I K )  ceases to hold; there are more subgroups than intermediate fields. 
The correspondence can be salvaged, however, by considering a canonical 
topology on the group G ( L  1 K ) ,  the Krull topology. It is given by defining, 
for every a  E G ( L  1 K ) ,  as a basis of neighbourhoods the cosets a G ( L  I M),  
where MI K  varies over the finite Galois subextensions of L  I K.  G  ( L  ( K )  is 
thus turned into a compact, Hausdorff topological group. The main theorem 
of Galois theory then has to be modified in the infinite case by the condition 
that the intermediate fields of L ( K  correspond 1-1 to the closc~d subgroups 
of G ( L  I K ) .  Otherwise, everything goes through as in the finite case. So one 
tacitly restricts attention to closed subgroups, and accordingly to contir7uou.s 
homomorphisms of G  ( L  I K ) .  

So let L  I K  be an arbitrary, finite or infinite, Galois extension with Galois 
group G = G ( L J  K ) .  If v is an (archimedean or nonarchimedean) valuation 
of K  and w  an extension to L ,  then, for every a  E G ,  w  o  a  also extends v ,  
so that the group G acts on the set of extensions wlv. 

(9.1) Proposition. The group G  acts transitively on the set of exten- 
sions w l v ,  i.e., every two extensions are conjugate. 

Proof: Let w  and w' be two extensions of v  to L.  Suppose L ( K  is tinilc. 
If w  and w' are not conjugate, then the sets 

{ w o a l a ~ ~ }  and { w ' o a l a ~ ~ }  

would be disjoint. By the approximation theorem (3.4), we would be able to 
find an x  E L  such that 

Iaxlw < I and laxl,,f > 1 

for all a E G .  Thcn one would have for the norm cr = NLiK (x) = nu,(; n 

that la I,, = n, lax  I W  < 1 and likewise Jcr 1 ,  > 1 ,  a contradiction. 

If L  I K  is infinite, then we let MI K  vary over all finite Galois subcxlcn- 
sions and consider the sets X M  = ( a  E G  I w  o  (T ( M  = w'IM 1. They are 
nonempty, as we have just seen, and also closed because, for u E G \ X M  , 
the whole open neighbourhood a G ( L 1 M )  lies in the complement of X M .  
We have nM X M  # k4, because otherwise the compactness of G would yield 
a relation n : = ,  XMl  = !J with finitely many M,,  and this is a contradiction 
because if M = M I  . . . M,., then XM = n:=, X M , .  0 

(9.2) Definition. The decomposition group of an extension w of v  to L is 
defined by 

G ,  = G w ( L I K )  = [ a  E G(L1K)  ( w o a  = w }  . 
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I 

If v is a nonarchimedean valuation, then the decomposition group contains 
two further canonical subgroups 

GI11 2 1, 2 Rw, 

which are defined as follows. Let o, resp. 0, be the valuation ring, p ,  
resp. 'J3, the maximal ideal, and let K = alp, resp. h = O / Q ,  be the residue 
class field of v ,  resp. w. 

(9.3) Definition. The inertia group of w 1 v is defined by 

I w = I w ( L I K ) = { o ~ G w ~ a x ~ x m o d ~  forall X E O )  

and the ramification group by 

R w = R W ( L I K ) = { ~ € G w I  ~ ! : r l m o d ~  forall X E L * }  

Observe in this definition that, for a E G,, the identity w o o  = w implies 
that one always has a 0  = O and a x l x  E 0 ,  for all x E L*. 

The subgroups Gw, I,,, Rw of G = G ( L ( K ) ,  and in fact all canonical 
subgroups we will encounter in the sequel, are all closed in the Krull 
topology. The proof of this is routine in all cases. Let us just illustrate the 
model of the argument for the example of the decomposition group. 

Let a E G = G(LI K )  be an element which belongs to the closure of (3,. 
This means that, in every neighbourhood a G ( L  I M ) ,  there is some element 
a~ of Gw.  Here M ( K  varies over all finite Galois subextensions of L I K.  
Since aM E a G ( L  ( M ) ,  we have aM I M = a 1 and w o DM = w implies 
that w O a l M  = W O U M ) M  = wIM.  AS L is the union of all the M, we get 
w o a = w ,  so that a E G,. This shows that the subgroup G ,  is closed 
in G .  

The groups G w ,  I,, Rw carry very significant information about the 
behaviour of the valuation v of K as it is extended to L. But before going 
into this, we will treat the functorial properties of the groups G w ,  I,, R,. 

Consider two Galois extensions LIK and L'I K t  and a commutative 
diagram 

L 5 L' 

with homomorphisms t which will typically be inclusions. They induce a 
homomorphism 

r* : G(LI IK ' )  + G ( L I K ) ,  r* (ar )  = r- 'a 's .  

Observe here that, L 1 K being normal, the same is true of t L 1 t K ,  and thus 
one has a t t L  S r L ,  so that composing with t-' makes sense. 

Now let w'beavaluationof L', v ' =  w1lK/  and w = w ' o t ,  v = w l ~ .  
Then we have the 

(9.4) Proposition. t* : G ( L ' J K t )  + G ( L  1 K )  induces homomorphisms 

G,,+(Lw) -+ G ~ , ~ ( L I K ) ,  

lW'(L1lK') - l w  ( L I K ) ,  

RW!(L'(K1) + Rw(LIK) .  
In the latter two cases, v is assumed to be nonarchimedean. 

Proof: Let a' E G W / ( L 1 J  K t )  and a = t * ( a l ) .  If x E L ,  then one has 

(xlu>on = ( O X ( ,  = ( t - l a ' r ~ ~ ,  = I O ' T X ~ ~ I  = (TX~,,,J = I~lll , ,  

so that a E G,,(LIK). If a' E I,,~(L1IK') and x E 0, then 

W ( O X  - X )  = w(r - '  ( a ' t x  - r x ) )  = w1(a ' (7x)  - ( r x ) )  > 0 ,  

and a E I , , ,(LJK). If a' E R,, ,~(LtIK') and .u E L*, then 
a l r x  a ' r x  

w ( 7  - 1) = w(r- l (T  - 1)) = w'(- 7 x - 1 ) > 0 ,  

so that a E R,(LJK) .  U 

If the two homomorphisms t : L -+ L' and r  : K -+ K'  are 
isomorphisms, then the homomorphisms (9.4) are of course isomorphisms. 
In particular, in the case K = K', L = L', we find for each r  E G ( L  I K ) :  

Gwor = r-IG,t,  I  = - l W r  Rwor = r - l ~ ~ ' r ,  

i.e., the decomposition, inertia, and ramification groups of conjugate 
valuations are conjugate. 

Another special case arises from an intermediate field M of L JK by the 
diagram 

L = L 

I I 
K - M .  

t* then becomes the inclusion G ( L  1 M )  L) G ( L  I K ) ,  and we trivially get the 
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(9.5) Proposition. For the extensions K E M L, one has 

Gw(LlM) = Gw(L(K) n G ( L l M ) ,  

A particularly important special case of (9.4) occurs with the diagram 

which can be associated to any extension of valuations w 1 v of L I K . If L 1 K is 
infinite, then L, has to be read as the localization in the sense of $8 ,  p. 160. 
(This distinction is rendered superfluous if we consider, as we may perfectly 
well do, the henselization of L I K .) Since in the local extension L, (K, the 
extension of the valuation is unique, we denote the decomposition, inertia, 
and ramification groups simply by G(Lw 1 K,), I (L, I K,), R (L, 1 K,). In 
this case, the homomorphism r* is the restriction map 

and we have the 

(9.6) Proposition. Gw(L 1 K )  2 G(Lw I K,), 

Proof: The proposition derives from the fact that the decomposition group 
G,(LIK) consists precisely of those automorphisms a E G ( L ( K )  which 
are continuous with respect to the valuation w. Indeed, the continuity of the 
a E G, (L I K )  is clear. For an arbitrary continuous automorphism a ,  one has 

1x1, < 1 =+ bx lw  = l ~ l w o o  < 1 7  

because 1x1, < 1 means that xn  and hence also a x n  is a w-nullsequence, 
i.?., (ax( ,  < 1. By $ 3 ,  p. 117, this implies that w and w o a are equivalent, 
and hence in fact equal because wIK = w o a l ~ ,  so that a E Gw(LJK) .  

Since L is dense in L,, every a E Gw(LJK)  extends uniquely to a 
continuous K,-automorphism 8 of L, and it is clear that 8 E I (L, I K,), 
resp. 8 E R(L,IK,), if a E Iw(LIK), resp. a E Rw(LIK). This proves the 
bijectivity of the mappings in question in all three cases. 0 

The above proposition reduces the problems concerning a single valuation 
of K to the local situation. We identify the decomposition group G,,,(L I K )  
with the Galois group of L, 1 Ku and write 

Gw(LIK) = G(LwIKu), 

and similarly Iw(LIK) = I ( L w ( K u )  and R,(LJK) = R(L,,,(K,) 

We now explain the concrete meaning of the subgroups G,,,, I,,,. R,,, of  
G = G (L ( K) for the field extension L I K .  

The decomposition group G, consists - as was shown in the proof 
of (9.6) - of all automorphisms a E G that are continuous with respect 
to the valuation w. It controls the extension of v to L in a group-theoretic 
manner. Denoting by G,,\G the set of all right cosets G,,,a, by W,, the sct of 
extensions of v to L and choosing a fixed extension w, we obtain a bijection 

Gw\G 7 W,, G,a - wa 

In particular, the number #W, of extensions equals the index (G : G ,,). As 
mentioned already in chap. I, $9  - and left for the reader to verify - the 
decomposition group also describes the way a valuation v extends to an 
arbitrary separable extension L 1 K.  For this, we embed L ( K  into a Galois 
extension N I K ,  choose an extension w of v to N,  and put G = G (N ( K ) ,  
H = G(NJL) ,  Gw = G,(N(K), to get a bijection 

(9.7) Definition. The fixed field of G,, 

Z, = Z,(LIK) = { x  E L I a x  = x for all a E G,} , 

is called the decomposition field of w over K 

The r61e of the decomposition field in the extension L 1 K is described by 
the following proposition. 

(9.8) Proposition. 

(i) The restriction wz of w to Z, extends uniquely to L. 

( i i )  It' v is nonarchimedean, wz has the same residue class field and the 
same value group as v .  

(iii) Z, = L n K, (the intersection is taken inside L,,,). 
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Proof: (i) An arbitrary extension w' of wz to L is conjugate to w over Z,,; 
thus w' = w o a ,  for some a E G(LIZw) = G,, i.e., w' = w.  

(iii) The identity Z,,, = L r7 K,,  follows immediately from G,,,(L 1 K )  2 

G(LWIK"). 

(ii) Since K, has the same residue class field and the same value group as K , 
the same holds true for Z, = L n K,. 0 

The inertia group I, is defined only if w is a nonarchimedean valuation 
of L. It is the kernel of a canonical homomorphism of Gw.  For if 0 is 
the valuation ring of w and $&I the maximal ideal, then, since a 0  = 0 and 
ag = V, every a E G,, induces a K-automorphism 

of the residue class field A, and we obtain a homomorphism 

G, --, Aut, (A) 
I 

with kernel I,. 

(9.9) Proposition. The residue class field extension A ~ K  is normal, and we 
have an exact sequence 

Proof: In the case of a finite Galois extension, we have proved this already 
in chap. I, (9.4). In the infinite case A ~ K  is normal since L 1 K ,  and hence 
also AIK, is the union of the finite normal subextensions. In order to prove 
the surjectivity of f : G, + G (A IK) all one has to show is that f (G,) is 
dense in G(h IK) because f (G,), being the continuous image of a compact 
set, is compact and hence closed. Let 5 E G(A~K) and ZG(A),u) be a 
neighbourhood of a, where ~ I K  is a finite Galois subextension of A ( K .  We 
have to show that this neighbourhood contains an element of the image f ( r ) ,  
r E G,. Since Z, has the residue class field K ,  there exists a finite Galois 
sbbextension MI Z, of L I Z, whose residue class field M contains the field 
p. As G(M(Z,) + G ( M I K )  is surjective, the composite 

is also surjective, and if r E G, is mapped to 5 I,, then f (t) E aG(Al,u), 
as required. 0 

$9. Galois Theory of Valuations 

(9.10) Detinition. The fixed field of I,, 

T,, =T,(LIK)= { x  E L ( a x = x  forall a E I,,,], 

is called the inertia field of w over K.  

For the inertia field, (9.9) gives us the isomorphism 

G(TwIZ,) 2 G(AIK). 

It has the following significance for the extension L I K.  

(9.11) Proposition. T, IZ,, is the maximal unramilied subextensior~ o i L  I Z,,, .  

Proof: By (9.6), we may assume that K = Z, is henselian. Let TI K be the 
maximal unramified subextension of L I K.  It is Galois, since the conjugate 
extensions are also unramified. By (7.3, T has the residue class field A,, , and 
we have an isomorphism 

WTIK)  7 G(L , r l~ ) .  

Surjectivity follows from (9.9) and the injectivity from the fact that 7'1 K 
is unramified: every finite Galois subextension has the same degree as its 
residue class field extension. An element a E G(L I K )  therefore induces the 
identity on A,, i.e., on A, if and only if it belongs to G(L IT). Consequently, 
G(L1T) = I,,, hence T = T,,. 0 

If in particular K is a henselian field and I K its separable closure, then 
the inertia field of this extension is the maximal unramified extension T (K 
and has the separable closure K ,  ( K  as its residue class field. The isomorphism 

shows that the unramified extensions of K correspond 1-1 to the separable 
extensions of K .  

Like the inertia group, the ramification group R ,  is the kernel of a 
canonical homomorphism 

I, + x(LIK), 

where 
x(LIK) = Hom(A/T,A*), 
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where A = w(L*), and f = v(K*). If a E I,, then the associated 
homomorphism 

xD : A / f  -f h* 

is given as follows: for 6 = 6 mod f E A / T ,  choose an x E L* such that 1 
W(X) = 6 and put 

a x  
Xb (6) = - mod p. 

X 
I 

This definition is independent of the choice of the representative 6 E 6 and of 
x E L*. For if x' E L* is an element such that w(xl) = w(x) mod f ,  
then w(xf) = w(xa), a E K*. Then x' = xau,  u E O*, and since 
a u l u  = 1 mod !Q (because a E Iv), one gets ax'/xl = a x l x  mod 9. 1 

One sees immediately that mapping a H x, is a homomorphism 
I, -t x(L I K )  with kernel R,. 

I 

(9.12) Proposition. R, is the unique p-Sylow subgroup of I,,. 1 

Remark: If L I K is a finite extension, then it is clear what this means. In the 
infinite case it has to be understood in the sense of profinite groups, i.e., all 
finite quotient groups of R,, resp. I,/R,, by closed normal subgroups have 
p-power order, resp. an order prime to p. In order to understand this better, 
we refer the reader to chap. IV, $2, exercise 3-5. 

Proof of (9.12): By (9.6). we may assume that K is henselian. We restrict to 
the case where L (K  is a finite extension. The infinite case of the proposition 
follows formally from this. 

: If R, were not a p-group, then we would find an element a E Rw of 
prime order e f p. Let K' be the fixed field of a and K'  its residue class 
field. We show that K' = h. Since Rw G I,, we have that T G K'. Thus 
A, g K', SO that ~ I K '  is purely inseparable and of p-power degree. On the 
other hand, the degree has to be a power of e ,  for if (Y E h and if a, E L is 
a lifting of (Y, and f (x) E K1[x] is the minimal polynomial of a! over K', 
then f (x) = g(x)"', where g(x) E K'[x] is the minimal polynomial of (2. 

over K', which has degree either 1 or e ,  as this is so for f (x). Thus we 
have indeed K' = h, so that LIK' is tamely ramified, and by (7.7) is of the 
form L = Kf(a!) with a! = s, a E K'. It follows that aa! = {a!, with a 
primitive e-th root of unity { E Kt. Since a E R,, we have on the other hand 
aala = { E 1 mod p, a contradiction. This proves that R, is a p-group. 

Since p = char@), the elements in h* have order prime to p,  provided 
they are of finite order. The group x (L I K )  = Hom(A/T, A*) therefore has 
order prime to p. This also applies to the group I,/R, g x (L JK) ,  so that 
R,, is indeed the unique p-Sylow subgroup. 0 

5 9. Galois Theory of Valuations 

(9.13) Definition. The fixed field of Rw, 

V w = V w ( L I K ) = { x ~ ~ I a x = x  forall U E R , , } ,  

is called the ramification field of w over K. 

(9.14) Proposition. V, IZ, is the maximal tamely ramified subextension 
of L IZ,,. 

Proof: By (9.6) and the fact that the value group and residue class field do 
not change, we may assume that K = Z, is henselian. Let V, be the fixed 
field of R ,,,. Since R,,, is the p-Sylow subgroup of I ,,,, V,,, is the union of 
all finite Galois subextensions of LIT of degree prime to p. Therefore V,,! 
contains the maximal tamely ramified extension V of T (and thus of Z,,). 
Since the degree of each finite subextension MI V of V, I V is not divisible 
by p,  the residue field extension of MI V is separable (see the argurncnt i n  
the proof of (9.12)). Therefore V, I V is tamely ramified, and V, = V . 

(9.15) Corollary. We have the exact sequence 

Proof: By (9.6) we may assume, as we have already done several times 
before, that K is henselian. We restrict to considering the case of a finite 
extension L I K. In the infinite case the proof follows as in (9.9). We have 
already seen that R, is the kernel of the arrow on the right. It therefore 
suffices to show that 

(I," : Rw) = [Vw : T,,!] = #x(LIK).  

As Tw I K is the maximal unramified subextension of V, I K ,  V,, IT,,, has 
inertia degree 1. Thus, by (7.7), 

Furthermore, by ( 7 3 ,  we have w(Ti) = v(K*) =: f ,  and putting 
A = w(L*), we see that w(V,t)/v(K*) is the subgroup A(P)/T of A / f  
consisting of all elements of order prime to p ,  where p =  char(^). Thus 

[V, : T,] = # ( A ( P ) / ~ ) .  

Since h* has no elements of order divisible by p,  we have on the other hand 
that 

x (L 1 K) = Hom(A/r ,  h*) = ~ o r n ( ~ ( " ' / f ,  A * ) .  
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But (7.7) implies that A* contains the m-th roots of unity whenever A ( P ) / ~  
contains an element of order nl, because then there is a Galois extension 
generated by radicals T,("*)IT, of degree m. This shows that x ( L  I K )  is 
the Pontryagin dual of the group A ( P ) / ~  so that indeed 

[V,,, : T,,,] = # ( A ' ~ ' ' / T )  = # x ( L  I K ) .  U 
I 

Exercise 1. Let K  be a henselian field, L ( K  a tamely ramified Galois extension, 
G = G(LIK) ,  I = I(L1K) and f = GI1 = G(AIK). Then I  is abelian and becomes 
a r-module by letting 5 = a 1  E f operate on I via r t+ goto-'. 

Show that there is a canonical isomorphism I  2 x(L1K) of f -modules. Show 
furthermore that every tamely ramified extension can be embedded into a tamely 
ramified extension LI K ,  such that G is the semi-direct product of x(LI K )  with 
G ( h 1 ~ ) :  G 2 x ( L J K )  G ( h 1 ~ ) .  

Hint: Use (7.7). 

Exercise 2. The maximal tamely ramified abelian extension V of Q, is finite over 
the maximal unramified abelian extension T of Q,. 

Exercise 3. Show that the maximal unramified extension of the power series field 
K  = IF,(([)) is given by T = @,((t)), where F,, is the algebraic closure of F,,, and 
the maximal tamely ramified extension by ~((3 I m E N, (m, p )  = 1)). 

Exercise 4. Let v be a nonarchimedean valuation of the field K and let i7 be an 
extension to the separable closure K  of K.  Then the decomposition field Z, of i7 
over K  is isomorphic to the henselization of K with respect to v ,  in the sense of 36, 
p. 143. 

5 10. Higher Ramification Groups 

The inertia group and the ramification group inside the Galois group of 
valued fields are only the first terms in a whole series of subgroups that we 
are now going to study. We assume that L ( K  is a finite Galois extension 
and that v~ is a discrete normalized valuation of K ,  with positive residue 
field characteristic p, which admits a unique extension w to L. We denote 
by v ~  = ew the associated normalized valuation of L. 

(10.1) Definition. For every real number s 2 -1 we define the s - th  
ramification group of L 1 K by 

, G s = G s ( L I K ) = { a ~ G I v L ( a a - a ) ~ s + l f o r a l l a ~ C ? } .  
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Clearly, G - = G ,  Go is the inertia group I = I ( L  I K ) ,  and G I the 
ramitication group R = R ( L ( K )  which have already been defined in (9.3). 
As 

and T O  = (3, the ramification groups form a chain 

of normal subgroups of G .  The quotients of this chain satisfy the 

(10.2) Proposition. Let r r ~  E 0 be a prime element of L. For every integer 
s 1 0, the mapping 

( s )  U(s+l) ( J X L  Gs/Gs+1-+UL / L 7 C J W - ~  
n L  

is an injective homomorphism which is independent of the prime element n~ . 
(0) - 0* Here O F )  denotes the s-th group of principal units of L ,  i.e., U L  - 

and ( i f )  = l + n L 0 ,  fors  2 I .  

We leave the elementary proof to the reader. Observe that one has 
u ~ ' / u ~ "  2 A* and u ~ ) / L I ~ + "  2 A. for s 2 I .  The factors G,s /G,s+~ are 
therefore abelian groups of exponent p, for s > 1,  and of order prime to p ,  
for s = 0. In particular, we find again that the ramification group I-? = G 1 is 
the unique p-Sylow subgroup in the inertia group I = Go. 

We now study the behaviour of the higher ramification groups under 
change of fields. If only the base field K  is changed, then we get directly 
from the definition of the ramification groups the following generalization 
of (9.5). 

(10.3) Proposition. If K' is itn intermediate field of 'L  I K ,  lhen onc h;rs, /i)r 
all s 2 - 1, that 

Gs(LIK1) = G,(LIK)  n G(LIK1) .  

Matters become much more complicated when we pass from L I K to a 
Galois subextension L'I K .  It is true that the ramification groups of L I K are 
mapped under G (L ( K )  -+ G  (L'I K )  into the ramification groups of L' 1 K , 
but the indexing changes. For the precise description of the situation we 
need some preparation. We will assume for the sequel that the residue field 
extension A ( K  of L ( K  is separab le .  
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(10.4) Lemma. Tllc ring cxtcnsion 0 ol'o is r~~or~ogcr~oirs, i.c., 111crc csis~s 
an x  E 0 such that 0 = o [ x ] .  

Proof: As the residue field extension AIK is separable by assumption, it 
admits a primitive element x. Let f  ( X )  E o [ X ]  be a lifting of the minimal 
polynomial f ( ~ )  of .T. Then there is a representative x  E 0 of x such that 
~r = f  ( x )  is a prime element of 0. Indeed, if x  is an arbitrary representative, 
then we certainly have v ~ (  f  ( x ) )  2 1 because T(2) = 0. If x  itself is not as 
required, i.e., if v L ( f  ( x ) )  1 2 ,  the representative s + ITL will do. In fact, 
from Taylor's formula 

f ( x + n ~ ) =  f ( x ) +  f ' ( x ) n ~ + b ~ r ! ,  h ~ 0 ,  

we obtain vL ( f  ( x  + n ~ ) )  = 1 since f  ' ( x )  E 0*, because J'(2) # 0. In the 
proof of (6.8), we saw that the 

. . 
x J n i = x ~ f ( x ) ' ,  j = O  , . . . ,  f  - 1 ,  i = O  , . . . ,  c - 1 ,  

form an integral basis of 0 over o. Hence indeed 0 = o [ x ] .  

For every a  E G  we now put 

~ L I K ( ~ )  =  ax - - X I ,  

where (3 = o [ x ] .  This definition does not depend on the choice of the 
generator x  and we may write 

G,(LIK) = { a  E G  ( i ~ ( ~ ( a )  L s  + I } .  

Passing to a Galois subextension L'I K of L  I K  , the numbers i L I  ( a )  obey 
the following rule. 

(10.5) Proposition. I f  e' = ~ L I L ~  is the ramification index of L  I L', then 

Proof: For a' = 1 both sides are infinite. Let a' # 1, and let O = o [ x ]  and 
0' = o [ y ] ,  with 0 '  the valuation ring of L'. By definition, we have 

e1iLt IK(a ' )  = vL(a l y  - y ) ,  i L I ~ ( a )  = vL(ax  - x ) .  

We choose a fixed a  E G = G ( L  ( K )  such that a  1 L t  = a'. The other 
elements of G  with image a' in G' = G ( L I I K )  are then given by a t ,  
t E H = G(L  IL'). It therefore suffices to show that the elements 

, a = a y - y  and b =  n ( a t x - x )  
T E H  

generate the same ideal in (3. 

jl 10. Higher Ramification Groups 
! 

Lcl j ' ( X )  E O'IX 1 bc rhc minimal polynomial of .v ovcr L'. 'flic~l 
f  (X)  = n T E H ( X  - T X ) .  Letting a  act on the coefficients of f ,  we get the 
polynomial ( a  f  ) ( X )  = n,,"(X - a t x ) .  The coefficients of a  f - f are all 
divisible by a = a y  - y. Hence a divides ( a f ) ( x )  - f  (x) = f h. 

To show that conversely b  is a divisor of a ,  we write y  as a polynomial 
in x  with coefficients in o ,  y = g(x) .  As x  is a zero of the polynomial 
g ( X )  - y  E O 1 [ X ] ,  we have 

Letting (T operate on the coefficients of both sides and then substiluling 
X = x yields y - a y  = ( a f ) ( x ) ( u h ) ( x )  = f h ( a h ) ( x ) ,  i.e., h  divides a .  0 

We now want to show that the ramification group G,, (LI K )  is mapped 
onto the ramification group Gt(L1  I K )  by the projection 

where t is given by the function q ~  I K  : [- 1 ,  co) -+ [- I ,  co), 

Here (Go : Gr) is meant to denote the inverse (G, : Go)-' when 
- l i x ~ O , i . e . , s i m p l y l , i f - 1  < x i O . F o r O < m i s i r n + l , m  E N ,  
we have explicitly 

The function ~ L I K  can be expressed in terms of the numbers iLi,q ( a )  as 
follows: 

1 (10.6) Proposition. ~ L I K  ( s )  = R, EoEc min( i L I K  (0).  s  + 1 ) - 1. 

Proof: Let O(s) be the function on the right-hand side. It is continuous and 
piecewise linear. One has O(0) = ~ L I K  (0)  = 0 ,  and if m  2 - 1 is an integer 
andm < s  < m +  1,  then 
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(10.7) Theorem (HERBRAND). Let L'I K  be a Galois subextension of L  I K  1 
and H  = G ( L  I L'). Then one has 

G s ( L I K ) H / H  = G t ( L t I K )  where t  = V L ~ L I ( S ) .  
I 

I 
Proof: Let G  = G ( L  I K ) ,  G' = G(LII K ) .  For every a' E G' ,  we choose an I 

preimage a  E G  of maximal value iLIK ( a )  and show that 
! 

Let m = iLIK(a) .  If t E H  belongs to Hn,-I = G,,-I (LIL ' ) ,  then 
iLI ,y ( t )  1 m ,  and i L I K ( a r )  2 m ,  so that i L I K ( a t )  = m. If t $ Hn,-1, 
then i L I K  ( t)  < m and i L I K  ( a t )  = i L I K ( r ) .  In both cases we therefore 
'find that iLIK ( o r )  = min{iLIK ( r ) ,  m]. Applying (10.5), this gives 

Since i L I K ( t )  = i L I L t ( t )  and e' = eL1Lt = #HO, (10.6) gives the formula (*), 
which in turn yields 

The function V L I K  is by definition strictly increasing. Let the inverse 
function be + L I ~  : [- I ,  m) -+ 1- 1 , m ) .  One defines the upper numbering 
of the ramification groups by 

G t ( L I K )  := G s ( L ( K )  where s = + ~ ~ ~ ( t ) .  
I 

The functions ~ L I K  and $ L [ K  satisfy the following transitivity condition: 

(10.8) Proposition. I f  L' I K  is a Galois subextension of L  I K  , then 

Proof: For the ramification indices of the extensions L  I K ,  L'I K  , L  I L' 
we have eLlK = C L ~ I K C L I L L  From (10.7), we obtain G,/H, = ( G / H ) , ,  
t = q L I L / ( s ) ;  thus 

This equation is equivalent to 

The advantage of the upper numbering of the ramification groups is that 
it is invariant when passing from L I K to a Galois subextension. 

(10.9) Proposition. Let L'IK be a Galois subextension of L  I K  and 
H  = C(LIL1) .  Then one has 

Proof: We put s  = + ~ / ( ~ ( t ) ,  G' = G(L1IK) ,  apply (10.7) and ( lo.@, and 

get 

Exercise 1. Let K = Q, and K,, = K({), where { is a primitive pU-th root of unity. 
Show that the ramification groups of KnI K are given as follows: 

G,=G(K,,IK) f o r s = O ,  

G,, = G ( K n ( K I )  for 1 5 s  5 p -  1 ,  

G, = G(K, IK2) for p 5 s 5 p2 - 1 ,  
. . . 
G, = 1 for pn-' 5 s . 

Exercise 2. Let K'  be an intermediate tield of LI K.  Describe the relation between 
the ramification groups of L I K and of L ( K t  in the upper numbering. 



Chapter I11 

Riemann-Roch Theory 

5 1. Primes 

Having set up the general theory of valued fields, we now return to 
algebraic number fields. We want to develop their basic theory from 
the valuation-theoretic point of view. This approach has two prominent 
advantages compared to the ideal-theoretic treatment given in the first 
chapter. The first one results from the possibility of passing to completions, 
thereby enacting the important "local-to-global principle". This will be done 
in chapter VI. The other advantage lies in the fact that the archimedean 
valuations bring into the picture the points at infinity, which were hitherto 
lacking, as the "primes at infinity". In this way a perfect analogy with the 
function fields is achieved. This is the task to which we now turn. 

(1.1) Definition. A prime (or place) p of an algebraic number field K is a 
class of equivalent valuations of K .  The nonarchimedean equivalence classes 
are called finite primes and the archimedean ones infinite primes. 

The infinite primes p are obtained, according to chap. 11, (8.1), from thc 
embeddings t : K + @. There are two sorts of these: the real primes, 
which are given by embeddings t : K + R, and the complex primes, 
which are induced by the pairs of complex conjugate non-real embeddings 
K  -+ C. p is real or complex depending whether the completion K p  is 
isomorphic to R or to C. The infinite primes will be referred to by the formal 
notation p  I m, the finite ones by p oo. 

In the case of a finite prime, the letter p  has a multiple meaning: it also 
stands for the prime ideal of the ring o of integers of K ,  or for the maximal 
ideal of the associated valuation ring, or even for the maximal ideal of 
the completion. However, this will nowhere create any risk of confusion. 
We write p l p  if p is the characteristic of the residue field ~ ( p )  of the finite 
prime p. For an infinite prime we adopt the convention that the completion Kp 
also serves as its own "residue field, " i.e., we put 

K ( P )  := K p ,  when p ( m .  
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To each prime p of K we now associate a canonical homomorphism 

from the multiplicative group K *  of K .  If p is finite, then up is the p-adic 
exponential valuation which is normalized by the condition v p ( K * )  = Z. If p 
is infinite, then up is given by 

vp (a )  = - log Ira 1, 

where r : K -+ Q. is an embedding which defines p .  

For an arbitrary prime pip ( p  prime number or p = CO)  we put 
furthermore 

. f p  = [m) : m] 9 

so that f p  = [ K p  : W ]  if p lm ,  and 

This convention suggests that we consider e  as being an infinite prime 
number, and the extension ClR as being unraniifred with inertia degrce 2. 
We define the absolute value I l p  : K + R by 

for a # 0 and I O J p  = 0. If p is the infinite prime associated to the embedding 
r  : K + C, then one finds 

2 lalp = Iral, resp. [a lp  = lral , 

if p is real, resp. complex. 

If L ( K  is a finite extension of K ,  then we denote the primes of L by 9 
and write ?31p to signify that the valuations in the class 9, when restricted 
to K ,  give those of p. In the case of an infinite prime 9, we define the 
inertia degree, resp. the ramification index, by 

For arbitrary primes p 1 p we then have the 

(1.2) Proposition. (i) Cqlp e y l p  f v l p  = C q l p [ L p  : K p ]  = [ L  : K ] ,  

(ii) V ( p )  = V ( p ) f v l ~ ,  

(iii) vq (a )  = eQlpvp(a)  fora  E K * ,  

(iv) v p ( N ~ , I ~ p ( a ) )  = fT lpvq (a )  for0 E L * ,  

(v) lalp = I N L , I K ~ ( ~ ) I ~  fora E L .  

§ 1. Primes 185 

The normalized valuations I l p  satisfy the following product fol-mula, 
which demonstrates how important it is to include the infinite primes. 

(1.3) Proposition. Given any a E K  *, one has la l p  = 1 for almost all p, 
and 

n lalp = 1. 
P 

Proof: We have up (u )  = 0 and therefore J a J ,  = I for all pljco wliicli do no(  
occur in the prime decomposition of the principal ideal ( a )  (see chap. 1, $ I I ,  
p. 69). This therefore holds for almost all p. From (1.2) and formula (8.4) 
of chap. 11, 

(which includes the case p = oo, Q p  = R ) ,  we obtain the product formula 
for K from the product formula for Q ,  which was proved already in 
chap. TI, (2.1 ): 

n P I ~ I P  = n !' PI,LJ n M P  = n ~ ~ N K ~ I Q , ( ~ ) ~ ~  = n l ~ x ~ ( a ) l , ,  = 1 .  
P PIP P 

We denote by J ( o )  the group of fractional ideals of K ,  by P ( o )  the 
subgroup of fractional principal ideals, and by 

the ideal class group CIK of K .  

Let us now extend the notion of fractional ideal of K by l ak ing  inlo 
account also the infinite primes. 

(1.4) Definition. A replete ideal of K is an element of the group 

where R k  denotes the multiplicative group of positive real numbers. 

In order to unify notation, we put, for any infinite prime p and any real 
number v E R ,  

pV := eV E W;. 
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Given a system of real numbers up, p ( m ,  let np,, pup always denote the 
vector 

and not the product of the quantities eVp in R. Then every replete ideal 
a E J ( 3 )  admits the unique product representation 

a =  n p "  P n pup =: n p v p ,  
pt, PI, P 

where up E Z li)r p j 00, and up E R for ~ 1 0 0 .  Put 

a f =  n pup and a, = n pup, 
dim PlW 

so that a = af x a,. af is a fractional ideal of K ,  and a, is an element of n,,, R;. At the same time, we view af,  resp. a,, as replete ideals 

Thus for all elements of J ( 6 )  the decomposition 

applies. To a E K * we associate the replete principal ideal 
[a] = fl pup(') = (a) x n 

P PI, 

These replete ideals form a subgroup P (6 )  of J (b) .  The factor group 

Pic(3) = J ( 6 ) / P ( 3 )  

is called the replete ideal class group, or replete Picard group. 

(1.5) Definition. The absolute norm of a replete ideal a = np pVp is defined 
to be the positive real number 

4 

%(a) = n T(p)"p . 
P 

I 

The absolute norm is multiplicative and induces a surjective homomor- 
phism 

% :  J ( 6 )  + R;. 

The absolute norm of a replete principal ideal [a] is equal to 1 in view of the 
product formula (1.3), 

%([a]) = n n(p)up(a) = n lalp' = 1 . 
P P 

We therefore obtain a surjective homomorphism 

The relations between the replete ideals of a number field K and those of 
an extension field L are afforded by the two homomorphisms 

N L ~ K  (n 73 q V v )  = n n pf.p~pvv. 
P VIP 

Here the various product signs have to be read according to our convention. 
These homomorphisms satisfy the 

(1.6) Proposition. 

(i) Fora chain of fields K G L G M,  one has N M I K  = NLIK o NMIL and 
~ M I K  =   MIL O ~ L I K .  

(ii) NLIK(iLIKa) =a[L:Kl f o r a ~  J ( z K ) .  

(iii) %(NLIK (U)) = %(a) for U E J ( ~ L ) .  

(iv) If L I K is Galois with Galois group G ,  then for every prime ideal !J3 
of OL , one has NLIK ( 2 3 0 ~  = noEG a!J3. 

(v) For any replete principal ideal [a] of K ,  resp. L ,  one has 

(vi) N L ~ K ( U ~ )  = N L \ K ( % ) ~  is the ideal of K generated by the norms 
NLIK(a) o fa l l a  E U ~ .  

Proof: (i) is based on the transitivity of inertia degree and ramification 
index. (ii) follows from (1.2) in view of the fundamental identity 
CVlp fvlpevlp = [L : K]. (iii) holds for any replete "prime ideal" Q 
of L ,  by (1.2): 

and therefore for all replete ideals of L. 

(iv) The prime ideal p lying below 5J3 decomposes in the ring 0 of integers 
of L as p = ('$1 . . .?J3,)e, with prime ideals pi = a;,, a; E GIGT, which 
are conjugates of and thus have the same inertia degree f .  Therefore 

on the replete Picard group. 
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(v) For any element a E K * ,  (1.2) implies that uQ(a) = e 7 3 1 p ~ p ( ~ ) .  Hence 

iLIK ([a]) = i L I K  (n pup(a)) = , , ( P ~ V I P V P ( ~ )  = , ( ~ u d a )  = 
P p TIP 13 

If, on the other hand, a E L*, then (1.2) and chap. 11, (8.4) imply that 
V ~ ( N L I K ( ~ ) )  = CqlP f w p u ' ~ ( a )  Hence 

(vi) Let af be the ideal of K which is generated by all N L I K  (a),  with u E 24. 
If !Af is a principal ideal (a), then af = (NLIK(a))  = N L ~ ~ ( U ~ ) ,  by (v). 
But the argument which yielded (v) applies equally well to the localizations 
O p ( o p  of the extension 010 of maximal orders of L I K .  Op has only a finite 
number of prime ideals, and is therefore a principal ideal domain (see chap. I, 
$3 ,  exercise 4). We thus get 

(aflp = NLIK ((%)p) = NLIK (%)p 

for all prime ideals p of o, and consequently af = N L I ~  (af ) .  0 

Since the homomorphisms iL l~ and N L I ~  map replete principal ideals to 
replete principal ideals, they induce homomorphisms of the replete Picard 
groups of K and L ,  and we obtain the 

(1.7) Proposition. For every finite extension L I K ,  the following two 
diagrams are commutative: 

37 
P i ~ ( 3 ~ )  - IW; 

Let us now translate the notions we have introduced into the function- 
theoretic language of divisors. In chap. I, $12, we defined the divisor group 
Div(o) to consist of all formal sums 

D =  C vPp, 
Pt.0 

where up E Z, and up = 0 for almost all p. Contained in this group is the 
group P ( o )  of principal divisors div( f )  = ~ p t o o  up( f )p ,  which allowed us 
to define the divisor class group 

It follows from the main theorem of ideal theory, chap. I,  (3.9), that this 
group is isomorphic to the ideal class group CIK, which is a finite group (see 
chap. I, (12.14)). We now extend these concepts as follows. 

(1.8) Definition. A replete divisor (or Arakelov divisor) of K is a formal 
sum 

where up E Z for p 1. co, up E R for ploo, and up = 0 for almost a l l  p. 

The replete divisors form a group, which is denoted by Div(i5). It admits 
a decomposition 

Div(0) Z Div(o) x @ R p .  
PI00 

On the right-hand side, the second factor is endowed with the canonical 
topology, the first one with the discrete topology. On the product we have thc 
product topology, which makes Div(3) into a locally compact topological 
group. 

We now study the canonical homomorphism 

The elements of the form div( f )  are called replete principal divisors. 

Remark: The composite of the mapping div : K* -+ Div(5) with the 
mapping 

~ i v m  --+ n IW, c vpp I---, ( ~ ~ f ~ ) ~ ~ ~ ,  
PI00 P 

is equal, up to sign, to the logarithm map 

of Minkowski theory (see chap. I, $7, p. 39, and chap. 111, $3, p. 21 1). By 
chap. I, (7.3), it maps the unit group o* onto a complete lattice f = h(o*)  
in trace-zero space H = {(xp) E nplm R ( CplW xp = 0). 

(1.9) Proposition. The kernel of div : K* -+ Div(6) is the group p ( K )  of 
roots of unity in K ,  and its image P (E)  is a discrete subgroup of Div(6). 
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proof: By the above remark, the composite of div with the map Div(6) -+ 

n p l o c R ,  xp vPp H (up fp )p lm,  yields, up to sign, the homomorphism 
h : K* -+ npl, R. By chap. I, (7.1), the latter fits into the exact sequence 

where r is a complete lattice in trace-zero space H g npl, R. 
Therefore p ( K )  is the kernel of div. Since f is a lattice, there 
exists a neighbourhood U of 0 in npl, R which contains no element 
of r except 0. Considering the isomorphism u : npl, R -+ @Ipl, Rp, 
( v , ) , ~  H Xplm % p, the set (0) x u U c Div(o) x epI, Rp = Div(B) 
is a neighbourhood of 0 in Div(6) which contains no replete principal divisor 
dxcept 0. This shows that P(6) = div(K*) lies discretely in Div(6). 0 

(1.10) Definition. The factor group 

is called the replete divisor class group (or Arakelov class group) of K .  

As P ( 6 )  is discrete in Div(E), and is therefore in particular closed, 
CHI (5)  becomes a locally compact Hausdorff topological group with respect 
to the quotient topology. It is the correct analogue of the divisor class group 
of a function field (see chap. I, Q 14). For the latter we introduced the degree 
map onto the group Z; for CH1(6)  we obtain a degree map onto the 
group R. It is induced by the continuous homomorphism 

deg : Div(6) + R 

which sends a replete divisor D = Cp upp to the real number 

Prom the product formula (1.3), we find for any replete principal divisor 
div( f )  E P ( 6 )  that 

Thus we obtain a well-defined continuous homomorphism 

deg : CH'(B) -+ R .  

The kernel CH1(6)0 of this map is made up from the unit group o* and the 
ideal class group CIK 2 CHI (o) of K as follows. 

(1.11) Proposition. Let r = h(o*) denote the complete lattice of units in 
trace-zero space H = ((xp) E nplm R I Cpl, xP = 0). There is an exact 
sequence 

0 + H I T  --+ CH1(6)O --+ C H ' ( ~ )  --+ 0. 

Proof: Let ~ i v ( 6 ) '  be the kernel of deg : Div(6) -+ R. Consider the exact 
sequence 

0 --+ n --f% Div(6) --+ Div(o) -+ 0, 
PI, 

where a((up)) = C 4 p .  Restricting to Div(6)' yields the exacf 
f p  

commutative diagram 

Via the snake lemma (see [23], chap. 111, $3 ,  (3.3)), this gives rise to the 
exact sequence 

The two fundamental facts of algebraic number theory, the finiteness of 
the class number and Dirichlet's unit theorem, now merge into (and are 
in fact equivalent to) the simple statement that the kernel CH'(8)" of the 
degree map deg : CH'(E) -+ R is compact. 

(1.12) Theorem. Thc group CM ' ( c ) ) ~  is C O I I I ~ I C I .  

Proof: This follows immediately from the exact sequence 

As f is a complete lattice in the R-vector space H ,  the quotient H I T  is a 
compact torus. In view of the finiteness of cH1(o ) ,  we obtain C H ' ( G ) O  as 
the union of the finitely many compact cosets of H I T  in CH'(E)'. Thus 
CH' (5)' itself is compact. 0 
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The correspondence between replete ideals and replete divisors is given 
by the two mutually inverse mappings 

These are topological isomorphisms once we equip 

with the product topology of the discrete topology on J ( o )  and the canonical 
topology on np,, R;. The image of a divisor D = v P p  is also written 
as 

o(D) = n p-"p. 
P 

The minus sign here is motivated by classical usage in function theory. 
Replete principal ideals correspond to replete principal divisors in such 
a way that P ( 6 )  becomes a discrete subgroup of J ( 6 )  by (1.9), and 
Pic(6) = J ( 6 ) / P ( 6 )  is a locally compact Hausdorff topological group. 
We obtain the following extension of chap. I, (12.14). 

(1.13) Proposition. The mapping div : . /(a) 1 Div(5) induces a 

topological isomorphism 

div : Pic(Z) 7 CH' ( 6 ) .  

On the group J(B) we have the homomorphism TI : J ( 6 )  + R;, and 
on the group Div(6) there is the degree map deg : Div(ii) -+ R. They are 
obviously related by the formula 

deg(div(a)) = - log TI(a), 

and we get a commutative diagram 

3 1. Primes 

(1.14) Corollary. The group 

~ i c ( 6 ) '  = { [a] E Pic(Z) I %(a) = 1 ) 
is  compact. 

The preceding isomorphism result (1.13) invites a philosophical reflection. 
Throughout the historical development of algebraic number theory, a 
controversy persisted between the followers of Dedekind's ideal-theoretic 
approach, and the divisor-theoretic method of building up the theory from 
the valuation-theoretic notion of primes. Both theories are equivalent in the 
sense of the above isomorphism result, but they are also fundamentally 
different in nature. The controversy has finally given way to the realization 
that neither approach is dominant, that each one instead emanates from its 
own proper world, and that the relation between these worlds is expressed by 
an important mathematical principle. However, all this becomes evident only 
in higher dimensional arithmetic algebraic geometry. There, on an algebraic 
Z-scheme X ,  one studies on the one hand the totality of all vector bundles, 
and on the other, that of all irreducible subschemes of X. From the first, one 
constructs a series of groups Ki (X) which constitute the subject of algebraic 
K-theory. From the second is constructed a series of groups CH'(X), 
the subject of Chow theory. Vector bundles are by definition locally free 
ox-modules. In the special case X = Spec(o) this includes the fractional 
ideals. The irreducible subschemes and their formal linear combinations, 
i.e., the cycles of X,  are to be considered' as generalizations of the primes 
and divisors. The isomorphism between divisor class group and ideal class 
group extends lo the general setting as a homomorphic relation belween the 
groups CH'(X) and Ki(X). Thus the initial controversy has been resolved 
into a seminal mathematical theory (for further reading, see [I 31). 

Exercise 1 (Strong Approximation Theorem). Let S be a finite set of primes and 
let be another prime of K which does not belong to S. Let u p  E K bc givcn 
numbers, for p E S. Then for every E z 0, there exists an A- E K such that 

Ix - a p ] ,  < E for p E S, and J x l p  5 1 for p $ S U (po) .  

Exercise 2. Let K be totally real, i.e., K p  = R for all plco. Let T be a propel- 
nonempty subset of Hom(K,R). Then there exists a unit E of K satisfying s ~ .  > 1 
for s E S and 0 < s~ i 1 for 5 6 S. 

Exercise 3. Show that the absolute norm 9l : pic@) -+ IW; is an isomorphism. 

Exercise 4. Let K and L be number fields, and let s : K + L be a homomorphism. 
Given any replete divisor D = CQ vQ!J3 of L, define a replete divisor of K by 

the rule 

wit11 exact rows. (1.12) now yields the 
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where f W l p  is the inertia degree of Q over r K  and v ( p  signifies s p  = YlrK.  Show 
that t, induces a homomorphism 

Exercise 5. Given any replete divisor D  = Cp v p p  of K ,  define a replete divisor of 
L by the rule 

r * ( D )  = C C vpecp~p'Pl  
P PIP 

where e v l p  denotes the ramification index of over K .  Show that r *  induces a 
homomorphism 

r* : CH'(~ , )  + C H ' ( ~ ~ ) .  

Exercise 6. Show that r,  o r* = [L : K]  and that 

The notion of duality is justified by the isomorphism 

*% 7 Horn,(%, o) ,  x I--+ (y H ~ r ( x ~ ) )  

Indeed, since every o-homomorphism f : % -, o extends uniquely lo a 
K-homomorphism f : L  -t K in view of UK = L,  we may consider 
Horn,(%, o )  as a submodule of HornK ( L ,  K), namely, the image of *U with 
respect to L  -, HornK ( L ,  K) ,  x H (y H Tr(xy)). The module dual to (7, 

will obviously occupy a distinguished place in this theory. 

(2.1) Definition. The fractional ideal 

5 2. Different and Discriminant 

It is our intention to develop a framework for the theory of algebraic 
number fields which shows the complete analogy with the theory of function 
fields. This goal leads us naturally to the notions of different and discriminant, 
qs we shall explain in 0 3 and 0 7. They control the ramification behaviour of 
an extension of valued fields. 

Let L  I K be a finite separable field extension, o & K a Dedekind domain 
with field of fractions K ,  and let 0 L  be its integral closure in L. 
Throughout this section we assume systematically that the residue field 
extensions LIK of 010 are separable. The theory of the different originates 
from the fact that we are given a canonical nondegenerate symmetric bilinear 
form on the K-vector space L ,  viz., the trace form 

(see chap. I, $2). It allows us to associate to every fractional ideal 'U of L  
the dual 0-module 

IF is again a fractional ideal. For if a l ,  . . . , a n  E O is a basis of LI K 
and d = det(Tr(aiai)) its discriminant, then ad*% c O for every nonzero 
a E %n o. Indeed, if x = x l a l  + . . . +x,an E *U, with xi E K,  then the axi 
satisfy the system of linear equations x;='=, ax; Tr(aiaj) = Tr(xaaj) E 0 .  
This implies duxi E o and thus dux E 0 .  

is called Dedekind's complementary module, or the inverse different. 11s 
inverse, 

9010 = q,,, 
is called the different of Ol o .  

As Cola 2 0 ,  the ideal 'Dolo S O is actually an integral ideal of L.  Wc 
will frequently denote i t  by D L I ~ ,  provided the intended subrings o, O arc 
evident from the context. In the same way, we write CLIK instead of COio. 
The different behaves in the following manner under change of rings o 
and 0. 

(2.2) Proposition. 

(i) Fora toweroffields K 5 L 5 M, one hasDMIK = D M I L D L I K .  

(ii) Forany multiplicativesubset S o f o ,  one h a s D S - ~ o l S - ~ o  = S - ' 5 3 c ~ i o .  

(iii) If p(p are prime ideals of 0 ,  resp. o, and 0~ 1 o, are the associated 
completions, then 

%100P = 'Doplop. 

Proof: (i) Let A = o L K ,  and let B E L ,  C c M be the integral closure 
of o in L ,  resp. M. It then suffices to show that 
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The inclusion 2 follows from 

In view of BC = C, the inclusion c is derived as follows: 

This does indeed imply C i I A C c I ~  G CC~B. and so CCIA G CC~BCB~A.  

(ii) is trivial. 

(iii) By (ii) we may assume that o is a discrete valuation ring. We show that 
tolo is dense in Covlo,. In order to do this, we use the formula 

(see chap. 11, (8.4)). Let x E Cola and y E 0 ~ .  The approximation theorem 
allows us to find an q in L which is close to y with respect to up, and close 
to 0 with respect to v v ,  for !$YIP. g' # p. The left-hand side of the equation 

then belongs to up, since T r ~ ( ~ ( x q )  E o C opt but the same is true of the 
qlements TrL6jK,(~q) because they are close to zero with respect to up. 
Therefore TI.~,,~K,(.\..V) E op. This shows that Col, g CO,UIC,p. 

If on the other hand x E COVlop, and if E L is sufficiently close 
to x with respect to up, and sufficiently close to 0 with respect to up/, 
for # g, then 6 E Cole. In fact, if y E 0, then TrLLUI~,((y) E op, 
Since TrLVlK,(xy) E Op. Likewise TrL7JIK,((y) E op for p l ] p ,  because 
these elements are close to 0. Therefore TrLIK ((y) E op fl K = 0, i.e., 
6 E Cola. This shows that Cola is dense in COVlOp, in other words, 
'blo0p = C O ~ ~ ~ , ,  and so 901~0~ =  DO^^^^. 0 

If we put 9 = DLIK and DV = 5ILvIKp, and consider Dp at the same 
time as an ideal of 0 (i.e., as the ideal 0 n Dv), then (2.2), (iii) gives us the 

(2.3) Corollary. 9 = nV 9 ~ .  
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The name "different" is explained by the following explicit description, 
which was Dedekind's original way to define it. Let a E 0 and let 
f (X) E o[X] be the minimal polynomial of a. We define the different 
of the element a by 

In the special case where 0 = o[a] we then obtain: 

(2.4) Proposition. If 0 = o[a], then the different is the principal ideal 

Proof: Let f (X) = a0 + a1 X + . - - + anXn be the minimal polynomial of a 
and 

an-' The dual basis of 1, a, . . . , with respect to Tr(xy) is then given by 

For if a], . . . ,a, are the roots of f ,  then one has 

;IS the difference of the two sides is a polynomial of degree 4 11 - I with 
roots a , ,  . . . ,a,,, so is identically zero. We may write this equation in the 
form 

Considering now the coefficient of each of the powers of X ,  we obtain 

and the claim follows. 

From the recursive formulas 
bn-l = 1 ,  

bn-2 - abn-l = a,-', 
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it follows that 

so that obo + . . .  + ob,-] = o[a]  = 0 ;  then COlo = f l ( a ) - ' 0 ,  and 
thus D L I K  = (f l (a)) .  0 

r The proof shows that the module *o[a]  = {x E L I T r L I K ( x O [ ~ ] )  5 o ) ,  
which is the dual of the o-module o[a] ,  always admits the o-basis a i l  j"(a), 
i = 0, . . . , n - 1. We exploit this for the following characterization of the 
different in the general case where O need not be monogenous. 

(2.5) Theorem. The different D L I ~  is the ideal generated by all differents 
of elements IjL K (a )  for a E 0. 

Proof: Let a E 0 such that L = K(a) ,  and let f (X) be the minimal 
polynomial of a .  In order to show that f l ( a )  E D L I K ,  we consider rhc 
' L ~ ~ n d u ~ t o r O  f = f,[,] = {x E L I X O  5 o[a] )  of o [ a ]  (see chap. I, $12, 
p. 79). On putting h = f '(a),  we have for x E L : 

Therefore (f '(a)) = folallL)LIK, SO in particular, f '(a) E D L I K .  

9 1 thus divides all the differents of elements 8~ I~ (a). In order to prove 
that D L I K  is in fact the greatest common divisor of all 8 ~ 1 ~  (a),  it suffices 
to show that, for every prime ideal Q, there exists an a E O such that 
L = K(a) and VQ(DL~K)  = vQ(f1(a)). 

We think of L as embedded into the separable closure Kp of Kp in such 
a way that the absolute value I I of Fp defines the prime Q. 

By chap. 11, (10.4), we find an element jl in the valuation ring 0~ of the 
completion LQ satisfying OQ = op[p],  and the proof loc. cit. shows that, 
for every element a E OQ which is sufficiently close to jl, one also has 
OQ = op[a]. From (2.2), (iii) and (2.4), it follows that 

~ ~ ( B L I K )  = ~ ~ ( D L ~ I K , )  = U ~ ( ~ L ~ I K , ( U ) )  . 
It therefore suffices to show that we can find an element a in O such that 
L = K (a) and 

VQ(SL, IK, (~) )  = U ~ ( ~ L I K  (a)) . 

For this, let 02, . . . ,a,. : L + Kp be K -embeddings giving the primes p, Ip 
different from p. Let a E op be an element such that 
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(Choose a = 1,  resp. a = 0, according as the residue classes r p  mod 
which are conjugate over op /p  are zero or not.) Using the Chinese rcmnindcr 
theorem, we now pick an a E O such that la - jlI and la,a - 0 1 ,  for 
i = 2, . . . , r ,  are very small. We may even assume that L = K (a)  (if not, 
m o d i f y b y a + n V y , n  ~ p , f o r v b i g , y  E O , L  = K(y);forsuitablev f p ,  
one then finds K ( a  + n V y )  = K(a  +nwy)  = K(y)). Since a is close to @, 
we have OQ = op[a].  Now 

where r runs through the Kp-embeddings Lcp -+ Kp different from 1. 
Furthermore, 

where n. runs over the K -embeddings different from 1, and the t i ,  arc ccrrain 
elements in Gp.  But now 

since la - a;al is very small, and t;la is very close to r;'jl (see (*)). 

Therefore V Q ( ~ L ~ K  (a)) = uP(n rZ l  (a  - t a ) )  = V Q ( ~ L ~ ~ K ,  (a)) ,  as required. 
0 

The different characterizes the ramification behaviour of the extension 
L I K as follows. 

(2.6) Theorem. A prime ideal of L is ramified over K if and only if 

919~1~.  
Let gS be the maximal power of !J3 dividing D L I K ,  and let e be the 

ramification index of Q over K .  Then one has 

s = e - 1 ,  if Q is tamely ramified, 

e 5 s 5 e - 1 + vp(e), if Q is wildly ramified. 

Proof: By (2.2), (iii), we may assume that o is a complete discrete valuation 
ring with maximal ideal p. Then, by chap. 11, (10.4), we have 0 = o [ a l  for 
a suitable a E 0. Let f (X) be the minimal polynomial of a .  (2.4) says that 
s = vQ(,fl(a)). Assume LIK is unramified. Then (zl = a mod !?3 is a simple 
zero of ?(X) = f (X) mod p, so that f l ( a )  E O* and thus s = 0 = c - 1. 
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By (2.2), (i) and chap. 11, (7.3, we may now pass to the maximal 
unramified extension and assume that L ( K  is totally ramified. Then a may 
be chosen to be a prime element of 0. In this case the minimal polynomial 

f  ( X )  = aoXC + a l  xe-' + . . . +a,,  a0 = 1, 

is an Eisenstein polynomial. Let us look at the derivative 

f  ' ( a )  = eaoae- I + (e  - 1)al ae-2 + . . . + a,- I . 

Fori = 0 ,  ..., e -  1, we find 

ug( ( e  - i )u;ae-i-  I ) = cup((' - i )  + eup(ai) + e - i - 1 = -i - 1 mod e ,  

so that the individual terms of f  ' ( a )  have distinct valuations. Therefore 

.Y = uv (  f  ' ( a ) )  = min { u ~ ~ ( ( E  - i ) a ; c ~ ~ - ~ - '  
051 < e  ) I  . 

If now LIK is tamely ramified, i.e., if vp(e)  = 0 ,  then the minimum 
is obviously equal to e - 1, and for vp(e)  1 1, we deduce that 
e ~ s i v ~ ( e ) + e - I .  0 

The geometric significance of the different, and thus also the way it fits 
into higher dimensional algebraic geometry, is brought out by the following 
characterization, which is due to E. KAHLER. For an arbitrary extension B ] A  
of commutative rings, consider the homomorphism 

P : B @ A B + B ,  x @ y r - - t x y ,  

whose kernel we denote by I. Then 

S2L lA  := 1/12 = I @B@B B 

is a B @ B-module, and hence in particular also a B-module, via the 
embedding B -+ B @ B, b w b b 1. It is called the module of differentials 
of B 1 A,  and its elements are called Kahler differentials. If we put 

then we obtain a mapping 

d : B + n;,, 
satisfying 

d ( x y )  = x d y  + y d x ,  

d a = O  for ~ E A .  

Such a map is called a derivation of B J A .  One can show that d is universal 
q o n g  all derivations of BIA with values in B-modules. S 2 L l A  consists of 
the linear combinations yi dxi .  The link with the different is now this. 

(2.7) Proposition. The different X I o l ,  is the annihilator of the 0- 
module f2&,,, i.e., 

901n = { X  E 0 ( x d y  = 0 for all y E 0 )  

Proof: For greater notational clarity, let us put 0 = B and o = A. If A' 
is any commutative A-algebra and B' = B @ A  A', then it is easy to see 
that 52LIlA, = DLlA @ A  A'. Thus the module of differentials is preserved 
under localization and completion, and we may therefore assume that A is 
a complete discrete valuation ring. Then we find by chap. 11, (10.4), that 
B = A[x], and if f  (X) E A [ X ]  is the minimal polynomial of x, then R N l n  
is generated by dx  (exercise 3). The annihilator of dx is f ' ( x ) .  On the other 
hand, by (2.4) we have D B I A  = ( f  ' ( x ) ) .  This proves the claim. 0 

A most intimate connection holds between the different and the 
discriminant of 010. The latter is defined as follows. 

(2.8) Definition. The discriminant Dolo is the ideal of o which is generated 
by the discriminants d (a 1, . . . , a,) of all the bases a , ,  . . . , an of  L 1 K which 
are contained in 0. 

We will frequently write a L I K  instead of sol, If a l ,  . . . ,a,, is an 
integral basis of 010,  then D L ~ K  is the principal ideal generated by 
d ( a l ,  . . . ,a,) = d L I K ,  because all other bases contained in 0 are transforms 
of the given one by matrices with entries in o. The discriminant is obtained 
from the different by taking the norm N L ~ ~  (see $ 1 ) .  

(2.9) Theorem. The following relation exists between the discriminant and 
the different: 

~ L I K  = N L I K @ L I K ) .  

Proof: If S is a multiplicative subset of o ,  then clearly D S - ~ o l S - ~ o  = 
S- 'ao l ,  and X I s - , o l s - ~ o  = s - ' D ~ ~ ~ .  We may therefore assume that o is 
a discrete valuation ring. Then, since o is a principal ideal domain, so is 0 
(see chap. I, $3 ,  exercise 4), and it admits an integral basis a ] ,  . . . ,a, ,  
(see chap.1, (2.10)). So we have O L ~ K  = (d(crl, . . . ,a,,)). Dedekind's 
complementary module COlo is generated by the dual basis a ; ,  . . . ,al', 
which is characterized by TrLIK (a ia j )  = a i j .  On the other hand, Cola is a 
principal ideal ( B )  and admits the o-basis /?al,  . . . , Pa,, of discriminant 
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But ( N L I K W )  = N L ~ K  (cola) = N L I K ( D L ; ~ )  = N L I K ( ~ L I K ) - ' ,  and 
(d(a1, . . . , a n ) )  = 0 ~ 1 ~ .  One has d ( a l ,  . . . ,a,)  = d e t ( ( ~ ; a , ) ) ~ ,  
d ( a ; ,  . . . , a : , )  = det((araj))2 ,  for ( ~ i  E H O ~ K ( L , K ) ,  and T~. (a;a i )  = 6 i j .  

Then d(a1, . . . , a,) . d ( a ; ,  . . . , ah)  = I .  Combining these yields 

and hence N L I K ( D L ~ K )  = O L I K .  0 

(2.10) Corollary. For a tower of fields K L M, one has 

~ M I K  = a:yAL1~LIK@MIL). 

Proof: Applying to D M ~ K  = ri)MILgLIK the norm N M I K  = N L I K  o N M I L ,  
(1.6) gives 

Putting 0  = 0 ~ 1 ~  and a p  = ~ L , ~ K ,  and viewing aQ also as the ideal 
b ~  n o of K ,  the product formula (2.3) for the different, together with 
theorem (2.9), yields : 

(2.11) Corollary. a = nQ Dp. 

The extension L  ( K  is called unramified if all prime ideals p of K are 
unramified. This amounts to requiring that all primes of K  be unramified. 
In fact, the infinite primes are always to be regarded as unramified 
because eplp = 1. 

(2.12) Corollary. A prime ideal p of K  is ramified in L if and only if p 10. 
In particular, the extension L  I K  is unramified if the discriminant a = ( I ) .  

Combining this result with Minkowski theory leads to two important 
theorems on unramified extensions of number fields which belong to the 
classical body of algebraic number theory. The first of these results is the 
following. 

(2.13) Theorem. Let K be an algebraic number field and let S be a finite 
set of primes of K .  Then there exist only finitely many extensions L I K of 
given degree 17 which are unramified outside of S .  

Proof: If L  I K is an extension of degree n  which is unramified outside of S ,  
then, by (2.12) and (2 .6) ,  its discriminant ~ L I K  is one of the finite number 
of divisors of the ideal a = n p c ~  pn('+,). It therefore suffices to show 

u h  
that there are only tinitely many extensions L  I K of degree n  with given 
discriminant. We may assume without loss of generality that K  = Q .  For 
if L  1 K  is an extension of degree n with discriminant 0 ,  then L J Q  is an 
extension of degree m = n [ K  : Q ]  with discriminant ( d )  = D i l Q N K I Q ( a ) .  

Finally, the discriminant of L ( m  IQ differs from the discriminant of L IQ 

i only by a constant factor. So we are reduced to proving that there exist 
only finitely many fields K IQ of degree n  containing with a given 
discriminant d .  Such a field K has only complex embeddings r  : K -+ @. 
Choose one of them: ro. In the Minkowski space 

(see chap. I, $ 5 )  consider the convex, centrally symmetric subset 

where C is an arbitrarily big constant which depends only on 17. For a 
convenient choice of C, the volume will satisfy 

where vol(oK) is the volume of a fundamental mesh of the lattice ,OK 

in K R  - see chap. I, (5.2). By Minkowski's lattice point theorem (chap. I ,  
(4.4)), we thus find a  E O K ,  a  # 0, such that ja  = ( r a )  E X ,  that is, 

This a  is a primitive element of K ,  i.e., one has K = ( ) ( a ) .  Indeed, 
INK I Q ( a )  l = n, Ira1 2 1 implies Itoa 1 > 1 ; thus Im(roa) # 0 so that 
the conjugates roa and t o a  of a  have to be distinct. Since Ira1 < 1 for 
r  # to, To,  one has tocr # r a  for all r  # t o .  This implies K = ( ) ( a ) ,  
because if Q ( a )  5 K then the restriction ~ ~ l ~ ~ ~ )  would admit an extension 
s  different from ro, contradicting soa # t a .  

Since the conjugates r a  of a  are subject to the conditions (*), which 
only depend on d  and n ,  the coefficients of the minimal polynomial of CY 
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are bounded once d and n are fixed. Thus every field K IQ of degree n with 
discriminant d is generated by one of the finitely many lattice points cr in the 
bounded region X. Therefore there are only finitely many fields with given 
degree and discriminant. 0 

The second theorem alluded to above is in fact a strengthening of the first. 
It follows from the following bound on the discriminant. 

(2.14) Proposition. The discriminant of an algebraic number field K of 
degree n satisfies 

ldK 1 'I2 2 ( : ) * I 2 .  
n .  

Proof: In Minkowski space KR = [n, C] +, s E Hom(K, C) ,  consider the 
convex, centrally symmetric subset 

Its volume is t " 
voJ(X*) = 2"nS - . 

n !  
Leaving aside the proof of this formula for the moment (which incidentally 
was exercise 2 of chap. I, $3, we deduce the proposition from Minkowski's 
lattice point theorem (chap. I, (4.4)) as follows. Consider in KR the lattice 
r = jo defined by o. By chap. I, (5.2), the volume of a fundamental mesh 
is vol(T) = m. The inequality 

therefore holds if  and only if 2 ' 'n , ' c  > 2 " m ,  or equivalently if 
11 ! 

for some E > 0. If this is the case, there exists an a E O, a # 0, such 
that ja E XI. As this holds for all E > 0, and since XI contains only 
finitely many lattice points, i t  continues to hold for a = 0. Applying now ~ h c  
inequality between arithmetic and geometric means, 

we obtain the desired result: 

Given this, it remains to prove the following lemma. 

3 2. Different and Discriminant 

(2.15) Lemma. In Minkowski space KR = [n, C ] +, the domain 

x r = { ( z r ) ~ ~ ~ )  C l z r l  < t }  
5 

has volume 

Proof: vol(Xt) is 2S times the Lebesgue volume Vol(f (X,)) of the 
image f (X,) under the mapping chap. I, (5. I ) ,  

f : KR + f l R 7  (zr) F+ ( ~ 5 ) ~  
5 

where x, = z,, xu = Re(z,), x,- = Im(z,). Substituting xi, i = 1, . . . , I - ,  

instead of x,, and yj, zj, j = 1, . . . , s, instead of xu,  x,-, we see that f (X,)  
is described by the inequality 

The factor 2 occurs because 12,- I = IZa I = I z ~  I. Passing to polar coordinates 
yj = U, C O S ~ ~ ,  Z j  = ~j sinej, where 0 5 8, 5 2n,  0 5 uj, one sees that 
Vol( f (X,)) is computed by the integral 

I ( t )  = u 1 . . . us dxl  . . . dx,- du . . . d u ,  dBl . . . d$.r / 
extended over the domain 

Restricting this domain of integration to xi > 0, the integral gets divided 
by 2". Substituting 2uj  = I?, gives 

1 (t) = 2'4-"(2n)"/,.,,(t), 

where the integral 

has to be taken over the domain x, 2 0, wj 1 0 and 

Clearly Ir,,(t) = trf2"1,,,(1) = tl'l,-,,(l). Writing x2+. . .+xI.+wI +. . .+111, 

< t - XI instead of (*), Fubini's theorem yields - 
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By induction, this implies that 
1 

In the same way, one gets 

and, doing the integration, induction shows that 

Together, this gives 1,,(1) = and therefore indeed 

If we combine Stirling's formula, 

with the inequality (2.14), we obtain the inequality 

This shows that the absolute value of the discriminant of an algebraic 
number field tends to infinity with the degree. In the proof of (2.13) we saw 
that there are only finitely many number fields with bounded degree and 
discriminant. So now, since the degree is bounded if the discriminant is, we 
may strengthen (2.13), obtaining 

(2.16) Hermite's Theorem. There exist only finitely many number fields 
with bounded discriminant. 

nn n n / 2  The expression a, = - ( -) satisfies 
n !  4 

i.e., a,+, > a,. Since a;? = 15 > 1, (2.14) yields 
2 

(2.17) Minkowski's Theorem. The discriminant of a number field K 
different from Q is # f 1. 

Combining this result with corollary (2.12), we obtain the 

(2.18) Theorem. The field Q does not admit any unramified extensions. 

These last theorems are of fundamental importance for number theory. 
Their significance is seen especially clearly in the light of higher dimensional 
analogues. For instance, let us replace the finite field extensions L  I K of a 
number field K  by all smooth complete (i.e., proper) algebraic curves defined 
over K  of a fixed genus g. If p is a prime ideal of K ,  then for any such 
curve X,  one may define the "reduction mod p". This is a curve defined 
over the residue class field of p. One says that X has good reduction at the 
prime p if its reduction mod p is again a smooth curve. This corresponds 
to an extension L ] K  being unramified. In analogy to Hermite's theorem, 
the Russian mathematician I S .  SAFAREVIC formulated the conjecture that there 
exist only finitely many smooth complete curves of genus g over K wifh 
good reduction outside a fixed finite set of primes S .  This conjecture was 
proved in 1983 by the mathematician GERD FALTINGS (see [35]). The impact 
of this result can be gauged by the non-expert from the fact that i t  was the 
basis for FALTINGS'S proof of the famous Mordell Conjecture: 

Every algebraic equation 

of genus g > 1 with coefficients in K  admits only finitely many solutions 
in K .  

A I -dimensional analogue of Minkowski's theorem (2.18) was proved 
in 1985 by the French mathematician J.-M. FONTAINE: over the field Q, thcrc 
are no smooth proper curves with good reduction mod p for all prime 
numbers p (see [39]). 

Exercise 1. Let d(a) = d(1, a,  . . . ,an- ') ,  for an element a E 0 such that L = K (a). 
Show that D L I K  is generated by all discriminants of elements d ( a )  if o is a complete 
discrete valuation ring and the residue field extension AIK is separable. In other 
words, D L I K  equals the gcd of all discriminants of individual elements. This fails 
to hold in general. Counterexample: K = Q, L = Q(a), a' - a2 - 2a - 8 = 0. 
(See [60], chap. 111, $25,  p. 443. The untranslatable German catch phrase for this 
phenomenon is: there are "auJerwesentliche Diskriminantentrild .) 
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Exercise 2. Let L I K 
field extension h I K ,  
DLIK = p, one has 

be a Galois extension of henselian fields with separable residue 
and let G , ,  i 2 0, be the i- th ramification group. Then, if 

Hint: If 0 = o[x] (see chap. 11, (10.4)), then s = VL (SL~K (x)) = o~~ UL (.\. - UX). 
o#l 

Exercise 3. The module of differentials R&, is generated by a single element d.v, 
x E 0, and there is an exact sequence of 0-modules 

0 -+ Dolo -t 0 -+ R& 4 0. 

Exercise 4. For a tower M 1 L 2 K of algebraic number fields there is an exact 
sequence of OM -modules 

0 -+ RliK @OM 4 S2hlK ' RhlL -+ 0. 

Exercise 5. If 5 is a primitive pn-th root of unity, then 

3 3. Riemann-Roch 

The notion of replete divisor introduced into our development of number 
theory in 3 1 is a terminology reminiscent of the function-theoretic model. 
We now have to ask the question to what extent this point of view does 
justice to our goal to also couch the number-theoretic results in a geometric 
function-theoretic fashion, and conversely to give arithmetic significance to 
the classical theorems of function theory. Among the latter, the Riemann- 
Roch theorem stands out as the most important representative. If number 
theory is to proceed in a geometric manner, it must work towards finding an 

I adequate way to incorporate this result as well. This is the task we are now 
going to tackle. 

First recall the classical situation in function theory. There the basic data is 
a compact Riemann surface X with the sheaf ox of holomorphic functions. 
To each divisor D = CpEX up P on X corresponds a line bundle o(D),  
i.e., an ox-module which is locally free of rank 1. If U is an open subset 
of X and K (U) is the ring of meromorphic functions on U, then the vector 
space o(D)(U) of sections of the sheaf o(D)  over U is given as 

o(D)(U) = { f E K(U) I ordp(f) 2 -up for all P E U }  

The Riemann-Roch problem is to calculate the dimension 

[(D) = dim H 0 ( x ,  u(D)) 

5 3. Riemann-Roch 

of the vector space of global sections 

In its first version the Riemann-Roch theorem does not provide a formula for 
H'(x, o(D)) itself, but for the Euler-Poincare characteristic 

x(o(D)) = dim H'(x, o ( ~ ) )  -dim H ' (x ,  o ( 0 ) )  

The formula reads 

where g is the genus of X. For the divisor D = 0, one has o(D) = ox 
and deg(D) = 0, so that  ox) = 1 - g ;  then this equation may also be 
replaced by 

x (o(D)) = deg(D) + x (ox) .  

The classical Riemann-Roch formula 

is then obtained by using SERRE duality, which states that H ' (X, o(D)) is 
dual to H'(x, w €4 o(-D)), where w = 52; is the so-called canonical 
module of X ,  and K = div(w) is the associated divisor (see for instance 
[5  I], chap. 111, 7.12.1 and chap. IV, 1.1.3). 

In order to mimic this state of affairs in number theory, let us recall the 
explanations of chap. I, § 14 and chap. 111, 1. We endow the places p of 
an algebraic number field K with the r6le of points of a space X which 
should be conceived of as the analogue of a compact Riemann surface. The 
elements f E K* will be given the r61e of "meromorphic functions" on 
this space X. The order of the pole, resp. zero of f at the point p E X ,  
for p + oo, is defined to be the integer vp(f) ,  and for p l c c  it is the real 
number up( f )  = -log Irf 1 .  In this way we associate to each f E K* the 
replete divisor 

div(f) = C v,(f)p E Div(6). 
P 

More precisely, for a given divisor D = Cp upp, we are interested in [he 
replete ideal 
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where the relation D' > D between divisors D' = C ,  vLp and D = C ,  vpp  
is simply defined to mean vb 2 up for all p. Note that H~(o (D) )  is no longer 
a vector space. An analogue of H ' (X, o(D)) is completely missing. Instead 
of attacking directly the problem of measuring the size of H'(o(D)), we 
proceed as in the function-theoretic model by looking at the "Euler-Poincare 
characteristic" of the replete ideal o(D). Before defining this, we want + 
to establish the relation between the Minkowski space K R  = [n ,  @ ]  , 

r E Hom(K,@), and the product n p l o o K P .  The reader will allow us to 
erplain this simple situation in the following sketch. 

We have the correspondences 

a ,  a : K  + @ - p complex prime, a = up : K p  A @ 

There are the following isomorphisms 

r p  being the canonical embedding K  -+ K p  (see chap. 11, (8.3)). They fit 
into the commutative diagram 

K ~ W  K~ = nIw x ~ [ Q : x c ] +  
I 

P u 

2 n[upxFpl I 2 1  2T.p. T 
K @ R  2 n K p  = n K p  x n K p ,  

P I 0 0  p real p complex 

where the arrow on the right is given by a H ( aa ,  Fa) .  Via this isomorphism, 
we identify K w  with nplm K P :  

The scalar product ( x ,  y )  = xT x , J ,  on K R  is then transformed into 
! 

( x ,  y )  = C XpYp + C (XPYP + X P Y P ) .  
p real p complex 

The Haar measure p on K R  which is determined by ( x ,  y )  becomes the 
product measure 

5 3. Riemann-Roch 

where 
k p  = Lebesgue measure on K p  = R ,  if p real, 

p p  = 2Lebesgue measure on K p  = @, if p complex. 

Indeed, the system 1 / a ,  i / a  is an orthonormal basis with respect to h c  
scalar product x J  + Y y  on K p  = C. Hence the square Q = { z  = x + iy I 
0 i x ,  y 5 l / d )  has volume p p ( Q )  = 1, but Lebesgue volume 112. 

Finally, the logarithm map 

studied in Minkowski theory is transformed into the mapping 

for one has the commutative diagram 

where the arrow on the right, 

is defined by x ++ x for p t, p ,  and by (x,x) F+ 22s for (T * p. 
This isomorphism takes the trace map x  H Cr  x ,  on [n ,  R]' into 
the trace map x  H C p l , x P  on nplm R ,  and hence the trace-zero space 

H = { x  E [fl, W]' I C ,  x,  = 0) into the trace-zero space 

In this way we have translated all necessary invariants of the Minkowski 
space Kw to the product npl, Kp. 

To a given replete ideal 

we now associate the following complete lattice j a  in Kw. The fractional 
ideal af K  is mapped by the embedding j : K i; K w  onto a 
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complete lattice ;af of K R  = npl, K,,. By componentwise multiplica~ion, 
am = n  PI^ pup = (. . . , eVp, . . yields an isomorphism 

a, : KR -+ KR, (x,,)~[, (eVP~p)pl,7 
I 

with determinant 

(*I &(a,) = n p v p f p  = n (yl(p)'p = %(a,). 
PI, PI, 

The image of the lattice ;af under this map is a complete lattice 

Let vol(a) denote the volume of a fundamental mesh of j a  with respect to 
the canonical measure. By ( x ) ,  we then have 

(3.1) Definition. If a is a replete ideal of K ,  then the real number ' 
x (a) = - log vol(a) 

will be called the Euler-Minkowski characteristic of a. 

The reason for this terminology will become clear in 8 8. 

(3.2) Proposition. The Euler-Minkowski characteristic x (a) only depends 
on the class of a in Pic(b) = J ( Z ) /  P (6) .  

Proof: Let [a] = [a]f .  [a], = (a) x [a], be a replete principal ideal. Then 
one has 

[a]a = aaf x [a],a,. 

The lattice j(aaf) is the image of the lattice jaf  under the linear map 
;a : Kw --+ Kw , ( x ~ ) ~ ~ ,  H ( a ~ ~ ) , ~ , .  The absolute value of the determinant 
of this mapping is obviously given by 

I det(ja)l = n / a lp  = l-I 9 l ( ~ ) - " ~ ( ~ '  = 9l([al,)-I . 
PI, PI, 

For the canonical measure, we therefore have 

vol(aaf) = %([a],)-' vol(af). 

Taken together with (*), this yields 

vol([a]a) = %([a],a,) vol(aaf) = (yl(a,) vol(af) = vol(a) , 

so that ,y (tala) = x (a). 0 

The explicit evaluation of the Euler-Minkowski characteristic results from 
a result of Minkowski theory, viz., proposition (5.2) of chap. I. 

I 

(3.3) Proposition. For every replete ideal a of K one has 

vol(a) = m ( y l ( a ) .  

I 

Proof: Multiplying by a replete principal ideal [a] we may assume, as 
vol([a]a) = vol(a) and %([a]a) = %(a), that af is an integral ideal of K .  By 
chap. I, (5.2) the volume of a fundamental mesh of af is given by 

Hence 

In view of the commutative diagram in 8 1,  p. 192, we will now inrl-oducc 
the degree of the replete ideal a to be the real number 

Observing that 

x(0)  = - 1 o g m ,  

we deduce from proposition (3.3) the first version of the Riemann-Roch 
theorem : 

(3.4) Proposition. For every replete ideal of K we have the formula 

In function theory there is the following relationship between the Euler- 
Poincare characteristic and the genus g of the Riemann surface X in question: 

There is no immediate analogue of H ' ( X ,  o x )  in arithmetic. However, there 
is an analogue of H O ( x , o x ) .  For each replete ideal a = np p u p  of thc 
number field K ,  we define 

This is a finite set because jH0(a) lies in the part of the latticc ,inl G Kik  

which is bounded by the conditions (f l p  5 e-"pfp, p ( w .  As the analogue of 
the dimension, we put l (a)  = 0 if ~ ' ( a )  = PI, and in all other cases 

#HO(a) 
l (a)  := log --- 

vol(W) ' 
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where the normalizing factor vol(W) is the volume of the set 

W = { ( I ~ ) E K R = [ ~ @ ] ' I  l%I 511. 
r 

This volume is given explicitly by 

vol(W) = 2 " ( 2 ~ ) ~ ,  

where r ,  resp. s, is the number of real, resp. complex, primes of K  (see the 
proof of chap. I, (5.3)). In particular, one has 

# ! 4 K )  
~ ( ' ( 0 )  = p ( K ) ,  SO that C(o) = log -. 

2' ( 2 ~ ) ~  

because 1 f J p  5 1 for all p, and np 1 f J p  = 1 implies I f  J p  = 1 for all p, so 
that ~ ' ( o )  is a finite subgroup of K* and thus must consist of all roots of 
unity. This normalization leads us necessarily to the following definition of 
the genus of a number field, which had already been proposed ad hoc by the 
French mathematician ANDRE WEIL in 1939 (see [138]). 

(3.5) Definition. The genus of a number field K  is defined to be the real 
num ber 

Observe that the genus of the field of rational numbers Q is 0. Using this 
definition, the Riemann-Roch formula (3.4) takes the following shape: 

(3.6) Proposition. For every replete ideal a of K one has 

x (a) = deg(a) + l (o)  - g . 

The analogue of the strong Riemann-Roch formula 

C(D) = deg(D) + 1 - g + t(K: - D), 
hinges on the following deep theorem of Minkowski theory, which is due 
to SERGE LANG and which reflects an arithmetic analogue of Serre duality. 
As usual, let r ,  resp. s, denote the number of real, resp. complex, primes, 
and n = [ K  : 01. 

(3.7) Theorem (S .  LANG). For replete ideals a = np pup E J (5 ), one has 

if %(a) + oo. Here, as usual, O(t) denotes a function such that O(t)/t  
remains bounded as t + oo. 

For the proof of the theorem we need the following 

(3.8) Lemma. Let a l  , . . . , ah be fractional ideals representing the classes ot 
the finite ideal class group Pic(o). Let c be a positive constant and 

Then the constant c can be chosen in such a way that 

Proof: Let Bi = {a E J ( E )  I af = ail. Multiplying by a suitable replete 
principal ideal [a], every a E J ( 6 )  may be transformed into a replete 
ideal a' = a[a] such that a; = ai for some i .  Consequently, one has 

J ( 6 )  = uih_, BiP(6 ) .  It therefore suffices to show that Bi G U j P ( 3 )  
for i = 1, . . . , h ,  if the constant c is chosen conveniently. To do this, let 
a = aia, E B i ,  a, = npl, p u p  E nPl, W;. Then we find for the replete 
ideal 

I 
a& = aoo%(a,)-;; = n pub, 

PI, 

where vk = vp - Cql, .fqvq, that %(a&) = I ,  and thus CPIm ,f,,~; = 0. 
The vector 

(..., fpv;, ...) E n w 
PI, 

therefore lies in the trace-zero space H = ((x,) E nplm W I zp,, x,, = 01. 
Inside it we have - see chap. I, (7.3) - the complete unlt lattice h(o*). Thus 
there exists a lattice point h(u) = (. . . , - fpvp(u), . . . ) p l m ,  u E o*, such 
that 

I fpv ; ,  - fpvp(u)l I fpco 

with a constant co depending only on the lattice h(o*). This implies 

with cl = co - log%(ai). Putting now b = a[u-'1 = n p p U p ,  we get 
bf = a;. This is because [uIf = (u) = (I)  and 

so that %(p)"p 5 enc~%(a)fp/n for ploo; then b E 'U,, so that a = b[u] E 

2fi P(6), where c = en''. 0 
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Proof of (3.7): As 0 (t) = 0 (t) - 1, we may replace ~ ' ( a - I )  by 

We have to show that there are constants C ,  C' such that 

for all a E J ( 6 )  satisfying %(a) 2 C'. For a E K*,  the set Ho(a-I) is 
mapped bijectively via x H ax  onto the set po([a]a-I). The numbers 
#pO(a-')  and %(a) thus depend only on the class a mod P(i?). As by the 

h preceding lemma J (6)  = Ui=, 2l; P (6) ,  it suffices to show ( t )  for a ranging 
over the set U;. 

For this, we shall use the identification of Minkowski space 

with its canonical measure. Since a* = a; for a = np pVp E a ; ,  we have 

We therefore have to count the lattice points in f = j a i l  E Kw which fall 
into the domain 

Pa= ll Dp 
PI'= 

where Dp = {X E Kp ( lxlp j %(p)"p}. Let F be a fundamental mesh of f. 
We consider the sets 

AsY G r n P a  = go(a-I)  2 X andasUyEY(F+y)  G Pa E U y E X ( F + y ) ,  
one has 

#Y j #HO(a-'1 j #X 

as well as 
#Y vol(F) ( vol(Pa) j #X vol(F) . 

This implies 

For the set Pa = np,, DP, we now have 

vol(Pa) = n 2%(p)"" 22~rS(p)"p = 2"(2~r)~'!Yl(a,) 
p real p complex 

(observe here that, under the identification Kp = @, one has ~ h c  cclualion 
Jx I p  = 1 x 1 ~ ) .  For the fundamental mesh F, (3.3) yields 

VOI(F) = m ~ ( a ; ' ) .  

From this we get 

Having obtained this inequality, it suffices to show that there exist 
constants C ,  C' such that 

for all a E Ui with %(a) > C'. We choose C' = 1 and find the constant C 
in the remainder of the proof. We parametrize the set P, = npl, D y  via the 
mapping 

p : I " - +  P a ,  

where I = [O, I], which is given by 

1 I + D p ,  t w 2 u p ( t - 2 ) ,  if p real, 

l 2  ---+ D p ,  (p,B)t-+ JClp(pcos2nB,psin2nO), ifpcomplex, 

where ap = %(p)"p. We bound the norm Ildp(x)ll of the derivative 
dp(x) : R" + R" ( x  E I"). If dp(x) = (aik), then (Idp(x)II ( 17 max laik 1 .  
Every partial derivative of p is now bounded by 2ap, resp. 2n&. Since 
a E a ; ,  we have that ap = %(p)"p 5 c%(a)fpln, for all plm. It follows that 

where 11 11 is the euclidean norm. The boundary of Pa, 

is parametrized by a finite number of boundary cubes In-' of In.  We 
subdivide every edge of I"-' into m = [%(a)'/"] 2 C' = 1 segments of 
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equal length and obtain for In-' a decomposition into ml'-' small cubes of 
diameter 5 (n - 1)'/2/m. From (**), the image of such a small cube under cp 

has a diameter g cl%(a)' ln 5 (n-l)'/*cl 5 (n-1)'/2c12 =: c2. 
The number of translates F + y ,  y E f, meeting a domain of diameter ( c.2 

is bounded by a constant c3 which depends only on c2 and the fundamental 
mesh F. The image of a small cube under cp thus meets at most c3 

translates F + y. Since there are precisely m"-' = [%(a)'lll]ll-' cubes in 
~ (1" - ' ) ,  we see that cp(ln-I) meets at most c3[%(a)'fn]"-' I c39l(a)'-A 
translates, and since the boundary a Po is covered by at most 211 such 
parts cp(ln-I), we do indeed find that 

for all a E Ui with %(a) 2 1, where C = 2nc3 is a constant which is 
independent of a E a;, as required. 0 

From the theorem we have just proved, we now obtain the strong version 
of the Riemann-Roch theorem. We want to formulate it in the language of 
divisors. Let D = Cp vpp be a replete divisor of K ,  

We call the number 
i(D) = C(D) - 

the index of specialty of D and get the 

(3,.9) Theorem (Riemann-Roch). For every replete divisor D E Div(5 ) we 
have the fonnula 

[(D) = deg(D) + C(o) - g + i (D) . 

The index of specialty i (D) satisfies 

j(D) = O(e- t  d d ~ )  
1 7  

in particular, i (D) + 0 for deg(D) + co. 

Proof: The formula for C(D) follows from x(D) = deg(D) + [(o) - g 
and x(D) = C(D) - i(D). Putting a-' = o(D), we find by (3.7) that 

for some 
deg(D) = 
that log(1 

function cp(a) which remains bounded as %(a) + oo, so that 
- log %(a-' ) = log %(a) -+ m. Taking logarithms and observing 
+ O(t)) = 0 0 )  and %(a)-'1" = exp(- deg D), we obtain 

Hence i(D) = C(D) - x(D) = 0(e-A 0 

To conclude this section, let us study the variation of the Euler-Minkowski 
characteristic and of the genus when we change the field K.  Let L I K bc a 
finite extension and o ,  resp. (3, the ring of integers of K ,  resp. L. In $2  we 
considered Dedekind's complementary module 

C L l ~  = ( x  E L I Tr(x(3) o} 2 Hom,(O, 0 ) .  

It is a fractional ideal in L whose inverse is the different D L I K  From (2.6), 
it is divisible only by the prime ideals of L which are ramified over K .  

(3.10) Definition. The fractional ideal 

o~ = CK IQ 2' Hornz (o, Z) 
is called the canonical module of the number field K .  

By (2.2) we have the 

(3.11) Proposition. The canonical modules of L and K satisfy the relation 

OL = C L I K ~ K .  

The canonical module w~ is related to the Euler-Minkowski character- 
istic ~ ( o )  and the genus g of K in the following way, by formula (3.3): 

vol(0) = a. 
(3.12) Proposition. deg oK = -2% (0) = 2g - 2t(o).  

Proof: By (2.9) we know that N K ~ Q ( D ~ ~ Q )  is the discriminant ideal 
~ K I Q  = ( d ~ ) ,  and therefore by (1.6), (iii): 

% ( w ~ )  = %(DKIQ)-'  = % ( D ~ ~ Q ) - '  = 1dK I - ' ,  

so that, as vol(o) = m, we have indeed 

degw,y = - ~ o ~ % ( w K )  = log IdK I = 2logvol(o) = - 2 ~ ( 0 )  = 2&'-2((0). 
0 
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As for the genus, we now obtain the following analogue of the Riemann- 
Hurwitz formula of function theory. 

(3.13) Proposition. Let L I K be a finite extension and g ~ ,  resp. g ~ ,  the 
genus of L , resp. K . Then one has 

IYI particular, in the case of an unrr~~nified extension L I K : 

so that 
deg UL = [ L  : K ]  deg WK + deg CLIK  . 

Thus the proposition follows from (3.12). 

The Riemam-Hunvitz formula tells us in particular that, in the decision 
we took in $ 1 ,  we really had no choice but to consider the extension @ lR 
as unramified. In fact, in function theory the module corresponding by 
analogy to the ideal C L I K  takes account of precisely the branch points of 
the covering of Riemann surfaces in question. In order to obtain the same 
phenomenon in number theory we are forced to declare all the infinite 
primes of L unramified, since they do not occur in the ideal C L I K .  

Thus the fact that CJR is unramified appears to be forced by nature itself. 
Investigating the matter a little more closely, however, this turns out not to 
be the case. It is rather a consequence of a well-hidden initial choice that we 
made. In fact, in chap. I, $ 5 ,  we equipped the Minkowski space 

with the "canonical metric" 
(x ,y)  = CxrYr. 

5 

Replacing it, for instance, by the "Minkowski metric" 
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cr, = I if r = t, a, = if t # t, changes the whole piclure. The Mna~ 
measures on Kw belonging to ( , ) and ( , ) are related as follows: 

Distinguishing the invariants of Riemann-Roch theory with respect to the 
Minkowski measure by a tilde, we get the relations 

?(a) = x (a)  + log T ,  l ( a )  = ( ( a )  + log 2" 

(the latter in case that ~ ' ( a )  # GI) ,  whereas the genus remains unchanged. 
Substituting this into the Riemann-Hurwitz formula (3.13) preserves its shape 
only if one enriches C L I K  into a replete ideal in which all infinite primes 
such that LT # K p  occur. This forces us to consider the extension (CJR as - 
ramified, to put = [ L P  : K p ] ,  fT IP = 1, and in particular 

The following modifications ensue from this. For an infinite prime p one has 
to define - 

5,(a) = -Pp log J t a J ,  pV = eVfGP, %(p) = e. 

The absolute norm as well as the degree of a replete ideal a remain unaltered : 

The canonical module w~ however has to be changed: 

in order for the equation 

to hold. By the same token, the ideal C L I K  has to be replaced by the replete 
ideal 

ZLIK = CLIK - n v2Iog2 
Plm 

c -  f I PI P 

In the same way as in (3.13), this yields the Riemann-Hurwitz formula 

In view of this sensitivity to the chosen metric on Minkowski space K R ,  
the mathematician UWE JANNSEN proposes as analogues of the function fields 
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not just number fields K by themselves but number lields equippcd with a 
metric of the type 

(x, Y ) K  = C a r x r Y r  9 

r 

a, > 0, a, = a,-, on Kw. Let these new objects be called metrized number 
fields. This idea does indeed do justice to the situation in question in a very 
precise manner, and it is of fundamental importance for algebraic number 
theory. We denote metrized number fields (K, ( , ) K )  as K and attach to 
them the following invariants. Let 

Let p = p, be the infinite prime corresponding to r : K + C. We then put 
ap = (Y,. At the same time, we also use the letter p for the positive real 
number 

p=e f fp  ER:, 

which we interpret as the replete ideal (1) x (1, . . . , 1, eap, 1, . . . , 1) E 
J ( o )  x n R1;. We put 

P I 0 0  

ep = l/ap and f p  = ap[Kp : R], 

and we define the valuation up of K* associated to p by 

vp(a) = -ep log I ta l .  

Further, we put 

sp that again la l p  = 1 t a  1 if p is real, and la l p  = 1 t a  l 2  if p is complex. For 
every replete ideal a of K ,  there is a unique representation a = n pup, which 
gives the absolute norm q ( a )  = n V(p)"p, and the degree p 

P 

degg (a) = - log %(a) . 

The canonical module of k is defined to be the replete ideal 

where WK is the inverse of the different DK l~ of K IQ, and 
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Thc Riemann-Roch theory may be transferred without any problcrn, 
using the definitions given above, to metrizecnumber fields K" = (K. ( . ) K ) .  
Distinguishing their invariants by the suffix K yields the relations 

V O I ~ ( X )  = n &vo~(x) ,  
r 

because T, : (Kw, ( , ) K )  --+ (Kw, ( , )), (x,) H ( f i x r ) ,  is an isometry 
with determinant n, &, and therefore 

~ i ( ~ K ) = - l o g v o l ~ ( o ~ )  = x ( ~ K ) - l o g n & ,  r 

The genus 

does not depend on the choice of metric. 

Just as in function theory, there is then no longer one smallest field, but Q 
is replaced by the continuous family of metrized fields (Q, axy), cu E R;, 
all of which have genus g = 0. One even has the 

(3.14) Proposition. The metrized fields (Q,axy) are the only metrized 
number fields of genus 0. 

Proof: We have 

Since n is transcendental, one has s = 0, i.e., K is totally real. Thus 
#p(K) = 2 so that IdK I = 4"-', where n = r = [K : Q]. In view of the 
bound (2.14) on the discriminant 

this can only happen if n 5 6. But for this case one has sharper bounds, due 
to ODLYZKO (see [ I l l ] ,  table 2): 

This is not compatible with IdK 1'1" = 4 + ,  so we may conclude that n 5 2. 
But there is no real quadratic field with discriminant IdK 1 = 4 (see chap. I ,  
$2, exercise 4). Hence n = 1, so that K = Q. 0 
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An extension of metr iz~d number fields is a pair = (K.  ( , ) K ) ,  
= (L, ( , ) L ) ,  such that K E L and the metrics 

satisfy the relation a, > B, whenever t = a 1 K .  If p i p  are infinite primes 
of L I K ,  9 belonging to a and p to r = a 1 K ,  we define the ramifrcatiorz 
index and inertia degree by 

Thus the fundamental identity 

is preserved. Also p is unramified if and only if a, = B, . For "replete prime 
ideals" p = ear,  ?J3 = epo , we put 

Finally we define the dflerent of to be the replete ideal 

where DLIK is the different of L ( K  and 

where B p  = Pa and ap = a, (!J3 belongs to a and p to t = a [ K ) .  With this 
convention, we obtain the general Rienzann-Hurwitz fornzufu 

If we consider only number fields endowed with the Minkowski metric, 
then Lv # K p  is always ramified. In this way the convention found in 
many textbooks is no longer incompatible with the customs introduced in the 
present book. 

3 4. Metrized 0-Modules 

The Riemann-Roch theory which was presented in the preceding section 
in the case of replete ideals is embedded in a much more far-reaching 

theory which treats finitely generated o-modules. It is only in  his sctting 
that the theory displays its true nature, and becomes susceptible to the most 
comprehensive generalization. This theory is subject to a formalism which 
has been constructed by ALEXANDER GROTHENDIECK for higher dimensional 
algebraic varieties, and which we will now develop for number fields. In 
doing so, our principal attention will be focused as before on the kind of 
compactification which is accomplished by taking into account the infinite 
places. The effect is that a leading r61e is claimed by linear algebra - for 
which we refer to [IS]. Our treatment is based on a course on "Arakclov 
Theory and Grothendieck-Riemann-Roch" taught by GUNTER TAMME. There, 
however, proofs were not given directly, as we will do here, but usually 
deduced as special cases from the general abstract theory. 

Let K be an algebraic number field and o the ring of integers of K .  For 
the passage from K to R and @, we start by considering the ring 

It admits the following two further interpretations, between which we will 
freely go back and forth in the sequel without further explanation. The set 

X (C) = Hom(K, @) 

induces a canonical decomposition of rings 

Alternatively, the right-hand side may be viewed as the set c""" = 
Hom(X(@),@) of all functions x : X(C) -+ C ,  i.e., 

The field K is embedded in Kc via 

and we identify it with its image. In the interpretation (2), the image of a E K 
appears as the tuple @, aa of conjugates of a ,  and in the interpretation (3) 
as the function x ( a )  = aa.  

We denote the generator of the Galois group G(@ IR) by F,, or simply 
by F. This underlines the fact that it has a position analogous to the Frobenius 
automorphism Fp E G( Fp IFp) ,  in accordance with our decision of 9 1 to 
view the extension @IR as unramified. F induces an involution F on Kc 
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which, in the representation Kc = Hom(X(@), C) for x : X (C) + @, is 
given by 

- 
(FX)(U) = ~ ( 5 ) .  

F is an automorphism of the W-algebra Kc. It is called the Frobenius 
correspondence. Sometimes we also consider, besides F ,  the involution 
z t+ 2 on Kc which is given by 

We call it the conjugation. Finally, we call an element x E Kc, that is, a 
function x : X(@) -+ C ,  positive (written x > 0) if it takes real values, and 
if x (a)  > 0 for all a E X(@). 

By convention every o-module considered in the sequel will be supposed 
to be finitely generated. For every such o-module M, we put 

This is a module over the ring Kc = o @z C ,  and viewing o as a subring of 
Kc - as we agreed above - we may also write 

as M C = M 8, (o @z C).  The involution x I+ F x  on Kc induces the 
involution 
1 F ( a @ x )  = a @  F x  

on Mc. In the representation Me = M @z C ,  one clearly has 

(4.1) Definition. A hermitian metric on the Kc -module Me is a sesqui- 
linear mapping 

( , ) ~ : M c x M c - - - + K c ,  

i.e., a Kc -linear form (x, y ) ~  in the first variable satisfying 

such that one has (x, x ) ~  > 0 for x # 0. 

The metric ( , ) M  is called F-invariant if we have furthermore 
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This notion may be immediately reduced to the usual notion of a hermitian 
metric if we view the KC-module Me, by means of the decomposition 
Kc = $, C ,  as a direct sum 

of @-vector spaces 
M, = M Noso C.  

The hermitian metric ( , then splits into the direct sum 

of hermitian scalar products ( , )M, on the C-vector spaces M,. In this 
interpretation, the F-invariance of (x, y ) ~  amounts to the commutativity of 
the diagrams 

( 3 ) M ~  
M, x M ,  - C 

(4.2) Definition. A metrized 0-module is a finitely generated o-module M 
with an F -invariant hermitian metric on Me. 

Example 1: Every fractional ideal a & K of o ,  in particular o itself, may 
be equipped with the trivial metric 

on a @z cC = K BQ C = Kc.  All the F-invariant hermitian metrics on a are 
obtained as 

where CY E Kc varies over the functions a! : X(C) + R: such that 
a ( 5 )  = a!(a). 

Example 2: Let L ( K  be a finite extension and 'U a fractional ideal of L ,  
which we view as an o-module M. If Y(@) = Hom(L, C), wc have the 
restriction map Y(@) + X(@), t F+ t lK ,  and we write sla i f  a = t l ~ .  

For the complexification Me = U C = LC, we obtain the decomposition 
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where M,  = $,,, @. M is turned into a metrized o-module by fixing the 
standard metrics 

(x.,Y)M, = C x S Y S  
la 

bn the [L : K1-dimensional C-vector spaces M,. 

If M and M' are metrized o-modules, then so is their direct sum M $ M', 
the tensor product M @ M', the dual h?= Hom,(M. o) and the n-th exterior 
power A"M. In fact, we have that 

Here i ,  in the case of the module A&, denotes the homomorphism 
i = ( , x ) M :  Mc -+Kc. 

Among all o-modules M the projective ones play a special r61e. They 
are defined by the condition that for every exact sequence of o-modules 
F' -+ F + F" the sequence 

Hom, (M, F') ---+ Hom, (M, F )  --., Hom, (M, F") 

is also exact. This is equivalent to any of the following conditions (the last 
two, because o is a Dedekind domain). For the proof, we refer the reader to 
standard textbooks of commutative algebra (see for instance [90], chap. IV, 
$3, or [16], chap. 7, $4). 

(4.3) Proposition. For any finitely generated o-module M the following 
conditions are equivalent: 

(i) M is projective, 

(ii) M is a direct summand of a finitely generated free o-module, 

(iii) M is locally free, i.e., M 8, op is a free up-module for any prime 
ideal p , 
Xiv) M is torsion free, i.e., the map M -+ M, x H ax, is injective for all 
nonzero a E o, 

(v) M Z a @ on for some ideal a of o and some integer n > 0. 
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In order to distinguish them from projective o-modules, we will henceforth 
call arbitrary finitely generated o-modules coherent. The rank of a coherent 
o-module M is defined to be the dimension 

rk(M) = dimK (M @, K )  . 
The projective o- module^ L of rank I are called invertible o-modulcs. 
because for them L €9, L -+ 0 ,  a @ 6 t-+ ;(a), is an isomorphism. Thc 
invertible o-modules are either fractional ideals of K,  or isomorphic to a 
fractional ideal as o-modules. Indeed, if L is projective of rank I and a E L .  
a, # 0, then, by (4.3), (iv), mapping 

L - + L @ , K = K ( a ! @ l ) ,  xt--, f ( x ) ( a @ l ) ,  

gives an injective o-module homomorphism L -+ K ,  x h. f ( x ) ,  onro n 
fracrional ideal a G K .  

To see the connection with the Riemann-Roch theory of the last section, 
which we are about to generalize, we observe that every replete itlcal 

of K defines an invertible, metrized o-module. In fact, the identity 
a, = npl, pup yields the function 

where pa denotes as before the infinite place defined by a : K -+ @. Since 
p, = p,, one has a,@) = a ( a ) ,  and we obtain on the complexification 

aft = a f @ z  @ = Kc 

the F -invariant hermitian metric 

(x, y) ,, = a,xY = $ e2"po X, Fa 
a e X ( @ )  

(see example 1, p. 227). We denote the metrized o-module thus obtained 
by L(a). 

The ordinary fractional ideals, i.e., the replete ideals a such that 
a, = 1, and in particular o itself, are thus equipped with the trivial 
metric (x, y), = (x, y) = xY. 

(4.4) Definition. Two metrized o-modules M and M' are called isometric 
if there exists an isomorphism 

f : M - - + M '  

of o-modules which induces an isometry ,fc : Mc -+ M& . 
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(4.5) Proposition. 

(i) Two replete ideals a and b define isometric metrized o -modules L (a) 
and L (b) if and only if they differ by a replete principal ideal [a] : a = b [o 1. 
(ii) Every invertible metrized o -module is isometric to an o -module L (a). 

(iii) L(ab) 2 L(a) 8, L(b), ~ ( a - ' )  = L(a). 

If a = b[al, then up = pp + vp(a); thus a = B y ,  and af = bf(a). The 
o-module isomorphism bf -+ af,  x H ax ,  takes the form ( , ) b  to the form 
( , )a. Indeed, viewing a as embedded in Kc, we find a = $, a a  and 

Therefore bf -+ af, x I+ ax ,  gives an isometry L(a) 2 L(b). 

Conversely, let g : L(b) -+ L(a) be an isometry. Then the o-module 
homomorphism 

g :  b f -+a f  

is given as multiplication by some element a E bflaf 2 Hom,(bf, af). The 
identity 

then implies that a = B y ,  so that up = pp + vp(a) for all p(oo. In view 
of af = bf(a), this yields a = b[a]. 

(ii) Let L be an invertible metrized o-module. As mentioned before, we have 
1 an isomorphism 

g : L + a f  

' for the underlying o-module onto a fractional ideal af. The isomorphism 
g@ : LC -, af@ = Kc gives us the F-invariant hermitian metric 
h(x, y )  = (&'(x), ( Y ) ) ~  on Kc. It is of the form 

for some function a : X(@) -+ IW; such that a ( F )  = a ( a ) .  Putting now 
a(a) = e2"po, with vpo E R ,  makes af with the metric h into the metrized 
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0-module L(a) associated to the replete ideal a = a, n,,, p"ll, and L i h  

isometric to L(a). 

(iii) Let a = np pup, b = np pwp, a ( ~ )  = e2"pm, P(a)  = p2"p. . The 
isomorphism 

afm, b f -  afbf ,  a 8 b -  a b ,  

between the o-modules underlying L(a) 8, L(b) and L(ab) then yields, as 
(ab,alb'),b = a ~ a b a ' b '  = a(a ,a l )p(b ,h ' )  = ( ~ , a ' ) , ( h , h ' ) ~ ,  an isometry 
L(a) €3, L(b) 2 L(ab). 

" 
The o-module Hom,(af, o) underlying L(a) is isomorphic, via the 

isomorphism 

to the fractional ideal a;'. For the induced Kc-isomorphism 

g@ : KC -+ H o m ~ ,  (KC KC) 

Thus g gives an isometry i ( a )  Z ~ ( a - I ) .  

(4.6) Definition. A short exact sequence 

of metrized o-modules is by definition a short exact sequence of the 
underlying o-modules which splits isometrically, i.e., in the sequence 

0 - M;. 4 Mc 5 M; --+ 0, 

M& is mapped isometrically onto aCMh, and the orthogonal complen~enl 
(ac Mk)' is mapped isometrically onto ME. 

The homomorphisms a ,  p in a short exact sequence of metrized o-modules 
are called an admissible monomorphism, resp. epimorphisrn. 

To each projective metrized o-module M is associated its determinant 
det M, an invertible metrized o-module. The determinant is the highest 
exterior power of M, i.e., 

det M = AnM, n = rk(M) . 
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B (4.7) Proposition. If 0 + M' 5 M + Mu + 0 is a short exact 

sequence of projective metrized o-modules, we have a canonical isometry 

det M' '8, det Mu 2' det M .  

Proof: Let n' = rk(Mt) and n" = rk(MU). We obtain an isomorphism 

I K : det M' '8, det M" -7 det M 

of projective o-modules of rank 1 by mapping 

-11 (mi A . .  . A m;,) 8 (m',' A . .  . A mi,,) H am', A . .  . A am:! A %',' A . .  . Am,,,, , 
I 

where Ey, . . . , are preimages of my, . . . , m:,, under ,8 : M + MI'. 
This mapping does not depend on the choice of the preimages, for if, say, 
&: + am:,,, , where m;,,, E M', is another preimage of my, then 

-11 am; A . . . A arnk,A(%',' 4- am;/+,) A %;' A . . . A m,,, - ' I  = am; A . . . A amkt A %: A . . . A m,,,, 

since am; A . . . A am;, A am:,+, = 0. We show that the o-module iso- 
morphism K is an isometry. According to the rules of multilinear algebra it 
induces an isomorphism 

of Kc-modules. Let x( ,  yf E Mh, i = I ,  . . . , n', and x,, yj E a ~ l ; ,  
j = 1, . . . , n", and furthermore 

'Thus K is an isometry. 0 
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Exercise 1. If M. N ,  L are metrized n-modules, then one has canonical isometrics 
M g o N  2 N g l o M ,  ( M @ , N ) @ o L  2 M @ o ( N @ o L ) ,  

Exercise 2. For any two projective metrized o-modules M ,  N ,  one has 

Exercise 3. For any two projective metrized o-modules M ,  N ,  one has 

det(M @, N )  Z (det M ) @ ' ~ ' ~ '  (det N ) @ ' ~ ' ~ '  . 

Exercise 4. I f  M is a projective metrized o-module o f  rank n ,  and p > 0, then there 
is a canonical isometry 

d e t ( h  M )  2 (det M)";:'. 

5 5. Grothendieck Groups 

We will now manufacture two abelian groups from the collection of 
all metrized o-modules, resp. the collection of all projective metrized 0 -  
modules. We denote by {M) the isometry class of a metrized o-module M 
and form the free abelian group 

Fo(6) = @ Z{M}, resp. ~ ' ( 6 )  = @ Z{M}, 
[MI {MI 

on the isometry classes of projective, resp. coherent, metrized s-modules. In 
this group, we consider the subgroup 

Ro(6) E Fo(d), resp. ~ ' ( 6 )  ~ ' ( i ? ) ,  

generated by all elements { M I ]  - (MI + (Mu} which arise from a short exact 
sequence 

0. M I - +  M +  M 1 ' - - - + O  

of projective, resp. coherent, metrized o-modules. 

(5.1) Definition. The quotient groups 

Ko(6) = Fo(5)/Ro(5), resp. ~ ' ( 5 )  = FO(~?)/RO(~) 

are called the replete (or compactified) Grothendieck groups of o .  If M 
is a metrized o-module, then [MI denotes the class it defines in K o ( 6 ) .  
resp. K O  (5).  
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The construction of the Grothendieck groups is such that a short exact 
sequence 

0--, M ' +  M -  M V + O  

of metrized o-modules becomes an additive decomposition in the group: 

,In particular, one has 

[M' $ M"] = [M'] + [Mu] 

The tensor product even induces a ring structure on Ko(6), and Ko(6)  then 
becomes a Ko(3)-module: extending the product 

(M](M'} := (M @, MI) 

by linearity, and observing that N @ M Y M @ N and (M 8 N) €3 L 2 
M @ ( N  €3 L), we find right away that ~ ' ( 6 )  is a commutative ring and Fo(3) 
is a subring. Furthermore the subgroups Ro(3) 2 Fo(3) and R0(6) 2 ~ ~ ( 6 )  
turn out to be Fo(6)-submodules. For if 

is a short exact sequence of coherent metrized o-modules, and N is a 
projective metrized o-module, then it is clear that 

o + N ~ M ~ + N ~ M + N ~ M ~ + o  

is a short exact sequence of metrized o-modules as well, so that, along with 
a generator (MI] - (MI + (M"], the element 

will also belong to Ro(3), resp. R0(3). This is why Ko(6) = Fo(6)/Ro(6) 
is a ring and K0(3)  = F O ( ~ ) / R O ( ~ )  is a Ko(d)-module. 

Associating to the class [MI of a projective o-module M in Ko(6) its 
class in K0(3)  (which again is denoted by [MI), defines a homomorphism 

Ko(3) + KO(b) .  

It is called the Poincarb homomorphism. We will show next that the 
Poincark homomorphism is an isomorphism. The proof is based on the 
following two lemmas. 

(5.2) Lemma. All coherent metrized o-modules M admit a "metrized 
projective resolution", i.e., a short exact sequence 

of metrized o-modules in which E and F are projective. 
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Proof: If a , ,  . . . , a, is a system of generators of M, and F is the free 
o-module F = on. then 

is a surjective o-module homomorphism. Its kernel E is torsion free, and 
hence a projective o-module by (4.3). In the exact sequence 

we choose a section s : Me -+ Fc o f f ,  so that Fc = Ec $sMc. We obtain 
a metric on Fc by transferring the metric of Me: to sMc, and by choosing 
any metric on Ec. This makes 0 -+ E -+ F -+ M -+ 0 into a short exact 
sequence of metrized o-modules in which E and F are projective. 0 

I 

In a diagram of metrized projective resolutions of M 

the resolution in the top line will be called dominant if the vertical arrows 
are admissible epimorphisms. 

(5.3) Lemma. Let 

be two metrized projective resolutions of the metrized o-module M.  Then, 
raking the o-module 

and the mapping f : F -+ M, (xf,x") H f'(xt) = fU(x"), one obtains a 
third metrized projective resolution 

with kernel E = E' x E" which dominates both given ones. 
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Proof: Since F' $ F" is projective, so is F ,  being the kernel of the 
f ' -  J"' homomorphism F' $ F" - M .  Thus E is also projective, being the 

kernel of F -+ M .  We consider the commutative diagram 

where the vertical arrows are induced by the surjective projections 

F "I. F'.  5 F" 

The canonical isometries 

give a section 
s : M e  -+ Fc , s x  = (s 'x ,  s"x)  , 

of F which transfers the metric on Mc to a metric on sMc .  Ec = EL x Eg 
carries the sum of the metrics of E h ,  Eg , so that Fc = Ec 69 s Mc also 
receives a metric, and 

becomes a metrized projective resolution of M .  It is trivial that the projections 
E E ' ,  and E -+ E" are admissible epimorphisms, and it remains to show 
this for the projections n' : F + F ' ,  n" : F + F". But we clearly have the 
exact sequence of o-modules 

where ix" = ( 0 ,  x") .  As the restriction of the metric of F to E = E' x E"  
is the sum of the metrics on E' and E", we see that i  : EE + i E ;  is an 
isometry. The orthogonal complement of i E E  in Fc is the space 

F& X M ~  s1'MC = { ( x ' ,  sl'a) E F& x s1'MC I f 1 ( x ' )  = a }  . 

Indeed, on the one hand it is clearly mapped bijectively onto F&, and on the 
other hand it is orthogonal to i  EE. For if we write x' = s'a +el ,  with e' E E& , 
then 

( x ' ,  s"a) = sa  + (e',  0) ,  
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where (e ' ,  0 )  E Ec and we find that, for all xu E EE, 

Finally, the pro-jection F&: x M, s"MC + F& is an isometry, for if  (A '. . ~ " r r ) ,  
( y ' ,  s''/>) E Fb x M _  s"Mc and s '  = S'U + o', y' = S'I? + ( I 1 ,  with c',  (1' E I:';, 

then we get 

and 

((2, sl'a), ( y ' ,  sub))  = ( s a ,  sb )  I; + ( s a ,  (d ' ,  0 ) )  + ( ( e l ,  0 ) .  sh) 

+ ( (e ' ,  01, (d ' ,  0 ) )  

= ( a ,  b ) ~  + (el, d1jEr = (s 'a,  ~ ' b ) ~ !  + (e ' ,  

= (s'a + e', s'b + d ' )  F' = ( x ' ,  y ' )  F' . 0 

(5.4) Theorem. The Poincare' homomorphism 

K o ( 3 )  + KO@) 

is an isomorphism. 

Proof: We define a mapping 

by choosing, for every coherent metrized o-module M ,  a metrized projective 
resolution 

O + E - - - + F + M + O  

and associating to the class { M )  in ~ ' ( 3 )  the difference [ F ]  - [ E l  of the 
classes [F] and [ E l  in K o ( 3 ) .  To see that this mapping is well-defined let us 
first consider a commutative diagram 

of two metrized projective resolutions of M ,  with the top one dominating the 
bottom one. Then E -+ F induces an isometry ker(a)< ker(p), so that we 
have the following identity in K o ( b ) :  

[ F ]  - [ E l  = [ F ' ]  + [ker(B)] - [ E ' ]  - [ker (a ) ]  = [ F ' ]  - [ E ' ] .  
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If now 0 -+ E' -+ F' -+ M -+ 0,  and 0 -+ E" -+ F" + M -+ 0  are two 
arbitrary metrized projective resolutions of M ,  then by (5.3) we find a third 
one, 0 -+ E + F  -+ M -+ 0, dominating both, such that 

[ F ' ]  - [ E ' ]  = [ F ]  - [ E l  = [ F f ' ]  - [ E " ] .  

This shows that the map n : F 0 ( 6 )  -+ K o ( 6 )  is well-defined. We now show 
that it factorizes via ~ ' ( 6 )  = F 0 ( 6 ) / ~ ' ( 6 ) .  Let 0  -+ M' -+ M ~ M "  -+ 0 
be a short exact sequence of metrized coherent o-modules. By (5.2), we can 

f pick a metrized projective resolution 0  -+ E  -+ F+ M -+ 0. Then clearly 
f" O-+E"-+ F+MU-+ 

as well, where we write 
commutative diagram 

0  is a short exact sequence of metrized o-modules 

f'' = a o f and E" = ker(fU). We thus get the 

and the snake lemma gives the exact sequence of o-modules 

It is actually a short exact sequence of metrized o-modules, for Ek is mapped 
isometrically by f onto M ,  so that E"& E E; is mapped isometrically by f 
onto ME. We therefore obtain in K o ( 6 )  the identity 

n { M f )  - n { M )  + n { M " }  = [E"] - [El  - ( [F]  - [E]) + [F] - [E"] = 0 .  

It shows that n : ~ ' ( 6 )  -+ K o ( 6 )  does indeed factorize via a homomorphism 

It is the inverse of the Poincare homomorphism because the composed maps 

K o ( d )  + ~ ' ( 6 )  ---+ K o ( 6 )  and K 0 ( 6 )  ---+ K o ( d )  -+ ~ ' ( 6 )  

are the identity homomorphisms. Indeed, if 0  -+ E -+ F  -+ M -+ 0  is 
a projective resolution of M ,  and M is projective, resp. coherent, then in 
K o ( 6 ) ,  resp. K O ( @ ,  one has the identity [MI = [ F ]  - [El. 0 

The preceding theorem shows that the Grothendieck group Ko(.6) does not 
just accommodate all projective metrized o-modules, but in fact all coherent 
metrized o-modules. This fact has fundamental significance. For when 
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dealing with projective modules, one is led very quickly to non-projective 
modules, for instance, to the residue class rings o la .  The corresponding 
classes in ~ ' ( a ) ,  however, can act out their important r6les only inside the 
ring K o ( 6 ) ,  because only this ring can be immediately subjected to a more 
advanced theory. 

The following relationship holds between the Grothendieck ring K o ( 6 )  
and the replete Picard group Pic (6 ) ,  which was introduced in 9 1. 

(5.5) Proposition. Associating to a replete ideal a  of K  the metrized o- 
module L ( a )  yields a homomorphism 

Pic (5 )  + Ko(6)* ,  [a]  I-+ [ L  ( a ) ] ,  

into the unit group of the ring Ko(6) .  

Proof: The correspondence [a]  H [ L ( a ) ]  is independent of the choice of  
a replete ideal a  inside the class [a]  E Pic(6) .  Indeed, if b is another 
representative, then we have a = b[a] ,  for some replete principal ideal [a], 
and the metrized o-modules L ( a )  and L ( b )  are isometric by ( 4 . 3 ,  (i), so that 
[ L ( a ) ]  = [ L ( b ) J .  The correspondence is a multiplicative homomorphism as 

In the sequel, we simply denote the class of a metrized invertible o- 
module L ( a )  in K o ( 6 )  by [a] .  In particular, to the replete ideal o = np p0 
corresponds the class 1 = [o] of the o-module o equipped with the trivial 
metric. 

(5.6) Proposition. KO@) is generated as an additive group by the ele- 
ments [a] .  

Proof: Let M be a projective metrized o-module. By (4.3), the underlying 
o-module admits as quotient a fractional ideal af,  i.e., we have an exact 
sequence 

O + N + M + a f + O  

of o-modules. This becomes an exact sequence of metrized o-modules once 
we restrict the metric from M to N and choose on a( the metric which is 
transferred via the isomorphism ~ @ l  S aft. Thus af becomes the metrized 
o-module L ( a )  corresponding to the replete ideal a  of K ,  so that we get the 
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identity [MI = [ N ]  + [a] in K o ( b ) .  Induction on the rank shows that for 
every projective metrized o-module M ,  there is a decomposition 

[MI = [all + . . . + [a,].  0 

' The elements [a]  in K o ( 5 )  satisfy the following remarkable relation. 

t5.7) Proposition. For any two replete ideals a  and b  of K  we have in 
& ( d )  the equation 

( [ a ]  - l ) ( [ b ]  - 1 )  = 0 .  

Proof (TAMME): For every function a : X(C) + C let us consider on the 
Kc -module Kc = @'J,X(C)  C the form 

For every matrix A = (: i )  of such functions, we consider on the 

Kc -module Kc $ Kc the form 

a x y ,  resp. ( , ) A ,  is an F-invariant metric on K c ,  resp. on Kc $ K c ,  if - 
rfnd only if a! is F-invariant (i.e., a(a)  = a@)) and a ( a )  E R;, resp. if all 
the functions a ,  /3, y  , S are F -invariant, cr(a),  B(a) E R; and 6  = r,  and if 
moreover det A = aB - y v  > 0. We now assume this in what follows. 

Let a  and b  be fractional ideals of K .  We have to prove the formula 

[a1 + [bl = [ab] + 1 .  

We may assume that af and b f  are integral ideals relatively prime to one 
another, because if necessary we may pass to replete ideals a' = a [ a ] ,  
b' = b[h] with corresponding ideals a; = a f a ,  b', = b fh  without changing the 
classes [ a ] ,  [ b ] ,  [ab] in Ko(6) .  We denote the o-module af, when metrized 
by a x y ,  by (af,cr), and the o-module af $ b f ,  metrized by ( , ) A ,  for 

A = (F i ) ,  by ( a f  Q br, A ) .  Given any two matrices A = r ( i) and 

A' = ( d  y ' )  we write 
Y '  B' 

A  - A' ,  

if [(af $ b f ) ,  A ]  = [(af $ bf) ,  A'] in K o ( 6 ) .  We now consider the canonical 
exact sequence 
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Once we equip a&bf with the metric ( , ) A  which is given by A  = 

we obtain the following exact sequence of metrized o-modules: 

Indeed, in the exact sequence 

0  -+ Kc --+ Kc $ Kc --+ Kc -+ 0, 

the restriction of ( , ) A  to Kc $ ( 0 )  yields the metric ax-J on K c ,  
and the orthogonal complement V of Kc $ (0) consists of all elements 
a  + h  E K c  @ Kc such that 

( x Q O , a $ b )  = ~ X Z + ~ X ~ = O ,  

for all x  E K c ,  so that 

V = { ( - y / a ) b  $ 6  ( b E K ~ } .  

The isomorphism V 5 K c ,  ( - v / a ) b  $ b I-+ b ,  transfers the metric ( , ) A  

on V into the metric 6 x y ,  where S is determined by the rule 

8 = ( n - ' ( l ) , n - ' ( l ) ) A  = ( ( - ~ / a ) l $  1, ( - F / a )  1 $ I ) ~  

This shows that (*) is a short exact sequence of metrized o-modules, i.e., 

Replacing p by B + $. we get 

Applying the same procedure to the exact sequence 0  -+ bf  -+ ar @ 6, + 

af -+ 0  and the metric ( g  L l )  on at $ b f ,  we obtain 

Choosing 
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makes the matrices on the left equal, and yields 

- 
or, if we put 6 = ,6 + 5, 

which is valid for any F-invariant function 6 : X(@) + R such that 6 2 B. 
This implies furthermore 

for any two F-invariant functions 6. F. : X ( @ )  -+ R;. For if K : X(C) -+ R 
is an F-invariant function such that K L 6,  K > 6 ,  then (**) gives 

Now putting 6 = @ and E = 1 in (* * *), we find 

On the other hand, we obtain the formula 

in the following manner. We have two exact sequences of coherent metrized 
o-modules: 

0 -4 (bf, 1) -+ (0,l) + o/bf  --t 0. 

As af and bf are relatively prime, i.e., af + bf = o, it follows that 
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is an isomorphism, so that in the group KO(b) one has the identity 
[af/afbf] = [o /  bf], and therefore 

From (1) and (2) it now follows that 
I 

[a] + [bl = [ab,] + [bf] = [ab,bf] + I = [ab] + 1.  

In view of the isomorphism Ko(c?) Z KO(Z), this is indeed an identity 

I in Ko(b). 0 

5 6. The Chern Character 

The Grothendieck ring Ko(6) is equipped with a canonical surjective 
homomorphism 

I rk : Ko(E) -+ Z. 

Indeed, the rule which associates to every isometry class (M)  of projective 
metrized u-modules the rank 

extends by linearity to a ring homomorphism Fo(6) -+ Z. For a short exact 
sequence 0 -+ M' + M -+ M" + 0 of metrized u-modules one has 
rk(M) = rk(M1) + rk(M1'), and so rk((M1) - (M)  + (M")) = 0. Thus rk is 
zero on the ideal Ro(fi) and induces therefore a homomorphism Ko(6) -+ Z. 
It is called the augmentation of Ko(B) and its kernel I = ker(rk) is called 
the augmentation ideal. 

(6.1) Proposition. The ideal I ,  resp. 1 2 ,  is generated as an additivc group 
by the elements [a] - I ,  resp. ([a] - 1 )([b] - I ), where a, b vary over tlic 
replete ideals of K.  

Proof: By (5.6), every element 6 E Ko(Z) is of the form 
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If 6 E I ,  then r k ( 0  = Cr=l n; = 0, and thus 

The ideal is therefore generated by the elements ([a] - l)([b] - 1). AS 

[cl([al - 1 N b l  - 1) = (([cal - 1) - ([cl - 1)) ([bl - I), 

these elements already form a system of generators of the abelian group 1 2 .  
0 

By (5.7), this gives us the 

(6.2) Corollary. = 0. 

We now define 
gr Ko(6) = Z @ I 

and turn this additive group into a ring by putting xy = 0 for x ,  y E I. 

(6.3) Definition. The additive homomorphism 

C I  : KO@> -+ 1,  c 1 ( 0  = 6 - rk(t) 

is called the first Chern class. The mapping 

ch : Ko(6) -, grK0(6>, ch(t) = rk(t) + C I  ( C ) ,  
is called the Chern character of Ko(6). 

(6.4) Proposition. The Chern character 

ch : Ko(6) -+ gr Ko(6) 

is an isomorphism of rings. 

Proof: The mappings rk and cl are homomorphisms of additive groups, and 
both are also multiplicative. For rk this is clear, and for cl it is enough to 
check it on the generators x = [a], y = [b]. This works because 

because (x - l)(y - 1) = 0 by (5.7). Therefore ch is a ring homomorphism. 
The mapping 

Z @ I - - - + K o ( 6 ) ,  n @ t - [ + n ,  

:is obviously an inverse mapping, so that ch is even an isomorphism. 

We obtain a complete and explicit description of the Chem character by 
taking into account another homomorphism, as well as the homomorphism 
rk : Ko(6) -+ Z, namely 

det : Ko(6) -+ Pic(6) 

which is induced by taking determinants det M of projective o-modules M 
as follows (see $4). det M is an invertible metrized o-module, and therefore 
of the form L(a) for some replete ideal a, which is well determined up  
lo isomorphism. Denoting by LdetM] the class of a in Pic(6), the linear 
extension of the map (M)  H [det MI gives a homomorphism 

det : Fo(6) --+ Pic(6).  

It maps the subgroup Ro(6) to 1, because it is generated by the elements 
(MI) - (MI + (M") which arise from short exact sequences 

0 -+ MI---+ M + MIf--+ 0 

of projective metrized o-modules and which, by (4.7), satisfy 

det(M) = [det MI = [det M' 18 det Mu] 

= [det M1][det M"] = det{Mf} det(M") . 
Thus we get an induced homomorphism det : Ko(E) -+ Pic(6). It satisfies 
the following proposition. 

(6.5) Proposition. (i) The canonical homomorphism 

Pic(6) --+ Ko(6)* 

is injective. 

(ii) The restriction of det to I, 

det : I -+ Pic(6),  

is an isomorphism. 

Proof: ( i )  The composile of both mappings 

is the identity, since for an invertible metrized o-module M ,  one clcarly has 
det M = M. This gives (i). 

(ii) Next, viewing the elements of Pic(6) as elements of Ko(6),  

: P i c ( )  I ,  6 ( x ) = x -  1 ,  

gives us an inverse mapping to det : I -, Pic(6). In fact, one has 
deto6 = id since det([a] - 1) = det[a] = [a], and 6 o det = id since 
G(det([a] - 1)) = G(det[a]) = G([a]) = [a] - 1 and because of the fact that 
I is generated by elements of the form [a] - I (see (6.1)). 0 
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From the isomorphism det : 1 -7 Pic(c?), wc now ohl;~in ;in 

isomorphism 
gr Ko(6) -< Z $ Pic(@ 

and the composite 
id $ det 

Ko(6) -% gr KO (6)  ---6 Z @ Pic(6) 

will again be called the Chem character of Ko(6). Observing that 
det(c,(t)) = det(6 - r k ( 0  . I )  = det((), this yields the explicit description 
of the Grothendieck group Ko(6) : 

(6.6) Theorem. The Chern character gives an isomorphism 

The expert should note that this homomorphism is a realization map 
from K -theory into Chow-theory. Identifying Pic(6) with the divisor 
class group C H ' ( ~ ) ,  we have to view Z @ Pic(5) as the "replete" Chow 
ring C H ( 3 ) .  

5 7. Grothendieck-Riemann-Roch 

We now consider a finite extension LlK of algebraic number fields 
and study the relations between the Grothendieck groups of L and K .  
Let o, resp. 0, be the ring of integers of K ,  resp. L ,  and write 
X (C) = Hom(K, @), Y (C) = Hom(L, C). The inclusion i : o -+ 0 and the 
surjection Y (@) -+ X(C), a I+ a I K ,  give two canonical homomorphisms 

i* : Ko(Z) -+- K O ( ~ )  and i, : K O ( ~ )  -+ Ko(6), 

defined as follows. 

If M is a projective metrized o-module, then M @, 0 is a projective 
0-module. As 

the hermitian metric on the Kc-module Mc extends canonically to an 
F -invariant metric of the LC -module (M €3, Therefore M @, 0 is 
automatically a metrized 0-module, which we denote by i* M. If 

is ;I s l ~ o ~ . ~  exact scquet~ce of projective metrized o-modules, then 

0- M'@oO-+- M @ O O  - M"@oO - 0 

is a short exact sequence of metrized 0-modules, because 0 is a projective 
o-module and the metrics in the sequence 

0 ---+ M& --+ Mc -+ Mg -+ 0 

simply extend LC -sesquilinearly to metrics in the sequence of LC -modules 

0 - Mh @ K ~  L c  -+ MC @K, LC --+ ME @ K ~  LC --+ 0. 

This is why mapping, in the usual way (i.e., via the representation 
Ko(6) = Fo(6)lRo(a),  

M ++ [i*M] = [M @ , 0 ]  

gives a well-defined homomorphism 

i* : Ko(6) -+ ~ ~ ( 0 ) .  

The reader may verify for himself that this is in fact a ring homomorphism. 

On the other hand, if M is a projective metrized 0-module, then M 
is automatically also a projective o-module. For the complexitication 
Mc = M @z C we have the decomposition 

where M, = M 630, @ and 

M, = M @,,,@ = @ M r .  
5 1, 

The @-vector spaces M, carry hermitian metrics ( , ) M , ,  and we define the 
metric ( , ) M ~  on the @-vector space Mu to be the orthogonal sum 

This gives a hermitian metric on the KC-module Mc, whose F -invariance 
is clearly guaranteed by the F-invariance of the original metric ( , j M .  We 
denote the metrized o-module M thus constructed by i ,M.  

If 0 -t M' -+ M -+ M" -+ 0 is a short exact sequence of projective 
metrized 0-modules, then 

0 + i,M1 --+ i,M ---+ i,M1' --+ 0 

is clearly an exact sequence of projective metrized o-modules. As before, 
this is why the correspondence 

M r--, [i,M] 

gives us a well-defined (additive) homomorphism 

i ,  : ~ ~ ( 0 )  --+ Ko(6). 
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(7.1) Proposition (Projection Formula). The diagram 

K ~ ( B )  x K@) ----+ K ~ ( D )  

i * l  T i *  l i *  
Ko(5) x Ko(5) --j Ko(5) 

is commutative, where the horizontal arrows are multiplication. 

Proof: If M,  resp. N,  is a projective metrized 0-module, resp. o-module, 
there is an isometry 

of projective metrized o-modules. Indeed, we have an isomorphism of the 
underlying o-modules 

Tensoring with @, it induces an isomorphism 

That this is an isometry of metrized KC-modules results from the 
distributivity 

C( 9 ) M , (  9 )Nu = (C( 9 ) M , ) (  3 )N" 
r In 5 10 

by applying mathematical grammar. 0 

! The Riemann-Roch problem in Grothendieck's perspective is the task 
of computing the Chern character ch(i,M) for a projective metrized 0- 
module M in terms of ch(M). By (6.6), this amounts to computing det(i,M) 
in terms of det M. But det M is an invertible metrized 0-module and is 
therefore isometric by (4.5) to the metrized 0-module L(U) of a replete 
ideal U of L.  N L ~ ~  (U) is then a replete ideal of K ,  and we put 

This is an invertible metrized o-module which is well determined by M up 
to isometry. With this notation we first establish the following theorem. 

(7.2) Theorem. For any projective metrized 0-module M one has: 

rk(i, M) = rk(M) rk(O), 

rk(M) det(i,M) 2 NLIK(det M) 8, (det id?) . 
Here we have rk(0) = [L : K]. 

In order to prove the second equation, we first reduce to a special case. Let 

h(M) = det(i, M) and p(M) = NLIK (det M) @, (det i , ~ ? ) ' ~ ' ~ )  . 

If 0 -+ MI -+ M -+ M" -+ 0 is a short exact sequence of projective 
metrized 0-modules. one has 

(*) h(M) 2 h(M1) 8, L(Mtl) and p(M) 2 p(M1) 8, p(MU).  

The isomorphism on the left follows from the exact sequence 0 -+ i,M1 + 
i,M + i,M" -+ 0 by (4.7), and the one on the right from (4.7) also, from 
the multiplicativity of the norm N L I ~  and the additivity of the rank rk. As in  
the proof of (5.6), we now make use of the fact that every projective metrized 
0-module M projects via an admissible epimorphism onto a suitable 0- 
module of the form L(U) for some replete ideal U. Thus (*) allows us to 
reduce by induction on rk(M) to the case M = L(U). Here rk(M) = 1 ,  so 
we have to establish the isomorphism 

For the underlying o-modules this amounts to the identity 

(**I det, Uf = N L I ~  (Uf) det, 0, 

which has to be viewed as inside d e t ~  L and which is proved as follows. 
If 0 and o were principal ideal domains, it would be obvious. In fact, in that 
case we could choose a generator a  of Uf and an integral basis wl .  . . . . a),, 

of 0 over o .  Since NL,K(CY) is by definition the determinant det(T,) of tllc 
transformation T, : L -+ L, x  H a x ,  we would get the equation 

the left-hand side, resp. right-hand side, of which would, by (1.6), generate 
the left-hand side, resp. right-hand side, of (**). But we may always 
produce a principal ideal domain as desired by passing from 010 to the 
localization O,,loP for every prime ideal p of o (see chap. I ,  8 I I and $3, 
exercise 4). The preceding argument then shows that 

and since this identity is valid for all prime ideals p of o ,  we deduce the 
equality (**). 
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In order to prove that the metrics agree on both sides of (w),  we put 
M = L(M), N = L(O),  a = NL/K(%) and we view M, N , a  as metrized 
o-modules. One has Me: = Nc = LC and ac  = K c ,  and we consider the 
metrics on the components 

where a E Hom(K,C) and r E Hom(L, C)  is such that t la .  We have to 
show that, for t .  q E detc M, and a ,  h E @, one has the identity 

with vp = CPIp fTIPvP. Then 

Let 6 = X I  A . . . A x,, q = yl A . . . A y,. We number the embeddings r l a ,  
TI, . . . , t,, put vk = vq and form the matrices 

rk 

(a6 bf l )de t  M ,  = a b  (6, )7)det M ,  . 

= a b d e t ( ( A ~ ) ( B ~ ) ' )  = a b  (det ~ ) ~ d e t ( A B ' )  

= e2"paab (6, q ) d e t ~ ,  = (a, b ) ,  (6, q ) d e t N f l  . 
This proves our theorem. 0 

Extending the formulas of (7.2) to the free abelian group 

by linearity, and passing to the quotient group K O ( ~ )  = F ~ ( B ) / R ~ ( ~ ~ )  
yields the following corollary. 
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(7.3) Corollary. For every class 6 E K ~ ( D ) ,  one has the formulas 

rk(i,() = [L : K ]  rk(c), 

det(i&) = [det i , ~ ] ' ~ ( ~ )  NL (det 6 )  

The square of the metrized o-module deti,C? appearing in the second 
formula can be computed to be the discriminant 0 ~ 1 ~  of the extension L  I K ,  
which wc view ns n mctrized u-module with the trivial metric. 

(7.4) Proposition. There is a canonical isomorphism 

of metrized o-modules. 

Proof: Consider on C? the bilinear trace map 

It induces an o-module homomorphism 

The image of T is the discriminant ideal aLIK, which, by definition, is 
generated by the discriminants 

of all bases of L J K  which are contained in 0. This is clear if 0 admits 
an integral basis over o, since the cq and pi can be written in terms of 
such a basis with coefficients in o .  If there is no such integral basis, i t  will 
exist after localizing Op 1 op at every prime ideal p (see chap. I, (2.10)). The 
image of 

Tp : (det 0 , )  8 (det Op) -+ up 

is therefore the discriminant ideal of Oplop and at the same time the 
localization of the image of T. Since two ideals are equal when their 
localizations are, we find image(T) = aLIK. Furthermore, T has to be 
injective since (det 0 )B2 is an invertible o-module. Therefore T is an 
o-module isomorphism. 
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We now check that 

T@ : (det(QB2)@ --+ ( ~ L I K ) ~  

is indeed an isometry. For Oc = 0 ' 8 ~  @, we obtain the Kc-module 
decomposition 

0 c  = @ O m ,  
0 

where a varies over the set Hom(K, C), and the direct sum 

is taken over all r E Hom(L. @) such that r I = a. The mapping 0 c  -+ Kc 
induced by TrLIK : 0 -+ 0 is given, for x = $, xu,  x, E o o ,  by 

where Tr, (x,) = CrI, x,, , , the xu,, E @ being the components of xu. The 
metric on (i,O)@ = OC is the orthogonal sum of the standard metrics 

on the @-vector spaces (i,0), = 0, = @. Now let xi, y; E 0, ,  
i = 1, . . . ,  n,andwritex = X I  A . . . A x , ,  y = yl A . . . A ~ ,  ~det (O, ) .The  
map Tc splits into the direct sum Tc = $, T, of the maps 

which are given by 

For any two n -tuples xi, y/ E 0, we form the matrices 

A = ( ~ r ,  (xi yj)) , A' = (Tr, (7:~;))  , B = ( ~ r ,  (x;~;))  , B' = (Tr, (Y;T~))  

 en one has AA' = B B', and we obtain 

= d e t ( ~ r , ( x ~ ~ , ) )  det(~r,(Fiy;)) = det(AA1) = det(BBf) 

= d e t ( ~ r , ( x i ~ j ) )  det(~r,(yij$)) = det((xi,~j),)  det((yi. ~2,) 
= ( x ,  xl)det 0, ( Y ,  yl)det o,, = (X '8 y .  X' '8 y1)(detC3,)82. 

This shows that Tc is an isometry. 0 

We now set out to rewrite the results obtained in (7.2) and (7.4) in thc 
language of GKO.I.~ILNDIECK'S general formalisni. For the homomorphism i ,  
there is the commutative diagram 

because [L : K] times the rank of an 0-module M is its rank as o-modulc. 
Therefore i ,  induces a homomorphism 

i* : I(??) --+ l(6) 

between the kernels of both rank homomorphisms, so that there is a 
homomorphism 

i, : gr KO(??) -4 gr Ko(6). 

It is called the Gysin map. (7.3) immediately gives the following explicit 
description of it. 

(7.5) Corollary. The diagram 

is commutative. 

We now consider the following diagram 

where the Gysin map i, on the right is explicitly given by (7.3,  whereas 
the determination of the composite ch o i, is precisely the Riemann-Roch 
problem. The difficulty that confronts us here lies in the fact that the diagram 
is not commutative. In order to make it commute, we need a correction, 
which will be provided via the module of differentials (with trivial mclric). 
by the Todd class, which is defined as follows. 
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The module 52&, of differentials is only a coherent, and not a projeclivc 

0-module. But its class [ S Z & , ~ ]  is viewed as an element of K O ( ~ )  via the 
Poincare isomorphism 

K@) G KO@), 

and since rko(52&,) = 0, it lies in I ( a ) .  

(7.6) Definition. The Todd class of 010 is defined to be the element 

Because of the factor i, the Todd class does not belong to the ring 
gr K@) itself, but is only an element of gr ~ ~ ( 0 )  B Z[i ] .  The module 
of differentials Q&, is connected with the different DLIK of the extension 
L 1 K by the exact sequence 

of 0-modules (with trivial metrics) (see $2, exercise 3). This implies that 
[52&,] = 1 - [ D L I K  1. We may therefore describe the Todd class also by the 
different: 

The main result now follows from (7.3) using the Todd class. 

(7:7) Theorem (Grothendieck-Riemann-Roch). The diagram 

is commu tative. 

Proof: For 6 E Ko(a ) ,  we have to show the identity 
! 

ch(i&) = i, (Td(0 lo)  ch(6)). 
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Decomposing ch(i,c) = rk(i,c) @ c.1 (i&) and ch(c) = rk(c) @ C I  (e) and 
observing that 

Td(Olo)ch(6) = ( I  + ( [ D L I K I  - I ) )  (Mt) f ( '~( t ) )  

= rk(6) -4- [ct(6) + ~ ~ ( ~ ) ( [ D L ~ K I  - I ) ] ,  

i t  suffices to check the equations 

( 4  rk(i,6) = rk (0  rk(i,[Ol), 

in grKo(6).  The equations (a) and (c) are clear because of rk(i,[O]) = 
rk(i,O) = [L : K]. To show (b) and (d), we apply det to both sides and are 
reduced by the commutative diagram (7.5) to the equations 

But (e) is the second identity of (7.3), and (f) follows from (7.4) and (2.9). 0 

With this final theorem, the theory of algebraic integers can be integrated 
completely into a general programme of algebraic geometry as a special case. 
What is needed is the use of the geometric language for the objects considered. 
Thus the ring o is interpreted as the scheme X = Spec(o), the projective 
metrized o-modules as metrized vector bundles, the invertible o-modules as 
line bundles, the inclusion i : o + 0 as morphism f : Y = Spec(0) + X 
of schemes, the class 52&, as the cotangent element, etc. In this way onc 
realizes in the present context the old idea of viewing number theory as part 
of geometry. 

§ 8. The Euler-Minkowski Characteristic 

Considering the theorem of Grothendieck-Riemann-Roch in the special 
case of an extension K ) Q ,  amounts to revisiting the Riemann-Roch theory 
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of $ 3  from our new point of view. At the center of that theory was the 
Euler-Minkowski characteristic 

x (a) = - log vol(a) 

of replete ideals a of K. Here, vol(a) was the canonical mennrre of a 
fundamental mesh of the lattice in Minkowski space KR = a @ , R  defined by 
a, This definition is properly explained in the theory of metrized modules of 
higher rank. More precisely, instead of considering a as a metrized o-module 
of rank 1, it should be viewed as a metrized Z-module of rank [K : Q]. 
This point of view leads us necessarily to the following definition of the 
Euler-Minkowski characteristic. 

(8.1) Proposition. The degree map 

degK : Pic(6) - R ,  degK ([a]) = - log %(a), 

extends uniquely to a homomorphism 

)(K : K " ( 5 )  - R 

oq KO (6 ) ,  and thereby on ~ ' ( 6 ) .  It is given by 

X K  = degodet 

and called the Euler-Minkowski characteristic over K .  

Proof: Since, by (5.6), Ko(6) is generated as an additive group by the 
elements [a] E Pic(6), the map degK on Pic(6) determines a unique 
homomorphism Ko(6) -+ R which extends degK. But such a homomorphism 
is given by the composite of the homomorphisms 

as the composite Pic(5) ~t Ko(L3) -% Pic(6) is the identity. 0 

Via the PoincarC isomorphism Ko(6) ~ ' ( 6 ) ~  we transfer the maps 

det and XK to the Grothendieck group ~ ' ( 6 )  of coherent metrized o- 
modules. Then proposition (8.1) is equally valid for KO(<?) as for Ko(E). 
We define in what follows XK (M) = X K  ([MI) for a metrized o-module M. 
If LlK is an extension of algebraic number fields and i : o + 0 the 
inclusion of the maximal orders of K ,  resp. L ,  then applying degK to the 
formula (7.2) and using 

d e g ~  ( a )  = - log W Z >  = - log %( NL I K (a ) )  = d e g ~  ( NL I K (20) 

(see (1.6), (iii)) gives the 
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(8.2) Theorem. For every coherent 0-module M, the Riemann-Roch 
formula 

XK (i,M) = degL(det M) + rk(M) XK (LO) 

is valid, and in particular, for an invertible metrized 0-module M,  we have 

We now specialize to the case of the base field K = Q, that is, we 
consider metrized Z-modules. Such a module is simply a finitely generated 
abelian group M together with a euclidean metric on the real vector space 

Indeed, since Q has only a single embedding into @, i.e., Qc = C, :I 
metric on M is simply given by a hermitian scalar product on the @-vector 
space Ma;. = MR 8 @. Restricting this to MR gives a euclidean mclric thc 
scsc~uilincar cxtcnsion of which reproduces the original mctric. 

If M is a projective metrized Z-module, then the underlying Z-module 
is a finitely generated free abelian group. The canonical map M -+ M 8 R, 
a I+ a a 1, identifies M with a complete lattice in MR. If al, . . . , a,, is a 
Z-basis of M ,  then the set 

is a fundamental mesh of the lattice M. The euclidean metric ( , ) M  

defines a Haar measure on MR. Once we choose an orthonormal basis 
el,  . . . , en of MR, this Haar measure can be expressed, via the isomorphism 
MR -7 R n ,  x l  e l  + . . . + x,e, H (xl ,  . . . , x,), by the Lebesgue measure 

on Rn.  With respect to this measure, the volume of the fundamental mesh @ 
is given by 

112 
vol(@) = I det((a;, a,)) 1 . 

It will be denoted by vol(M) for short. It does not depend on the choice of 
Z-basis a l ,  . . . , a,  because a different choice is linked to the original one 
by a matrix with integer coefficients which also has an inverse with integer 
coefficients, hence has determinant of absolute value 1. 

A more elegant definition of vol(M) can be given in terms of the invertible 
metrized Z-module det M. det MR is a one-dimensional R-vector space with 
metric ( , ) d e t ~ ,  and with the lattice det M isomorphic to Z. If a E det M is 
a generator (for instance, x = a, A . . . A a,), then 

vol(M) = llxlldet M = J G - .  



Chapter 111. Riernann-Roch Theory 

In the present case, where the base field is Q ,  the degree map 

deg : ~ i c ( z )  + R 

is an isomorphism (see 9: I ,  exercise 3), and we call the unique homomorphism 
arising from this, 

): = dego det : K O @ )  - R. 
the Euler-Minkowski characteristic. It is computed explicitly as follows. 

(8.3) Proposition. For a coherent metrized Z -module M,  one has 

In this formula MtOr denotes the torsion subgroup of M and M/Mto, 
the projective metrized Z-module which receives its metric from M via 
M 8 R = M/Mtor 8 R. 

Proof of (8.3): If M is a finite Z-module, then the determinant of the class 
[MI E K O ( ~ )  is computed from a free resolution 

where F = Zn and E = ker(a) Z Zn. If we equip F 8 IR = E 8 R = Wn 
with the standard metric, the sequence becomes a short exact sequence of 
metrized Z-modules, because M 8 IR = 0. We therefore have in KO@): 

Let A be the matrix corresponding to the change of basis from the standard 
basis e l ,  . . . , en of F to a Z-basis e',, . . . , e; of E. Then x = el A . . . A en, 
resp. x' = e; A . . . A eh, is a generator of det F, resp. det E, and 

The metric 1) 11 on det E is the same as that on det F, so that 

x (El  = deg(det E )  = - log Ilx'll = - log(#M 11x11) = - log#M + x ( F ) ,  

For an arbitrary coherent metrized Z-module M we have the direct sum 
decomposition 

M = Mtor @ MIMtor 
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into metrized Z-modules. If a , ,  . . . , a,, is a basis of the lattice MIM ,,,, , 
then x = a,  A . . . A an is a generator of det M/Mtor; then x (MIM,,,) 
= deg(detM/M,,,) = -1ogllxll = -logvol(M/Mtor). We therefore 
conclude that 

The Euler-Minkowski characteristic of a replete ideal a, 

x (a) = - log vol(a) , 

which we defined ad  hoc in $ 3  via the Minkowski measure vol(a) now 
appears as a simple special case of the Euler-Minkowski characteristic for 
metrized 24-modules to which the detailed development of the theory has led 
us. Indeed, viewing the metrized o-module L(a) of rank 1 associated to a as 
the metrized Z -module i, L (a) of rank [K : (Dl, we get the 

(8.4) Proposition. x (a) = (iJ (a)) 

Proof: Let a = afa, = af npl, pup. The metric ( , )i,L(a) on the C-vector 
space Kc = n,,, ,,, C is then given by 

where p, is the infinite place of K corresponding to the embedding 
t : K + C. It results from the standard metric ( , ) via the F-invariant 
transformation 

Equivalently, 
(x, Y ) i , ~ ( a )  = (Tx, T Y ) .  

The volume vol(i,L(a)) of a fundamental mesh of the lattice af in Kw with 
respect to the Haar measure defined by the euclidean metric on Kw is then 
the volume of a fundamental mesh of the lattice Taf with respect to the 
canonical measure defined by ( , ). Thus 

In the representation Kw = npl, KP, the canonical embedding 

maps an element ( x ~ ) ~ ~ ,  to the element (X,), ,~(Q with x, = rxpr .  Here we 
extend r to Kp,. The restriction of the transformation T : (s,) H (cl'l 'r .v ,)  
to Kw = nP,, KP is therefore given by (xp) H (eVpxp) The lattice Ta f  is 
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then the same lattice which was denoted a in $3.  So we obtain 

vol ( i ,~(a) )  = vol(a) , 

i.e., x(i,L(a)) = ~ ( a ) .  0 

Given this identification, the Riemann-Roch theorem (3.4) proven in $ 3  
for replete ideals a, 

x (a) = deg(a) + x (o ) ,  

Chapter IV 

Abstract Class Field Theory 

§ 1. Infinite Galois Theory 

Every field k is equipped with a distinguished Galois extension: the 
separable closure Elk. Its Galois group Gk = ~ ( k l  k) is called the absolute 
Galois group of k.  As a rule, this extension will have infinite degree. It 
does, however, have the advantage of collecting all finite Galois extensions 
of k. This is why it is reasonable to try to give it a prominent place in Galois 
theory. But such an attempt faces the difficulty that the main theorem of 
Galois theory does not remain true for infinite extensions. Let us explain this 
in the following 

now appears as a special case of theorem (8.2), which says that 

Example : The absolute Galois group GFp = G(E,, IF,,) of the field F,, with 
p elements contains the Frobenius automorphism (p which is given by 

xW = X P  for all x E IF,,. 
The subgroup ((p) = {(pn In E Z} has the same fixed field Fp as the whole 
of GFp. But contrary to what we are used to in finite Galois theory, we 
find (p) # GFp. In order to check this, let us construct an element $ E GF,, 
which does not belong to ((p). We choose a sequence {u,,},,,~ of integers 
satisfying 

a, E a, mod m 

whenever m In, but such that there is no integer a satisfying a, - a mod 11 

for all n E N. An example of such a sequence is given by a, = n'x,, where 
we write n = n'pUp("), (n', p) = 1, and 1 = n'x, + Now put 

If Fly G F1Jt, , then m In, so that a, E a,, mod m ,  and therefore 

Observe that q~ IPp, has order m. Therefore the $, define an automorphism 

$ of Ep = U:=, F P n .  Now $ cannot belong to ((p) because $ = (pu, for 
a E Z,  would imply $ I F  ,,,, = (pall I F p ,  = pa I F  and hence a,, - a mod n 
for all n, which is what we ruled out by construction. 
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The example does not mean, however, that we have to chuck the main 
theorem of Galois theory altogether in the case of infinite extensions. We just 
have to amend it using the observation that the Galois group G  = G($2 1k) 
t ~ f  any Galois extension R Jk carries a canonical topology. This topology is 
aalled the Krull topology and is obtained as follows. For every a  E G  we 
take the cosets 

aG(f21K) 

as a basis of neighbourhoods of a ,  with K  (k ranging over finite Galois 
subextensions of Q ( k .  The multiplication and the inverse map 

G  x G  --+ G ,  ( a , r )  +--+ a t ,  and G  -4 G ,  a  w u p ' ,  

are continuous maps, since the preimage of a fundamental open neigh- 
bourhood a r c  ($2 1 K ) ,  resp. a - '  G  ($2 1 K ) ,  contains the open neighbourhood 
uG( f2  1 K) x rG($2(K) ,  resp. a G ( Q ( K ) .  Thus G  is a topological group 
which satisfies the following 

(1.1) Proposition. For every (finite or infinite) Galois extension '$2 lk the 
Galois group G  = G  ($2 1 k )  is compact Hausdorff with respect to the Krull 
twlogy.  

Proof: If a ,  t E G  and a  # t , then there exists a finite Galois subextension 
Klk of Q J k  such that a l ~  # ? I K ,  so that aG( f2 lK)  # t G ( $ 2 ( K )  and 
thus a G ( R ( K )  i l  t G ( f 2 l K )  = 0. This shows that G  is Hausdorff. In order 
to prove compactness, consider the mapping 

where K  Jk  varies over the finite Galois subextensions. We view the finite 
groups G ( K  ( k )  as discrete compact topological groups. Their product is 
therefore a compact topological space, by Tykhonov's theorem (see [98]). 
The homomorphism h  is injective, because a  ( K  = 1 for all K  is equivalent 
to a  = 1. The sets U  = nKZKo G ( K ( k )  x (5) form a subbasis of 
open sets of the product nK G ( K  Ik), where Ko(k varies over the finite 
subextensions of $2lk and T E G(Kolk). If a  E G  is a preimage 
of i?, then h- ' (U)  = aG($21Ko). Thus h is continuous. Moreover 
h ( u G ( R  I KO))  = h(G)  n U ,  so h  : G  ++ h ( G )  is open, and thus a 
homeomorphism. It therefore suffices to show that h(G)  is closed in the 
compact set nK G ( K  lk). To see this we consider, for each pair L' 1 L of 
finite Galois subextensions of Qlk,  the set 
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One clearly has h(G)  = nL,,L MLf IL .  So it suffices to show that M L f I ~  
is closed. But if G  ( L  1 k )  = {a,, . . . , an ), and S; E G ( L 1  1 k )  is the set of 
extensions of ai to L',  then 

i.e., MLfIL is indeed closed. 

The main theorem of Galois theory for infinite extensions can now be 
formulated as follows. 

(1.2) 'Theorem. Let f2 ( k  be a (finite or infinite) Galois extension. Then the 
assignment 

K  w G ( $ 2 ) K )  

is a 1-I-correspondence between the subextensions Klk of $21k and the 
closed subgroups of G  ($2 1 k ) .  The open subgroups of G  ($2 1 k )  correspond 
precisely to the finite subextensions of $2 lk. 

Proof: Every open subgroup of G($2lk) is also closed, because it is the 
complement of the union of its open cosets. If K  lk is a finite subextension, 
then G ( R 1 K )  is open, because each a  E G($2lK) admits the open 
neighbourhood a G ( Q ( N )  E G(QIK) ,  where N lk is the normal closure 
of K  Ik. If K  Ik is an arbitrary subextension, then 

where Ki Ik varies over the finite subextensions of K lk. Therefore G ( D  1 K )  
is closed. 

The assignment K  I+ G(Q1K) is injective, since K  is the fixed field of 
G ( R J K ) .  To prove surjectivity, we have to show that, given an arbitrary 
closed subgroup H of G  ($2 I k ) ,  we always have 

where K is the fixed field of H. The inclusion H G(R1K)  is trivial. 
Conversely, let a E G ( R  I K ) .  If L  I K  is a finite Galois subextension of R I K ,  
then crG(R 1L) is a fundamental open neighbourhood of 0 in G ( R  ( K ) .  The 
map H + G ( L  I K )  is certainly surjective, because the image fl has fixed 
field K  and is therefore equal to G ( L  I K ) ,  by the main theorem of Galois 
theory for finite extensions. Thus we may choose a t E H such that 
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tir. = u l ~ ,  i.e., r E H n uG(Q1L). This shows that CT belongs to the 
closure of H in G(Q[K),  and thus to H itself, so that H = G ( R J K ) .  

If H is an open subgroup of G ( R  [k), then it is also closed, and therefore 
of the form H = G(Q I K) .  But G ( R  Ik) is the disjoint union of the open 
cosets of H. Since G(Q lk) is compact, a finite number of cosets suffices to 
cover the group. Thus there is only a finite number of them; H = G ( R  I K)  
has finite index in G ( R ( k ) ,  and this implies that K lk has finite degree. 

The topological Galois groups G = G ( R ( k )  have the special property 
that there is a fundamental system of neighbourhoods of the neutral element 
'1 E G which consists of normal subgroups. This property leads us to the 
abstract, purely group-theoretical notion of a profinite group. 

(1.3) Definition. A profinite group is a topological group G which is 
HausdodY and compact, and which admits a basis of neighbourhoods of 
1 E G consisting of normal subgroups. 

It can be shown that the last condition is tantamount to G being totally 
disconnected, i.e., to the condition that each element of G is equal to its own 
connected component. Every closed subgroup H of G is obviously again a 
profinite group. The disjoint coset decomposition 

shows immediately that H is open if and only if the index (G : H )  is finite. 

Profinite groups are fairly close relatives of finite groups. They can 
be reconstituted rather easily from their finite quotients. For the precise 
description of this we need the notion of projective limit, which naturally 
occurs in various places in number theory and which we will introduce next. 

Exercise 1. Let Llk be a Galois extension and K Jk  an arbitrary extension, both 
contained in a common extension R lk. If L f l  K = k ,  then the mapping 

is a topological isomorphism, that is, an isomorphism of groups and a 
homeomorphism of topological spaces. 

Exercise 2. Given a family of Galois extensions Ki 1 k in i2 1 k ,  let K 1 k be the 
composite of all K; lk, and K,!lk the composite of the extensions K, lk such that 
j # i. If Ki rl K,! = k for all i ,  then one has a topological isomorphism 

G ( K 1 k )  2 n G ( K i l k ) .  
i 

Exercise 3. A compact Hausdorff group is totally disconnected if and only i l '  
its neutral element admits a basis of neighbourhoods consisting only of normal 
subgroups. 

Exercise 4. Every quotient G I H  of a profinite group G by a closed normal subgroup 
H is a profinite group. 

Exercise 5. Let G' be the closure of the commutator subgroup of a profinite group, 
and G"" = G I G ' .  Show that every continuous homomorphism G + A into a n  
abelian profinite group factorizes through Gob.  

5 2. Projective and Inductive Limits 

The notions of projective, resp. inductive limit generalize the operations 
of intersection, resp. union. If {XijiEI is a family of subsets of a topological 
space X which for any two sets Xi ,  Xi also contains the set Xi f' X, 
(resp. X i  U Xj), then the projective (resp. inductive) limit of this family is 
simply de ined by 

@ Xi = n Xi (resp. 9 Xi = U Xi).  
i ~ l  ic l  ie l  is1 

Writing i 5 j if Xi 2 Xi (resp. Xi g X,) makes the indexing set I into a 
directed system, i.e., an ordered set in which, for every pair i ,  j, there exists 
a k such that i 5 k and j 5 k. In the case at hand, such a I? is givcn by 
Xk = Xi n Xj (resp. Xk = Xi U Xj). For i 5 j we denote the inclusion 
Xj  9 Xi (resp. Xi ~9 Xi) by fii and obtain a system {Xi,  ,hi) of sets 
and maps. The operations of intersection i d  union are now gcncralizctl hy 
replacing the inclusions f i j  with arbitrary maps. 

(2.1) Definition. Let I be a directed system. A projective, resp. inductive 
system over I is a family (Xi,  fij  I i ,  j E I, i ( j }  of topological spaces X i  
and continuous maps 

f i j  : X j  x i ,  ESP. f i j  : Xi * X j ,  

such that one has hi = idx, and 

wheni 5 j 5 k. 

In order to define the projective, resp. inductive limit of a projective, 
resp. inductive system (Xi,  t i j},  we make use of the direct product niEl X,  , 
resp. the disjoint union Hie, Xi. 
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(2.2) Definition. The projective limit 

X = @  X i  
; € I  

of the projective system ( X i ,  f, j } is defined to be the subset 

of the product niEl X i .  

The product ni,, X i  is equipped with the product topology. I f  the X,  arc 
Hausdorff, then so is the product, and it contains in this case X as a closed 
subspace. Indeed, one has 

X = n xij ,  
is, 

where Xi, = {(xk)kE, E nk Xk I f i j ( x j )  = x i } ,  SO that it suffices to show 
the closedness of the sets X i j .  Writing pi : nk,, X k  -+ X ;  for the i-th 
projection, the two maps g = pi, f  = f i j  o p; : nkEl X k  + X i  are 
continuous, and we may write Xi, = { x  E nk X k  I g(x)  = f  ( x ) }  . But in 
the Hausdorff case the equation g(x)  = f ( x )  defines a closed subset. This 
representation X  = nisi Xi, also gives the following 

(2.3) Proposition. The projective limit X = lim X i  of nonempty compact 
spaces Xi is itself nonempty and compact. 7 

Proof: If all the X; are compact, then so is the product niEl X;, by 
Tykhonov's theorem, and thus also the closed subset X. Furthermore, 
X = nisi X i ,  cannot be the empty set if the Xi are nonempty. In fact, 
as the product Hi Xi is compact, there would have to be an intersection 
of finitely many X i ,  which is empty. But this is impossible: if all indices 
entering into this finite intersection satisfy i, j 5 n ,  and if x, E X,, then the 
element ( x ; ) ; , ~  belongs to this intersection, where we choose x; = fi,(x,), 

' for i 5 n,  and arbitrarily for all other i. 0 

(2.4) Definition. The inductive limit 

X =  9 Xi 
i d  

of an inductive system { X i ,  f i j }  is defined to be the quotient . 

of the disjoint union JJ ; Xi ,  where we consider two elements x; E X i  and 
; X, E Xi  equivalent if there exists a k > i ,  j such that 

fik(xi) = f jk(xj) .  

52. Projective and Inductive Limits 267 

In the applications, the projective and inductive systems ( X i ,  ] t i )  that 
occur will not just be systems of topological spaces and continuous maps, 
but the X i  will usually be topological groups, rings or modules, etc., and 
the f ; ,  will be continuous homomorphisms. In what follows, we will deal 
explicitly only with projective and inductive systems ( G i ,  g;,] of topological 
groups. But since everything works exactly the same way for systems of 
rings or modules, these cases may be thought of tacitly as being treated 
as well. 

Let {G, ,  g,,} be a pro.jective, resp. inductive system of topological groups. 
Then the projective, resp. inductive limit 

G = @  G i ,  resp. G =  9 G ;  
; € I  ;e l  

j 
is a topological group as well. The multiplication in the projective 
limit is induced by the componentwise multiplication in the product niEl G; .  In the case of the inductive limit, given two equivalence classes 
x ,  y E G  = 9 G; ,  one has to choose representatives xk and yn in thc 

i t 1  
same Gk in order to define 

xy = equivalence class of xk yk . 

We leave it to the reader to check that this definition is independent of the 
choice of representatives, and that the operation thus defined makes G into 
a group. 

The projections p; : njEl G; + G ; ,  resp. the inclusions 1 ,  : G ,  + 

Ui,l G ; ,  induce a family of continuous homomorphisms 

i : G  + G  resp. g; : G; ---+ G 

such that g; = g;j o gj, resp. g; = g, o g;,, for i 5 j .  This family has the 
following universal property. 

(2.5) Proposition. If H  is a topological group and 

h i : H - - + G i ,  resp. h i : G i - +  H 

is a family of continuous homomorphisms such that 

for i < j ,  then there exists a unique continuous homomorphism 

h :  H + G  = lim G ; ,  resp. h : G  = 2 G, - H - 
1 

satisfying hi = g; o h  , resp. hi = h  o gi , for all i E I. 
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The easy proof is left to the reader. A morphism between two projective, 
resp. inductive systems {G;,g;,) and (G:,g:,) of topological groups is a 
family of continuous homomorphisms f; : G; -+ Gi, i E I ,  such that the 
diagrams 

resp. 

commute for i _( j. Such a family (fi);,[ defines a mapping 

which induces a homomorphism 

f : @  G1--+ @ Gi, resp. f : Q  G I -  9 Gi. 
i ~ 1  ;el i d  I € /  

En this way lp , resp. Q  , becomes a functor. A particularly important 
property of this functor is its so-called "exactness". For the inductive 
limit Q  , exactness holds without restrictions. In other words, one has the 

(2.6) Proposition. Let a : {Gi,g:,) -+ (Gi,gij) and B : {Gitgij) -+ 

{Gr, g!'.) be morphisms between inductive systems of topological groups 
IJ 

such that the sequence 
Bi G; Gi + G; 

is exact for every i E I. Then the induced sequence 

is also exact. 

Proof: Let G' = Q  Gi, G = Q  G;, G" = 9 G;. We consider the 
i 1 I 

commutative diagram 

ai Bi G; + G; -----t G:' 
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Let x E G be such that B(x) = 1. Then there exists an i and an xi E G; such 
that g;(x;) = X. As 

there exists j 2 i such that ,!?;(xi) equals 1 in Gy. Changing notation, we 
may therefore assume that B;(x;) = 1, so that there exists yi E G: such that 
cr;(y;) = x i .  Putting y = $(y;), we have a (y)  = x. 0 

The projective limit is not exact in complete generality, but only for 
compact groups, so that we have the 

(2.7) Proposition. Let CI : (Gj, gjj) -+ {Gi, gij) and B : {G;, gij} + 

{G;, gii) be morphisms between projective systems of compact topological 
groups such that the sequence 

B G; 2% G; -!+ G; 

is exact for every i E I .  Then 

is again an exact sequence of compact topological groups. 

Proof: Let x = (xi);€[ E l p  Gi and B(x) = 1,  so that B;(x;) = I for 
i 

all i E I. The preimages Y; = a;'(x;) G; then form a projective system 
of nonempty closed, and hence compact subsets of the Gi. By (2.3). this 
means that the projective limit Y = @ Yi 5 ~JITJ G; is nonempty, and 

cr maps every element y E Y to x. I 0 

Now that we have at our disposal the notion of projective limit, we 
return to our starting point, the profinite groups. Recall that these are the 
topological groups which are Hausdorff, compact and totally disconnected, 
i.e., they admit a basis of neighbourhoods of the neutral element consisting 
of normal subgroups. The next proposition shows that they are precisely the 
projective limits of finite groups (which we view as compact topological 
groups with respect to the discrete topology). 
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(2.8) Proposition. If G is a profinite group, and if N varies over the open 
normal subgroups of G,  then one has, algebraically as well as topologically, 
that 

G S Ip G I N .  

If conversely {G;, gi,} is a projective system of finite (or even profinite) 
groups, then 

G =  @ G; 
I 

is a profinite group. 

Proof: Let G be a profinite group and let {N; I i E I )  be the family of its 
open normal subgroups. We make I into a directed system by defining i ( j 
if Ni 1 N,. The groups Gi = GIN; are finite since the cosets of N; in 
G form a disjoint open covering of G ,  which must be finite because G is 
compact. For i _< j we have the projections gij : Gj  G; and obtain a 
projective system {G;, gij) of finite, and hence discrete, compact groups. We 
show that the homomorphism 

is an isomorphism and a homeomorphism. f is injective because its kernel 
is the intersection ni,, Ni, which equals (1) because G is Hausdorff and 
the Ni form a basis of neighbourhoods of 1. The groups 

with S varying over the finite subsets of I ,  form a basis of neighbourhoods 
of the neutral element in njEl G;. As f - '  (Us n Ip G;) = njes N;, we see 
that f is continuous. Moreover, as G is compact, the image f (G) is closed 
in @ G;. On the other hand it is also dense. For if x = (x;);,~ E @ G;, 
and x(Us n @ G;) is a fundamental neighbourhood of x, then we may 
choose a y E G which is mapped to xk under the projection G + G/Nk, 
where we put Nk = flies N;. Then y mod N; = x; for all i E S ,  so that 
f (y) belongs to the neighbourhood x(Us fl @ Gi). Therefore the closed 
set f (G) is indeed dense in @ Gi, and so f (G) = l& Gi. Since G 
is compact, f maps closed sets into closed sets, and thus also open sets 
into open sets. This shows that f : G + Ijm G; is an isomorphism and a 
homeomorphism. 

Conversely, let {Gi, g;,) be a projective system of profinite groups. As 
the Gi are Hausdorff and compact, so is the projective limit G = @ G;, 

by (2.3). If N; varies over a basis of neighbourhoods of the neutral element 
in G; which consists of normal subgroups, then the groups 

with S varying over the finite subsets of I, make up a basis of neighbourhoods 
of the neutral element in niE1 G; consisting of normal subgroups. The normal 
subgroups Us n @ G; therefore form a basis of neighbourhoods of the 
neutral element in @ G; ; thus Gi is a profinite group. 0 

Let us now illustrate the notions of profinite group and projective limit by 
a few concrete examples. 

Example 1:  The Galois group G = G(Q lk) of a Galois extension R lk 
is a profinite group with respect to the Krull topology. This was already 
stated in 5 1. If K (k varies over the finite Galois subextensions of QIk, then, 
by definition of the Kmll topology, G(QJK)  varies over the open normal 
subgroups of G. In view of the identity G(K(k) = G(Qlk)/G(QlK) and 
of (2.8), we therefore obtain the Galois group G(S2 lk) as the projective limit 

G(Q(k) 2 @ G(K(k) 

of the finite Galois groups G(K (k). 

Example 2: If p is a prime number, then the rings Z/p"Z, n E N, form 
a projective system with respect to the projections Z/pnZ -+ Z/pn'Z,  
for n 2 m. The projective limit 

Z p  = @ Z/pnZ 
n 

is the ring of p-adic integers (see chap. 11, (i I). 

Example 3: Let 0 be the valuation ring in a p-adic number field K and p its 
maximal ideal. The ideals p", n E N, make up a basis of neighbourhoods of 
the zero element 0 in o. o is Hausdorff and compact, and so is a profinite ring. 
The rings o /pn ,  n E W, are finite and we have a topological isomorphism 

o 2 @ alp" , a I-+ n (a mod pH). 
n n d  

The group of units U = o* is closed in o, hence Hausdorff and compact, 
and the subgroups U (") = 1 + pn form a basis of neighbourhoods of 1 E U.  
Thus 

u 2 @ u/u(") 
I1 

is also a profinite group. In fact, we have seen all this already in chap. 11, 9 4. 
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Example 4: The rings Z lnZ ,  n E N, form a projective system with respect 
to the projections Z l n Z  Z lmZ,  nlm, where the ordering on N is now 
given by divisibility, n (m. The projective limit 

Z = &TI Z/nZ 
I 

I t  

was originally called the Priifer ring, whereas nowadays it has become 
customary to refer to i t  by the somewhat curt abbreviation "zed-hat" 
(or "zee-hat"). This ring is going to occupy quite an impofzant position 
in what follows. It contains Z as a dense subring. The groups nZ, n E N, are 
precisely the open subgroups of 2, and it is easy to verify that 

Taking, for each natural number n, the prime factorization n = H p  pup, the 
Chinese remainder theorem implies the decomposition 

and passing to the projective limit, 

This takes the natural embedding of Z into 2 to the diagonal embedding 
Z -+ n p Z p , a  H ( a , a , a ,  ...). 

Example 5: For the field F, with q elements, we get isomorphisms 

one for every n E N, by mapping the Frobenius automorphism qn  to 
1 mod nZ. Passing to the projective limit gives an isomorphism 

A 

G(F,(F,) 2 z 
A 

which sends the Frobenius automorphism q~ E G(Fq IF,) to i E Z ,  and the 
subgroup ((o) = {(on ( n E Z} onto the dense (but not closed) subgroup Z 
of Z. Given this, it is now clear, in the example at the beginning of this 
chapter, how we were able to construct an element + E G ( & ) IF , )  which did 

A 

not belong to ((o). In fact, looking at it via the isomorphism G(Fq IF,) 2 Z, 
what we did amounted to writing down the element 

(..., o , o , ~ ~ , o , o ,  . . . I  E ~ Z , = Z ,  
e 

which does not belong to Z. 
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Example 6: Let @ I Q  be the extension obtained by adjoining all roots 
of unity. Its Galois group ~ ( 6 1 ~ )  is then canonically isomorphic (as a 
topological group) to the group of units 2* ̂ . np ZE of Z, 

This isomorphism is obtained by passing to the projective limit from the 
canonical isomorphisms 

G(Q(CL~)IQ> 2 (ZlnZI* 

where p,? denotes the group of n-th roots of unity. 

Example 7: The groups Z,, and 2 are (additive) special cases of the class 
of procyclic groups. These are profinite groups G which are topologically 
generated by a single element a; i.e., G is the closure (a) of the subgroup 
( a )  = {a" I n E Z) .  The open subgroups of a procyclic group C = (F) are 
all of the form G". Indeed, Gn is closed, being the image of the continuous 
map G -+ G, x H xn,  and the quotient group GIGn is finite, because i t  
contains the finite group (a" mod G" I 0 ( v < n) as a dense subgroup. 
and is therefore equal to it. Conversely, if H is a subgroup of G of index 1 1 ,  

then Gn 5 H C G andn = ( G :  H) 5 ( G :  Gn) ( n, sothat H = G n .  
A 

Every procyclic group G is a quotient of the group Z. In fact, if G = (rr), 
then we have for every n the surjective homomorphism 

Z/nZ -+ G/Gt l ,  1 mod nZ H a mod G", 

and in view of (2.7), passing to the projective limit yields a continuous 
surjection 2 -+ G. 

Example 8: Let A be an abelian torsion group. Then the Pontryagin dual 

x (A) = Hom(A, QIZ) 

is a profinite group. For one has 

where A; varies over the finite subgroups of A, and thus 

x(A) = @ x (Ail 
i 

with finite groups x (Ai). If for instance, 
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then X ( i ~ / ~ )  = ZlniZ, so that 

Example 9: If G is any group and N varies over all normal subgroups of 
finite index, then the profinite group 

is called the profinite 2ompletion of G. The profinite completion of Z, for 
example, is the group Z =' @ Z l n Z .  

n 

Exercise 1. Show that, for a profinite group G, the power map G x Z -+ G, 
(a, n )  H u" , extends to a continuous map 

G x Z-+ G ,  ( a , a ) ~  a " ,  

and that one has = aab and aofh = aaah if G is abelian. - 
Exercise 2. If a E G and a = lim a, E Z with a; E Z, then u" = lim a"' is in  G. 

1'00 I-+- 

Exercise 3. A pro-p-group is a profinite group G whose quotients GIN, modulo all 
open normal subgroups N,  are finite p-groups. Imitating exercisc I .  make scnsc of 
the powers a", for all a E G and a E Zp. 

Exercise 4. A closed subgroup H of a profinite group G is called a p-Sylow 
subgroup of G if, for every open normal subgroup N of G, the group H N I N  is a 
p-Sylow subgroup of GIN. Show: 
(i) For every prime number p, there exists a p-Sylow subgroup of G. 
(ii) Every pro-p-subgroup of G is contained in a p-Sylow subgroup. 
(iii) Every two p-Sylow subgroups of G are conjugate. 

Exercise 5. What is the p-Sylow subgroup of 2 and of Zf,? 

Exercise 6. If (Ci] is a projective system of profinite groups and G = @ Gi , 
i 

the; Cab = @ Clh (see I ,  exercise 5). 
i 

§ 3. Abstract Galois Theory 

5 3. Abstract Galois Theory 

Class field theory is the final outcome of a long development of algebr;~ic 
number theory the beginning of which was Gauss's reciprocity law 

u-l h-l (E) (%) = (- 1) -2- -7- 

The endeavours to generalize this law finally produced a theory of the abelian 
extensions of algebraic and p-adic number fields. These extensions L I K are 
classified by certain subgroups N;. = N L ~ K  AL of a group A K  attached to 
the base field. In the local case, AK is the multiplicative group K *  and in 
the global case it is a modification of the ideal class group. At the heart of 
this theory there is a mysterious canonical isomorphism 

which - if we view things in the right way - encapsulates the reciprocity 
law in its most general form. Now, this map can be abstracted completely 
from the field-theoretic situation and treated on a purely group theoretical 
basis. In this way, class field theory can be given an abstract, but elementary 
foundation, to which we will now turn. 

We begin our considerations by giving ourselves a profinite group C .  
The theory we are about to develop is purely group theoretical in natnrc. 
However, the only applications we have in mind are field theoretical, and the 
language of field theory allows immediate insights into the group theoretical 
relations. We will therefore formally interpret rhe profinite group G ;IS a 
Galois group in the following way. (Let us remark in passing that every 
profinite group is indeed the Galois group G = ~ ( k ( k )  of a Galois field 
extension i l k ;  this will allow the reader to rely on his standard knowledge 
of Galois theory whenever the formal development in terms of group theory 
alone would seem odd.) 

We denote the closed subgroups of G by G K ,  and call these indices K 
"fields"; K will be called the fixed field of G K .  The field k such that Cx = G 
is called the base field, and denotes the field satisfying Ci = ( I } .  The 

field belonging to the closure (a) of the cyclic group (a )  = (aX ( k E Z )  
generated by an element a E G is simply called the fixed field of a .  

We write formally K G L or L I K if GL  E GK , and we call the pair 
L 1 K a field extension. L I K is called a finite extension, if GL is open, i.e., 
of finite index in G K ,  and this index 
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will be called the degree of L 1 K.  L I K is said to be normal or Galois if GL 
is a normal subgroup of G K .  If this is the case, we define the Galois group 
of L ( K  by 

G(L1K) = G K / G L .  

If N I> L I> K are Galois extensions of K,  we define the restriction of an 
element a E G(N1K) to L by 

alL = a  mod G ( N ( L )  E G(L1K) 

This gives a homomorphism 

with kernel G(N IL). The extension LI K is called cyclic, abelian, solvable, 
etc., if the Galois group G(L I K)  has these properties. We put 

. 

K = Ki ("intersection") 
I 

if G K  is topologically generated by the subgroups GK, , and 

K = n Ki ("composite") 
I 

if G K  = ni GK,. If GKf  = a - ' G K a  for a E G ,  we write K' = Ka 

Now let A be a continuous multiplicative G-module. By this we mean 
a multiplicative abelian group A on which the elements a E G operate as 
automorphisms on the right, a : A +- A, a I+ a". This action must satisfy 

(i) a '  = a ,  

(ii) (ab)O = aubo,  

(iii) a a r  = ( u ~ ) ~ ,  

(iv) A = ULK:kltoo AK 9 

where AK in the last condition denotes the fixed module A'K under G K ,  
so that 

AK = { a € ~ I a " = a  f o r a l l a ~ ~ ~ } ,  

and where K varies over all extensions that are finite over k.  The 
condition (iv) says that G operates continuously on A, i.e., the map 

is continuous, where A is equipped with the discrete topology. Indeed, this 
continuity is equivalent to the fact that, for every element ( a ,  a )  E G x A, 
there exists an open subgroup U = G K  of G such that the neighbourhood 
a U  x {a} of ( a , a )  is mapped to the open set {au}, and this means simply 
th,atau E A~ = AK. 
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i 
I Remark: In the exponential notation a", the operation of G on A appears 

as an action on the right. This notation is adequate for many computations 
in the case of multiplicative G-modules A. For instance, the notation 

I a"-' := aaa- '  is to be preferred to writing (a  - 1)a = a a  . a-I. On the 
other hand, classical usage often calls for an operation on the left. Thus in the 
case of a Galois extension L (K of actual fields, the Galois group G ( L  I K )  
acts as the automorphism group on L from the left, and therefore also in the 
same way on the multiplicative group L*. This occasional switch from thc 
left to the right should not confuse the reader. 

For every extension L I K we have AK g AL, and if L I K is finite, then 
we have the norm map 

I 

N L ~ K  : AL --) AK. N L I K ( ~ )  = I-Ia", 
a 

where a varies over a system of representatives of GL\G K .  If L I K i s  Caloib, 
thcn AL is a C(L I K)-module and one has 

At the center of class field theory there is the norm residue group 

We also consider the group 

is the "norm-one group" and AL is the subgroup of N , , ,  A which is 
generated by all elements 

with a E AL, and a E G(L I K) .  If G(L I K )  is cyclic and a is a generator, 
then /C(LIK)AL is simply the group 

A U - 1  - { U ~ - ' ~ U E A ~ } .  - 

In fact, the formal identity ok - I = (1 + a + . . . + ak-' )(a - 1 )  implies 
a a k - ~  - - bu-I with b = nfi: aa' . 

Let us now apply the notions introduced so far to the example of Kummer 
theory. For this, we impose on the G-module A the following axiomatic 
condition. 
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(3.1) Axiom. One has H- '  ( G ( L  I K ) ,  A L )  = 1 for all finite cyclic 
extensions L I K .  

The theory we are about to develop makes reference to a surjective 
G-homomorphism 

A  at--+a@, 

with finite cyclic kernel pg.  The order n = #p&, is called the exponent of 
tht operator g. The case of prime interest to us is when p  is the n-th power 
map a H a n ,  and p&, = p,, = (6 E A  I 6" = 1) is the group of "n-th roots 
of unity" in A. 

We now fix a field K  such that y&, C A K .  For every subset B  A,  
let K  ( B )  denote the fixed field of the closed subgroup 

~ = { a € ~ ~ I h * = b  forall ~ E B ]  

of G K  . If B  is G  -invariant, then K  ( B )  I K  is obviously Galois. A Kummer 
extension (with respect to p )  is by definition an extension of the form 

wLere A  2 A x .  A Kummer extension K ( @ - ' ( A ) ) [  K  is always Galois, 
and its Galois group is abelian of exponent n. Indeed, for an extension 
K  (p-' ( a ) )  1 K  , we have the injective homomorphism 

where a  E @-'(a) .  Since y&, E A K ,  this definition does not depend 
on the choice of a.  Thus, for a Kummer extension L = K ( @ - ' ( A ) )  = noEd K  (@- ' (a ) ) ,  the composite map 

is an injective homomorphism. 

The following proposition says that conversely, any abelian extension 
L  1 K  of exponent n is a Kummer extension. 

(3.2) Proposition. If L  1 K  is an abelian extension of exponent n, then 

If in particular, L  I K  is cyclic, then we find L  = K  ( a )  with a@ = a E A  K . 
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I 

Proof: We have p - ' ( A )  C A L ,  for if x E A  and sp = acr"' = tr E A K .  
a  E A L ,  then x = ca E AL for some 6 E pp G A K .  Therefore 
K ( @ - ' ( A ) )  C L. On the other hand, the extension LI K  is the composite of 

I its cyclic subextensions. For it  is the composite of its frnitc subexlcnsions. 
and the Galois group of a finite subextension is the product of cyclic 
groups, which may be interpreted as Galois groups of cyclic subextensions. 
Let now MI K be a cyclic subextension of L  I K .  It suffices to show that 
M  G K(@- ' (A ) ) .  Let a be a generator of G ( M  I K )  and ( a generator 
of yp .  Let d = [M : K ] ,  d' = nld  and ,$ = cd'. Since N M I K  ( 6 )  = td = 1, 
(3.1) shows that 6 = a"-' for some a  E A M .  Thus K  _C K ( a )  C M .  
But a"' = ,$'a. Thus a"' = a  is equivalent to i r 0 mod d, so that 
K ( a )  = M. But (a@)"-' = (ao-' ) p = 6" = 1 ,  so that a  = a @  E A K ;  then 
a  E @- ' (A) ,  and therefore M  2 K  (@-'(A)) .  0 

As the main result of general Kummer theory, we now obtain the following 

(3.3) Theorem. The correspondence 

is a 1 -1-correspondence between the groups A  such that A: G A  G AK and 
the abelian extensions L  1 K  of exponent n. 

If A  and L  correspond to each other, then A: f l  AK = A ,  and we have a 
canonical isomorphism 

where the character X ,  : G ( L  I K )  + y&, is given by x,(a) = a " - ' ,  fbr 

a  E &(a ) .  

Proof: Let L  lK be an abelian extension of exponent n. By (3.2), we then 
find L  = K ( @ - ' ( A ) )  with A  = A: n A,. We consider the homomorphism 

X a  = 1 a"-' = 1 for all a  E G(L1K)  

U ~ E A K  U = C Y " E A : ,  

it has the kernel A:. To prove the surjectivity, we let x E Hom(G(L I K ) ,  y,). 
x defines a cyclic extension MI K  and is the composite of homomorphisms 

- 
X G ( L I K )  + G(M1K)  + pg.  Let a  be a generator of G(M1K) .  Since 
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' 
N M I ~ ( X ( a ) )  = ~ ( a ) I ~ : ~ l  = I, we deduce from (3.1) that X(a) = a"-' for 
some a E AM. Now, (a@)a-' = (au- ')@ = X(a)@ = 1,  so that a = a@ E 

A T ~ ~ A K  = A. For s E G(LIK), one has ~ ( s )  = X ( t 1 ~ )  =aT- '  = xU(s) ,  
so that x = Xa This proves the surjectivity, and we obtain an isomorphism 

If A is any group between A: and AK and if L = ~ ( g - ' ( A ) ) ,  then 
A = A: n AK. In fact, putting A' = A ?  f l  A K ,  we have just seen that one 
has 

A'/A; 2 H O ~ ( G ( L ( K ) ,  p,) . 

The subgroup A/A; corresponds under Pontryagin duality to the subgroup 
Hom(G(L(K)/H,pg) ,  where 

As aa-' = xa(a)  for a E @-'(a) ,  H leaves fixed the elements 
of @-'(A), and as ~ ( g - ' ( A ) )  = L,  we find that H = 1,  so that 
Hom(G(LlK)/H, p,) = Hom(G(L IK), pg).  It follows that A / A ~  = 
A'/A;, i.e., A = A'. 

It is therefore clear that the correspondence A I+ L = K(g-'(A)) is 
a 1- 1-correspondence, as claimed. This finishes the proof of the theorem. 0 

Remarks and Examples: 1) If L ( K  is infinite, then Hom(G(LIK),p,) 
has to be interpreted as the group of all continuous homomorphisms 
x : G(L IK) -t p g ,  i.e., as the character group of the topological group 
G(LIK). 

2) The composite of two abelian extensions of K of exponent n is again 
of the same type, and all of them lie in the maximal abelian extension of 
exponent n. It is given by I? = ~ ( g - ' ( A K ) ) ,  and for the Pontryagin dual 

we have by (3.3) that 
G(K^~K)* 2 A K / A ~ ,  . 

3) If k is an actual field of positive characteristic p and k is the separable 
closure of k ,  then A may be chosen to be the additive group k and g to be 
the operator 

p : k - - + k ,  a w g a = a P - a .  

Then axiom (3.1) is indeed satisfied, for we have, in complete generality: 

(3.4) Proposition. For every cyclic finite field extension L I K ,  one has 
H-I (G(LJK) ,  L )  = I .  

Proof: The extension L I K always adniits a normal basis ( r r c  1 cr E (;(I .  I K ) ] .  

yo that L = @, Kac .  This means that L is a G(L 1 K)-induced module in 
the sense of $ 7, and then H-' (G(L (K) ,  L) = 1, by (7.4). 0 

The Kummer theory with respect to the operator g a  = aP - a is usually 
called Artin-Schreier theory. 

4) The chief application of the theory developed above is to the case where G 
is the absolute Galois group  elk) of an actual field k, A is the multiplicative 
group k* of the algebraic closure, and g is the n-th power map a H a" ,  for 
some natural number n which is relatively prime to the characteristic of /( 

(in particular, n is arbitrary if char(k) = 0). Axiom (3.1) is always satisfied 
in this case and is called Hilbert 90 because this statement occurs as Sat-. 
number 90 among the 169 theorems in Hilbert's famous "Zahlbericlit" 173-1. 
Thus we have the 

(3.5) Theorem (Hilbert 90). For a cyclic field extension L I K one always 
has 

H-I (G(LJK) ,L*)  = 1. 

In other words: 
An element a E L* of norm N L ~ ~  (a )  = 1 is of the form a = B " - ' ,  

where p E L * and a is a generator of G (L 1 K)  . 

Proof: Let n = [L : K]. By virtue of the linear independence of the automor- 
phisms I ,  a, . . . ,an-' (see [15], chap. 5, $7, no. 5), there exists an element 
y E L* such that 

As N L I ~ ( a )  = 1, one gets upu = j3, and thus a = pIpm. 0 

If now the field K contains the group pn of n-th roots of unity, the 
operator @(a)  = a n  has exponent n, and we obtain the following corollary, 
which is the ~iiosl imporlant special case of Ilicorcni (3.3). 
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(3.6) Corollary. Let n be a natural number which is relatively prime to the 
characteristic of the field K,  and assume that pn G K.  

Then the abelian extensions L I K of exponent n correspond 1 - 1 to the 
subgroups A G K * which contain K *" , via the rule 

and we have 
C(LI K )  2 Horn(A/K*",  p,,) 

Hilbert's theorem 90, which is the main basis of this corollary, admits the 
following generalization to arbitrary Galois extensions L I K ,  which goes back 
to the mathematician EMMY NOETHER (1882-1935). Let G be a finite group 
and A a multiplicative G-module. A 1-cocycle, or crossed homomorphism, 
of G with values in A is a function f  : G + A satisfying 

for all a ,  t E G. The 1-cocycles form an abelian group Z ' (G,  A). For every 
a E A, the function 

f a (a )  = aU-I 

is a 1-cocycle, for one has 

I - a-l r r-l - f a (ar>=a - ( a  ) a  - f a ( a ) ' f a ( r )  

The functions fa are called 1-coboundaries and form a subgroup B ( G ,  A)  
of Z (G,  A). We define 

and obtain as a first result about this group the 

(3.7) Proposition. I f  G is cyclic, then H (G ,  A) 2 H -' (G ,  A).  

Proof: Let G = (a ) .  If f  E Z ' (G ,  A) ,  then for k 2 1 

k-l  
k-2 u2 f (ak> = f ( ak - ' Iu f  ( a )  = f ( a  ) f  (a)O f ( a )  = . . . = n f ( a ) " ' ,  

i =O 

and f (1) = 1 because f  ( I )  = f  (1) f  (1). If n = #G,  then 

n-l  

N c f  (0) = n f  (a)u' = f  ( a n )  = f  (1) = 1 ,  
i =O 

so that f ( a )  E N ~ A  = {a E A I NGa = n;:; a"' = 1). Conversely we 
obtain, for every a E A such that Nca = 1, a I-cocycle by putting f ( a )  = n 
and 

k-l  

f ( a k )  = fl au' .  

The reader is invited to check this. The map j' H f ( a )  therefore is an 
isomorphism between Z'  (G ,  A) and N ,  A. This isomorphism maps B ' (G , A )  

onto / ( ; A ,  because f E R 1 ( G ,  A )  f (0'-) = N" ' - '  forsomc fixcd cr t-\ 
j '(a) = a"-' t-. f  ( a )  E IGA. 0 

Noether's generalization of Hilbert's theorem 90 now reads: 

(3.8) Proposition. For a finite Galois field extension L I K , one has that 

H ) ( G ( L I K ) , L * )  = 1. 

Proof: Let f  : G + L* be a 1-cocycle. For c E L*, we put 

Since the automorphisms a are linearly independent (see [15], chap. 5, § 7, 
no. 5), we can choose c E L* such that a # 0. For r  E G ( L  I K ) ,  we obtain 

This proposition will only be applied once in this book (see chap. VI, 
(2.5)). 

Exercise 1. Show that Hilbert 90 in Noether's formulation also holds for lhc adtlitivc 
group L of a Galois extension L I K.  

Hint: Use the normal basis theorem. 

Exercise 2. Let k be a field of characteristic p and k its separable closure. For lixed 
n 2 1, consider in the ring of Witt vectors ~ ( k )  (see chap. 11, $4, exercise 2-6) the 
additive group w,(k) of truncated Witt vectors a = (ao, a , ,  . . . ,a,,-, ). Show that 
axiom (3.1) holds for the ~(k lk) -module  A = w,,(k). 

Exercise 3. Show that the operator 

p : W, (k) + W ,  ( )  , ga = Fa - a , 

is a homomorphism with cyclic kernel p, of order pn. Discuss the corresponding 
Kummer theory for the abelian extensions of exponent p". 
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Exercise 4. Let G  be a profinite group and A  a continuous G-modulc. Put 

H ' ( G , A )  = z ' ( G ,  A ) / B ' ( G , A ) ,  

where Z 1 ( G ,  A )  consists of all continuous maps f : G -t A  (with respect to the 
discrete topology on A )  such that f ( u s )  = f ( u ) ~  f (s), and B 1 ( G ,  A )  consists of 
jall functions of the form f , ( u )  = a"- ' ,  a  E A.  Show that if g  is a closed normal 
'subgroup of G ,  then one has an exact sequence 
I 

j I -+ H ' ( G I ~ , A R )  -+ H ~ ( G , A )  -+ H ' ( ~ , A ) .  

' G I N ,  A ~ ) ,  where N  varies over all bxercise 5. Show that H '  ( G ,  A )  = I& H  ( 
the open normal subgroups of G.  

Exercise 6. If 1 -+ A  -+ B -+ C -+ I is an exact scqucnce ol' conti~iuou:, 
G-modules, then one has an exact sequence 

Remark : The group H' ( G ,  A )  is only the first term of a whole series of groups 
H i ( G ,  A ) ,  i = 1 , 2 , 3 ,  . . ., which are the objects of group cohomology (see [ 145 ] ) .  
Class field theory can also be built upon this theory (see [ l o ] ,  [108]) .  

Exercise 7. Even for infinite Galois extensions L  I K ,  one has Hilbert's theorem 9 0 :  
H ~ ( G ( L I K ) ,  L * )  = 1. 

Exercise 8. If n is not divisible by the characteristic of the field K  and if p,, denotes 
the group of 12-th roots of unity in the separable closure K, then 

, H ' ( G K , p , )  Z K * / K * " .  

§ 4. Abstract Valuation Theory 

The further development will now be based on a fixed choice of a 
surjective continuous homomorphism 

firom the profinite group G  onto the procyclic group 2 = @ Z l n Z  (see 
$2, example 4). This homomorphism will produce a theory which is an 
abstract reflection of the ramification theory of p-adic number fields. Indeed, 
in the case where G  is the absolute Galois group Gx =  ilk) of a p-adic 
number field k ,  such a surjective homomorphism d  : G  -+ 2 arises via the 
maximal unramified extension k 1 k :  if IFq is the residue class field of k ,  then, 
by chap. IT, 69, p. 173 and example 5 in 82, we have canonical isomorphisms 

A 

~ ( k l k )  s G ( I F , I F , )  2 z 
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A 

which associate to the element i E Z the Frobenius automorphism 
q E ~ ( k l k ) .  It is defined by 

a'+' r a4 mod f i  for a E 8, 

where 8, resp. f i ,  denote the valuation ring of k ,  resp. its maximal ideal. The 
A 

homomorphism d  : G  -+ Z in question is then given, in this concrete case, 
as the composite 

G  - ~ ( k l k )  G 2. 

In the abstract situ;~lion, the inilia1 choice of a surjcclivc Ilonlorllo~.l>liis~ii 
d  : G  -+ 2 mimics the p-adic case, but the applications of the theory are by 
no means confined to p-adic number fields. The kemel I cf d has a certain 
fixed field k lk, and d induces an isomorphism G ( k  lk) 2 Z. 

More generally, for any field K  we denote by I K  the kernel of the 
restriction d  : G K  -+ z, and call it the inertia group over K .  Since 

the fixed field of I K  is the composite - 
K = ~ k .  

We call K  the maximal unramified extension of K .  We put 

.f/( = ( 2 : ~ ( G K ) ) ,  eK = ( I  : I K )  

and obtain, when fK is finite, a surjective homomorphism 

with kernel I K ,  and an isomorphism 

d K  : G ( K U I K )  --7 2.  

(4.1) Definition. The element q ~  E G ( ~ I  K )  such that d K  ( q K )  = I is 
called the Frobenius over K .  

For a field extension L I K  we define the inertia degree , fL IK and the 
ramification index P L I K  by 

~ L I K  = ( ~ ( G K )  : ~ ( G L ) )  and ~ L I K  = ( I K  : I L ) .  

For n tower of fields K E L E M this definition ohviously implies l l ~ l  
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(4.2) Proposition. For every extension L ( K  we have the "fundamental 
identity " 

[L : Kl  = ~ L I K  ~ L I K .  

Proof: The exact commutative diagram 

immediately yields, if L I K is Galois, the exact sequence 
I 1 + IK / IL  - G(LIK) + d ( c ~ ) / d ( G ~ )  + 1 .  

IS L I K is not Galois, we pass to a Galois extension MI K containing L ,  and 
get the result from the above transitivity rules for e and f .  0 

LI K is called unramified if eLlK = 1, i.e., if L s k. L I K is called 
totally ramified if f L l ~  = 1, i.e., if L n k = K.  In the unramified case, we 
have the surjective homomorphism 

and, if f~ < oo, we call the image ~ L I K  of p~ the Frobenius autornorphism 
of LIK. 

For an arbitrary extension L I K one has - - 
L = L K ,  

since LF = L K K  = L& = E,  and L n FIK is the maximal unramified 
subextension of L I K. It clearly has degree - 

f L I K  = [ L n K :  K] .  

Equally obvious is the 

(4.3) Proposition. If f~ and f~ are finite, then f L I K  = fL/fK, and we 
have the commutative diagram 

34. Abstract Valualion 'l'hcory 2x7 

The Frobenius automorphism governs the entire class field theory like 
a king. It is therefore most remarkable that in the case of a finite Galois 
extension L I K , every a E G(L I K)  becomes a Frobenius automorphism once 
it is maneuvered into the right position. This is achieved in the following 
manner. For what follows, let us assume systematically that ,fK < oo. 
We pass from the Galois extension L I K to the extension ZI K and consider- 
in the Galois group G ( ~ I  K)  the semigroup 

Observe here that dK : GK -+ 2 factorizes through G ( ~ I  K)  because 
GL = IL s IK ; recall also that 0 $ W. Firstly, we have the 

(4.4) Proposition. For a finite Galois extension L I K the mapping 

is surjective. 

Proof: Let a E G(L1K) and let p E G ( ~ J K )  be an element such that 
dK (p) = I. Then p l i  = and p I Lnc = p L n i  K .  Restricting a to the 

maximal unramified subextension L n K J K ,  it becomes a power of the 
Frobenius automorphism, a l L n R  = p ~ n P I K ,  SO we may choose n in W .  As 

= ~ k ,  we have 
~ ( L l k )  2 G ( L I L  n k ) .  

If now t E ~ ( L l k )  is mapped to ap-"IL under this isomorphism, then 
5 = t p n  is an element satisfying 51L = tcpnLL = a p - " p n l ~  = a and 
BIZ = p k .  Hence dK(5)  = n ,  and so 5 E Frob(L1K). 0 

Thus every element a E G(L1K) may be lifted to an element 
5 E Frob(Z1 K). The following proposition shows that this lifting, considered 
over its fixed field, is actually the Frobenius automorphism. 

(4.5) Proposition. Let 6 E FID$JK), and let C be the fixed field of 5. 
Then we have: 

~ L I K  In particular, one has ~ I L  1~ = (pK . - - 
(i) f C I K  = dK (5) ,  (ii) [C  : K] < oo, (iii) C = L ,  (iv) 5 = (PC. 
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- 
Proof: (i) C Ti 2 is the fixed field of 5 1~ = v$ (") , so that 

(ii) One has k c CZ = 2 E z; thus 

is finite. Therefore [ C  : K ]  = f C l ~ e ~ l ~  is finite as well. 

(iii) The canonical surjection f = G(L(C)  -+ ~ ( 5 1  C )  2 2 has to be 
bijective. For since r = (d) is procyclic, one finds ( f  : rn) _( n  for every 
n  E N (see $2,  p. 273). Thus the induced maps r/rn 2 z / n Z  are bijective 
and so is f -+ Z.  But ~ ( z 1 . Z )  = G ( E I Z )  implies that = 2;. 

Let us illustrate the situation described in the last proposition by a diagram, 
which one should keep in mind for the sequel. 

All the preceding discussio_ns arose entirely from the initial datum of the 
homomorphism d : G -+ Z .  We now add to the data a multiplicative G-  
module A, which we equip with a homomorphism that is to play the r61e of 
a henselian valuation. 

(4.6) Definition. A henselian valuation of Ak with respect to d : G -+ 2 is 
a homomorphism 

v : A k " Z  

satisfying the following properties: 

(i) v(Ak) = Z  2 Z  and Z / n Z  2 Z l n Z  for all n  E N, 

(ii) V(NK ( ~ A K )  = f~ Z for all finite extensions K 1 k. 

Exactly like the original homomorphism d : Gk -+ 2, the henselian 
valuation v : Ak -+ 2 has the property of reproducing itself over every finite 
e~tension K of k. 
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(4.7) Proposition. For every field K which is finite over k ,  the formula 

tlclirtcs a surjecfivc 11o111o111orpliis111 satisfying [he following properties: 

(i) VK = VK" o u for all a E G. 

( i i )  h r  every firtile exlension L  I K  , one has tlie commutative diagram 

Proof: (i) If t runs through a system of representatives of G k / G K ,  [hen 
a- ' ta sweeps across a system of representatives of Gk/o-'G,yrs = 

Gk/GKm. Hence we have, for a E AK, 

1 1 
V K ~  (a") = - .(n au"-'ra) = - 

1 

f K "  r 
v ( ( n a r ) " )  = - 

f~ s f K  v ( N K I ~ ( ~ ) )  

( i i )  For u E A L  one has: 

(4.8) Definition. A prime element of AK is an element nK E AK such that 
vK(xK) = 1. We put 

For an unramified extension L I K ,  that is, an extension such that 
f L I K  = [L : K ] ,  we have from (4.7), (ii) that VL I A ,  = V K .  In particular, a 
prime element of AK is itself also a prime element of AL. If on the other 
hand, LIK is totally ramified, i.e., f L I K  = 1 ,  and if ITL is a prime element 
of AL, then n~ = N L ~ ~ ( I T L )  is a prime element of AK. 
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Exercise 1. Assume that every closed abelian subgroup of G is procyclic. Let K ( k  
be a finite extension. A microprime p of K is by definition a conjugacy class 
(a) 5 GK of some Frobenius element a E ~rob(E1 K)  which is not a proper power 
a'", n > 1, of some other Frobenius element o' E ~ r o b ( k ( ~ ) .  Let spec(K) be the 
set of all microprimes of K.  Show that if LlK is a finite extension, then there is a 
canonical mapping 

n : spec(L) -+ spec(K). 

Above any microprime p there are only finitely many microprimes p of L ,  i.e., the 
set n- '(p) is finite. We write p 1 p  to mean p E ~r- ' (p ) .  

Exercise 2. For a finite extension L 1 K and a microprime Y J p  of L ,  let 
fiplp = d(p) /d(p) .  Show that 

Exercise 3. For an infinite extension L (K, let 

spec(L) = I@ spec(L,), 
a 

where La I K varies over the finite subextensions of L I K .  What are the microprimes 
of E?  

Exercise 4. Show that if LIK is Galois, then the Galois group G(L1K) operates 
transitively on spec(L). The "decomposition group" 

G d L I K )  = (a E G(LlK) 1 V' = '23 
b is cyclic, and if Z9 = LG?J(LIK) is the "decomposition field" of Cj? E spec(L), then 
L I Zv is unramified. 

§ 5. The Reciprocity Map 

Continuing with the notation of the previous section, we consider again a 
profinite group G, a continuous G-module A, and a pair of homomorphisms 

A A 

d : G - - + Z ,  v : A k - - + Z ,  

such that d is continuous and surjective and v is a henselian valuation with 
respect to d .  In the following we introduce the convention that the letter K ,  
whenever it occurs without embellishments or commentary to the contrary, 
will always denote a field offinite degree over k. We furthermore impose the 
following axiomatic condition, which will be systematically assumed in the 
sequel. 

(5.1) Axiom. For every unramified finite extension L 1 K one has 

H ' ( G ( L I K ) , u ~ )  = 1 for i =0 ,  - I 

5 5. The Reciprocity Map 

For an infinite extension L I K we set 

with MI K varying over the finite subextensions of L I K .  

Our goal is to define a canonical homomorphism 

rLlK : G(LlK) AKINLIKAL 

for every finite Galois extension L I K .  To this end, we pass from L ( K to the 
extension L I  K and define first a mapping on the semigroup 

F ~ o ~ ( L I K )  = ( a  E G(L"JK) I d ~ ( a )  E N} . 

(5.2) Definition. The reciprocity map 

is defined by 
rLIK(a) = N c ~ K ( ~ z )  mod NtlKAL, 

where Z is the fixed field of o and nc E A c  is a prime element. 

Observe that Z is of finite degree over K by (4.5), and a becomes the 
Frobenius automorphism q c  over Z. The definition of rLiK ( a )  does not 
depend on the choice of the element n c .  For another one differs from nc 
only by an element u E U c ,  and for this we have N c l ~ ( u )  E N L ~ ~ A ~ ,  
so _hat NzIK (u) E NM I K  AM for every finite Galois subextension M 1 K 
of L I K .  To see this, we may clearly assume that C E M. Applying (5.1) to 
the unramified extension M I Z, one finds u = NM I Z  (E), E E UM, and thus 

Next we want to show that the reciprocity map r t l K  is multiplicative. To do 

this, we consider for every a E G(L"I K)  and every n E N the endomorphisms 

: A  a + + a U - ' = a u / a ,  

n - l  

a,: At + At, a  H aan = n au' 
i =O 

an - l ,  and we find that In formal notation, this gives an = - a-1 

Now we introduce the homomorphism 

N = Ntlk : At -+ A t  

and prove two lemmas for it. 
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(5.3) Lemma. Let (0, a E ~rob(Z1 K )  with dK (q) = 1,  dK ( a )  = n.  If C is 
the fixed field of a and a E A c , then 

Proof: The maximal unramified subextension ,EO = C n k ( K is of degree n , 
and its Galois group G(,EOl K )  is generated by the Frobenius automorphism 
(DCOIK  = (OK I C O  = ( o I ~ I c o  = ( O I C O .  Consequently, N C O ~ K  = ~n I A ~ ,  . On 
the other hand, one has ,Ek  = and .Z f l  k = ,EO, and therefore 
Nclco = N I A ~ .  For a E A x  we thus get 

The last equation follows from q G ( L ( i f )  = G ( Z 1 i f ) q .  

The subgroup I G ( i I ~ l U i ,  which is generated by all elements of the 

' form ur-' , u E U t ,  r  E G ( Z I  i f ) ,  is mapped to 1 by the homomorphism 
N = N i l f  : U i  -+ U k .  We therefore obtain an induced homomorphism 

- - 
on the quotient group H o ( G ( L I K ) ,  UL)  = U L / I ~ ( ~ ~ ~ ) U ~ .  For this group, we 
have the following lemma. 

(5.4) Lemma. If x E Ho(G ( Z  I i f ) ,  U i )  is fixed by an element q E G (L" ( K )  
such that d~ (q)  = 1 ,  ie. ,  x" x ,  then 

Proof: Let x = u mod I G ( i I z ) U L ,  with x v - '  = 1, so that 

Let M ( K  be a finite Galois subextension of Z I K .  In order to prove that 
N ( u )  E N M ~ K U M ,  we may assume that u , u i  E U M  and L G M. Let 
n = [M : K ] ,  a = qn and let C 2 M be the fixed field of a.  Further, 
let ,En IC be the unramified extension of degree n ,  i.e., the fixed field of 
an = (o;. By (5.1), we can then find elements ii, iii E UEn such that 
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-sf-' 
By (*), the elements P-l and ni ui only differ by an element 2 E Uc, ,  
such that Nc,, ( J )  = 1 .  Hence - again by (5.1) - they differ by an element 
of the form j a - ' ,  with J E Uc,,. We may thus write 

Applying N gives N ( 6 )  p-' = N ( j f i ) q - ' ,  so that 

for some z  E U z  such that zq-' = 1 ; therefore z" = z ,  and z  E U K .  Finally, 
applying a,, and putting y = J a n  = Nc,, ( j )  E U c ,  we obtain, observing 
n = [M : K ]  and using (5.3), that 

N ( u )  = N(ii)an = N(j'Pn)allzaJt = N(y'PJf)zn 

= N C ~ K ( Y ) N M ~ K ( Z )  E N M I K U M .  0 

(5.5) Proposition. The reciprocity map 

r i l K  : ~ r o b ( Z 1 ~ )  --+ A K / N ~ ~ ~ A ~  

is multiplicative. 

- 
Proof: Let ala2 = a3 be an equation in Frob(L I K ) ,  n;  = d K  ( a ; ) ,  C; the 
fixed field of a; and n; E A=, a prime element, for i = 1,2,3. We have to 
show that 

Choose a fixed q E G ( Z  I K )  such that d~ ((0) = 1 and put 

r; = a;-'ql'f E G ( L " I Z ) .  

From a, a:! = a3 and n + n2 = n3, we then deduce that 

$9'12 
Putting a4 = p-"201qn2, n4 = dn (a4) = nl , C 4  = z ~ " ' ,  n 4  = n t A r ,  
and r4 = a;'qn4, we find r3 = ~ 2 ~ 4  and 

We may therefore pass to the congruence 
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(5.8) Proposition. Let L I K and L'I K' be finite Galois extensions, so that 
K G Kt  and L G L', and let a E G . Then we have the commutative diagrams 

where the vertical arrows on the left are given by a' H a ' ( ~ ,  resp. by the 
conjugation t H a-I r a .  

Proof: Let a' E G(Lt(K') and a = atjL E G(L1K). If 8' E Frob(Z'1~') 
is a preimage of a', then 8 = 5'1~ E Frob(L"1~) is a preimage of a such 
that d~ (5)  = fK'IKdK'(c7') E N. Let C' be the fixed field of 8'. Then 
Z = C'  n z = C' n 2 is the fixed field of 8 and f Z l l c  = 1. If now 
n,y E A c ~  is a prime element of C',  then n c  = NCfIC(nC)  E AC is a 
prime element of C.  The commutativity of the diagram on the left therefore 
follows from the equality of norms 

On the other hand, let r E G(L I K) ,  and let t" be a preimage in ~rob(L1 K)  
with fixed field C ,  and Z E G a lifting of t" to k. Then Xu is the fixed 
field of a - ' f a ILa ,  and if n E A z  is aprimeelement of C ,  then n u  E A p  
is a prime element of C u .  The commutativity of the diagram on the right 
therefore follows from the equality of norms 

Another very interesting functorial property of the reciprocity map is 
obtained via the transfer (Verlagerung in German). For an arbitrary group 
G,  let G' denote the commutator subgroup and write 

for the maximal abelian quotient group. If then H G G is a subgroup of 
finite index, we have a canonical homomorphism 

Ver : Gab - H ' ~ ,  

which is called transfer from G to H.  This homomorphism is defined as 
follows (see [75], chap. IV, § 1). 
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Let R be a system of representatives for the left cosets of H in G ,  
G = R H ,  1 E R. If a E G we write, for every p E R, 

and we define 
Ver(a mod G') = n ap mod H'. 

PER 

Another description of the transfer results from the double coset decomposi- 
tion 

of G in terms of the subgroups (a )  and H .  Letting f ( t )  denote the smallest 
naturalnumbersuchthata, = t-'af(T)t E H,one has ~ n ( r - ' a t )  = (a,), 
and we find that 

Ver(a mod G') = n a, mod H'. 
5 

This formula is obtained from the one above by choosing for R the set 
{ a i r  I i = 1, . . . , f (t)}. Applying this to the reciprocity homomorphism 

we get the 

(5.9) Proposition. Let LIK be a finite Galois extension and K '  an 
intermediate field. Then we have the commutative diagram 

where the arrow on the right is induced by inclusion. 

Proof: Let us write temporarily G = G(L( K )  and H = G(LI K'). Let 
a E G(LIK), and let 5 be a preimage in ~ r o b ( L 1 ~ )  with fixed field C 
and S = C ( ~ I C )  = m. We consider the double coset decomposition 
G = U S t H  and put ST = t - ' ~ t  n H and 8, = r - ' 6 f ( T ) r  as above. Let 

5 - 
G = G ( L I K ) ,  H = G ( L I K ' ) ,  S =  ( a ) ,  t =tIL and Or 

Then we obviously have 
G = U S t H ,  
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and therefore 

v e r ( a  mod G ( L I K ) ' )  = na, m o d ~ ( L 1 ~ ' ) ' .  
r 

For every r ,  let w, vary over a system of right coset representatives of HIS,. 
Then one has 

H = &or and G = Stw,  . 
Wr r.or 

Let C, be the fixed field of a,, i.e., the fixed field of S,. Cr is the fixed 
field of r-'et so that C, lCr is the unramified subextension of degree f ( t )  
in El Cr . If now IT E Ac is a prime element of C ,  then nr  E Acr is a 
prime element of Cr , and thus also of C,. In view of the above double coset 
decomposition, we therefore find 

anti since 6, E ~ r o b ( L 1  K') is a preirnage of a, E G(L I K'),  it follows that 

r ~ ~ , y ( a )  = n r L I ~ l ( o r )  = r L I K r ( n ~ , )  = r L I K I ( v e r ( a  mod G ( L I K ) ' ) ) .  
T 5 

0 

Exercise 1. Let L I K be abelian and totally ramified, and let n be a prime element 
of AL. If then a E G(L1K) and 

1 p-1 - - +-I 

with y E UL, then r L I K ( a )  = N(y) mod NLIKAL,  where N = NzIz (B. DWORK, see 
[122], chap. XIII, § 5). 

Exercise 2. Generalize the theory developed so far in the following way. Let P be 
a set of prime numbers and let G be a pro-P-group, i.e., a profinite group all of 
whose quotients GIN by open normal subgroups N have order divisible only by 
primes in P .  

Let d : G + Z p  be a surjective homomorphism onto the group Zp = n,,,p,?,,, 
and let A be a G-module. A henselian P-valuation with respect to d is by dehn~t~on 
a homomorphism 

IJ : Ak -+ ZP 

which satisfies the following properties: 

(i) u(AK) = Z 2 Z and Z lnZ  2 Z l n Z  for all natural numbers n which are 
divisible only by primes in P ,  

(ii) u(NKIkAK) = f K Z  for all finite extensions K ( k ,  where f K  = (d(G) : d(GK)).  

Under the hypothesis that H1(G(L I K),  UL) = 1 for i = 0, - 1, for all unramified 
extensions L 1 K ,  prove the existence of a canonical reciprocity homomorphism 1.1 I K  : 
G(LI # ) O h  + AK/NLIKAL for every finite Galois extension L I K.  
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A 

Exercise 3. Let d : G -+ Z be a surjecive homomorphism, A a G-module which 
satisfies axiom (5.1), and let v : Ak -+ Z be a henselian valuation with respect to d. 

Let K lk be a finite extension and let spec(K) be the set of microprimes of K 
(see 94, exercise 1-5). Define a canonical mapping 

and show that, for a finite extension, the diagram 

commutes. Show furthermore that, for every finite Galois extension L I K ,  rK induces 
the reciprocity isomorphism 

Hint: Let cp E GK be an element such that dK(cp) E N. Let C be the tixed tield of 
(P and A 

AE = Ijm A K Y ,  
U 

where K, I K varies over the finite subextensions of C I K ,  and where the projective 
limit is taken with respect to the norm maps NKBIK, : AKB -+ AK,. Then there is a 

A A 

surjective homomorphism vE : AE + Z and a homomorphism NzIK : A z  + AK. 

3 6. The General Reciprocity Law 

We now impose on the continuous G-module A the following condition. 

(6.1) Class Field Axiom. For every cyclic extension L I K one has 

Among the cyclic extensions there are in particular the unramified ones. 
For them the above condition amounts precisely to requiring axiom (5. I), so  
that one has 

(6.2) Proposition. For a finite unramified extension L 1 K , one has 

H ' ( G ( L I K ) , u ~ )  = 1 for i = 0, - I .  
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Proof: Since LIK is unramified, a prime element r r ~  of AK is also a 
prime element of A L .  As H - ' ( G ( L  I K ) ,  A L )  = 1, every element u  E UL 
such that N L I K  ( u )  = 1 is of the form u  = a n - ' ,  with a  E A L ,  a = ( P L I K .  

Sd writing a  = EX;,  E E U L ,  we obtain u  = E"- ' .  This shows that 
H - ' ( G ( L ( K ) , U ~ )  = 1. 

On the other hand, the homomorphism V K  : AK -+ Z gives rise to a 
homomorphism 

where n = [ L  : Kl  = ~ L I K ,  because V K ( N L ~ K A L )  = f L I K Z  = n Z .  This 
homomorphism is surjective as V K  (rK mod N L I K  A L )  = 1 mod n Z ,  and it is 
bijective as # A K  / N L I K  AL = 1 1 .  If now u E U K ,  then we have u  = N L I K  ( a ) ,  
with a E A L ,  since V K  ( u )  = 0. But 0 = V K  ( u )  = vK ( N L I K  ( a ) )  = n v L ( a ) ,  
so we get in fact a  E U L .  This proves that HO(G(LJK) ,  U L )  = 1 .  0 

By definition, a class field theory is a pair of homomorphisms 

( d : G + g ,  v : A - + z ) ,  

where A  is a G-module which satisfies axiom (6.1), d  is a surjective 
continuous homomorphism, and v  is a henselian valuation. From proposition 
(6.2) and 95,  we obtain for every finite Galois extension L  I K ,  the reciprocity 
homomorphism 

~ L I K  : G ( L I K ) " ~  -+ A K / N L ~ K A L .  

But the class field axiom yields moreover the following theorem, which 
rep,resents the main theorem of class field theory, and which we will call the 
general reciprocity law. 

(6.3) Theorem. For every finite Galois extension L  I K  , the homomorphism 

rLlK : G ( L I K ) ' ~  A K I N L I K A L  
is an isomorphism. 

Proof: If MI K  is a Galois subextension of L I K ,  we get from (5.8) the 
commutative exact diagram 

We use this diagram to make three reductions. 
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First reduction. We may assume that G ( L  I K )  is abelian. For if the 
theorem is proved in this case, then, putting M  = L " ~  the maximal 
abelian subextension of L I K ,  we find G ( L J K ) ' ~  = G(M I K ) ,  and the 
commutator subgroup G  ( L  I M )  of G  ( L  1 K )  is precisely the kernel of I.L K , 

i.e., G ( L I K ) ' ~  -+ A K / N L I K A L  is injective. The surjectivity follows by 
induction on the degree. Indeed, in the case where G ( L J K )  is solvable, 
one has either M  = L  or [ L  : MI < [ L  : K l ,  and if rMlK and ~ L I M  are 
surjective, then so is rL1K. In the general case, let M  be the fixed field of a 
p-Sylow subgroup. M  IK need not be Galois, but we may use the left part 
of the diagram, where rLlM is surjective. It then suffices to show that the 
image of N M I K  is the p-Sylow subgroup S,, of AK / N L I K  A  L .  That this holds 
true for all p amounts to saying that ~ L I K  is surjective. Now the inclusion 
AK S AM induces a homomorphism 

I M : K  I 
such that N M I K  o i  = [M : K]. AS ( [ M  : K], p )  = I ,  S,, + S,, is 

surjective, so S,, lies in the image of N M I K ,  and therefore of 1 . ~ 1 ~ .  

Second reduction. We may assume that L  I K  is cyclic. For if M  1 K  varies 
over all cyclic subextensions of L  IK, then the diagram shows that the kernel 
of ~ L I K  lies in the kernel of the map G ( L I K )  + nM G ( M 1 K ) .  Sincc 
G ( L  I K )  is abelian, this map is injective and hence the same is true of I - L , K .  
Choosing a proper cyclic subextension MI K of L  1 K ,  surjectivity follows by 
induction on the degree as in the first reduction for solvable extensions. 

Third reduction. Let L  IK be cyclic. We may assume that f L I K  = I .  TO 
see this, let M  = L f' k be the maximal unramified subextension of L I K .  
Then Ji lM = 1 and 1 . ~ 1 ~  is an isomorphism by (5.7). In the bottom 
sequence of our diagram, the map N M ~ K  is injective because the groups 
in this sequence have the respective orders [ L  : MI, [ L  : K ] ,  [M : K 1 by 
axiom (6.1). Therefore rLlK is an isomorphism if rLlM is. 

Now let LIK be cyclic and totally ramified, i.c., f L I K  = I .  LCI a lx a 
generator of G ( L  I K ) .  We view a via the isomorphism G ( L  I K )  2 G ( Z I  k )  
as an element of G ( ~ I  z), and obtain the element 3 = aqL E ~rob(L1 K ) ,  
which is a preimage of a E G ( L  I K )  such that dK (3) = dK ( q L )  = fLLK = 1 .  
WethusfindforthefixedfieldCIK o f 3  that f c l K  = 1 , a n d s o C n K  = K.  
Let MI K  be a finite Galois subextension of K containing C and L ,  let 
M O  = M  fl k be the maximal unramified subextension of M  IK, and put 
N  = N M l M ~ . A s  f z l ~  = ~ L I K  = l , one f indsNI~ ,  = N c l ~ , N I A ,  = N L I K  
(see the proof of (5.3)). 
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For the injectivity of ~ L K ,  we have to prove this: if r i l ~  (n" = I ,  where 
O <  k < n  = [L : K],  then k = O .  

In order to do this, let IT= E A=, ITL E AL be prime elements. Since x 
E, L 5 M .  nr and nr  are both prime elements of M. Putting n$ = rrnl,. 
u E U M ,  we obtain 

From ~ L I K  (ak)  = 1, it thus follows that N ( u )  = N ( v )  for some v E U L  , so 
that ~ ( u - ' v )  = 1. From axiom (6.1), we may write u- 'v  = aa-' for some 
a E A M ,  and find in AM the equation 

- A 

k and so x = nLvf?'-' E AMo. NOW vMo(x)  E Z and nuMo(x) = V M ( X )  = k 
imply that one has k = 0, and so I . L ~ K  is injective. The surjectivity then 
follows from (6.1). 0 

The inverse of the mapping rLlK : G ( L  1 K ) ' ~  + AK / N L  I~ AL gives, for 
every finite Galois extension L I K ,  a surjective homomorphism 

with kernel NL A L  This map is called the norm residue symbol of L I K .  
From (5.8) and (5.9) we have the 

(6.4) Proposition. Let L I K  and L'I K' be finite GaJois extensions such that 

K K' and L L', and Jet a E G .  Then we have the commutative diagrams 

and if K' E L ,  we have the commutative diagram 

5 6. The General Reciprocity Law 303 

The definition of the norm residue symbol automatically extends to 
infinite Galois extensions LIK.  For if Li 1 K  varies over the finite Galois 
subextensions, then 

G ( L I K ) ~ ~  = @ G ( L ~ I K ~ ~  
i 

I 
(see 82, exercise 6). As (a. LillK)ILYh = (a .  L ; l K )  for L;. 2 L , ,  the 

individual norm residue symbols (a, Li 1 K ) ,  a  E A K ,  determine an element 

( a ,  L I K )  E G ( L J K ) ~ ' .  

1 In the special case of the extension Z ( K ,  we find the following intimate 
connection between the maps d K ,  V K ,  and ( , Z I  K ) .  

I / (6.5) Proposition. One has 

Proof: Let L I K  be the subextension of ~ J K  of degree f .  As Z / f Z  = 
Z / f Z ,  we have ux (a )  = n + f z ,  with n E Z ,  z t Z ;  that is, o = u n ; b l .  
with u E U K ,  h E A K .  From (5.7), we obtain 

UK ( 0 )  ( a ,  ~ I K ) ~ L  = (a.  L IK)  = ( n K .  L I K ) " ( ~ .  L I K ) ~  = p i l K  = v K  I , ,  . - 
Thus we must have ( a ,  K I K )  = q ~ ? ( ~ ) .  0 

The main goal of field theory is to classify all algebraic extensions of 
a given field K .  The law governing the constitution of extensions of K is 
hidden in the inner structure of the base field K itself, and should therefore 
be expressed in terms of entities directly associated with it. Class field theory 
solves this problem as far as the abelian extensions of K are concerned. 
It establishes a 1-1-correspondence between these extensions and certain 
subgroups of AK . More precisely, this is done as follows. 

For every field K ,  we equip the group AK with a topology by declaring 
the cosets aNLIK Ar, to be a basis of neighbourhoods of a E AK , where L 1 K 

I varies over all finite Galois extensions of K .  We call this topology the norm 
topology of AK . 

(6.6) Proposition. (i) The open subgroups of AK are precisely the closed 
suhgr(~ups of linitc intlcx. 

(ii) The valuation V K  : AK -+ 2 is continuous. 
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(iii) T.f L I K is a finite extension, then N L  l~ : AL + A is continuous. 

(iv) AK is Hausdorff if and only if the group 

of universal norms is trivial. 
I 
I 
I 

Proof: (i) If N is a subgroup of A x ,  then 

i 
Now, if N is open, so are all cosets aN, so that N is closed, and since N has 
to contain one of the neighbourhoods N L I K  AL of the basis of neighbourhoods 
of 1, N is also of finite index. If, conversely, N is closed and of finite index, 
then the union of the finitely many cosets aN # N is closed, and so N 
i$ open. 
(ii) The groups fz, f E W. form a basis of neighbourhoods of 0 E 2 
(see 5 2), and if L I K is the unramified extension of degree f ,  then it follows 
from (4.7) that 

V K ( N L ~ K A L )  = f V L ( A L )  C fz, 
which shows the continuity of V K .  

(iii) Let NM J K  AM be an open neighbourhood of 1 E AK . Then 

which shows the continuity of N L I K .  
(iv) is self-evident. 

I 

The finite abelian extensions L I K are now classified as follows. 

(6.7) Theorem. Associating 

L H NL = N L l ~ A ~  

sets up a 1-1 -correspondence between the finite abelian extensions L 1 K and 
the open subgroups N of A K .  Furthermore, one has 

L I  C L2 * NL, 1 N L ~ ,  N L , L ~  =NL,  n N L ~ ,  N L ~ ~ L ~  = N L , N L ~ .  

, The field L corresponding to the subgroup N of A K  is called the class 
field associated with N. By (6.3), it satisfies 
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Proof of (6.7): If L 1 and L2 are abelian extensions of K ,  then the transitivity 
of the norm implies NL, L,  NL, nNL2. If, conversely, a E NL, nNL,, then 
the element (a,  L 1 L2 I K )  E G ( L  LZ I K )  projects trivially onto G (Li  ( K ) ,  that 
is,(a,LiIK)=1fori=1,2.Thu~(a,L~L~lK)=I,i.e.,a~N~,~~. We 
therefore have NL , L? = NL I n NL2, and so 

N L ~  2 N L ~  - N L ~  n N L ~  = N L , L ~  = NL2 w [ L ~ L ~  : K I  

= [ L 2 :  K ] -  L I  E LZ. 
This shows the injectivity of the correspondence L H NL. 

If N is any open subgroup, then it contains the norm group NL = N L  I I( A 
of some Galois extension L ( K .  (6.3) implies that NL = NLa/,, SO we may 
assume L I K to be abelian. But (N,  L I K )  = G ( L  I L ' )  for some intermediate 
field L' of LIK.  Since N 2 NL, the group N is the full preimage of 
G ( L  (L ' )  under the map ( , L IK)  : AK + G ( L  IK), and thus it is the full 
kernel of ( , L'IK) : AK -+ G ( L 1 ( K ) .  Thus N = NL, This shows that the 
correspondence L H NL is surjective. 

Finally, the equality NLInL2 = NLlNL2 is obtained as follows. 
L I  n L2 G Li implies that NLlnL2 2 NLi, i = 1.2, and thus 

NL~?L* 2 N L ~ N L ~ .  
As N L ~ N L ~  is open, we have just shown that NLI NL2 = NL for some finite 
abelian extension L I K .  But NLi G NL implies L G L n L2 ,  so that 

Exercise 1. Let n be a natural number, and assume the group p, = (6 E A I (" = 1 ) 
is cyclic of order n ,  and A E An. Let K be a field such that p,, 5 AK, and let 
L I K be the maximal abelian extension of exponent n. If L I K is finite, then one has 
N L I ~  AL = A t .  

Exercise 2. Under the hypotheses of exercise 1,  Kummer theory and class field theory 
yield, via Pontryagin duality G(L1K) x Hom(G(LIK),p,) -t p,, a nondegenerate 
bilinear mapping (the abstract "Hilbert symbol") 

( , ) : A K / A ~  x AKIA; ---+ P,, . 
Exercise 3. Let p be a prime number and (d : G + Z,, v : Ak --+ Z,) a p-class 
field theory in the sense of $ 5 ,  exercise 2. Let d' : G -+ Z, be another surjective 
homomorphism, and K^'IK the Z,-extension defined by d'. Let v' : Al + Z, be the 
composite of 

( .R ' IK)  d' 
Ak - G ( ? ' I K )  + Zl,. 

Then (d ' ,  v') is also a p-class field theory. The norm residue symbols assoc5ted to 
( d ,  V) and (dl, v') coincije. (No analogous statement holds in the case of Z-class 
field theories (d : G + Z, v : Ak + Z).) 
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A 

Exercise 4. (Generalization to infinite extensions.) Let (d : G + 3,  v : AI + 2 )  
be a class field theory. We assume that the kernel Uk of vk : Ak + Z is compact for 
every finite extension K lk. For an infinite extension K lk, put 

A 

t AK = @ AK,, 
where K,Jk varies over the finite subextensions of K lk and the projective limit is 
t+en with respect to the norm maps NKBIK, : AKB + A K .  Show: 

1) For every (finite or infinite) extension L I K ,  one has a norm map 
A A 

NLIK : AL + A K ,  
A 

and if LI K is finite, there is an injection iLIK : AK + AIL. If furthermore L J K  1s 
A 

Galois, then one has AK 2 q(LIK). 
2) For every extension K lk with Enite inezia d e g ~ e e  f K  = [K n i  : k], (d, v )  induces 
a class field theory (dK : G K  -+ Z, VK : AK + Z). 

3) If K K' are extensions of k with f K ,  fK, < m, and L ( K  and L'(Kf are (finite 
or infinite) Galois extensions with L 2 L', then one has a commutative diagram 

A ( ,L ' IK ' )  
AKr - G ( L ' I K ' ) ~ ~  

Exercise 5. If LIK is a finite Galois extension, then Gzb is a G(L1K)-module in a 
canonical way, and the transfer from G K  to GL is a homomorphism 

Ver : G",~ + ( G F ) ~ ( ~ I ~ ' .  

Exercise 6. (Tautological class field theory.) Assume that the profinite group G 
satisfies the condition: for every finite Galois extension, 

Ver : G",~ + ( G : ~ ) ~ ( ~ ' ~ )  

is an isomorphism. (These are the profinite groups of "strict cohomological dimen- 
sion 2" (see [145], chap. 111, th. (3.6.4)).) Put AK = G? and form the direct limit 
A = 3 AK via the transfer. Then AK is identified with A'K. 

, Show that for every cyclic extension L I K one has 

[ L : K ]  f o r i = O ,  
#H ' (G(LIK) .  A L )  = [ I for i = -1, 

and that for every surjective homomorphism d : G --+ 2 ,  the induced map 
v : Ak = Gob + 2 is a henselian valuation with respect to d.  The corresponding reci- 
procity map r ~ l ~  : G(L1K) + AK/NLIKAL is essentially the identity. 

Abstract class field theory acquires a much broader range of applications if it is 
generalized as follows. 

Exercise 7. Let G be a profinite group and B(G) the category of finite G-sets, 
i.e., of finite sets X with a continuous G-operation. Show that the connected, i.e., 
transitive G-sets in B(G) are, up to isomorphism, the sets G I G K ,  where G K  is an 
open subgroup of G ,  and G operates via multiplication on the left. 

$6. The General Reciprocity Law 

If X is a finite G -set and x E X, then 

n ~ ( X , x )  = G I  = ( a  E G J a x = x ]  

is called the fundamental group of X with base point x .  For a map f : X --+ Y in 
B(G), we put 

G(XIY) = AutY(X). 

f is called Galois if X and Y are connected and G(X1Y) operates transitively on 
the fibres f- '(y).  

Exercise 8. Let f : X -t Y be a map of connected finite G-sets, and Ict s E X, 
y = f (x) E Y .  Show that f is Galois if and only if n l (X,x)  is a normal subgroup 
of nl (Y, y). In this case, one has a canonical isomorphism 

G(XIY) n ~ ( Y , y ) l n ~ ( X , x ) .  

A pair of functors 
A = (A*, A,) : B(G) (ab), 

consisting of a contravariant functor A* and a covariant functor A, from B ( G )  to 
the category (ab) of abelian groups is called a double functor if 

A*(X) = A,(X) =: A(X) 

for all X E B(G). We define 

AK = A(G/GK).  

If f : X --+ Y is a morphism in B(G), then we put 

A*(f) = f *  and A,(f) = f,. 

A homomorphism la : A --+ B of double functors is a family of homomorphisms 
h ( X )  : A(X) -+ B(X) representing natural transformations A* --+ B* and A, + B,. 

A G-modulation is defined to be a double functor A such that 
(i) A(X II, Y )  = A(X) x A(Y). 
(ii) If among the two diagrams 

in B(G), resp. (ab), the one on the left is cartesian, then the one on the right is 
commutative. 

Remark: G-modulations were introduced in a general context by A. DRESS under 
the name of Mackey functors (see [32]). 

Exercise 9. G-modulations form an abelian category. 

Exercise 10. If A is a G-module, then the function A(G/GK)  = A G K  extends to a 
G -modulation A in such a way that, for an extension L ( K , the map f * : AK -+ AL , 
resp. f, : AL + AK, induced by f : G/GL + G / G K ,  is the inclusion, resp. the 
norm N L I K .  
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The rule A I+ A is an cquivalcncc bctwccn the category of G-modulcs and t l~c  
category of G-modulations with "Galois descent", i.e., of those G-modulations A 
such that 

f * : A(Y) -+ A ( x ) ~ ' ~ ' ~ ' ,  

for every Galois mapping f : X -+ Y, is an isomorphism. 

Exercise 11. G-modulations are explicitly given by the following data. Let 
Bo(G) be the category whose objects are the G-sets G / U ,  where U varies 
over the open subgroups of G ,  and whose morphisms are just the projections 
n : G / U  -+ G / V  for U E V, as well as the maps c (a )  : G / U  -+ G/UUU- ' ,  
tU H rUu-I  = r a - l ( a U a - I ) ,  for a E G. 

Let A = (A*, A,) : Bo(G) -+ (ab) be a double functor and for n : G / U  -+ G/V 
(U C V), resp. c ( a )  : G / U  -+ G / o U a - '  ( a  E G),  define 

1nd; = A,(n): A(G/U) -+ A(G/V), 

~ e s ;  = A*(n): A(G/V) -+ A(G/U), 

c(a). = A.(c(cr)): A(G/U) -+ A ( G / U U ~ - ' ) .  

If for any three open subgroups U,  V g W of G ,  one has the induction formula 

then A extends uniquely to a G-modulation A : B(G) -+ (ab). 

Hint: If X is an arbitrary finite G-set, then the disjoint union 

Ax = A(G/G,) 
X E X  

is again a G-set, because c(a),A(G/G,) = A(G/G,,). Define A(X) to be the 
group 

A(X) = Homx (X, Ax) 

of all G-equivariant sections X -+ Ax of the projection Ax -+ X. 

Exercise 12. The function nab(G/GK)  = Gib  extends to a (2-modulation 

into the category of pro-abelian groups. Thus, for an extension LIK, the maps 
f * : Gib -+ Gib,  resp. f, : Gib  -+ G$, induced by f : G I G L  -+ G / G x  are given 
by the transfer, resp. the inclusion G L  -+ G K .  

Exercise 13. Let A be a G-modulation. For every connected finite G-set X ,  let 
! 

N A ( W  = (7 f*A(Y), 

where the intersection is taken over all Galois maps f : Y -+ X. Show that the 
function N A(X) defines a G -submodulation N A of A, the modulation of universal 
norms. 

Exercise 14. If A is a G -modulation, then the completion is again a G -modulation 
which, for connected X,  is given by 

Z(X) = @ A(X)/f,A(Y), 

where the projective limit is taken over all Galois maps f : Y -+ X. 
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For t l~c  following, Icl d : C -+ 2 be a lixed surjective homomorphism. Lcr 
f : X -+ Y be a map of connected finite G-sets and x E X, y = f (x) E Y. The 
inertia degree, resp. the ramification index, of f is defined by 

A A 

where I,, resp. I,, is the kernel of d : G, --+ Z ,  resp. d : G, + Z. f is called 
unramified if  ex,^ = 1. 

Exercise 15. d defines a G-modulation 2 such that the maps f *, f,, corresponding 
to a mapping f : X -+ Y of connected G-sets, are given by 

A ('XIY 

Z(Y) = z C7 2 = Z(X). 
fxly 

This gives a homomorphism of G-modulations 

d : nah  --+ 2. 
Exercise 16. An unramified map f : X -+ Y of connected finite G-sets is Galois, 
and d induces an isomorphism 

G(XlY) 2 ZlfxlyZ. 
Let (PXIY E G(X (Y) be the element which is mapped to 1 mod f x l y  Z 

Let A be a G-modulation. We define a henselian valuation of A to be a 
homomorphism 

v : ~ + 2  

such that the submodulation u(A) of 2 comes from a subgroup Z g 2 which 
contains Z and satisfies Z / n Z  = Z l n Z  for all n E W .  Let U denote the kernel of A .  

Exercise 17. Compare this definition with the definition (4.6) of a henselian valuation 
of a G -module A. 

Exercise 18. Assume that for every unramified map f : X -+ Y of connected finite 
G -sets, the sequence 

is exact, and that A(Y)[X:Y1 & f,A(X) for every Galois mapping f : X -+ Y (the 
latter is a consequence of the condition which will be imposed in exercise 19). Then 
the pair (d, v) gives, for every Galois mapping f : X -+ Y, a canonical "reciprocity 
homomorphism" 

~ X I Y  : G(XIY) -+ A(Y)/f*A(X). 

Exercise 19. Assume, beyond the condition required in exercise 18, that for every 
Galois mapping f : X -+ Y with cyclic Galois group G (X I Y), one has 

(A(Y) : f,A(X)) = [X : Y] and kerf, = im(a* - I ) ,  

where [X : Y] = #f-'(y), with y 6 Y, and a is a generator of G(X1Y). Then if r x i y  
is an isomorphism for every Galois mapping f : X -+ Y of prime degree [X : Y ] ,  
so is 

~ X I Y  : G ( x I Y ) " ~  -+ A(Y)/f,A(X), 
for every Galois mapping f : X -+ Y. 
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It consists of all functions f : G B such that f (x t )  = f'(x)' for all 
t E g. The operation of a E G is given by 

(7.2) Definition. The Herbrand quotient of the G -module A is defined 
to be 

If g = { I ) ,  we write Indc(B) instead of 1nd;(B). We have a canonical 
g -homomorphism provided that both orders are finite. 

The salient property of the Herbrand quotient is its multiplicativity. 
which maps the g-submodule 

(7.3) Proposition. If 1 + A + B + C -+ 1 is an exact sequence of 
G -modules, then one has isomorphically onto B. We identify B' with B. If g is of finite index, we find 

in the sense that, whenever two of these quotients are defined, so is the third 
and the identity holds. where the notation a E G/g signifies that o varies over a system of left 

coset representatives of G/g. 
Indeed, for any f E 1nd; (B) we have a unique factorization f = n, fz , 

where fa denotes the function in B' which is determined by fa (1) = f (ap'). 
If conversely A is a G-module with a g-submodule B such that A is the 

direct product 
A =  n B", 

"€G/g 

For a finite G -module A ,  one has h (G, A) = 1. 

Proof: We consider the exact hexagon (7.1). Calling ni the order of the 
image of fi, we find 

then A 2 1nd; (B) via B 2' B'. 

(7.4) Proposition. Let G be a finite cyclic group, g a subgroup and B a 
g -module. Then we have canonically 

H i ( G ,  1nd;(B)) G H ' ( ~ , B )  for i =0 ,  - 1 
At \the same time, we see that if any two of the quotients are well- 
defined, then so is the third. And from the last equation, we obtain 
h(G, B) = h(G, A)h (G, C). Finally, if A is a finite G-module, then the 
exact sequences 

Proof: Let A = 1nd; (B) and let R be a system of right coset representatives 
for G/g with 1 E R. We consider the g-homomorphisms 

Both admit the g-homomorphism show that #A = #AG #IG A = #j,rG A . #NG A, and h(G, A) = 1. 0 
ba for a E g ,  

s : B - A ,  b u  f a (* )= (  
1 f o r a q g ,  If G is an arbitrary group and g a subgroup, then to any g-module B, we 

may associate the so-called induced G-module as a section, i.e., rr o s = v o s = id, and we have 

n o N G = N g o v ,  
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because one finds that, for f  E A, 

I f  f  E A', then f  ( a )  = f  ( 1 )  for all a E G ,  and f  ( 1 )  = f  ( t )  = f (1)' for 
all t E g. The map n therefore induces an isomorphism 

It sends NGA onto N,B, for one has n(Nc  A) = Ng(vA)  5 Ng B on the 
one hand, and on the other, Ng(B)  = Ng(vsB) = n ( N c  ( s B ) )  2 n(NGA) .  
Therefore H'(G, A) = H O ( ~ ,  B) .  

As N, o v = n o NG, the g-homomorphism v : A + B induces a 
g -homomorphism 

V :  N ~ A - + N * B .  
I 

It is surjective since v o s = id. We show that IG A is the preimage of I g  B. 
IGA consists of all elements f "-I, f E A, a E G. For if G = (ao) and 

a = then f u-1 = f (~+uo+~+u~-')(uo-l) E IG A. In the same way, one 
has IgB = {br-' I b E B,  r E g) .  Writing now ap = plrp, with p,pl  E R ,  
rp E g ,  we obtain 

On the other hand, for br-' E IgB ,  the function f5-I ,  with f = sb, 
is a preimage as v ( f r - ' )  = vs(b)'-' = br-'.  After this it remains to 
show ker(v) 5 IGA. Let G = ((o), n = (G : g) ,  R = {l ,(o,  . . . ,(on-'}. 
Let f   EN^ A be such that v( f )  = ny~; (pi = 1. Define the function 

h E A by h(1) = 1, h((ok) = nfz: f  ( ( o i ) .  Then f  ( ( o k )  = h((ok)/h((ok-l) = 

h ( v k - y v - '  f or 0 < k < n ,  and f  (1)hv- '- ' ( l )  = f ( ( o i )  = 1 .  Hence 

f = hl-9-I E IGA. Thus we finally get H-' (G,A)  = H - ' ( g ,  B ) .  0 

Exercise 1. Let f , g  be endomorphisms of an abelian group A such that 
f o g = g o f = 0. Make sense of the following statement. The quotient 

(kerf : im g) 
qf " (A) = (ker g : im f) 

is multiplicative. 

I 

Exercise 3. Let G be a cyclic group of prime order p ,  and let A be a G-module 
such that qo,,(A) is defined. Show that 

Hint: Use the exact sequence 

Let N  = I + a + . . . + a P - '  in the group ring Z[G] .  Show that the ring Z [ G ] / Z N  
is isomorphic to Z [ < ] ,  for 1; a primitive p-th root of unity, and that in this ring 
one has 

p = (a - I)~-'C, 

where E is a unit in Z [ G ] / Z N .  

Exercise 4. Let LlK be a cyclic extension of prime degree. Using exercise 3, 
compute the Herbrand quotient of the group of units ot of L ,  viewed as a 
G(L I K)-module. 

Exercise 5. If G is a group, g a normal subgroup and A a g-module, then 
H1(G, I n d t ( ~ ) )  2 H ' ( ~ , A ) .  

Exercise 2. Let f ,  g be two commuting endomorphisms of an abelian group A .  
Show that 

4 0 , g f  (A) = qo,*(A)qo, f (A) 9 

provided all quotients are defined. 



Chapter V 

Local Class Field Theory 

5 1. The Local Reciprocity Law 

The abstract class field theory that we have developed in the last chapter 
is now going to be applied to the case of a localfield, i.e., to a field which is 
complete with respect to a discrete valuation, and which has a finite residue 
class field. By chap. 11, (5.2), these are precisely the finite extensions K of 
the fields Qp or Pp((t)). We will use the following notation. Let 

VK be the discrete valuation normalized by VK (K*) = Z, 

OK = { a  E K 1 VK (a)  > 0) the valuation ring, 

PK = { a  E K I VK(a) > 0) the maximal ideal, 

K = OK / p K  the residue class field, 

UK = { a E K * 1 VK (a) = 0) the unit group, 

uF)  = 1 + p p h e  group of n-th higher units, n = 1,2, . . . , 
q = qK =#K,  

la l p  = q - V ~ ( a )  the normalized p-adic absolute value, 

pn the group of n-th roots of unity, and l n ( K )  = pn n K*. 

nK, or simply T, denotes a prime element of K ,  i.e., p~ =  no^. 

In local class field theory, the rBle of the profinite group G of abstract 
class field theory is taken by the absolute Galois group ~ ( k ~ k )  of a fixed 

I local field k, and that of the G-module A by the multiplicative group k* 
of the separable closure k of k .  For a finite extension K lk we thus have 
AK = K*, and the crucial point is to verify for the multiplicative group of 
a local field the class field axiom: 

(1.1) Theorem. For a cyclic extension L I K of local fields, one has 

{ : K] fori = 0, 
#H'(G(L(K), L*) = 

fori = -1. 
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Proof: For i = - 1 this is the claim of proposition (3.5) ("Hilbert 90") 
in chap.IV. So all we have to show is that the Herbrand quotient is 
h(G, L*) = #HO(G, L*) = [L : K], where we have put G = G(L1K). 
The exact sequence 

in which Z has to be viewed as the trivial G-module, yields, by chap. IV, 
(7.31, 

h(G, L*) = h(G,Z) h(G, UL) = [L : K] h(G, UL). 

Hence we have to show that h(G, UL) = 1. For this we choose a normal 
basis (au 1 a E G)  of L J K  (see [93], chap. VIII, 5 12, th. 20), a E OL, and 
consider in OL the open (and closed) G-module M = CuEG oKaa. Then 
the open sets 

V n = l + n j ; M ,  n = 1 , 2 ,  ..., 
form a basis of open neighbourhoods of 1 in UL. Since M is open, we have 
x[oL E M for suitable N,  and for n 2 N the Vn are even subgroups 
(of finite index) of UL, because we have 

Hence VnVn E Vn, and since 1 - n i p ,  for p E M, lies in Vn, so 
n(i-1) does (1 - nf;p)-' = 1 + nj ; (CE,  pinK ). Via the correspondence 

1 nj;a t+ a! mod nKM,  we obtain G-isomorphisms as in 11, (3.10), t 

So by chap.IV, (7.4), we have Hi(G, v n / v n + ' )  = 1 for i = 0, - 1 
an4 n 2 N. This in turn implies that Hi(G, v") = 1 for i = 0, - 1 
and n 1 N. Indeed, if for instance i = 0 and a E (vn lG ,  then a = (NGbo)al, 
with bo E Vn, a,  E ( v " + ' ) ~ ,  and thus a1 = (NGbl)a2, for some b1 E Vn+', 
a2 E ( v " + ~ ) ~ ,  etc. ; in general, 

Thjs yields a = NGb, with the convergent product b = HE0 bi E Vn, 
so that H'(G, Vn) = 1. In the same way we have for a E Vn such that 
~ d a  = 1, that a = bu-', for some b E Vn, where a is a generator of G. 
Thus H-'(G, v") = 1. We now obtain 

because UL / Vn is finite. 0 
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(1.2) Corollary. If L (K is an unramified extension of local fields, then for 
i = 0 ,  - 1,onehas 

H ' ( G ( L I K ) , u ~ )  = 1 and H ~ ( G ( L I K ) , u ~ ) )  = 1 for n = 1,2,  . . .  

In particular, 

Proof: Let C = G(LJK). We have already seen that H i ( ~ , U L )  = 1 in 
chap. IV, (6.2). In order to prove Hi(G, u") = 1, we first show that 

for the residue class field h of L. It is enough to prove this for i = - 1 ,  
as A is finite, and so h(G, A*) = h(G, A) = 1. We have H-'(G, A*) =; 1 
by Hilbert 90 (see chap. IV, (3.5)). Let f = [A : K] be the degree of h over 
the residue class field K of K ,  and let p be the Frobenius automorphism 
of h I K .  Then we have 

and 
#(p - 1)h = qf-I 1 

Q since the map A % 1 has kernel u. Therefore H -' (G , 1 )  = NG h / (q - 1 ) h 

= 1. 
Applying now the exact hexagon of chap. IV, (7. I ) ,  to the exact sequence 

of C -modules 
f 

1 - u p  - UL -+-A* -+ 1, 

we obtain Hi(G, u;)) = Hi(G, u L )  = 1, because Hi(G, A*) = 1. If IT is 
a prime element of K ,  then n is also a prime element of L, so the map 

I U" + A given by 1 + a n n  I+ a mod p~ is a G-homomorphism. From the 
exact sequence 

e 
we now deduce by induction just as above, because H'(G, A) = 0, that 

I since Hi  (G, u?)) = 1. 0 
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I 
i We now consider the maximal unramified extension % 1 k  over the ground 
/ field k. By chap. 11, $9, the residue class field of % is the algebraic closure i? 
I of the residue class field K of k. By chap. II, (9.9), we get a canonical 
1 isomorphism 

A 

~ ( % l k )  2 G(KIK) 2 Z .  

I t  associates to the element 1 E 2 the Frobenius automorphism x H x4 

:in G ( K J K ) ,  and the Frobenius automorphism pk in G(% 1 k )  which is given by 

/For the absolute Galois group G =  ilk) we therefore obtain the continu- 
ous and surjective homomorphism 

Thus the abstract notions of chap. IV, 5 4 ,  based on this homomorphism, 
like "unramified", "ramification index", "inertia degree", etc., do agree, in 
the case at hand, with the corresponding concrete notions defined in chap. 11. 

I 

As stated above we choose A = k* to be our G -module. Hence A = K * , 
for every finite extension K lk. The usual normalized exponential valuation 
vk : k* + Z is then henselian with respect to d, in the sense of chap. IV, (4.6).  
For, given any finite extension K J k ,  & U K  is the extension of vk to K*, and 
by chap. 11, (4.8), 

i.e., vk(NK lkK*)  = fK v K  ( K * )  = f K Z .  The pair of homomorphisms 

I 

therefore satisfies all the properties of a class field theory, and we obtain the 
Local Reciprocity Law: 

(1.3) Theorem. For every finite Galois extension L I K of local fields we have 
a canonical isomorphism 

The general definition of the reciprocity map in chap. IV, (5.6),  was 
actually inspired by the case of local class field theory. This is why it is 
especially transparent in this case: let a E G ( L  I K ) ,  and let 5 be an extension 
of u to the maximal unramified extension Z I K  of L such that dK ( 5 )  E N 

or, in other words, 5 l a  = pj;,  for some n E N. If C is the fixed field of @ 
and nc E C is a prime element, then 

Inverting I.L I K  gives us the local norm residue symbol 

It is surjective and has kernel N L I K  L*. 

In global class field theory we will have to take into account the field 
R = Q, along with the p-adic number fields Q,,. It also admits a reciprocity 
law: for the unique non-trivial Galois extension C I R ,  we define the norm 
residue symbol 

( , C I R )  : R* + G(CIIR) 

by 
( a ,  c 1~)Li = LiSgn('). 

The kernel of ( , CIR)  is the group R: of all positive real numbers, which 
is again the group of norms NclwC* = {zi! I z E C * } .  

The reciprocity law gives us a very simple classification of the abelian 
extensions of a local field K.  It is formulated in the following 

(1.4) Theorem. The rule 

gives a 1 - 1 -correspondence between the finite abelian extensions of a local 
field K and the open subgroups N of finite index in K*. Furthermore, 

Proof: By chap. IV, (6.7), all we have to show is that the subgroups i\/ 
of K* which are open in the norm topology are precisely the subgroups of 
finite index which are open in the valuation topology. A subgroup N which is 
open in the norm topology contains by definition a group of norms NL I K L * . 
By (1.3),  this has finite index in K * .  It is also open because it contains the 
subgroup N L l ~  UL which itself is open, for it is closed, being the image of 
the compact group U L ,  and has finite index in U K .  We prove the converse 
first in 

The case char(K) f n. Let N be a subgroup of finite index n = ( K *  : h/). 
Then K*" c N ,  and it is enough to show that K*" contains a group of 
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norms. For this we use Kummer theory (see chap. IV, $ 3). We may assume 
that K* contains the group p, of n-th roots of unity. For if it does not, we 
put K1 = K(pn) .  If K;" contains a group of norms N L l  1 ~ 1  L; ,  and L I K  is 
a Galois extension containing L I , then 

!jo let pn E K ,  and let L = K (m) be the maximal abelian extension of 
exponent n. Then by chap. IV, $ 3 ,  we have 

By chap. 11, (5.8), K*/K*" is finite, and then so is G ( L I K ) .  Since K * / N L ~ K  L* 
is isomorphic to G ( L  1 K )  and has exponent n, we have that K '" E NL I K  L*, 
and (*) yields 

and therefore K *" = NL I~ L*. 

The case char(K) = pln. In this case the proof will follow from Lubin-Tate 
theory which we will develop in $4. But it is also possible to do without this 
theory, at the expense of ad lzoc arguments which turn out to be somewhat 
elaborate. Since the result has no further use in the remainder of this book, 
we simply refer the reader to the beautiful treatment in [ I  221, chap. XI, 5 ,  
and chap. XIV, $ 6. 0 

The proof also shows the following 

(1.5) Proposition. If K contains the n -th roots of unity, and if the character- 
istic of K does not divide n, then the extension L = K (m) 1 K  is finite, and 
one has 

N L I K L *  = K*" and G ( L ( K )  Z K*/K*" .  

Theorem (1.4) is called the existence theorem, because its essential 
statement is that, for every open subgroup N of finite index in K*,  there 
exists an abelian extension L J K  such that N L I K L *  = N. This is the 
"class field" of N. (Incidentally, when char(K) = 0, every subgroup of 
finite index is automatically open - see chap. 11, (5.7).) Every open subgroup 
of K* contains some higher unit group u;), as these form a basis of 

neighbourhoods of 1 in K*. We put U f )  = UK and define: 

5 1. The Local Reciprocity Law 323 

(1.6) Definition. Let Ll K be a finite abelian extension, and n the smallest 
number 2 0 such that U g )  NL L*. Then the ideal 

f = ~ ;  
is called the conductor of L I K .  

(1.7) Proposition. A finite abelian extension L 1 K  is unramified if and only 
if its conductor is f = 1. 

Proof: If L I K  is unramified, then UK = N L I K  UL  by (1.2), so that 
f = 1. If conversely f = 1, then UK C N L I K U L  and ni  E N L I ~  L* ,  
for n = (K*  : N L I K  L*). If MlK is the unramified extension of degree 11,  

then N M I K M *  = ( x i )  x UK C N L I K L * ,  and then M 2 L ,  i.e., LIK is 
unramified. 0 

Every open subgroup N of finite index in K* contains a group of the 
form ( n f )  x I/:). This is again open and of finite index. Hence every 
finite abelian extension L J K  is contained in the class field of such a 
group (n- f )  x u;). Therefore the class fields for the groups (d) x u:') 
are particularly important. We will characterize them explicitly in $ 5 ,  as 
immediate analogues of the cyclotomic fields over 0,. In the case of the 

ground field K = Q,, the class field of the group ( p )  x u:) is precisely 
the field Q p ( p p n )  of pn -th roots of unity: 

(1.8) Proposition. The group of norms of the extension Qp(ppn) IQp is the 

group ( p )  x ug.  

Proof: Let K = Q p  and L = Qp(ppn) .  By chap. 11, (7.13), the extension 
L I K is totally ramified of degree pn-I (p - l ) ,  and if C is a primitive y" -th 
root of unity, then 1 - C is a prime element of L of norm N L I K  ( 1  - C) = p.  
We now consider the exponential map of Q p .  By chap. 11, ( 5 . 3 ,  it gives an 
isomorphism 

( v )  exp : p k  - UK 

for v 2 1, provided p # 2, and for v 2 2, even if p = 2. It 
transforms the isomorphism p k  + pk+S-' given by a H p S - l  ( p  - l ) a ,  

into the isomorphism u:) + (I:+"-') given by x H x ' ' ' - ' ( p - ' ) ,  so that 
( u $ ) ) ~ n - l ( ~ - ' )  = u(") K if P # 2, and (UK ( 2 )  2n-2 = u;) if p = 2, n > 1 
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(the case p = 2, n = 1 is trivial). Consequently, we have u;) G N L ~ K L *  
if p # 2. For p = 2 we note that 

because a number that is congruent to I mod 4 is congruent to 1 or 5 mod 8. 
Hence 

( 2 )  2"-' ( 2 )  2,-' 
52n-2 ( U X  ) 0;' = (u,  ) 

It is easy to show that 52"-2 = NL (2  + i), so u;' NL L * holds also in 
case p = 2. Since p = N L I K ( l  - J ) ,  we have ( p )  x u;) c N L I K L * ,  
and since both groups have index pn-'(p - 1 )  in K * ,  we do find that 
N L ~ K L *  = ( p )  x u:) as claimed. 0 

As an immediate consequence of this last proposition, we obtain a local 
version of the famous theorem of Kronecker-Weber, to the effect that every 
finite abelian extension of Q is contained in a cyclotomic field. 

(1.9) Corollary. Every finite abelian extension of L lQp is contained in a field 
Q p  ( J ) ,  where { is a root of unity. In other words: 

The maximal abelian extension Q;b lQp is generated by adjoining all roots 
of unity. 

proof: For suitable f and n ,  we have ( p f )  x (I$' 5 N L K  L*. Therefore L 
is contained in the class field M of the group 

B~ (1.4), M is the composite of the class field for ( p f )  x UQp - this being 

the unramified extension of degree f - and the class field for ( p )  x u'") 
QP ' 

M is therefore generated by the ( p f  - l)pn-th roots of unity. U 

I From the local Kronecker-Weber theorem, one may readily deduce the 
global, classical Theorem of Kronecker-Weber. 

cl.10) Theorem. Every finite abelian extension L ( Q  is contained in a field 
Q(<) generated by a root of unity 5 .  

1 
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Proof: Let S be the set of all prime numbers p that are ramified in L ,  and 
let Lp  be the completion of L with respect to some prime lying above p. 
Then LplQp is abelian, and therefore L p  5 Q p ( p n p ) ,  for a suitable np.  
Let pep be the precise power of p dividing np ,  and let 

n = n pep. 
P ~ S  

We will show that L S Q ( p n ) .  For this let M = L(p,).  Then M IQ is 
I abelian, and if p is ramified in MIQ, then p must lie in S. If MI, is the 

completion with respect to a prime of M above p whose restriction to L 
gives the completion Lp ,  then 

Mp = Lp(pn)  = Q p ( ~ p e p n l )  = Q p  Q p  ( ~ n l ) .  

with (n', p) = 1. Qp(pnr)lQp is the maximal unramified subextension of 
Qp(pl,~,~,,~)lQl,.  The inertia group I p  of Mp(Qp is therefore isomorphic to 
the group G(Qp(ppep)  lop), and consequently has order (p(pep), where q 
is Euler's function. Let I  be the subgroup of G(MIQ) generated by all I , ,  

I p E S .  The fixed field of I  is then unramified, and hence by Minkowski's 
theorem from chap. 111, (2.18), it equals Q ,  i.e., I = G(M 10). On the other 
hand we have 

and therefore [M : Q ]  = [Q(p,) : Q ] ,  so that M = Q ( p n ) .  This shows that 
L 5 Q(pn).  

The following exercises 1-3 presuppose exercises 4-8 of chap. IV, 5 3. 

Exercise 1. For the Galois group r = G ( k 1  K ) ,  one has canonically 

H 1 ( r , Z / n Z )  2 Z / n Z  and H 1 ( r , p n )  2 U K K * " / K * " ,  

the latter provided that n  is not divisible by the residue characteristic 

Exercise 2. For an arbitrary field K  and a G K  -module A ,  put 

H ' ( K , A )  = H ' ( G ~ , A ) .  

If K  is a p-adic number field and n a natural number, then there exists a nondegen- 
erate pairing 

H ' ( K , z / ~ z )  x H ' ( K , ~ , )  - Z / n Z  

of finite groups given by 
( x , a )  t-+ x ( ( a , K I K ) ) .  

1 If n  is not divisible by the residue characteristic p, then the orthogonal complement of 
I H d r ( K , Z / n )  := H ' ( G ( ~ I K ) , z / ~ z )  H ' ( K , Z / ~ Z )  

is the group 

I H , ! . (K,cL~)  := H ' ( G ( ~ I K ) , K ~ )  5 H ' ( K , P ~ ) .  
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equation 7; - 72 - 51 = 0 in i7. This is possible because i7 is algebraically 
closed. Continuing in this way, we get 

@-I) (4 C = ( X ~ X ~ . . - X ~ ) ' - ~ U ~ ,  X n E U g  , U n E U i  , 

'and passing to the limit finally gives c = xv-', where x = nz, x, E Uf. 
{The solvability of the equation xq - x = c follows analogously, using the 
isomorphisms p i  / p r l  2 P .  

Now let x E og and X' = X.  Then, for every n 2 1, one has 

(*I x =x, + n n y n  with x, E OK and y, E og. 
I 

Indeed, for n = 1 we have x = a + n b ,  with a E OW, b E o g ,  and xq = x 
implies a" = a mod n. Hence a = XI  + n c ,  with X I  E O K ,  c E OW, and 
therefore x = X I  +r(b+c)  = XI  +ny l ,  yl E 02. The equation x = x,+xny, 
implies furthermore that yz = y,, so that we get as above y, = c, + nd,, 
with c, E OK, d, E o f ,  and therefore x = (x, + c,nn) + nn+ld, = 
X,+I + nn+'yn+l,  for some x,+l E OK, y,+l E of. Now passing to the limit 
in the equation (*) gives x = limn,, x, E OK,  because K is complete. 

For a power series F (XI,  . . . , X,) E og [[XI, . . . , X,]], let F v  be the 
power series in oi[[X1, . . . , Xn]] which arises from F by applying p to the 
c~efficients of F. A Lubin-Tate series for a prime element n of K is by 
definition a power series e(X) E o ~ [ [ x ] ]  with the properties 

e(X) = n X  mod deg 2 and e(X) = Xq mod IT ,  

where q = q~ denotes, as always, the number of elements in the residue 
class field of K.  The totality of all Lubin-Tate series is denoted by E x .  In 
&, there are in particular the polynomials 

e(X) = uXq + n ( a q - I ~ q - l  + . . . + a 2 x 2 )  + n X ,  

where u,ai E OK and u E 1 mod n. These are called the Lubin-Tate 
polynomials. The simplest one among them is the polynomial Xq + x X .  
In the case K = Qp for example, e(X) = (1 + X)P - 1 is a Lubin-Tate 
polynomial for the prime element p. 

(2.2) Proposition. Let n and F be prime elements of z, and let e(X) E E x ,  
Z(X) E &,- be Lubin-Tate series. Let L(X1, . . . , X,) = C;="=,~X~ be a linear 
form with coefficients ai E o i  such that 

nL(X1, . . . , X,,) = TLq(X, ,  . . . ,X,). 

5 2. The Norm Residue Symbol over 0, 329 

Then there is a uniquely determined power series F (X I ,  . . . , X,,) 
E OK^ [[XI , . . . , Xn I] satisfying 

F (XI ,  . . . , X,) = L(XI ,  . . . , X,) mod deg2, 

If the coefficients ofe, Z, L lie in a complete subring o of o g  such that ov = 0, 

then F has coefficients in o as well. 

Proof: Let o be a complete subring of o i  such that o h  o ,  which 
contains the coefficients of e,Z, L. We put X = (XI ,  . . . , X,) and e(X) = 
 XI), . . . ,e(X,)). Let 

03 

F(X)  = C Ev(X) E o[[XIl 
u=l 

be a power series, Ev(X) its homogeneous part of degree v,  and let 

r 

Fr(X) = C Eu(X). 
u=l 

Clearly, F (X) is a solution of the above problem if and only if F1 (X) = 
L (X) and 

(1) ~ ( F , (x ) )  = F,?(z(x)) mod deg(r + 1) 

for every r 2 1. We determine the polynomials Eu(X) inductively. For 
v = 1 we are forced to take EI (X)  = L(X). Condition (I)  is then satisfied 
for r = 1 by hypothesis. Assume that the E,(X), for v = 1, . . . , r ,  have 
already been found, and that they are uniquely determined by condition (1). 
We then put Fr+1 (X) = Fr (X) + Er+1 (X) with a homogeneous polynomial 
E,.+l(X) 6 o[X] of degree r + 1 which has yet to be determined. The 
congruences 

F?+,(Z(X)) = F,?(z(x)) + 7 f r " ~ ~ + , ( X )  mod deg(r + 2) 

show that Er+] (X) has to satisfy the congruence 

with Gr+l  (X) = e(Fr (X)) - F,?(z(x)) E o[[X]]. We have G,.+I (X) - 0 
mod deg(r + 1) and 

(3) Gr+l (X) r Fr (X)9 - F:(Xq) = 0 mod n 
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because e(X) m,Z(X) X4 mod ~r and aq - aq mod n for a E o. 
Yow let xi = x',' - - .  X; be a monomial of degree r + 1 in o[X]. By (3), 
the coefficient of X' in G,+, is of the form -nS, with /3 E o. Let a, be 
the coefficient of the same monomial X' in E,+'. Then na - Siaq is the 
coefficient of X' in n E,+I - FE?+'. Since G,+I (X) E 0 mod deg(r + I), 
(2) holds if and only if the coefficient a, of xi in E,+I satisfies the equation 

(4) - n ~  + n a  - jp""& = 0 

for every monomial xi of degree r + 1. This equation has a unique solution a, 

in OK^, which actually belongs to o .  For if we put y = n-IF"+' ,  we obtain 
the equation 

a - - y a q = f ? ,  
which is clearly solved by the series 

a = / I  + y p +  yl+q?q2 +. . *  E O 

(the series converges because vk(y) 2 1). If a' is another solution, 
then a - a' = y(ap  - cdC4), hence vk ( a  - a') = v ~ ( Y )  + U ~ ( ( Q !  - 
al)q) = v i  (y) + UK^ ( a  - a') ,  i.e., vk ( a  - a') = oa because v~ (y) 2 1, 
and therefore a = a'. As a consequence, for every monomial X' of 
degree r + 1, equation (4) has a unique solution a in o ,  i.e., there 
exists a unique E,+l(X) E o[X] satisfying (2). This finishes the proof. 

0 

(2.3) Corollary. Let n and F be prime elements of K ,  and let e E I,, 
i? E &,- be Lubin-Tate series with coefficients in O K .  Let n = u Si, u E U K  , 
and u = EV-', E E Ug . Then there is a uniquely determined power series 
9(X) E OK^ [[XI] such that 9(X) = EX mod deg 2 and 

e o I 9 = B q o Z .  

Furthermore, there is a uniquely determined power series [u](X) E O K  [ [ X I ]  
such that [u](X) = uX mod deg2 and 

They satisfy 
e p  = e [UI 

Proof: Putting L(X) = EX, we have nL(X)  = FLq(X) and the first 
claim follows immediately from (2.2). In the same way, with the linear 
form L(X) = uX, one obtains the existence and uniqueness of the power 
series [u](X) E OK [[XI]. Finally, defining 81 = eq-' o [u], we get 

1 
0 o 8' = (e o 8)'- o [u] = (Bq o i ) c l  o [u] = (@-I o [u])q o I = BY o I, 

and thus 81 = 9 because of uniqueness. Hence 8% 0 o [u]. 0 
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(2.4) Theorem. Let a = upUp(a) E Q;, and let 5 be a primitive p n  -th root of 
unity. Then one has 

( a , o , c o l a , ) r  = r u - ' .  

Proof: As N is dense in Zp,  we may assume that u E N,  (u, p)  = 1 .  
Let K = QI,, L = Q,({), and let a E G(LI K)  be the automorphism 
defined by 

ca = i f ' .  

Since Qp(<)lQp is totally ramified, we have G(L I K )  Y ~ ( z ~ z ) ,  and 
we view a as an element of G ( ~ I K ) .  Then 6 = apL E ~ r o b ( Z 1 ~ )  is an 
element such that dK (6) = 1 and elL = a. The fixed field E of 6 is totally 
ramified because f,qK = dK(B) = 1 by chap. IV, (4.5). The proof of the 
theorem is based on the fact that the field E can be explicitly generated by 
a prime element nc which is given by the power series 19 of (2.3). 

In order to do this, assume 6 and cp = VL have been extended continuously 
to the completion of z ,  and consider the two Lubin-Tate polynomials 

e(X) = upX + XP and Z(X) = (1 + X)P - 1 

as well as the polynomial [u](X) = (1 + X)' - 1. Then Z([u](X)) = 
(1 +X)"lJ - 1 = [u](Z(X)). By (2.3), there is a power series B(X) E o i  [[XI] 
such that 

e o O = Q q o i ?  and B V = 6 0 [ u ] .  

Substituting the prime element h = < - 1 of L,  we obtain a prime element 
of E by 

= Q(h). 

Indeed, [u](hU) = (1 +Lo)' - 1 = rUU - 1 = < - 1 = h, and therefore 

i.e., n c  E E.  We will show that 

is the minimal polynomial of n c ,  where ei (X) is defined by eO(x)  = X and 
e i (x )  = e(ei-'(x)). P(X) is monic of degree P " - ' ( ~  - 1) and irreducible 
by Eisenstein's criterion, as e(X) r XP mod p ,  and so en-'(x)P-' = 
XP"-'(P-') mod p. Finally, en(X) = en-' (X) . (up + en-' (x)P-') = 
en-' (X) P (X), so that 

p(nc)en- '  ( nc )  = en ( n c )  . 

Since ei(nc) = ei(19(k)) = 8qi(e'(k)) = &((I +A)"' - 1) = Oqi({p' - I) ,  
we have en(nz) = 0, en-'(nc) # 0, and thus P(nc)  = 0. 
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Observing that NLIK (< - 1) = (- l)dp, d = [L : K] (see chap. 11, (7.13)), 
we obtain 

d NZlK( rC)  = (-lldp(0) = (-1) pu r u mod NLIKL* 

and therefore I . ~ ~ K ( D )  = u mod NLIKL*,  i.e., (u ,  L J K )  = (a, LIK) = a ,  as 
required. 0 

In order to really understand this proof of theorem (2.4), one has to 
read $4. Let us note that one would get a direct, purely algebraic proof, if 
one could show without using the power series 8 that the splitting field of 
the polynomial en(X) is abelian, and that its elements are all fixed under 
3 = a q L .  This splitting field would then have to be equal to the field C 
and every zero of P(X) = en(x)/en-'(X) would have to be a prime 
element ~rz  E I; such that NclK ( n z )  = u mod NLIKL*,  in which case 
rLIK(a) r u mod NL~KL*,  and so (u ,  LIK) = a .  

Exercise 1. The p-class field theory (d : GQ + Z,, v : Q;ll -+ Z )  for the unramified 

Z,-extension of Q,, and the p-class field theory (2 : GQ,, -+ Z,, O : Q; 4 Z,) for 
the cyclotomic Z,-extension of Q, (see 5 1, exercise 7) yield the same norm residue 
symbol ( , L I K). 

Hint: Show that this statement is equivalent to formula (2.4): (u, Q,(<)1Qp)( = ('-I. 

Exercise 2. Let L(K be a totally ramified Galois e x t e ~ i o n ,  and_let (resp. f?) be 
the completion o_f the _maximal unramified exttnsion L (resp. K )  of L (resp. K). 
Show that N i , g L *  = K*, and that every y E L* with N i l g ( y )  = 1 is of the form 

Y = n, zp'-l, a, E G(L(K). 

Exercise 3 (Theorem of DWORK). Let L I K be a totally ramified abelian extensionzf 
p-adic number fields. Let x E K* and y E L* such that NilR(y) = x. Let z, 6 L* 
and choose a, E G (L ( K )  such that 

y K - 1  = nq-1. 
I 1 

Putiing a = n, ai, one has ( x ,  LIK) = a-I. 

~ i d t  : see chap. IV, 5 S, exercise I. 
I 

Exqcise 4. Deduce from exercises 2 and 3 the formula (u, Q,(()IQ,)( = ("-I, for 
some pn -th root of unity t . 
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5 3. The Hilbert Symbol 

Let K be a local field, or K = R, K = C. We assume that K contains 
the group p,, of 11-th roots of unity, where n is a natural numbcr which 
is relatively prime to the characteristic of K (i.e., n can be arbitrary if 
char(K) = 0). Over such a field K we then have at our disposal, on the 
one hand, Kummer theory (see chap. IV, §3),  and on the other, class field 
theory. It is the interplay between both theories, which gives rise to the 
"Hilbert symbol". This is a highly remarkable phenomenon which will lead 
us to a generalization of the classical reciprocity law of Gauss, to n-th power 
residues. 

Let L = K ( W )  be the maximal abelian extension of exponent 17. 

By ( IS) ,  we then have 
NLIKL* = K*n ,  

and class field theory gives us the canonical isomorphism 
G(L(K)  2 K*/K*". 

On the other hand, Kummer theory gives the canonical isomorphism 
Hom(G(L(K),p,) 2 K*/K*". 

The bilinear map 

~ ( L I K ) x H o m ( G ( L I K ) , ~ n ) + P U . , , ,  ( ~ , x ) - x ( a ) *  
therefore defines a nondegenerate bilinear pairing 

( y )  : K*/K*" x K*/K*" - p, 

(bilinear in the multiplicative sense). This pairing is called the Hilbert 
symbol. Its relation to the norm residue symbol is described explicitly in 
the following proposition. 

(3.1) Proposition. For a, b E K *, the Hilbert symbol ( G) E w,, is given 
P 

by 
( ~ . K ( z ) ~ K ) z =  (9)~. 

P 

Proof: The image of a under the isomorphism K */K *' 2 G (L I K )  of class 
field theory is the norm residue symbol a = (a, L J  K). The image of h under 
the isomorphism K*/K*n 2 Hom(G(LJK), p,) of Kummer theory is the 
character x b  : G(L(K)  + p, given by xb(t) = t 31%. By definition of 
the Hilbert symbol, we have (y) = xb(0) = D % / Z ,  

hence (a. K ( % ) ~ K ) ? %  = (a ,  L I K ) ~  = (G) P z. 
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The Hilbert symbol has the following fundamental properties: 

(3.2) Proposition. 
aa' b (i) (T) = (Y) (Y), 

(iii) ( ) = 1 t=, a is a norm from the extension K (z) 1 K ,  

Proof: (i) and (ii) are clear from the definition, (iii) follows from (3.1), and 
(vi) reformulates the nondegenerateness of the Hilbert symbol. 

If b E K* and x E K such that x n  - b # 0, then 

for some primitive n-th root of unity (. Let d be the greatest divisor of n such 
that yd = b has a solution in K ,  and let n = dm. Then the extension K (B) 1 K 
is 'c~cl ic  of degree m,  and the conjugates of x - ('/3 are the elements x - ( JS 
such that j = i mod d. We may therefore write 

I 

Hence xn - b is a norm from K (% ) I K , i.e., 

Choosing x = 1, b = 1 - a ,  and x = 0, b = -a then yield (v). (iv) finally 
follows from 
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In the case K = R we have n = 1 or n = 2. For n = 1 one finds, of 
a b  course, (2) = 1, and for n = 2 we have 
P 

sgnu-l sgnb-l - .-  ( )  = ( - 1  2 2 ,  

sgna-l 
because ( ~ , R ( & ) J w )  = 1 for b > 0, and = ( - 1 ) T  for b < 0. Here 
the letter p symbolically stands for an infinite place. 

Next we determine the Hilbert symbol explicitly in the case where K is 
a local field (# R, C )  whose residue characteristic p does not divide n .  We 
call this the case of the tame Hilbert symbol. Since pn g pq-,  one has 
n I q - 1 in that case. First we establish the 

(3.3) Lemma. Let (n, p)  = 1 and x E K*. The extension K (z) ( K  is 
unramified if and only if x E UK K *n. 

Proof: Let x = uyn with u E UK, y E K*, so that K ( p )  = K ( z ) .  Let 
K' be the splitting field of the polynomial X n  - u mod p over the residue 
class field K ,  and let K'JK be the unramified extension with residue class 
field K' (see chap. 11, $9, p. 173). By Hensel's lemma, Xn - u splits over K' 
into linear factors, so K ( p )  g K' is unramified. Assume conversely that 
L = K ( z )  is unrarnified over K ,  and let x = unr ,  where u E U K  and 
n is a prime element of K. Then v L ( m )  = vL(nr) = X E Z, hence 
nlr,  i.e., n' E K*n, and thus x E UKK*". 0 

Since UK = pq-1 x u!), every unit u E UK has a unique decomposition 

with o (u )  E pq-, and (u) E u:), u = O(U) mod p. With this notation we 
will now prove the 

(3.4) Proposition. If (n, p) = 1 and a ,  b E K*, then 

where cr = VK (a), B = VK (b). 
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Proof: The function 

is obviously bilinear (in the multiplicative sense). We may therefore assume 
that a and b are prime elements: a = n ,  b = -nu,  u E UK. Since clearly 

7r -7r (F, - x )  = ( -) = 1, we may restrict to the case a = n, b = u. Let 
P 

3 = !@ and K' = K(y). Then we have 

By (3.3), we see that K'I K is unramified and by chap. IV, (5.7), (n,  K'I K)  
is the Frobenius automorphism q = ~ K ~ I K .  Consequently, 

hence ( =) = (n, u) , because hq-' is mapped isomorphically onto K *  by 
P 

LiK -+ K*. 0 

The proposition shows in particular that the Hilbert symbol 

(in the case (n, p) = 1) is independent of the choice of the prime element 
n. We may therefore put 

() := (7) for u t UK. 

( F) is the root of unity determined by 

(F) I u(q-')/" mod p ~ .  

We call it the Legendre symbol, or the n-th power residue symbol. Both 
names are justified by the 

(3.5) Proposition. Let (n, p )  = 1 and u E UK. Then one has 
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q - l Proof: Let C be a primitive (q - I)-th root of unity, and let ni = II. 
Then 5'' is a primitive m-th root of unity, and 

(F) = O(U)"~ = I t) W(U) E K,,l - O(U) = ( y ) ;  

e u = W(U) = mod P K .  0 

It is an important, but in general difficult, problem to find explicit formulae 
for the Hilbert symbol (@) also in the case pin. Let us look at the case 

P 
where n = 2 and K = Q,,. If a E 22, then (-1)' means 

(-1)' = 

where r is a rational integer r a mod 2. 

(3.6) Theorem. Let n = 2. For a ,  b E QF we write 

a = p f f a ' ,  b=pPb ' ,  a', ~ ' E U ~ , , ,  

If p # 2, then 

P u In particular, one has ( u) = (- l ) ( ~ - ' ) / ~  and ( L) = ( E) , if is a unit. 
P P P 

I f p  = 2 a n d a , b  E UQ,, then 

(1 -1  h-l 

Proof: The claim for the case p # 2 is an immediate consequence of (3.4), 

and will be left to the reader. So let p = 2. We put q(a) = a 
8 

and 
0 - 1  &(a) = -. An elementary computation shows that 

2 

q(a1a2) --q(al)+q(az) mod2 and ~ ( a l a 2 )  =&(a l )+&(az )  mod 2 .  

Thus both sides of the equations we have to prove are multiplicative and i t  
is enough to check the claim for a set of generators of U Q 2 / ~ i 2 .  15, - I ]  

is such a set. We postpone this for the moment and define (a. h) = (G) . 
2 
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We have (-1, x)  = 1 if and only if x is a norm from Q2(1/--i) 1Q2, 
i.e., x = y2 + z2, y, z E Q2. Since 5 = 4 + 1 and 2 = 1 + 1, we find that 
(- 1,2) = (-1,5) = 1. If we had (-1, - 1) = 1, then i t  would follow that 
(-1,x) = 1 for all x ,  i.e., -1 would be a square in Q;, which is not the 
case. Therefore we have (- 1, - 1) = - 1. 

We have (2,2) = (2, - 1)  = 1 and (5,5) = (5, - 1) = 1. It remains 
therefore to determine (2,5). (2,5) = 1 would imply (2,x) = 1 for all x, 
i.e., 2 would be a square in Q;, which is not the case. Hence (2,5) = -I.  

By direct verification one sees that the values we just found coincide with 
those of (- 1 ) ~ ( ~ ) ,  resp. (- l)E(a)E(b), in the respective cases. 

It remains to show that UQ,,/U,& is generated by (5, - 1). We set U = 

UQ,, u(") = u:). By chap. 11, ( 5 . 3 ,  exp : ZnZ2 + u(") is an isomorphism 
for n z 1. Since a I+ 2a defines an isomorphism 22Z2 + 2 3 ~ 2 ,  x H x2 
defines an isomorphism u ( ~ )  -+ u ( ~ ) .  It follows that u ( ~ )  S U2. Since 
11, - 1,5, -5) is a system of representatives of U / U ( ~ ) ,  U/U2 is generated 
by -1 and 5. 0 

It is much more difficult to determine the n-th Hilbert symbol in the 
general case. It was discovered only in 1964 by the mathematician HELMUT 
BRUCKNER. Since the result has not previously been published in an easily 
accessible place, we state it here without proof for the case n = pV of odd 
residue characteristic p of K. 

So let p p v  _C K ,  choose a prime element n of K ,  and let W be the ring 
of integers of the maximal unramified subextension T of K (QIJ (i.e., the 
ring of Witt vectors over the residue class field of K). Then every element 
+ E K can be written in the form 

x = f (n) ,  
with a Laurent series f (X) E W ((X)). 

For an arbitrary Laurent series f (X) = El,-,, - alX1 E W((X)), let 
f p ( ~ )  denote the series 

f p ( x )  = Ca:xlp, 
I 

where (P is the Frobenius automorphism of W. Further, let Res( f dX) E W 
denote the residue of the differential f dX, 

f' dlog f := -dX, 
f 

and w (f - Ui log f := C(-l) '+ '  -, 
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Now let { be a primitive pv-th root of unity. Then 1 - { is a prime 
element of Q,,({), and thus 

for some unit E of K ,  where e is the ramification index of K lQp({). Let 
v(X) E W[[X]] be a power series such that 

and let h(X) be the series 

With this notation we can now state BRUCKNER'S formula for the pv-th Hilbert 
X Y  symbol (L), p =  char(^) # 2. 
P 

(3.7) Theorem. I fx ,  y E K* and f ,  g E W ((X))* such that f (n) = a and 
g (n)  = y, then 

where 

For the proof of this theorem, we have to refer to [20] (see also 
[69] and [135]). BR~~CKNER has also deduced an explicit formula for the 
case n = 2', but it is much more complicated. A more recent treatment 
of the theorem, which also includes the case n = 2', has been given by 
G. HENNIART [69]. 

It would be interesting to deduce from these formulae the following 
classical result of IWASAWA [go], ARTIN and HASSE (see [9]) relative to the 
field 

@ v  = Qp(O, 

where { is a primitive pv-th root of unity (p # 2). Putting rr = 1 - { and 
denoting by S the trace map from 0, to Qp,  we obtain for the pV-th Hilbert 
symbol (w)  of the field @, the 

P 



340 Chapter V. Local Class Field Theory 

(3.8) Proposition. For a E ~ g ~ ~ ~ - ~ )  and b E 0; one has 

Where D log b denotes the formal logarithmic derivative in ~r of an arbitrary 
representation of b as an integral power series in n with coefficients in Zp. 

For a E (I:: one has furthermore the two supplementary theorems 

The supplementary theorems (2) and (3) go back to ARTIN and HASSE [9]. 
The formula (1) was proved independently by ARTIN [lo] and HASSE [61] 
in the case v = 1, and by IWASAWA [80] in general. In the case v = 1, for 
instance, one can indeed obtain the formulae from BR~CKNER'S theorem (3.7). 
Since 

1 l m o d p ,  i = p - 1 ,  
-S({nl) E and loga E O  mod p2, 
P O m o d p ,  i f p - 1 ,  

one may also interpret the <-exponent in the formulae (1)-(3) as the (p  - 1)- 
st coefficient of a n -adic expansion of log a D log b. In this way it appears as 

1 d formal residue Res, - loga D logb. As to the supplementary theorems, 
l r p  

one has to define also D log < = - < - I ,  D log n = TC- ' .  

Exercise 1. For n = 2 the Hilbert symbol has the following concrete meaning: 
1 

( y) = I - ax2  + by2 - r2  = 0 has a nontrivial solution in K .  

Exercise 2. Deduce proposition (3.8) from theorem (3.7). 

Exercise 3. Let K be a local field of characteristic p, let K be its separable 
closure, and let w,,(K) be the ring of Witt vectors of length n ,  with the operator 
,p : ~ ~ ( 6 )  -t w,,@), pa = F a  - a (see chap. IV, § 3, exercises 2 and 3). Show 
that one has ker(p) = W,,(F,). 

Exercise 4. Abstract Kummer theory (chap. IV, (3.3)) yields for the maximal abelian 
extension L 1 K of exponent n a surjective homomorphism 

Wn(K) -t Hom(G(LIK), Wn(F,)), x X , ,  

where one has X, (u) = oc - 6 for all a E G(L 1 K ) ,  with an arbitrary E W, (L) 
such that pc = X .  Show that x H x, has kernel p W,,(K). 
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Exercise 5. Define, for x E W,,(K) and a E K *, the symbol [x, a )  E W,,(F,) by 

[x,a)  := x,((a, LIK)) ,  

where ( , LI K )  is the norm residue symbol. Show: 

(i) [x ,a )  = (a ,  K(4)JK)C - 4 ,  if 6 E w,,(K) with p{ = x.. 

(ii) [x + y , a )  = [x ,a )  + [y,a).  

(iii) [x, ab)  = [x, a )  + [x, b). 

(iv) [ d , ~ )  = 0 u E NK(6)1K K({)*, where { E W,,(Z) is an clemcnl such 
that gc = x .  

(v) [x ,a )  = 0 for all a E K* x E pW,(K). 

(vi) [x ,a)  = 0 for all x E Wn(K) U a E K*,'. 

Exercise 6, Let K be the residue class field of K and n a prime element such that 
K = ~ ( ( n ) ) .  Let 

d : K + Q ; , , ,  f H d f ,  

be the canonical map to the differential module of K I K  (see chap. 111, $2,  p.200). 
For every f E K one has 

df = f i d n ,  

where f; is the formal derivative of f in the expansion according to powers of ir 
with coefficients in K.  Show that for w = (xi,-, a , n i ) d n ,  the residue 

Resw := 

does not depend on the choice of the prime element n .  

Exercise 7. Show that in the case n = 1 the symbol [x, a )  is given by 

d a  
[x, a )  = T r K , ~ , ,  Res(x -) . 

a 

Remark: Such a formula can also be given for 11 2 1 (P.  K i i ~ t zc  [88]). 

5 4. Formal Groups 

The most explicit realization of local class field theory we have encoun- 
tered for the case of cyclotomic fields over the field Qp,  i.e., with the ex- 
tensions Qp({)IQp, where < is a pn-th root of unity. The notion of formal 
group allows us to construct such an explicit cyclotomic theory over an ar- 
bitrary local field K by introducing a new kind of roots of unity which are 
"division points" that do the same for the field K as the p"-th roots of unity 
do for the field Qp. 
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(4.1) Definiton. A (1 -dimensional, commutative) formal group over a ring o 
is a formal power series F (X, Y) E o[[X, Y 11 with the following properties: 

(i) F(X,Y) r X + Y  moddeg2. 

(A) F(X,Y) = F(Y,X) "commutativity", 

(di) F (X. F (Y. Z)) = F ( F  (X. Y), Z) "associativity". 

From a formal group one gets an ordinary group by evaluating in a domain 
wpere the power series converge. If for instance o is a complete valuation 
ripg and p its maximal ideal, then the operation 

x + y  := F(x ,y)  
F 

defines a new structure of abelian group on the set p. 

Examples : 

1. G, (X, Y )  = X + Y (the formal additive group). 

2., G,(X, Y) = X + Y + XY (the formal multiplicative group). Since 

x + Y +XY = (1 + X ) ( l +  Y )  - 1, 

we have 

So the new operation + is obtained from multiplication . via the translation 
Gn, 

X H X f  1 .  

3. A power series f (X) = alX + a2x2 + . - - E o[[X]] whose first 
coefficient a1 is a unit admits an "inverse", i.e., there exists a power series 

I f -'(x) = a , ' ~  + - .  . E o[[X]], 

such that f -' (f (X)) = f (f -' (X)) = X. For every such power series, 

F(X,  Y) = f -'(f (XI + f (Y)) 

is, a formal group. 

(4.2) Definition. A homomorphism f : F + G between two formal groups 
is a power series f (X) = a1 X + a2x2 + . . . E o[[X]] such that 
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In example 3, for instance, the power series f is a homomorphism of the 
formal group F to the additive group G,. It is called the logarithm of F. 

A homomorphism f : F + G is an isomorphism if a '  = f'(0) is a unit, 
i.e., if there is a homomorphism g = f -' : G + F such that 

If the power series f (X) = a l X  + a 2 x 2  + . . . satisfies the equation 
f (F (X, Y)) = G( f (X), f (Y)), but its coefficients belong to an extension 
ring o', then we call this a homomorphism defined over o'. The following 
proposition is immediately evident. 

(4.3) Proposition. The homomorphisms f : F + F of a formal group F 
over o form a ring End,(F) in which addition and multiplication are defined 
by 

(f : g)(X) = ~ ( f  (XI, g(X)) , (f 0 g)(X) = f (Em). 

(4.4) Definition. A formal o-module is a formal group F over 0 together 
with a ring homomorphism 

such that [ a l ~ ( X )  E a x  mod deg 2. 
A homomorphism (over o' 2 o )  between formal o-modules F, G is a 

homomorphism f : F + G of formal groups (over o') in the sense of (4.2) 
such that 

~ ( [ ~ I F ( x ) )  = [ a l ~ ( f  (XI) for all a E o. 

Now let o = OK be the valuation ring of a local field K ,  and write 
y = (OK : PK).  We consider the following special formal -modules. 

(4.5) Definition. A Lubin-Tate module over OK for the prime element IT is 
a formal OK -module F such that 

[XI (X) Xq mod X . 
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This definition reflects once more the dominating principle of class field 
theory, to the effect that prime elements correspond to Frobenius elements. In 
fact, if we reduce the coefficients of some formal o-module F modulo n ,  we 
obtain a formal group F(x ,  Y) over the residue class field F q .  The reduction 
mod n of [?'rlF(X) is an endomorphism of F. But on the other hand, 
f (X) = X4 is clearly an endomorphism of F ,  its Frobenius endomorphism. 
Thus F is a Lubin-Tate module if the endomorphism defined by a prime 
element n gives via reduction the Frobenius endomorphism of F.  

I 
Example: The formal multiplicative group G,, is a formal Zp-module with 
respect to the mapping 

G, is a Lubin-Tate module for the prime element p because 

[pk , (X)  = (1 + X)P - 1 r XP mod p 

The following theorem gives a complete and explicit overall view of the 
totality of all Lubin-Tate modules. Let e(X), Z(X) E OK [[XI] be Lubin-Tate 
series for the prime element n of K ,  and let 

Fe(X9 Y) E OK [[X, YlI and [ a l e ,~ (X)  E OK [[XI] 

(a E o K )  be the power series (uniquely determined according to (2.2)) such 
that 

F e ( X , Y ) = X + Y m o d d e g 2 ,  ~ ( F , ( x , Y ) ) = F , ( ~ ( x ) , ~ ( Y ) ) ,  

[a],, (X) r a x  mod deg 2 ,  e([a] , , ; (~>)  = [ a l e , , - ( w > )  . 
If e(X) = Z(X) we simply write [a]e,z(X) = [a],(X). 

(4.6) Theorem. (i) The Lubin-Tate modules for n are precisely the series 
F, (X, Y), with the formal OK -module structure given by 

(ii) For every a E OK the power series [a],, ;(X) is a homomorphism 

[ale,; F; -+ F e  

of formal o-modules. and it is an isomomhism if a is a unit. 
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Proof: If F is any Lubin-Tate module, then e(X) := [nIF ( X )  E LT 
and F = F, because e(F(X, Y)) = F(e(X), e(Y)), and because of the 
uniqueness statement of (2.2). For the other claims of the theorem one has 
to show the following formulae. 

(1) Fe(X, Y) = F e V ,  X), 

(2) Fe(X, F e V t  Z)) = Fe(Fe(X, Y), Z), 

(3) [ale,~(F;(X, Y)) = Fe([ale,z(X), [ale,;(Y)), 

(4) [a + bIc,;(X) = Fe([ale,;(X), [ble,;(X)), 

( 5 )  [able, ,(XI = [ale, m1;, ,(X))? 

(6)  [nle(X) = e(W. 

(1) and (2) show that Fe is a formal group. (3), (4), and (5) show that 

OK --+ EndOK (Fe), a ++ [a], , 

is a homomorphism of rings, i.e., that Fe is a formal OK -module, and that 
[a],,,- is a homomorphism of formal OK-modules from F,; to F , .  Finally, 
(6) shows that F, is a Lubin-Tate module. 

The proofs of these formulae all follow the same pattern. One checks 
that both sides of each formula are solutions of the same problem of (2.2), 
and then deduces their equality from the uniqueness statement. In (6) for 
instance, both power series commence with the linear form n X  and satisfy 
the condition e([n],(X)) = [n],(e(X)), resp. e(e(X)) = e(e(X)). 0 

Exercise 1. End,@,) consists of all a x  such that a E o. 

Exercise 2. Let R be a commutative Q-algebra. Then for every formal group F (X,  Y )  
over R ,  there exists a unique isomorphism 

log, : F % G,, 

such that log,(X) r X mod deg 2, the logarithm of F 

Hint: Let F, = aF/aY. Differentiating F ( F ( X ,  Y), 2)  = F (X, F ( Y ,  Z)) yields 
F,(X,O) E 1 mod deg 1. Let $(X) = 1 + x:, anXn E R[[X]] be the power series 
such that $(X)FI(X, 0) = 1. Then log,(X) = X + Czl ?Xn does what we want. 

00 xn Exercise 3. logGm (X) = C (- 7 = log(1 + X). 
n=l 

Exercise 4. Let n be a prime element of the local field K ,  and let f ( X )  = 
X + n- 'X* + n -  2 ~ ' 7 2  + . . . Then 

FG, Y)  = f - I  ( f ~ )  + f ~ ) ,  [ ~ I F ( x )  = f - ' ( a f ( x ) ) ,  a E OK , 

defines a Lubin-Tate module with logarithm log, = f .  
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Exercise 5. Two Lubin-Tate modules over the valuation ring oK of a local field K ,  
but for different prime elements n and F, are never isomorphic. 

Exercise 6. Two Lubin-Tate modules-F, and F; for prime elements T and ?F always 
become isomorphic over 0,-, where K is the completion of the maximal unramified 
extension I K. 

Hint: The power series 8 of (2.3) yields an isomorphism 0 : FF + F,. 

5 5. Generalized Cyclotomic Theory 

Formal groups are relevant for local class field theory in that they allow 
us to construct a perfect analogue of the theory of the pn-th cyclotomic 
field Qp (<) over Qp, with its fundamental isomorphism 

(see chap. I1 (7.13)), replacing Qp by an arbitrary local ground field K.  
The formal groups furnish a generalization of the notion of pn-th root of 
unity, and provide an explicit version of the local reciprocity law in the 
corresponding extensions. 

A formal OK -module gives rise to an ordinary OK -module if we read 
the power series over a domain in which they converge. We now choose for 
this the maximal ideal p  of the valuation ring of the algebraic closure K of 
the given local field K .  If G(XI,  . . . , X,) E OK[[X], . . . , Xn]] is a power 
series with constant coefficient 0, and if xl,  . . . ,x, E p, then the series 
G (xl , . . . , x,) converges in the complete field K (xl , . . . , x,) to an element 
in F. From the definition of the formal o-modules and their homomorphisms 
we' therefore obtain immediately the 

(5.t) Proposition. Let F be a formal OK -module. Then the set ji with the 
operations 

I x + y  = F(x ,y)  and a * x  = [aIF(x), 
F 

x,  jr E F, a E OK, is an OK module in the usual sense. We denote it by p F .  
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If f : F +- G is a homomorphism (isomorphism) of formal OK -modules, 
then 

f : F F  + P C ,  x -  f (x ) ,  

is a homomorphism (isomorphism) of ordinary OK -modules. 
The operations in jiF, and particularly scalar multiplication a x = 

[aIF(x), must of course not be confused with the usual operations in the 
field K. 

We now consider a Lubin-Tate module F for the prime element n of O K .  
We define the group of nn-division points by 

This is an oK-module, and an oK/nnoK-module because it is killed 
by ~ " 0 ~ .  

(5.2) Proposition. F (n) is a free oK /nnoK -module of rank 1. 

Proof: An isomorphism f : F + G of Lubin-Tate modules obviously 
- 

induces isomorphisms f : pF -+ & and f : F(n) -t G(n) of OK - 
modules. By (4.6), Lubin-Tate modules for the same prime element n are all 
isomorphic. We may therefore assume that F = F,, with e(X) = Xq + n X  = 
[nIF(X). F(n) then consists of the qn zeroes of the iterated polynomial 
en (X) = (e o . . . o e)(X) = [nn]  (X), which is easily shown, by induction 
on n, to be separable. Now if An E F (n) \ F (n - l) ,  then 

is a homomorphism of OK -modules with kernel n n o K .  It induces a bijective 
homomorphism oK / n n o K  + F (n) because both sides are of order 9" .  

(5.3) Corollary. Associating a H [aIF we obtain canonical isomorphisms 

Proof: The map on the left is an isomorphism since o ~ / n " o ~  2 F(n)  
and E n d O K ( o ~ / n n o K )  = o ~ 1 n " o ~ .  The one on the right is obtained by 
taking the unit groups of these rings. 0 
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Given a Lubin-Tate module 
the field of 7$-division points 

I 
F  for the prime element n ,  we now define Proof: If 

L, = K ( F ( ~ ) ) .  

Since F(n )  E  F(n  + 1 )  we get a tower of fields 
CO 

I K E  L I  E L 2 E  . . . C  L,:= U L,. 
n=l 

h e s e  fields are also called the Lubin-Tate extensions. They only depend 
on the prime element rr, not on the Lubin-Tate module F.  For if G  is 
apother Lubin-Tate module for n, then by (4.6), there is an isomorphism 
f : F  4 G ,  f E oK [[XI ]  such that G ( n )  = f ( F  ( n ) )  G K  (F  ( n ) ) ,  and 
hence K  (G ( n ) )  = K  ( F  (n) ) .  If F  is the Lubin-Tate module Fe belonging to 
a Lubin-Tate polynomial e ( X )  E E x ,  then e ( X )  = [nIF ( X )  and L ,  I K  is the 
splitting field of the n-fold iteration 

e n ( X )  = (e  o . . . o e ) ( X )  = [ n n l F ( X ) .  

Example: If OK = Z p  and F  is the Lubin-Tate module G,, then 
I 

en ( X )  = [ pnIs, ( X )  = ( 1  + X)P" - 1 . 
I 

SQ G,(n) consists of the elements 5- - 1, where varies over the pn -th roots 
of unity. L, I K is therefore the pn -th cyclotomic extension Q p  ( p p )  I QP.  The 
fallowing theorem shows the complete analogy of Lubin-Tate extensions with 
cyclotomic fields. 

(5.4) Theorem. L, I K isa totallyramifiedabelian extension ofdegreeqn-' (q- 
1) with Galois group 

i.e., for every a E G (L, I K )  there is a unique class u  mod u;), with u  E UK 
sqch that 

ha = [ u ] ~  (A) for A  E F  ( a )  . 

Furthermore the following is true: let F  be the Lubin-Tate module Fe associated 
to the polynomial e ( X )  E E, , and let A, E F  (n )  \ F  (n  - 1) .  Then A, is a 
prime element of L ,  , i.e., L,  = K  (A,), and 

is its minimal polynomial. In particular one has NL,/K (-A,) = IT 

is a Lubin-Tate polynomial, then 

is an Eisenstein polynomial of degree qn-' (q  - 1 ) .  If F  is the Lubin-Tate 
module associated to e, and A, E F(n)  \ F(n  - I ) ,  then A,, is clearly a zero 
of this Eisenstein polynomial, and is therefore a prime element of the totally 
ramified extension K(A,,)JK of degree q"-'(q - 1). Each a E G(LI  K )  
induces an automorphism of F(n) .  We therefore obtain a homomorphism 

It is injective because L,  is generated by F ( n ) ,  and it is surjective because 

This proves the theorem. 0 

Generalizing the explicit norm residue symbol of the cyclotomic fields 
Q,(ppn) IQ, (see (2.4)), we obtain the following explicit formula for the 
norm residue symbol of the Lubin-Tate extensions. 

(5.5) Theorem. For the field L,IK of nn-division points and for a = 
u r r ' ~ ( ~ )  E K * , u  E UK,onehas 

Proof: The proof is the same as that of (2.4). Let a E G ( L ,  J K )  be the 
automorphism such that 

Let 5 be an element in ~rob(L", 1 K )  such that a _= 5 I L,, and .. dK ( 6 )  = 1. We 
view 5 as an autornorphism of the completion L, = Ln K  of L, .  Let C be 
the fixed field of 5. Since f c l K  = - dK (5) = 1, - ,Z 1 K  is - totally - ramified. It has 
degree q"-'Q - 1) because L: f l  K  = K  and C = L:K = L,,. Consequently 
[L: : K ]  = [ L ,  : z] = [L, : K ] .  
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Now let e E En, 2 E Eir be Lubin-Tate series over O K ,  where n = u  TT, 
and let F  = F;. By (2.3), there exists a power series 0 ( X )  = EX + . . . E 

t?g[[X]], with E E U g ,  such that 

89 = 0  o [U]F and 09 o e = e o 0  ( p  = p ~ ) .  

Let An E F ( n )  \ F ( n  - 1). An is a prime element of L,, and 

nz = 0(An> 

is a prime element of C because 

Since ei(O(hn)) = O'pl(iTi(h,)) = 0 for i = n ,  and # 0 for i = n  - 1 ,  
we have 7r.r E F,(n) \ Fe(n - 1 ) .  Hence C = K  (nc) is the field of n " -  
division points of Fe, and N C I K  (-nz) = n = ujS. by (5.4). Since TT = 
NL,IK(-&) E N L , I K L ; ,  we get 

~ L , , I K  (a )  = N z I ~  (-nz) = n = u  mod N L n I K  L; , 

and thus 

I 

(5.6) Corollary. The field L ,  I K o f n n  -division points is the class field relative 
to the group (n) x u;' G K  *. 

Proof: For a = u n " ~ ( ~ )  we have 

For the maximal abelian extension ~ ' ~ 1  K ,  this gives the following 
generalization of the local Kronecker-Weber theorem (1.9): 

(5.7) Corollary. The maximal abelian extension o f  K is the composite 

K ' ~  = F L ~ ,  
where L ,  is the union Uz, Ln  of the fields Ln  of nn -division points. 
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Proof: Let L  1 K  be a finite abelian extension. Then we have rr f E N L I K  L* 

for suitable f .  Since N L I K  L* is open in K * ,  and since the 11;) form a basis 

of neighbourhoods of 1, we have ( n f )  x u;) & N L I K L *  for a suitable 
( n )  - n.  Hence L  is contained in the class field of the group ( n f )  x U K  - 

( (n)  x u;)) n ( ( n f )  x U K ) .  The class field of ( n )  x u;) is L,, and that 
of ( n f )  x U K  is the unramified extension K f  of degree f .  It follows that 
L  2 K f L ,  EL ,  = K O ~ .  0 

Exercise 1. Let F = F, be the Lubin-Tate module for the Lubin-Tate serics e E E n ,  
I with the endomorphisms [a]  = [a],. Let S = o K [ [ X ] ]  and S* = (g  E S I g(0)  E U K  1. 

Show: 

( i )  I f  g E S is a power series such that g(F(1)) = 0, then g is divisible by [ n ] ,  i.e., 
g ( X )  = [ n l ( X ) h ( X ) ,  h ( X )  E S. 

(ii) Let g E S be a power series such that 

g(X $ h )  = g ( X )  for all h E F (1) , 

where we write X + F h = F ( X ,  A). Then there exists a unique power series h ( X )  in 

S such that 
g = h o n  

Exercise 2. I f  h ( X )  is a power series in S ,  then the power series 

h l ( x ) =  A E F ( I )  n h ( x p )  

also belongs to S ,  and one has h l ( X  + h )  F = h I ( X )  for all h E F(1). 

Exercise 3. Let N ( h )  E S be the power series (uniquely determined by exercisc I 
and exercise 2) such that 

The mapping N : S + S is called Coleman's norm operator. Show: 

( 9  N(h1h2)  = N ( h l ) N ( h d .  

(ii) N ( h )  = h mod p. 

(iii) h E X'S* for i 2 0 j N ( h )  E X'S*. 

( iv)  h I mod pi for i 2 I =+ N ( h )  = 1 mod pi+'. 

(v) For the operators ~ ' ( h )  = h ,  N n ( h )  = N (N"-'  ( h ) ) ,  one has 

(vi)  I f  h E X'S*, i 2 0, then ~ " + l ( h ) / N " ( h )  E S* and 

N "+I ( h )  N1l(h) mod p"+' , n > 0 .  
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I 

Exercise 4. Let A  E F ( n  + 1 )  \. F ( n ) ,  n  2 0, and A; = [nn-'](A) E F ( i  + 1 )  for 0  5 
i ,s n. Then A; is a prime element of the Lubin-Tate extension Li+1 = K ( F ( i  + I)), 
and o;+l = O K [ X ; ]  is the valuation ring of L;+l ,  with maximal ideal pi+, = A,O,+~.  
Show: 

let B; E nn- 'plo;+l ,  0 5 i  5 n. Then there exists a power series h ( X )  E S such 
that 

k ( A , ) = B ,  for O s i s n .  

Hint: Write = n"-'Aoh,(A,), with h ; ( X )  E o [ X ]  and put, for 0  5 i  5 n :  
g i ( X )  = [rrn+'][rr']/[rr'+']. Then h  = xy=, hiRi is a solution. 

Exercise 5. Let A  E F ( n  + 1 )  \ F ( n )  and A; = [nu- ' ] (A) ,  0  _< i 5 n. For every 
u E UL.,, , there exists a power series h ( X )  E o [ [ X ] ]  such that 

N n , , ( u ) = h ( A ; )  for O s i s n ,  
where N,,, is the norm from L,+I to Li+].  

Hint: Write u = h l ( A ) ,  h l ( X )  E o [ X l ,  and put h2 = N n ( h l )  E S*. Show that 
Bi = Nn.i(u> - hz(A;) E nn - ip~~ l+ l .  Then by exercise 4 there is a power series 
h3(X)  E o[[XI l  such that B; = h3(Ai), 0 5 i 5 n. Show that h  = h2 + h3 works. 

Remark: The solutions of these exercises are discussed in detail in 1791, 5.2. 

3 6. Higher Ramification Groups 

Considering the homomorphism 

( , L l K )  : K* -+ G ( L ( K )  

defined for an abelian extension L  IK of local fields by the norm residue 
syinbol, it is striking that both groups are equipped with a canonical filtration: 
in the group K* on the left we have the descending chain 

(*I ( O )  > ~ ( 1 )  > ~ ( ~ 1  > . . .  K * ? U K = ~ J K  - K - K - 

of higher unit groups u:), and on the right there is the descending chain 

of ramification groups Gi ( L  I K )  in the upper numbering (see chap. 11, 8 10). 
The latter arose from the ramification groups in the lower numbering 

viasthe strictly increasing function 

S dx 
V L I K ( S )  = 

0 (Go : G,) 

by the rule 
@ ( L I K )  = G @ L I K ( i ) ( L I K ) ,  

where I) is the inverse function of 7. We will now prove the remarkable 
arithmetic fact that the norm residue symbol ( , L  I K )  relates both filtrations 
(*) and (**) in a precise way. To this end we determine (generalizing chap. 11, 
S, 10, exercise 1) the higher ramification groups of the Lubin-Tate extensions. 

(6.1) Proposition. Let L,, 1 K be the field ofnn  -division points ofa Lubin-Tate 
module for the prime element n . Then 

G ~ ( L , J K )  = G ( L , I L ~ )  for qk-' F i  L qk - 1 

Proof: By (5.4) and ( 5 3 ,  the norm residue symbol gives an isomorphism 

lJx/lJ:) + G(Lk I K )  for every k .  Hence G(L ,  ILx) = (u:), L,, I K ) .  We 
therefore have to show that 

Let a E CI(L , , IK)  and o = (u - ' ,  L , ~ K ) .  Then we have necessarily 
u E u;) because (. L,IK) : lJK/lJ;) G(L, lK) maps the p-Sylow 

subgroup U;)/U;)  onto the p-Sylow subgroup G I  (L,, I K )  of G(L, ,  I K ) .  
Let u = 1 + &nnZ,  6 E U K ,  and h  E F(n)  \ F(n - 1). Then h  is a prime 
element of L, and from (5.4) we get that 

ha = [ ~ ] , ( h )  = ~ ( h ,  [ ~ n " ' ] ~  ( A ) )  . 
If m 2 n ,  then a  = 1, SO that vLn(ha - h )  = oo. If m < n ,  then h  ,,-,,, = 
[nn'IF ( A )  is a prime element of L,-,, and therefore also [ & n n ' ] ~ ( h )  = 

[ ~ ] ~ ( h ~ - ~ ) .  AS LnIL,-m is totally ramified of degree qn' we may write 
[ E ~ ~ I ~ ( L )  = ~ ~ h q ~  for some EO E uL,,. Since F ( X , O )  = X, F ( O , Y )  = Y ,  
we have F ( X , Y )  = X+Y + X Y G ( X , Y )  with G ( X , Y )  E u ~ [ [ X , Y ] ] .  Thus 

By chap. 11, § 10, we have G;(L,IK) = (a € G(L,IK) I ~ L , ~ K ( O )  2 

i  + 1 ) .  Now let qk-I 5 i 5 qk - 1. If u  E u:), then m 3 k,  i.e., 
i L , , I K ( a )  >_ qk 2 i  + 1, and so a  E G;(L , (K) .  This proves the inclusion 

(u:). L,  I K )  G Gi ( L ,  I K ) .  If conversely a  E Gi ( L ,  I K )  and a  # 1,  then 
i L I I I X ( o )  = qm > i  2 qk-l ,  i.e., m > k. Consequently u  E U f ) .  and this 

shows the inclusion G; (L,, 1 K )  G ( U f ) .  L ,  I K 1. 0 
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From this proposition we get the following result, which may be consid- 
ered the main theorem of higher ramification theory. 

(6.2) Theorem. If L  ( K is a finite abelian extension, then the norm residue 
symbol 

( , L ( K ) : K * - - + G ( L ( K )  

maps the group u;) onto the group G n  ( L  ( K ) ,  for n 3 0.  

Proof: We may assume that L I K  is totally ramified. For if L'(K is 
the maximal unramified subextension of L  ( K ,  then we have on the one 
hapd G n ( L ( K )  = G n ( L ( L O )  because 1 C r L o l K ( ~ )  = s and $ L ~ K ( S )  = 
@ L I L ~ ( @ L ~ l K  ( s ) )  = lCrLLILo(s) (see chap. 11, (10.8)). On the other hand, by 
chap. IV, (6.4), and chap. V, (1.2), we have 

so we may replace L  1 K by L  1 LO. 

If now L  ( K  is totally ramified and nr, is a prime element of L ,  then 
n = NLIK(nL)  is a prime element of K and (a)  x UP) 2 N L I ~ L *  for m 
sufficiently big. Therefore L  ( K  is contained in the class field of (n)  x u;), 
which, by (5.6), is equal to the field L ,  of nm-division points of some 
Lubin-Tate module for n. In view of chap. 11, (10.9), and chap. IV, (6.4), we 
may even assume that L  = L,. By (6.1), the norm residue symbol maps the 
gr&p U f )  onto the group 

I 
G ( L m  ( L n )  = Gi(Lm ( K )  for qn-' 5 i 5 qn - 1 .  

B U ~  we have (see chap. 11, 8 10) 

wit? gj = # G i ( L ( K )  = #G(L,IL,) = (qm-I -qn-I)(q-  1 )  for qn-' 5 i j 
q n f  1. This yields q r l ~ ( q n - 1 )  = n andthus (uF), L I K )  = G,n-l(LIK) = 
G " ( L ( K ) .  0 
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(6.3) Proposition (HASSE -AKF). For a finite abelian extension L ( K , the junips 
of the filtration ( G t ( L  I K))t,-I of G ( L  I K )  are rational integers. 

Proof: As in the proof of (6.2), we may assume (since G t ( L  ( K )  = 
G'(L  ( L O ) )  that L  ( K  is totally ramified and contained in a Lubin-Tate 
extension L,, ( K .  If now t is a jump of ( G t ( L  I K ) } ,  then by chap. 11 (10.9), 
t is also a jump of {G' (Lm  IK)}. Since by (6.1), the jumps of (G,(L,, I K ) )  
are the numbers qn - 1, for n = 0 ,  . . . , m - 1 (q  = 2 is an exception: 0 is 
not a jump), the jumps of (G ' (Ln , IK)}  are the numbers q ~ , , ~ ~ ( q "  - 1 )  = n ,  
f o r n = O ,  . . . ,  m -  1 .  0 

The theorem of HASSE-ARF has an important application to Artin L  -series, 
which we will study in chap. VII (see chap. VII, (11.4)). 

Higher ramification groups G t ( L  JK) were introduced for arbitrary real 
nunibers t 2 -1. Thus we may ask for which numbers they change. We 
call these numbers the jumps of the filtration {G' ( L  I K)Jt,-1 of G ( L  I K ) .  In 
other words, t is a jump if for all E > 0 ,  one has 



Chapter VI 

Global Class Field Theory 

§ 1. Id6les and Id6le Classes 

The r6le held in local class field theory by the multiplicative group of the 
base field is taken in global class field theory by the idkle class group. The 
notion of idble is a modification of the notion of ideal. It was introduced 
by the French mathematician CLAUDE CHEVALLEY (1909-1984) with a view 
to providing a suitable basis for the important local-to-global principle, i.e., 
for the principle which reduces problems concerning a number field K to 
analogous problems for the various completions K p .  CHEVALLEY used the term 
"ideal element", which was abbreviated as id. el. 

An adele of K - this curious expression, which has the stress on the 
second syllable, is derived from the original term "additive iditle" - is a 
family 

a = @ p )  

of elements ap E K p  where p runs through all primes of K ,  and ap  is integral 
in K p  for almost all p. The adbles form a ring, which is denoted by 

Addition and multiplication are defined componentwise. This kind of product 
is called the "restricted product" of the K p  with respect to the subrings 
" p  5 Kp. 

The idkle group of K is defined to be the unit group 

Thus an iditle is a family 

a = tap) 

of elements ap  E K l  where ap is a unit in the ring up of integers of K p ,  for 
almost all p. In analogy with A K ,  we write the idhle group as the restricted 
product 
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with respect to the unit groups 0;. For every finite set of primes S, /K 
contains the subgroup 

I; = , K; n up 
P ~ S  P@ 

of S-idkles, where Up = Kp+ for p infinite complex, and Up = W; for Q 

infinite real. One clearly has 

S IK = U I K  
S 

if S varies over all finite sets of primes of K.  

The inclusions K G Kp allow us to define the diagonal embedding 

K t - +  I K ,  

which associates to a E K* the idble a E IK whose p-th component is the 

I 
element a in Kp. We thus view K* as a subgroup of /K and we call the 
elements of K* in IK principal ideles. The intersection 

consists of the numbers a E K* which are units at all primes p $ S, p co, 
and which are positive in K p  = R for all real infinite places p $ S. They 
.are called S-units. In particular, for the set S, of infinite places, K ~ W  is the 
unit group OF of O K .  We get the following generalization of Dirichlet's unit 
theorem. 

(1.1) Proposition. If S contains all infinite places, then the homomorphism 

: KS -+ , R, ,(a) = (log lalp)pES, 
P€S 

has kemel p(K),  and its image is a complete lattice in the (s - I )  -dimensional 
trace-zero space H = { (xp) E npeS R I CpeS xp = 01, s = #S. 

Proof: For the set S, = {p I oo), this is the claim of chap. I, (7.1) and (7.3). 
Let Sf = S \ S,, and let J(Sf) be the subgroup of JK generated by 
the prime ideals p E Sf. Associating to every a E K~ the principal ideal 
ia  = (a) E J(Sf), we obtain the commutative diagram 

5 1. Idbles and Idble Classes 

with exact rows. The map A" on the right is given by 

(observe that la l p  = %(p)-v~(a)), and maps J(Sf) isomorphically onto the 
complete lattice spanned by the vectors 

ep = (0, . . . ,0 ,  log %(p), 0, . . . ,0) , 

for p E Sf. It follows that ker(h) = ker(hl) = p(K),  and we obtain the exact 
sequence 

where the groups on the left and on the right are lattices. This implies that 
the group in the middle is also a lattice. For if x E im(h), and U is a 
neighbourhood of i(x) which contains no other point of im(AU), then i - ' ( U )  
contains the coset x + im(hl), and no other. It is discrete since im(hl) is 
discrete. 

For every p E Sf, if h is the class number of K ,  then ph belongs to i (K '), 
i.e., 

J S i (K ') C J (Sf). 

The groups on the left and on the right have rank #Sf, hence so does i(K '1. 
In the sequence (*), the image of i therefore has rank #Sf, and the kernel has 
rank #S, - 1. Hence im(h) is a lattice of rank #S, - 1 +#Sf = #S - 1. It lies in 
the (#S - 1)-dimensional trace-zero space H,  since npeS la I p  = np la I ,  = 1 

for a E K ~ .  0 

(1.2) Definition. The elements of the subgroup K* of lK  are called principal 
ideles and the quotient group 

is called the idUe class group of K .  

Thc relation between the ideal class group CIK and the idkle class group 
CK is as follows. There is a surjective homomorphism 

from the idkle group IK to the ideal group JK. Its kernel is 
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It induces a surjective homomorphism 

with kernel lim K * / K  *. We may also consider the surjective homomorphism 

I/( * J ( O )  , a H n p u p ( ' Y p ) ,  

P 

onto the replete ideal group J(i3) .  Its kernel is 

1; = { ( a p )  E IK 1 IapIp = 1 for all p }  

(see chap. 111, $1). It takes principal idbles to replete principal ideals and 
induces a surjective homomorphism 

onto the replete ideal class group, with kernel 1: K * / K * .  We therefore have 
the 

(1.3) Proposition. Cln  % I K / I ; ~ K * ,  and Pic(??) % 1 ~ 1 1 :  K*  

In contrast to the ideal class group, the idkle class group is not finite. But 
the finiteness of the former is reflected in terms of the latter as follows. 

(1.4) Proposition. !K = I; K * ,  i.e., C K  = I; K * / K * ,  if s is a sufficiently 
big finite set of places of K.  

Proof: Let a1 , . . . , ah be ideals representing the h classes of JK / P K .  They 
are composed of a finite number of prime ideals p l  , . . . , p,. Now if S is any 
finite set of places containing these primes and the places at infinity, then 
one has IK = I ~ K * .  

In order to see this, we use the isomorphism I K / I ~ ~  Z J K .  If a E IK , 
then the corresponding ideal ( a )  = np+, p v p ( " p )  belongs to some class ai PK , 
i.e., ( a )  = ai(a) for some principal ideal (a) .  The idkle a' = aa-I is mapped 
by IK + JK to the ideal ai = nplm p u p ( a : ) .  Since the prime ideals occurring 
in ai lie in S ,  we have vp(ab) = 0, i.e., a; E Up for all p @ S. Hence 

u' = ua-I E I;,  and thus a E 1; K*. 0 
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The idble group comes equipped with a canonical topology. A basic 
system of neighbourhoods of 1 E IK is given by the sets 

where S runs through the finite sets of places of K  which contain all p(m, 
and W p  K;  is a basic system of neighbourhoods of 1 E K;. The groups U p  
are compact for p @ S. Therefore the same is true of the group npa UP.  If 
the W,, for plm, are bounded, then npEs W p  x npgs UP is a neighbourhood 
of 1 in IK whose closure is compact. Therefore IK is a locally compact 
topological group. 

(1.5) Proposition. K* is a discrete, and therefore closed, subgroup of IK 

Proof: It is enough to show that 1 E IK has a neighbourhood which contains 
no other principal idble besides 1. 

is such a neighbourhood. For if we had a principal idde x E U different 
from 1 ,  then we get the contradiction 

TII;II 111~: subgroup is closed follows for a completely general reason: sincc 

( x ,  y)  H xy-I is continuous, there is a neighbourhood V of 1 such that 
V V - I  G U. For every y E I K ,  the neighbourhood yV then contains at most 
one x E K*. Indeed, from xl = yvl,  x2 = yv2 E K * ,  with xl # x2, one 
deduces x l x z l  = vl v;' E U, a contradiction. 0 

As K* is closed in I K ,  the fact that IK is a locally compact Hausdorff 
topological group carries over to the idble class group C K  = I K / K * .  For 
any idble a = ( a p )  E I K ,  its class in C K  will be denoted by [a]. We define 
the absolute norm of a to be the real number 

If x E K* is a principal idble, then we find by chap. 111, (1.3), that 
n ( x )  = np Ix 1 ; '  = 1 .  We thus have a continuous homomorphism 
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It is related to the absolute norm on the replete Picard group Pic(8) via the 
commutative diagram 

37 
CK - R; 

Here the arrow 
I CK + Pic(0) 

is induced by the continuous surjective homomorphism 

with kernel 
I ~ = { ( ~ , ) E I K I  I a p I p = l f o r a l l p } .  

As to the kernel C; of '3 : CK + W+,  we obtain, in analogy with chap. 111, 
(1.14), the following important theorem. It reflects the finiteness of the unit 
rank of K as well as the finiteness of the class number. 

I 

(1.6) Theorem. The group C i  = {[a] E CK I n([a l )  = 11 is compact. 

P'roof: The claim concerning the commutative exact diagram 
I 

will be reduced to the compactness of the group ~ic(e)O,  which was 
proved in chap. 111, (1.14). The kernel of the vertical arrow in the middle 
is the group I: K*/K* = I~/I: n K*, where we have I: = np I:, 
IO - {ap E Kp I = I}, and I: n K* = p(K)  by chap.111, (1.9). 

p .- 
This kernel is clearly compact. We obtain an exact sequence 

I 

of continuous homomorphisms. Since ~ i c ( 3 ) '  is compact, and the same 
is true for the fibres of the mapping C: -, pic(@' (they are cosets, all 
h?meomorphic to I: K */K *), hence so is C;. 0 
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The idkle class group CK plays a similar r6le for the algebraic number 
field K as the multiplicative group K i  does for a p-adic number field Kp. 
It comes equipped with a collection of canonical subgroups which are to be 
viewed as analogues of the higher unit groups u:) = 1 + pn of a p-adic 
number field Kp. Instead of pn, we take any integral ideal m = nu+,, p " ~ .  
We may also write it as a replete ideal 

with np = 0 for p ) ~ ,  and we treat it in what follows as a module of K .  For 
every place p of K we put u:) = Up, and 

1 +pnpr i f p f c a ,  

R; c K;, if p is real, 

@ * = K *  P '  ifpiscomplex, 

for np > 0. Given ap E Kp* we write 

(np)  ap = 1 mod pnp e~ ap E Up . 

For a finite prime p and np 7 0 this means the usual congruence; for a 
real place, it symbolizes positivity, and for a complex place it is the empty 
condition. 

(1.7) Definition. The group 

formed from the id2le group 

is called the congruence subgroup mod m, and the quotient group C K  /CF 
is called the ray class group mod m. 

Remark: This definition of the ray class group does correspond to the 
classical one, as given (in the ideal-theoretic version) for instance in Hasse's 
"Zahlbericht" [53]. It differs from those found in modem textbooks, and also 
from that given in [107] by the author: in the present book, the components 
ap of idkles a in IF are always positive at all real places p, so we have here 
fewer congruence subgroups than in the other texts. This choice does not only 
simplify matters. Most of all, it was made substantially because of the choice 
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of the canonical metric ( , ) on the Minkowski space KR (see chap. I ,  $ 5 ) .  
In fact, we saw in chap. 111, $3,  that this choice forces the extension @ IW to 
belumamified. We will explain in $6 below how to interpret this situation, 
anf how to reconcile it with the definition of ray classes in other texts. 

;Ihe significance of the congruence subgroups lies in that they provide an 
overview over all closed subgroups of finite index in C K .  More precisely, 
we/ have the 

(1.8) Proposition. The closed subgroups of finite index of C K  are precisely 
those subgroups that contain a congruence subgroup C F .  

Proof: C P  is open in C K  because 1; = np U f p )  is open in l K .  

IF is contained in the group I i m  = n,,, K; x nptm U p .  and since 

(CK : I i m K * / K * )  = # C I K  = h < 03, the index 

(CK : C F )  = h ( I i m K *  : I P K * )  5 h ( l i m  : I;) 

is finite. Being the complement of the nontrivial open cosets, which are 
finite in number, CF is closed of finite index. Consequently, every group 
containing CF is also closed of finite index, for it is the union of finitely 
many cosets of CF.  

Conversely, let N be an arbitrary closed subgroup of finite index. Then 
N is also open, being the complement of a finite number of closed cosets. 
Thus the preimage J of N in IK is also open, and it thus contains a subset 
of the form 

! 
W =  n w , ~  nu , ,  

P ~ S  PP 

where S is a finite set of places of K  containing the infinite ones, 
and W p  is an open neighbourhood of 1 E K;. If p E S is finite, 
we are liable to choose W ,  = u f p ) ,  because the groups u:') G K; 
f o q  a basic system of neighbourhoods of 1 E K;. If p E S is real, 
we may choose W p  C R;. The open set Wp will then generate the 
group W;, resp. K: in the case of a complex place p. The subgroup of J 
generated by W  is therefore of the form I F ,  so N contains the congruence 
subgroup CF. 0 
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The ray class groups can be given the following purely ideal-theoretic 
description. Let JF be the group of all fractional ideals relatively prime to m, 
and let PF be the group of all principal ideals ( a )  E PK such that 

a  r 1 mod m  and a  totally positive. 

The latter condition means that, for every real embedding K  + R, a  turns 
out to be positive. The congruence a = 1 mod m  means that a  is the quotient 
blc of two integers relatively prime to m  such that b 5 c mod m. This 

01~) for is tantamount to saying that a = 1 mod p n p  in K p .  i.e., a E U p  
all p lm = npi, p " p .  We put 

ClZ = J;/P;. 

We then have the 

(1.9) Proposition. The homomorphism 

induces an isomorphism 

C K / C F  CI!; . 

Proof: Let m = n,, p"p, and let 

I,$'" = { a  E I K  1 a ,  E U ~ P )  for p l m m }  . 

Then IK = I ~ ) K * ,  because for every a  E I K ,  by the approximation 
theorem, there exists an a E K* such that a p a  = 1 mod p n p  for plm, 
and a,a > 0 for p real. Thus p = (spa) E I P ) ,  SO that a  = pa-' E I ~ ) K  *. 
The elements a E IP) n K* are precisely those generating principal ideals 
in PF. Therefore the correspondence a  I+ ( a )  = n p t , p V p ( f f p )  defines a 
surjective homomorphism 

CK = I ~ ) K * / K *  = lp)/l?) n K* -+ J ~ l P ~ .  

Since ( a )  = 1 for a  E I;, the group CF = I?K*/K* is certainly contained 

in the kernel. Conversely, if the class [ a ]  represented by a  E I?) belongs 

to the kernel, then there is an ( a )  E P;, with a E IP) f l  K * ,  such that 
( a )  = (a ) .  The components of the idble p = aa-' satisfy Bp E U p  for 

p m m ,  and j3, t uinp) for plmm. in other words, 6 E I;, and hence 
[a] = [ j 3 ]  E I ;K*/K* = CF. Therefore CF is the kernel of the above 
mapping, and the proposition is proved. 0 
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I 

The ray class groups in the ideal-theoretic version Cl; = J?/P? were 
introduced by HEINRICH WEBER (1842-1913) as a common generalization of 
ideal class groups on the one hand, and the groups ( Z / m Z ) *  on the olher. 
These latter groups may be viewed as the ray class groups of the field 0: 

(1.10) Proposition. For any module m  = ( m )  of the field Q ,  one has 

CQ/C," Y CIS S ( Z / m Z ) * .  

Proof: Every ideal ( a )  E JQm has two generators, a  and -a. Mapping 
the positive generator onto the residue class mod m ,  we get a surjective 
homomorphism JQm -+ (Z /mZ)*  whose kernel consists of all ideals (a )  
which have a positive generator = 1 mod m. But these are precisely the 
ideals (a )  such that a = 1 mod pnp for pimoo, i.e., the kernel of P C .  

The group (Z /mZ)*  is canonically isomorphic to the Galois group 
G(Q(pn,)  J Q )  of the m  -th cyclotomic field Q(pn,) .  We therefore obtain a 
canonical isomorphism 

G(Q( / I .~>JQ)  2 CQ/CG.  

It is class field theory, which provides a far-reaching generalization of this 
important fact. For all modules m  of an arbitrary number field K ,  there will 
be Galois extensions K  1 K  generalizing the cyclotomic fields : the so-called 
ray class fields, which satisfy canonically 

G ( K m l K )  2 C,y/CF 

(see $6). The ray class group mod 1 is of particular interest here. It is related 
to the ideal class group CIK - which according to our definition here, is in 
general not a ray class group - as follows. 

(1.11) Proposition. There is an exact sequence 

1 ---+ o*/o; --+ n R*/R;  + c l h  * CIK --+ 1 ,  
p real 

where o: is the group of totally positive units of K  . 

proof: One has ~ l h  Z C K / C ~  = l ~ / l k K *  and, by (1.3), Clx  2 

I ~ ~ I ~ ~ K * ,  where I: = np Up and I;, = npi,Up x nplm K;. 
We therefore obtain an exact sequence 

For the group on the left we have the exact sequence 

1 -+ I;, fl K * / I ;  n K* - 1 : ~ / 1 ;  --+ I ; ~ K * / I ~ K *  --+ I 

Exercise 1. (i) AQ = ( 2  @z Q) x R. 
(ii) The quotient group AQ/Z is compact and connected. 
(iii) AQ/Z is arbitrarily and uniquely divisible, i.e., the equation nx = y has a 
unique solution, for every n E N and y E AQ/Z. 

Exercise 2. Let K be a number field, m = 2"m' (m' odd), and let S be a finite set 
of primes. Let a E K* and a E K T ,  for all p @ S. Show: 
(i) If K(C2")I K is cyclic, where Cp is a primitive 2"-th root of unity, then u E K*"'. 
(ii) Otherwise one has at least that a E K*"I2. 

Hint: Use the following fact, proved in (3.8): if LIK is a finite extension in which 
almost all prime ideals split completely, then L = K .  

Exercise 3. Write I ;  = 1: x I;, with 1: = Hpi, U p ,  I.& = n,,, Up.  Show that 
taking integer powers of idbles a E I: extends by continuity to exponentiation a' 
with x E z. 
Exercise 4. Let E I ,  . . . , E, E (7; be independent units. The images E l ,  . . . , E l  in 5' 
are then independent units with respect to the exponentiation with elements of Z,  
i.e., any relation 

c X l . . . ~ ;  1 = 1 ,  xi E Z ,  
implies x, = 0, i = I ,  . . . , t 
Exercise 5. Let E E 0; be totally positive, i.e., E E I ; .  Extend the exponentiation 

A 

Z -+ I ; ,  n H E", by continuity to an exponentiation Z  x R -+ 1; = 1: x I;, 
E n E' ,  in such a way that 91(eA) = 1. 

Exercise 6. Let p l ,  . . . , p ,  be the complex primes of K.  For y E R, let ( )~(y)  bc 
the idble having component e2"'Y at pk ,  and components 1 at all other places. Let 
61, . . . ,E,  be a Z-basis of the group of totally positive units of K.  
(i) The idtles of the form 

ff = EL' . . . & I , I A, E 2 x R, Y, E R, 
form a group, and have absolute norm %(a) = 1. 

(ii) (Y is a principal ideal if and only if A; E Z S 2 x R and y; E Z  2 R. 
Exercise 7. Sending 

(A,, . . . ,  A l , y ~ ,  ..., Y.~) ++ st' . . . & : ~ I ( Y I ) . . . @ , ~ ( Y . ~ )  

defines a continuous homomorphism 

f : ( 2  x Ex)' x I[$' - C; 

into ~ h c  group C i  = ([a] E CK I 9I([a]) = I ) ,  with kernel Z' x Z". 
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Exercise 8. (i) The image D i  of f is compact, connected and arbitrarily divisible. 
(ii) f yields a topological isomorphism 

f : ((2 x R)/Z)' x (R/Z)" 4 D: . 

Exercise 9. The group DO, is the intersection of all closed subgroups of finite index 
in C i ,  and it is the connected component of 1 in C i .  

Exercise 10. The connected component DK 0: l in the idttle class group C K  is the 
direct product of t copies of the "solenoid" (Z x R)/Z, s circles R/Z,  and a real 
line. 

Exercise 11. Every ideal class of the ray class group Cl: can be represented by an 
integral ideal which is prime to an arbitrary fixed ideal. 

Exercise 12. Let o = O K .  Every class in (o/m)* can be represented by a totally 
positive number in o which is prime to an arbitrary fixed ideal. 

Exercise 13. For every module m, one has an exact sequence 

1 --+ o;/o+m - (o/m)* - Cl;  ---+ CI;  + 1 ,  

where o>, resp. OF, is the group of totally positive units of o ,  resp. of totally 
positive units = 1 mod m. 

Exercise 14. Compute the kernels of Cl," + CIK and Cl," --+ ~ 1 :  for mlJm. 

5 2. Ideles in Field Extensions 

We shall now study the behaviour of idbles and idble classes when we 
pass from a field K to an extension L.  So let L I K be a finite extension of 
algebraic number fields. We embed the idble group I K  of K into the idble 
group I L  of L by sending an idble a = ( a p )  E I K  to the idble a' = ( a h )  E IL  
whose components crb are given by 

In this way we obtain an injective homomorphism 

which will always be tacitly used to consider I K  as a subgroup of I L .  An 
element a = (aq)  E I L  therefore belongs to the group I K  if and only if its 
components a p  belong to K p  ( P I P ) ,  and if one has furthermore a? = a ~ 1  
wpenever p and lie above the same place p of K. 

I 
j Every isomorphism a : L -+ a L induces an isomorphism 
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like this. For each place !J.3 of L ,  a  induces an isomorphism 

a : L'P -4 ( O L ) ~ ~  

For if we have a = Q-lim a ; ,  for some sequence a;  E L ,  then the sequence 
aol; E a L converges with respect to I I,cp in ( a  L),p, and the isomorphism 
is given by 

a = !Jl-lim a;  I+ a a  = ap- l im aai .  

For an idkle a E I L ,  we then define a a  E IL  to be the idkle with components 

( a f f>o ,  = a q 3  E ( a L ) o p .  

If L I K is a Galois extension with Galois group G = G ( L  IK),  then 
every a E G yields an automorphism a : IL  --+ I L ,  i.e., IL  is turned into an 
G-module. As to the fixed module 1: = { a  E I L  ( a a  = cr for all a E G ) ,  
we have the 

(2.1) Proposition. If L 1 K is a Galois extension with Galois group G ,  then 

1; = I K  . 

Proof: Let a E I K  E I L .  For a E G ,  the induced map a : L p  -+ L o p  is a 
Kp-isomorphism, if 'J3)p. Therefore 

so that a a  = a ,  and therefore a E I F .  If conversely a = ( av )  E I F ,  then 

for all a E G .  In particular, if a belongs to the decomposition group 
G p  = G ( L p l K p ) ,  then a? = !J3 and c a p  = a p  so that a p  E Kp*. If o E G 
is arbitrary, then a : L'P + L o p  induces the identity on Kp, and we get 
crp = ~ c r p  = a U p  for any two places !?3 and ay above p .  This shows that 
a E I K .  0 

The idble group I L  is the unit group of the ring of adbles AL of L. It is 
convenient to write this ring as 

AL = n L,, 
P 

where 
L p =  n L p .  

'PIP 
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The restricted product n p L p  consists of all families (ap)  of elements ap E Lp 
such that a, E Op = nVIp 0~ for almost all p. Via the diagonal embedding 

Kp -+ Lp, 

the factor Lp is a commutative Kp-algebra of degree C V l p l L q  : Kp] = 
[L : K]. These embeddings yield the embedding 

AK * A L ,  

whose restriction 
I K = A + K ~ A t = I L  

turns out to be the inclusion considered above. 

Every ap E L+p defines an automorphism 

a p : L p - + L p .  xt---,(Ypx, 

of the Kp-vector space L p r  and as in the case of a field extension, we define 
the norm of ap by 

N L , I K , ( ~ ~ )  = det(ap). 

In 'his way we obtain a homomorphism 

NL,(K, : LT, --+ Kp*. 

It induces a norm homomorphism 

N L ~ K  : IL -+ IK 

between the idble groups IL = DpL; and IK = npK;. Explicitly the norm 
of an idble is given by the following proposition. 

(2.2) Proposition. If L I K is a finite extension and a! = (ap) E IL , the local 
components of the idble NL I~ (a)  are given by 

Proof: Putting ap = (ap)p lp  E Lp,  the Kp-automorphism ap : Lp -+ Lp is 
the direct product of the Kp-automorphisms aq : L q  -+ Lp.  Therefore 

I 

The idble norm enjoys the following properties. 
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(2.3) Proposition. (i)  For n tower of fields K s L M we have 
N M I K  = NLIK 0 NMIL.  

(ii) If L I K is embedded into the Galois extension M ( K and if G = G (M I K )  
a d  H = G(MIL), then one has f o r a  E IL:  NLIK(a )  = naGGIH a a .  

(iii) NLIK(a)  = a[L:K] f o r a  E IK. 

(iv) The norm of the principal idble x E L* is the principal idde of K 
defined by the usual norm NL/K(X). 

The proofs of (i), (ii), (iii) are literally the same as for the norm in a field 
extension (see chap. I, $2). (iv) follows from the fact that, once we identify 
Lp = L @K Kp (see chap. 11, (8.3)), the Kp-automorphism f, : Lp -+ L p ,  
y H x y ,  arises from the K -automorphism x : L -+ L by tensoring with K p .  
Hence det( f,) = det(x). 

Remark: For fundamental as well as practical reasons, it is convenient to 
adopt a formal point of view for the above considerations which allows us to 
avoid the constant back and forth between idkles and their components. This 
point of view is based on identifying the ring of adbles AL of L as 

which results from the canonical isomorphisms (see chap. 11, (8.3)) 

Here t~ denotes the canonical embedding TV : L -+ Lp.  

In this way the inclusion by components IK C IL is simply given by the 
embedding AK c, AL, a H a @ 1, induced by K  s L. An isomorphism 
L + a L  then yields the isomorphism 

via u ( a  8 a) = a @ aa, and the norm of an L-idble a E A t  is simply 
the determinant 

NLIK (4) = d e t ~ ~  (a) 

of the endomorphism a : AL -+ AL which a induces on the finite AK - 
algebra AL = AK @K L. 

Here are consequences of the preceding investigations for the idele class 
groups. 
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(2.4) Proposition. If L I K is a finite extension, then the homomorphism 
IK  + I L  induces an injection of idde class groups 

I C K - - + C L ,  a K * - a L * .  
I 
I 

$roof: The injection IK --, I L  clearly maps K* into L*. For the injectivity, 
h e  have to show that I K  n L* = K*. Let M 1 K be a finite Galois extension 
f4.h Galois group G containing L. Then we have lK 2 IL G l a ,  and 

I K  n ~ *  5 lK n ~ *  c (IK n M * ) ~  = IK n M * ~  = I K  n K* = K * .  

Via the embedding C K  -+ C L ,  the idble class group C K  becomes a 
subgroup of CL : an element aL* E Cr, ( a  E I L )  lies in C K  if and only if the 
class aL* has a representative a' in I K .  It is important to know that we have 
Galois descent for the idble class group: 

I 

(2.5) Proposition. If L 1 K is a Galois extension and G = G ( L  I K ) ,  then CL 
is canonically a G -module and C: = CK . 

Proof: The G-module IL contains L* as a G-submodule. Hence every 
a E G induces an automorphism 

This gives us an exact sequence of G -modules 

We claim that the sequence 
I 

G 1 - L * ~  - I L  -cf - 1 

deduced from the first is still exact. The injectivity of L*' -+ 1: is trivial. 
The kernel of 1: + C: is l f n L *  = I K  n L *  = K* = L*'. The 
surjectivity of 1: -+ C: is not altogether straightforward. To prove it, let 
aL* E c:. For every c E G,  one then has a (crL*) = aL* ,  i.e., a a  = ax, 
for some xu E L*. This xu is a "crossed homomorphism", i.e., we have 

X a r  = Xu . a x r .  
ar f f  aora . - r(Y off Indeed, xu, = ,. off (Y 

= a( - ) -  = ax,x,. By Hilbert 90 in 
01 (Y 

Noether's version (see chap. IV, (3.8)) such a crossed homomorphism is of 
the form x, = ay  / y  for some y E L*. Putting a' = ay-' yields a'L* = aL* 
and aa' = oaay-' = a.x,ay-' = ay- '  = a', hence a' E 1;. This proves 
surjectivity. 0 
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The norm map N L I K  : IL + IK sends principal idttles to principal idklcs 
by (2.3). Hence we get a norm map also for the idkle class group C L ,  

It enjoys the same properties (2.3), (i), (ii), (iii), as the norm map on the 
idkle group. 

Exercise 1. Let w , ,  . . . , w,, be a basis of LI K.  Then the isomorphism 
L @K KP Z nWIp L W  induces, for almost all prime ideals p of K ,  an isoniorphism 

where op, resp. Op, is the valuation ring of K,, resp. L p  

Exercise 2. Let LIK be a finite extension. The absolute norm TI of idbles of K ,  
resp. L ,  behaves as follows under the inclusion iLIK : IK + I L ,  resp. under the 
norm NLIK : IL -+ IK: 

%(iLIK (a)) = % ( u ) ' ~ : ~ '  for (Y E IK , 

%(NLIK(a)) = %(a) for a E IL . 
Exercise 3. The correspondence between idtles and ideals, a H (a) ,  satisfies the 
following rule, in the case of a Galois extension L I K ,  

( N L I K ( ~ ) )  = N L I K ( ( ~ ) ) .  

(For the norm on ideals, see chap. 111, $1.) 

Exercise 4. The ideal class group, unlike the idble class group, does not have 
Galois descent. More precisely, for a Galois extension L I K ,  the homomorphism 
CfK -+ ~ 1 : ' ~ ~ ~ '  is in general neither injective nor surjective. 

Exercise 5. Define the trace T r L I ~  : AL + AK by n L I K ( a )  = trace of lhc 
endomorphism x H a x  of the AK-algebra A L ,  and show: 

(i) T r ~ l ~ ( f f ) p  = c731P T r ~ ~ l ~ , , ( f f ! p ) .  
(ii) For a tower of fields K L G M ,  one has TrMIK = nLIK oTrMII..  

(iii) If L I K is embedded into the Galois extension MI K ,  and if G = G(M I K )  anti 
H = G(MIL), then one has for a E A L ,  TrLIK(a)  = ~ n c C I H  u a .  

(iv) T r L I K ( ~ )  = [L : K]a  for a E AK.  
(v) The trace of a principal adble x E L is the principal adble in AK defined by the 
usual trace T ~ L ~ K  (x). 

5 3. The Herbrand Quotient of the Idkle Class Group 

Our goal now is to show that the idde class group satisfies the class 
field axiom of chap. IV, (6.1). To do this we will first compute its Herbrand 



374 Chapter VI. Global Class Field Theory 

quotient. It is constituted on the one hand by the Herbrand quotient of the 
idkle group, and by that of the unit group on the other. We study the idde 
group first. 

Let LIK be a finite Galois extension with Galois group G. The G-module 
IL may be described in the following simple manner, which immediately 
rqduces us to local fields. For every place p of K we put 

L;  = n L a  and U L , ~  = n UV.  
'231 P PIP 

Since the automorphisms a E G permute the places of L  above p ,  the 
groups L; and are G-modules, and we have for the G-module IL the 
decomposition 

I L  = D L ; ,  
P 

where the restricted product is taken with respect to the subgroups UL,  C L;. 
Choose a place of L  above p,  and let GV = G ( L g l K p )  E G be 
its decomposition group. As a varies over a system of representatives of 
GIGq,  ap  runs through the various places of L  above p, and we get 

In terms of the notion of induced module introduced in chap. IV, 3 7, we thus 
get the following 

(3.1) Proposition. L; and UL,  are the induced G -modules 

G~ U  ) .  L ; = 1 n d Z v ( ~ b ) ,  ( i ~ . p = h d ~  ( g  

Now let S be a finite set of places of K containing the infinite places. We - 
then define I,? = I,?, where 3 denotes the set of all places of L  which lie 
above the places of S. For I,? we have the G-module decomposition 

I: = n L; x n U L , ~ ,  
P E S  PG 

and (3.1) gives the 

(3.2) Proposition. If L  1 K is a cyclic extension, and if S contains all primes 
ramified in L ,  then we have for i = 0, - 1 that 

I ~ ( G , I ; )  2-- @ H ~ ( G ~ , L $ )  and H ' ( G , I L )  2 $ H i ( G g , ~ b ) .  
PGS P 

where for each p, ?J3 is a chosen prime of L above p. 
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Proof: The decomposition I,? = (epES LE) @ V ,  V  = npgs UL, P ,  gives us 
an isomorphism 

H'(G,  I:) = $ H'(G,  L;) a H'(G.  v ) ,  
PES  

and an injection H' (G ,  V )  + npgS Hi(G,  UL,  p ) .  By (3.1) and chap. IV,  
(7.4), we have the isomorphisms H' (G ,  L;) 2 H ' ( G ~ ,  L;) and 

H'(G,  UL, , )  2 H ' (Gg ,  u ~ ) .  For p $ S ,  L g ( K p  is unramified. Hence 
Hi(GV, Uq) = 1, by chap. V, (1.2). This shows the first claim of the 
proposition. The second is an immediate consequence: 

The proposition says that one has H-' ( G ,  IL )  = ( 1 ), because H - ' (GV.  L j) 
= ( I )  by Hilbert 90. Further it says that 

I K I N L I K I L  = $ K ~ * / N L ~ I K , L $ ,  
P 

where is a chosen place above p. In other words: 

An id2le cr E I K  is a norm of an idkle of L  if and only if it is a  norm 
locally everywhere, i.e., if every component a p  is the norm of an element 
of Lb .  

As for the Herbrand quotient h(G, I:) we obtain the result: 

(3.3) Proposition. If L  1 K is a cyclic extension and if S contains all ramified 
primes, then 

h ( G , I f )  = n n p ,  
P ~ S  

where nP = [ L g  : Kp] .  

Proof: We have H-' (G,  I,?) = npeS H - ' ( G g ,  L a )  = 1 and 

By local class field theory, we find # H ' ( G ~ ,  L&) = (Kp* : N L ~ ~ K , L ; ~ )  
= np.  Hence 

#HO(G, I,?) 
h (G,  I,?) = = n n,. 

#H-W I,?) p E S  

Next we determine the Herbrand quotient of the G-module L~ = L  n l f .  
For this we need the following general 
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(3.4) Lemma. Let V be an s-dimensional R-vector space, and let G be a 
finite group of automorphisms of V which operates as a permutation group 
on the elements of a basis v  1 ,  . . . , vs : a  vi = v,(;). 

If f  is a G -invariant complete lattice in V ,  i.e., a f  G f  for all a ,  then 
there exists a complete sublattice in f ,  

r f = z w l  + - - - + Z w s ,  

such that awi = w,(;) for all a E G. 

Proof: Let ( I be the sup-norm with respect to the coordinates of the basis 
vl,  . . . , us. Since f  is a lattice, there exists a number b such that for every 
x E V ,  there is a y  E r satisfying 

Choose a large positive number t  E R ,  and a y  E f  such that 

and define 
w ; =  C a y ,  i = l ,  . . . ,  s ,  

o(l)=r 
i.e., the summation is over all a  E G such that a ( l )  = i. For every t E G 
we ,then have 

t w ;  = C r a y  = C py = w,(i). 
u(l)=i P ( ~ ) = W  

It is therefore enough to check the linear independence of the wi. To do this, 
let 

S 

C c i w ; = O ,  C i E R .  
i=l 

If not all of the ci = 0 ,  then we may assume Ici I 5 1 and c, = 1 for some j. 
Let 

y  = tvl - y ,  

for 'some vector y of absolute value 1 y 1 < b. Then 

where ly;l I: gb, for g = #G,  and ni = #{a  E G I ~ ( 1 )  = i). We 
therefore get 

S S 

wiT lzl 5 sgb, i.e., 
z = tnjvj f tCin;Vi. 

I ;#j 
If t was chosen sufficiently large, then z  cannot be written in this way. This 
contradiction proves the lemma. 0 

I 

Now let LI K  be a cyclic extension of degree n with Galois group 
G = G(LI K ) ,  let S be a finite set of places containing the infinite places, 
and let S be the set of places of L that lie above the places of S. We denote - 
the group LS of S-units simply by LS.  

(3.5) Proposition. The Herbrand quotient of the G module LS satisfies 

where n p  = [ L p  : K,]. 

Proof: Let (ev  1 !J3 E 3 )  be the standard basis of the vector space 
V = nPeS R. By (1.1), the homomorphism 

h  : L S  --+ V ,  h(a)  = C log lalpep, 
P€S 

has kernel p ( L )  and its image is an (F - 1)-dimensional lattice, S = #S. We 
make G operate on V via 

a e y  = e,?. 

Then h  is a G -homomorphism because we have, for a  E G, 

h(aa)  = C l o g  J a ~ 1 ~ e ~  = C l o g  l a ) , - ~ ~ o e , - ~  P  
P  73 

Therefore eo = xPsSe73 and h ( L S )  generate.a G-invariant complete 
lattice r in V.  Since Zeo is G-isomorphic to Z ,  the exact sequence 

0  ---+ Zeo -+ f  --+ f /Zeo  - 0, 

together with the fact that f /Zeo  = h ( L S ) ,  yields the identities 

We now choose in a sublattice f ' ,  in accordance with lemma (3.4). Then 
we have 

r f = $ Z w p = $ $ Z w P = $ r ;  
P  P E S  PIP PCS 

and o w p  = wop. This identifies fd as the induced G-module 
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5 4. The Class Field Axiom 

Having determined the Herbrand quotient h(G, CL)  to be the degree 
n = [L : K] of the cyclic extension LIK, it will now be enough to show 
either H - ' ( G , c ~ )  = 1 or H O ( ~ , C L )  = (CK : NLIKCL)  = n. The first 
identity is curiously inaccessible by way of direct attack. We are thus stuck 
with the second. We will reduce the problem to the case of a Kummer 
extension. For such an extension the norm group NLIKCL can be written 
down explicitly, and this allows us to compute the index (CK : NLIKCL) .  

I 

So let K be a number field that contains the n-th roots of unity, where n 
is a fixed prime power, and let L I K be a Galois extension with a Galois 
group of the form 

G(L1K) Z (Z/nZ)r .  

We choose a finite set of places S containing the ramified places, those that 
divide n, and the infinite ones, and which is such that IK = 1: K*. We write 
again KS = 1; n K* for the group of S-units, and we put s = #S. 

(4.1) Proposition. One has s > r ,  and there exists a set T of s - r primes 
of; K that do not belong to S such that 

L = K ( Z ) ,  

, 
is a free (Z/nZ)-module of rank s ,  and so is G(N1K). Moreover, 
G(N(K) /G(N(L)  2 G(L1K) 2 (ZlnZ)' is a free (Z/nZ)-module of 
rank r so that r _( s, and G(N IL) is a free (Z/nZ)-module of rank s - r .  Let 
at, . . . , q,-,. be a ZlnZ-basis of G(N (L), and let N; be the fixed field of a,, 
i = 1, . . . , s - r .  Then L = nfi; Ni.   or every i = 1, . . . , s - r we choose 
a prime Pi of N; which is nonsplit in N such that the primes p i ,  . . . , p,+, 
of K lying below PI,  . . . , P,-, are all distinct, and do not belong to S. This 
is possible by (3.7). We now show that the set T = ( P I ,  . . . , p,+} realizes 

I 

the group A = L*" f l  K~ as the kernel of K + npET K;/Kin. 

Ni is the decomposition field of N (K  at the unique prime above 
p i ,  for i = 1, . . . , s  - r . Indeed, this decomposition field Zi is contained 
in Ni because !& is nonsplit in N. On the other hand, the prime p; 
is unramified in N ,  because by chap. V, (3.3), it is unramified in every 
extension K (z ), u E K '. The decomposition group G ( N  I Zi) 2 G (N I Ni ) 
is therefore cyclic, and necessarily of order n since each element of G (N ( K) 
has order dividing n. This shows that Ni = Zi. 

From L = 0;:; Ni it follows that L ( K  is the maximal subextension of 
N 1 K in which the primes pl , . . . , p,-, split completely. For x E K we 
therefore have 

X E A W K ( ~ ) ~ L ~ K ~ ~ ( ~ ) = K ~ , ,  i = l ,  . . . ,  s - r ,  

u x E K ; , ! ' , i = l  , . . . ,  s - r .  

This shows that A is the kernel of the map K~ -+ n';~; K;;/K;,!'. 

where A is the kernel of the map KS + npET Kp*/Kp*". 
(4.2) Theorem. Let T be a set of places as in (4. I ) ,  and let 

Proof: We show first that L = K ( n )  if A = L*" f l  K ~ ,  and then that A is 
the said kernel. By chap. IV, (3.6),  we certainly have that L = K ( % ) ,  with 
D.= L*I1nK.Ifx E D , t h e n K p ( x ) J K p  isunramifiedforallp $ Sbecause 
S contains the places ramified in L. By chap. V, (3.3), we may therefore 
write x = upy,", with up E Up, yp E K;. Putting yp = 1 for p E S, we get 

S an id5le y = (yp) which can be written as a product y = a z  with a E I K ,  
z E K*. Then xz-" = up$ E Up for all p 9 S, i.e., xz-" E 1; n K* = K ~ ,  

so that xz-" E A. This shows that D = AK*", and thus L = ~ ( n ) .  
The field N = K ( m )  contains the field L because A = L*" n K~ g 

K'. By Kummer theory, chap. IV, (3.6), we have 

By (1.1), KS is the product of a free group of rank s  - 1 and of the 
cyclic group p(K)  whose order is divisible by n. Therefore K ~ / ( K ~ ) "  

Then one has 

NLIKCL 1 CK (S, T) and (CK : CK (S, TI) = [L : Kl .  

In particular, if L I K is cyclic, then NLIKCL = CK (S, T). 

Remark: It will follow from (5.5) that NL(KCL = CK (S, T)  also holds in 
general. 

For the proof of the theorem we need the following 
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(4.3) Lemma. IK ( S ,  T )  n K  * = ( K W T ) " .  
t 

Altogether this gives 

Proof: The inclusion (KSUT)"  2 I K ( S ,  T )  n K* is trivial. Let y E 

I K ( S ,  T )  n K*,  and M  = K ( z ) .  It suffices to show that N M I K C M  = C K ,  
for then (3.6) implies M  = K ,  hence y E K*" fl I K ( S ,  T )  S ( K S U T ) " .  Let 
[a] E C K  = I ;  K * / K * ,  and let a E 1; be a representative of the class [ a ] .  
The map 

K~ - n up/u; 
pe7' 

is surjective. For if A  denotes its kernel, then obviously K*" n A = ( K ~ ) " ,  
and AK*"/K*" = d / ( K S ) " .  From ( 1 . 1 )  and Kummer theory, we therefore 

This is also the order of the product because by chap. 11, (5.8), we have 
#Up/Up" = n since p f n. We thus find an element x E K~ such that 
crp = xu",  u p  E U p ,  for p E T .  The idble a' = ax- '  belongs to the same 
class as a ,  and we show that a' E N M ~ K I ~ .  By (3.2), this amounts to 
checking that every component a; is a norm from M p l K p .  For p E S  this 
holds because y E Kp*n. Hence we have Mq = K p  for p E T  since a; = u: 
is a n-th power. For p 4 S  U T  it holds because a; is a unit and Mpl K p  is 
unrarnified (see chap. V, (3.3)). This is why [a] E N M I ~ C M ,  q.e.d. 0 

Proof of theorem (4.2): The identity ( C K  : C K ( S ,  T ) )  = [ L  : K ]  follows 
from the exact sequence 

Since I P T  K* = I K r  the order of the group on the right is 

( I p T K *  : I ~ ( s . T ) K * )  = ( I K K * / K *  : I ~ ( s , ~ ) K * / K * )  

= ( C K  : C K  ( S ,  T ) )  . 
The order of the group on the left is 

( I P T  n K* : IK ( S ,  T )  n K * )  = ( K S U T  : ( K S U T l n )  = n2-" 

because #(S U T )  = 2s - r ,  and p ,  C K S U T .  In view of chap. 11, (5.8), the 
order of the group in the middle is 

We now show the inclusion C K ( S ,  T )  G N L I K C ~ .  Let a! E I K  ( S ,  T ) .  
In order to show that a  E N L I K I L  all we have to check, by (3.2), is again 
that every component a p  is a norm from LqIKp.  For p E S  this is true 
because a p  E K r  is an n-th power, hence a norm from K p ( n )  (see 
chap. V, ( I S ) ) ,  so in particular also from Lq.11 KP.  For p E T  it holds becn~~sc 
(4.1) gives A 5 K;", and thus LT = K p .  Finally, i t  holds lor p @ S U 7' 
since a P  is a unit and LV1 K p  is unramified (see chap. V, (3.3)). We therefore 
have I K ( S , T )  E N L ~ K I L ,  i.e., C K ( S , T )  C_ N L ~ K C L .  

Now if L  ( K  is cyclic, i.e., if r = 1, then from (3.6), 

hence N L ~ K C L  = C K  ( S ,  T ) .  0 

Now that we have an explicit picture in the case of a Kummer field, the 
result we want follows also in complete generality: 

1 

(4.4) Theorem (Global Class Field Axiom). If L  I K  is a cyclic extension 
of algebraic number fields, then 

[ y : K ]  f o r i = O ,  
# H ' ( G ( L I K ) , c ~ )  = fori  = -1. 

Proof: Since h(G ( L  ( K ) ,  C L )  = [ L  : K ] ,  it is clearly enough to show that 
#H'(G(L I K ) ,  C L )  ( [ L  : K ] .  We will prove this by induction on the degree 
n = [ L  : K ] .  We write for short H ' ( L ( K )  instead of H o ( G ( ~ l K ) , C L ) .  Let 
MI K  be a subextension of prime degree p. We consider the exact sequence 

i.e., the exact sequence 

If p < n ,  then # H ' ( L I M )  I [ L  : MI,  # H ' ( M ~ K )  / [M : K ]  by the induction 
hypothesis, hence # H ' ( L ) K )  ) [ L  : M ] [ M  : K ]  = [ L  : K ] .  

Now let p = n. We put K' = K(p,)  and L' = L ( p p ) .  Since 
d = [K' : K ]  I p - 1 ,  we have G ( L I K )  2 G ( L 1 J K ' ) .  L'I K' is a cyclic 
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Kummer extension, so by (4.2), # H O ( L 1 ( ~ ' )  = [L' : Kt] = p. It therefore 
suffices to show that the homomorphism 

induced by the inclusion CL + CL/ is injective. HO(LI K) has expo- 
nent p, because for x E CK we always have x p  = NL(K(x). Taking 
d = [K' : K]-th powers on H ' (LIK)  is therefore an isomorphism. Now 
let Y = x mod NL~KCL belong to the kemel of (*). We write Y = yd ,  
for some 7 = y mod NLIKCL.  Then 7 also is in the kernel of (*), 
i.e., y = NLfIKf(zt) ,  z1 E CLI, and we find: 

An immediate consequence of the theorem we have just proved is the 
famous Hasse Norm Theorem: 

(4.5) Corollary. Let L 1 K be a cyclic extension. An element x E K* is a 
norm if and only if it is a norm locally everywhere, i.e., a norm in every 
completion Lv 1 Kp (9 1 p) . 

Proof: Let G = G(L I K) and GT = G(Lq I Kp). The exact sequence 

of G-modules gives, by chap. IV, (7. I), an exact sequence 

By (4.4), we have H-'(G,CL) = 1, and from (3.2) it follows that 
HO~G. I L )  = @, H0(GP, Lb) .  Therefore the homomorphism 

is injective. But this is the claim of the corollary. 0 

It should be noted that cyclicity is crucial for ~ a s s e ' s  norm theorem. In 
fact, whereas it is true by (3.2) that an element x E K* which is everywhere 
locally a norm, is always the norm of some idde a of L,  this need not be 
by any means a principal id6le, not even in the case of arbitrary abelian 
extensions. 
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Exercise I. Determine the norm group N L I K C L  for an arbitrary Kummer extension 
in a way analogous to the case treated in (4.2) where C ( L ( K )  Z (jZ/pUjZ)'. 

Exercise 2. Let 5 be a primitive m-th root of unity. Show that the norm group 
N Q ( , , I ~ C q  equals the ray class group mod m = (m)  in CQ. 

Exercise 3. An equation x2 - ay2 = b,  a ,  b  E K*,  has a solution in K if and only if 
it is solvable everywhere locally, i.e., in each completion K,. 

Hint: x2 - ay2 = N K ( J i j ) l K ( ~  - &y) if a $ K*2. 

Exercise 4. If a quadratic form atx: + . . . +a,,xf represents zero over a field K with 
more than five elements (i.e., alx:  + . . . + a,xj = 0 has a nontrivial solution in K) ,  
then there is a representation of zero in which all x, # 0. 

Hint: If a62 = A # 0,  b  # 0, then there are non-zero elements cu and /3 such that 
ucu2 + b#12 = A. To prove this, multiply the identity 

by a t 2  = A and insert t = by2 /a ,  for some element y # 0 such that t # i I .  Usc 
this to prove the claim by induction. 

Exercise 5. A quadratic form ax2 + by2 + cz2,  a ,  b,  c E K*,  represents zero if and 
only if it represents zero everywhere locally. 
Remark: In complete generality, one has the following "local-to-global principle": 

Theorem of Minkowski-Hasse: A quadratic form over a number field K represents 
zero if and only if it represents zero over every completion K,. 

The proof follows from the result stated in exercise 5 by pure algebra (see [113]). 

5 5. The Global Reciprocity Law 

Now that we know that the id6le class group satisfies the class field axiom, 
we proceed to determine a pair of homomorphisms 

obeying the rules of abstract class field theory as developed in chap. IV, 
$4. For the 2-extension of Q given by d, we have only one choice. It is 
described in the following 

(5.1) Proposition. Let 521Q be the field obtained by adjoining all roots of 
unity, and let T be the torsion subgroup of G(52 (K)  (i.e., the group of all 
elements of finite order). Then the fixed field 6 (Q  of T is a z-extension. 
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Proof: Since Q = Un,, - Q ( p n ) ,  we find 

1 But 2 = n p Z p ,  and 2; 2 2, x Z / ( p  - 1)Z for p # 2 and 
Z; S Z2 x 2 / 2 2 .  Consequently, 

G(QlQ)  2 2 Z 2 x r^, where f = n Z / ( p  - l ) Z  x 2 / 2 2 .  
P#2 

This shows that the torsion subgroup T of G(Q1Q) is isomorphic 
to the torsion subgroup of TI. Since the latter contains the group epk2 Z / ( p  - 1)Z @ 74/22, we see that the closure i= of T is isomorphic 
to T. Now, if 6 is the fixed field of T, this implies that ~ ( 6 1 ~ )  = 
G ( ~ I Q ) / ~ =  2 2. 

Another description of the 2-extension 6 ( Q  is obtained in the following 
manner. For every prime number p,  let QplQ be the field obtained by 
adjoining all roots of unity of p-power order. Then 

G ( ~ ~ , I Q )  = @ G ( Q ( P ~ ~ ) I Q )  = @ ( 2 l p V a *  = 2; , 
v u 

and 2; 2 Z p  x 2 / ( p  - l ) Z  for p # 2 and 2; 2 2 2  x 2 / 2 2 .  The torsion 
subgroup of 2; is isomorphic to Z / ( p  - 1 )2 ,  resp. 2 / 2 2 ,  and taking its 

- ( P )  lQ fixed field gives an extension Q with Galois group 

The 2-extension 6 J Q  is then the composite 6 = n, 
We fix an isomorphism G (6 J Q )  2 2. There is no canonical choice as in 

the case of local fields. However, the reciprocity law will not depend on the 
choice. Via ~ ( 6  10) 2 2 ,  we obtain a continuous surjective homomorphism 

of the absolute Galois group GQ = G ( ~ ( Q ) .  With this we continue as in 
chap. IV, $4, choosing k = Q as our base field. If K IQ is a finite extension, 
!then we put f~  = [K  n 6 : Q ]  and get a surjective homomorphism 

.which defines the 2-extension K" = KG of K .  K" I K is called the cyclotomic 
2-extension of K.  We denote again by c p ~  the element of G ( K " I  K )  which is 

mapped to 1 by the isomorphism G ( K " I K )  2 2, and by ~ L I K  the restriction 
q~ ( L  if L J K  is a subextension of K" 1 K .  The automorphism c p ~  , K  must not be 
confused with the Frobenius automorphism corresponding to a prime ideal 
of L (see $7). 

For the GQ-module A,  we choose the union of the idble class groups 
C K  of all @te extensions KIQ. Thus AK = C K .  The henselian valuation 
v : CQ + Z will be obtained as the composite 

where the mapping [ ,61Q]  will later turn out to be the norm residue symbol 
( , 6 1 0 )  of global class field theory (see (5.7)). For the moment we merely 
define it as follows. 

For an arbitrary finite abelian extension L I K ,  we define the honiomor- 
phism 

[ , L l K l :  IK -) G ( L I K )  

where L p  denotes the completion of L with respect to a place pip, and 
( a p ,  L p  ( K p )  is the norm residue symbol of local class field theory. Note that 
almost all factors in the product are 1 because almost all extensions L p  J Kp 
are unramified and almost all a p  are units. 

(5.2) Proposition. If L ( K  and L'IK' are two abelian extensions of finite 
algebraic number fields such that K c K' and L E L', then we have the 
comrnu tative diagram 

Proof: For an idble a = (av)  E I K ~  of K',  we find by chap. IV, (6.4), that 

( q h  L;  I Kh ) lLp  = ( N K ~ , K ~ ( " ~ ~ ) .  ~ p l ~ p )  . (PIP) 3 
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and (2.2) implies 

[ N K ~ K ( ~ ) .  L I K I  = ~ ( N K / ~ K ( ~ ) P ,  L P I K P )  = n n ( N K ~ , K ~ ( ~ V ) .  L P I K P )  
P P PIP 

If LIK is an abelian extension of infinite degree, then we define the 
homomorphism 

[ , L l K l :  IK -+ G ( L I K )  

by its restrictions [ , L  ( K ]  ILt := [ , L'I K ]  to the finite subextensions L' 
of L  IK. In other words, if a  E I K ,  then the elements [ a ,  L I IK]  define, 
by (5.2), an element of the projective limit @ G(L' ( K ) ,  and [ a ,  L  1 K ]  is 

L ' 
precisely this element, once we identify G ( L I K )  = @ G ( L I I K ) .  Again 
ohe has the equation 

where L p  does not denote the completion of L  with respect to a place 
above p ,  but rather the localization, i.e., the union of the completions 
LbJ K p  of all finite subextensions (see chap. 11, $8). Then L p  1 K p  is Galois, 
G ( L p l K p )  C G ( L I K ) ,  and the product n p ( a p ,  L p l K p )  converges in the 
profinite group to the element [a, L  I K ] .  Indeed, if L'IK varies over the 
finite subextensions of L  I K  , then the sets SLt = { p  I ( a p ,  Lb 1 K p )  # 1 )  are 
all finite, so that we may write down the finite products 

They converge to [ a ,  L  I K ] ,  for if [ a ,  L  ( K ] G  ( L  IN) is one of the fundamental 
neighbourhoods (i.e., N  I K  is one of the finite subextensions of L  1 K ) ,  then 

for all L' 2 N  because 

This shows that [a, L ( K ]  is the only accumulation point of the family { D L I ) .  

It is clear that proposition (5.2) remains true for infinite extensions L  
and L' of finite algebraic number fields K  and Kt. 
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(5.3) Proposition. For every root of unity { and every principal idble a E K * 
one has 

[a, K(OlK1  = 1. 

Proof: By (5.2), we have [NKIQ(a ) ,  Q({) lQl  = [a, K  ( r ) l K l l q ( ~ .  Hence 
we may assume that K  = Q .  Likewise we may assume that { has prime 
power order C"' # 2. Now let a E Q*, let up be the normalized exponential 
valuation of Q  for p # oo and write a = ~ ~ ~ ~ p ( ~ ) .  For p # l ,  GO, 

QP ({) lQP is umamified and (p, Q p ( { )  IQp) is the Frobenius automorphism 
qp : { + {P. From chap. V ,  (2.4), we thus get 

Hence 

[a, Q W I Q I T  = nca7Q, (o lQ ,J  r 
P 

f o r p # C , o o ,  
for p = e , 
for p = oo. 

where a  = n n p  = sgn(a) n pU~(a)u;' = sgn(a) n pu~(a)a- '  = I .  
P P # ~ I  00 P#W 

r- 

Since the extension K I K  is contained in the field of all roots of unity 
over K ,  the proposition implies 

for all a E K  *. The homomorphism [ , 1 K ]  : IK + ~ ( k  I K )  therefore 
induces a homomorphism 

and we consider its composite 
A 

U K  : C K  -+ Z 

with dK : G ( ~ I  K )  + 2. The pair ( d K ,  U K )  is then a class field theory, for 
we have the 

h 

(5.4) Proposition. The map U K  : C K  -+ Z is surjective and is a henselian 
valuation with respect to dK . 
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Proof: We first show surjectivity. If LIK is a finite subextension of K ( K ,  
then the map 

[ , L I K l = n (  , L p I K p ) : I ~  -) G ( L I K )  
P 

is surjective. Indeed, since ( , LP I K P )  : Kp+ -+ G ( L p  1 K p )  is surjective, 
[ I K ,  L J K ]  contains all decomposition groups G ( L p l K p ) .  Thus all p split 
completely in the fixed field M of [ IK,  LI K ] .  By (3.8), this implies 
that M = K ,  and so [ I K ,  L  1 K ]  = G ( L  I K ) .  This yields furthermore that 
[ I K ,  K ]  = [ C K ,  El K ]  is dense in G ( ~ I  K ) .  In the exact sequence 

(see 5 1) the group C: is compact by (1.6), and we obtain a splitting, 
if we identify IW; with the group of positive real numbers in any infinite 
completion Kp.  Thus C K  = C: x IW:. NOW, [ R ; , E I K ]  = 1, for if 
x E R;, then [ x ,  gl K ]  I L  = [ x ,  L  I K ]  = 1 for every finite subextension 
L ( K  of ~ I K ,  because we may always write r = y n  with y E W; 
and n = [ L  : K ] .  Therefore [ C K ,  ~ I K ]  = LC:, E ( K ]  is a closed, dcnse 
subgroup of G ( ~ J  K )  and therefore equal to G ( ~ I K ) .  This proves the 
surjectivity of V K  = d ~  o [ , El K I .  

In the definition of a henselian vaj_uation given in chap. IV, (4.6), condition 
(i) is satisfied because V K ( C K )  = Z, and condition (ii) follows from (5.2) 
because for every finite extension L  I K  we have the identity 

In view of the fact that the idble class group C K  satisfies the class field 
axiom, the pair A 

(dQ : GQ --+ Z, VQ : CQ -+ E)  
constitutes a class field theory, the "global class field theory". The above 
homomorphism V K  = dK o  [ , g I K ]  : C  + 2, for finite extensions K  1 Q , 
satisfies the formula 

and is therefore precisely the induced homomorphism in the sense of the 
ahtract theory in chap. IV, (4.7). 

1 ' As the main result of global class field theory we now obtain the Artin 
reciprocity law: 
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(5.5) Theorem. For every Galois extension L  I K  of finite algebraic number 
fields we have a canonical isomorphism 

T L I K  : G ( L I K ) ' ~  1, C K / N ~ , K C L .  

The inverse map of rLlK yields a surjective homomorphism 

( , L I K )  : CK + G ( L I K ) ~ ~  

with kernel N L  I C L  The map ( , L  I K )  is called the global norm residue 
symbol. We view it also as a homomorphism I K  + G ( L  I K ) ' ~ .  

For every place p of K ,  we have on the one hand the embedding 
G ( L p  1 K p )  - G ( L  I K ) ,  and on the other the canonical injection 

( ) : K ~ * - + C K ,  

which sends ap E Kp* to the class of the idble 

( a p )  = (. . . , I ,  1, l , a p ,  I ,  I ,  1, . . .). 
These homomorphisms express the compatibility of local and global class 
ficld h o r y ,  as follows. 

(5.6) Proposition. If L I K  is an abelian extension and p is a place of' K ,  
then the diagram 

( . L p I K p )  
Kp* -------+ G ( L p l K p )  

is commutative. 

Proof: We 
~ I K ,  or if 
( , E I K )  : 

first show that the proposition holds if L  I K  is a subextension of 
L  = K ( i ) ,  i  = a, and ploo. Indeed, the two maps [ , E I K ] ,  
IK -+ G ( ~ I K )  agree because from chap. IV, (6.5), we have - 

d K 0 (  , K I K ) = v K  = d ~ o [  , Z I K ] .  

Thus, if L  IK is a subextension of ~ J K  and a, = ( a p )  E I K ,  then 

In particular, for ap E Kp* we have the identity 

( ( a p ) , L I K )  = ( a p , L p l K p ) ,  

which shows that_the diagram is commutative when restricted to the finite 
subextensions of K  I K .  
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On the other hand, let L  = K ( i ) ,  ploo, and L p  # Kp.  Then K* - J R * ,  
p 7 W; is the kernel of ( , L p  IK,), and (-1, Lpl K p )  is complex conjugat~on in 

G ( L p l K p )  = G(CIW). Thus, all we have to show is that ( ( - I ) ,  L  ( K )  # 1 .  
If we had ((- l ) ,  L  I K )  = 1 ,  then the class of (- 1) would be the norm of a 
?lass of C L ,  i.e., (- l ) a  = N L ~ K  ( a )  for some a  E K* and an iditle a  E IL. 
This would mean that a  = NL, IK ,  (aq) for q # p and -a = N L , ~ K , ( ~ ~ ) ,  i.e., 
(a ,  Lq  IK,) = 1 for q # p and (-a,  L p  1 K p )  = 1. By (5.3), we would have 
I = [a,  L I K ]  = n q ( a ,  L , (Kq)  = ( a ,  L p l K p ) .  so that (-1, L p l K p )  = 1, and 
perefore - 1 E NL,~K ,  ( L ; )  = NclwC* = W:, a contradiction. 

We now reduce the general case to these special cases as follows. Let 
L'IK' be an abelian extension, so that K G K' ,  L  E L'. We then consider 
the diagram 

Ghere L p  = K p L ,  K,!, = K P K 1 ,  L;  = KPL1.  In this diagram, the top and 
bbttom are commutative by chap. IV, (6.4), and the sides are commutative 
fqr trivial reasons. If now L1(K'  is one of the special extensions for which 
the proposition is already established, then the back diagram is commutative, 
and hence also the front one, for all elements of G(Lp l  K p )  in the image of 
~ ( L ; I  K,!,) -t G(Lp l  K p )  This makes it clear that it is enough to find, for 
every a E G ( L p l K p ) ,  some special extension L'IK' such that a lies in the 
iqage of G(LbIKL). It is even sufficient to do this only for all a of prime 
ppwer order, because they generate the group. Passing to the fixed field of a 
we may assume moreover that G ( L  I K )  is generated by a.  

, When ploo and L p  # K p ,  i.e., Kp = W ,  L p  = @, we put L' = L ( i )  E @, 
and choose for K' the fixed field of the restriction of complex conjugation 
to L'. Then L' = K1( i )  and K,!, = J R ,  LI, = C ,  so the mapping 
G(LL 1 K,!,) -t G ( L p  1 K p )  is surjective. 

When p t oo, we find the extension L'I K' as follows. Let a be of p-power 
We denote by 21 K . resp. L^I L , the Z, -extension contained in I K  , 

L"I L ,  and consider the field diagram 

§ 5. The Global Reciprocity Law 

A h  A 

with localizations K?, = KpK, L p  = L p L  (all fields are considered to lie in 
a common bigger field). We may now lift a E G ( L p J K p )  = G(LI K )  to an 
automorphism 8 of Ep  such that 

h 

Indeed, since K,, = K,K^ # K p ,  the group G ( ~ ~ ( K , , )  # I ,  and thus is 
of finite index if viewed as subgroup of G ( ~ I K )  2 Z,. It is therefore 
generated by a natural power + = (ok of Frobenius p i  , K  E G (El K ) .  As R I K  
in the proof of chap. IV, (4.4), we may then lift a to a 5 E G ( E ~ J K ~ )  such 
that & I p p  = $rm,  m E N, so that $ 1 ~  = cPT 

I K '  
We now take the fixed field K' of 8 J i ,  and the extension L' = K'L.  As 

in chap. IV, ( 4 . 3 ,  conditions (ii) and (iii), it then follows that [K' : K ]  < oo 
and K '̂ = z. L'I K' is therefore a subextension of K ^ ' I K ' ,  and a is the image 
of 3 1 L; under G(Lb 1 K;) -+ G ( L p  1 KP) .  This finishes the proof. 0 

(5.7) Corollary. If L  I K  is an abelian extension and a  = ( a p )  E I K ,  then 

W I K )  = n ( a p , L p I K p ) .  
P 

In particular, for a principal idde a  E K* we have the product for~nuls 

Proof: Since I K  is topologically generated by the idbles of the form 
a  = ( a p ) ,  a p  E K;, it is enough to prove the first formula for these 
iddes. But this is exactly the statement of (5.6): 

( a , L I K )  = ( ( a p ) , L I K )  = ( ap l  L p l K p )  = n ( a q ,  Lq lKq) .  
4 

The product formula is a consequence of the fact that ( a ,  L  I K )  depends only 
on the idkle class a  mod K*. 0 
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Identifying K;  with its image in C K  under the map up  H ( u p ) ,  we obtain 
the following further corollary, where we use the abbreviations N  = N L I K  
l 
and Np = N L , I K , .  
I 

(5.8) Corollary. For every finite abelian extension one has 

N C L  n K; = NpL', . 

Proof: For xp  E NpLF, we see from (5.6) that ( ( x p ) ,  L I K )  = ( x p ,  L p l K p )  
= 1 .  Thus the class of ( x p )  is contained in N C L .  Therefore NpLF, G N C L .  
Conversely, let 55 E N C L  fl Kp*. Then 55 is represented on the one 
hand by a norm idde a = N p ,  p E IL ,  and on the other hand 
by an idkle ( x p ) ,  xp  E K ; .  This gives ( x p ) a  = N p  with a  E K*. 
Passing to components shows that a is a norm from LqIKq for every 
q # p, and the product formula (5.7) shows that a  is also a norm 
from L p l K p .  Therefore xp  E NpL;, and this proves the inclusion 
NCL n K* c NpL*,.  

Exercise 1. If DK is the connected component of the unit element of C K ,  and if 
Kohl K is the maximal abelian extension of K ,  then C K / D K  Z G(Kah(K).  

Exercise 2. For every place p of K one has K ih = Kah K p. 

Hint: Use (5.6) and (5.8). 

Exercise 3. Let p be a prime number, and let MpI K be the maximal abelian p -  
extension unramified outside of (plp) .  Further, let H I K be the maximal unramified 
subextension of M,I K in which the infinite places split completely. Then there is an 
exact sequence 

1 + G(MpIH) + G(MplK) + C ~ K ( P )  + 1, 
where CIK(p)  is the p-Sylow subgroup of the ideal class group C I K ,  and there is n 
canonical isomorphism 

G(MpIH) 2 n u ; ) / ( n u ; ) n E ) ,  
I PIP PIP 

where E is the closure of the (diagonally embedded) unit group E = ok in nPrP UP. 

Exercise 4. The group E(p)  := E n nplp u:' is a Zp-module of rank 

rp(E) := rankzp(E(p)) = [K : Q]  - rankzPG(M,IK). r,(E) is called the p-adic 
unit rank. 

Problem: For the p-adic unit rank, one has the famous Leopoldt conjecture: 
r.,)(E) = r. + s - 1 ,  

where r ,  resp. s, is the number of all real, resp. complex, places; in other words, 
rank;z,,G(M,,IK) = s + I .  

The Leopoldt conjecture was proved for abelian number fields K IQ by the American 
mathematician ARMAND BRUMER [22] .  The general case is still open to date. 
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5 6. Global Class Fields 

As in local class field theory, the reciprocity law provides also in global 
class field theory a complete classification of all abelian extensions of a finite 
algebraic number field K .  For this it is necessary to view the idkle class 
group C K  as a topological group, equipped with its natural topology which 
the valuations of the various completions K p  impress upon it (see 8 1). 

(6.1) Theorem. The map 

is a 1 - 1 -correspondence between the finite abelian extensions L  I K  and the 
closed subgroups of finite index in C K .  Moreover one has: 

The field L  I K  corresponding to the subgroup N of C K  is called the class 
field of N .  It satisfies 

G ( L I K )  C K / N .  

Proof: By chap. IV, (6.7), all we have to show is that the subgroups N of C K  
which are open in the norm topology are precisely the closed subgroups of 
finite index for the natural topology. 

If the subgroup N is open in the norm topology, then it contains a 
norm group N L I K C L  and is therefore of finite index, because from ( 5 . 3 ,  
( C K  : N L I K C L )  = # G ( L ~ K ) " ~ .  To show that N is closed it is enough to 
show that N L I K C L  is. For this, we choose an infinite place p of K and 
denote by f K  the image of the subgroup of positive real numbers in K p  
under the mapping ( ) : K i  -+ C K .  Then f K  is a group of representatives 
for the homomorphism Yl : C K  + R; with kernel C: (see § l), i.e., 
C K  = C: x f K .  By the same token, f K  is a group of representatives for the 
homomorphism Yl : C L  - -  R;. We therefore get 

The norm map is continuous, and C: is compact by (1.6).  Hence N~~~ C: is 
closed. Since f K  is clearly also closed in C K ,  we get that N L I K C L  is closed. 

Conversely let N be a closed subgroup of C K  of finite index. We have 
to show that N is open in the norm topology, i.e., contains a norm group 
N L 1 ~ C L .  For this we may assume that the index n is a prime power. For i l '  
n = p y '  . . . p,l(' , and fi, E C K  is the group containing N of index p,!", then 
N = r);=, JI(, and if the N;: are open in the norm topology, then so is N .  
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Now let J be the preimage of N with respect to the projection IK + CK . 
Then J is open in IK because N is open in CK (with respect to the natural 
topology). Therefore J contains a group 

where S is a sufficiently big finite set of places of K containing the 
infinite ones and those primes that divide n ,  such that IK = I; K*. Since 
(IK : J )  = n,  J also contains the group npEs K r  x npgS ( I ) ,  and hence 
the group 

t IK(S) = n K,*" x n u p .  
P E S  P$S 

Thus it is enough to show that CK (S) = IK (S) K*/K* g N contains a norm 
group. If the n-th roots of unity belong to K ,  then CK (S) = NLIKCL with 
L = ~ ( m ) ,  because of the remark following (4.2). If they do not belong 
to K ,  then we adjoin them and obtain an extension K'I K.  Let St be the set 
of primes of K' lying above primes in S. If S was chosen sufficiently large, 
then IK. = I ~ , K "  and CK/(St) = NL/IK/CL\ with L' = ~ ' ( m ) ,  by 
the above argument. Using chap. V, (IS), this gives on the other hand that 
NKllK ( I K ~  (St)) C IK (S), so that 

This finishes the proof. 0 

The above theorem is called the "existence theorem" of global class field 
theory because its main assertion is the existence, for any given closed 
subgroup N of finite index in C K ,  of an abelian extension L J  K such that 
NL~KCL = N. This extension L is the class field for N. The existence 
theorem gives a clear overview of all the abelian extensions of K once we 
bring in the congruence subgroups C F  of CK corresponding to the modules 
m = nplm pnp (see (1.7)). They are closed of finite index by (1.8), and they 
prompt the following definition. 

(6.2) Definition. The class field Kml K for the congruence subgroup C F  is 
called the ray class field mod m. 

The Galois group of the ray class field is canonically isomorphic to the 
ray class group mod m: 
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One has 
mlm' K~ c K ~ ' ,  

because clearly C; 2 CKm). Since the closed subgroups of finite index in CK 
are by (1.8) precisely those subgroups containing a congruence subgroup 
CF, we get from (6.1) the 

(6.3) Corollary. Every finite abelian extension L I K is contained in a ray 
class field K "I K . 

(6.4) Definition. Let L1 K be a finite abelian extension, and let HL = 
NLIKCL.  The conductor f of L I K (or of NL)  is the gcd of all modules m 
such that L g K m  (i.e., C F  G NL). 

~f ( K  is therefore the smallest ray class field containing L (K.  But it is 
not true in general that m is the conductor of Kml K.  In chap. V, (1.6), we 
defined the conductor f p  of a p-adic extension Lp(Kp  for a finite place p,  to 
be the smallest power f p  = pn such that (if) G NL~~K,L ; .  For an infinite 
place p we define f p  = 1. Then we view f as the replete ideal f nplW p0 and 
obtain the 

(6.5) Proposition. I f f  is the conductor of the abelian extension L 1 K , and f,, 
is the conductor of the local extension L 1 Kp , then 

Proof: Let N = N . r I K C ~ ,  and let m = n p p n p  be a module (np = 0 
for p loo). One then has 

C;Y" C N flm and n f p I m  P t) f p I p t 7 M o r  all p .  

So to prove f = np fp ,  we have to show the equivalence 

C F  E N -  fplpnp forallp. 

It follows from the identity N n Kp* = Np L; (see (5.8)): - (ap m 1 mod p"p =+ (aP) E N n Kp* = NpL;) for all p 
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By chap. V, (1.7), the local extension LplKp,  for a finite prime p ,  is 
ramified if and only if its conductor f p  is # 1. This continues to hold also for 
an infinite place p, provided we call the extension Lpl Kp unramijied in this 
case, as we did in chap. 111. Then (6.5) yields the 

(6.6) Corollary. Let L I K be a finite abelian extension and f its conductor. 
Then : 

p isramifiedin L p J f .  

In the case of the base field Q ,  the ray class fields are nothing but the 
familiar cyclotomic fields: 

(6.7) Proposition. Let m be a natural number and m = (m). Then the ray 
class field mod m of Q is the field 

of m -th roots of unity. 

Proof: Let m = n,,,, pnp. Then I; = n ,,,, lJFp' x IF?,;. Let 

m = m'pnp. Then U ~ P '  is certainly contained in the norm group 
of the unramified extension Qp(p,r)lQp, but also in the norm group 
of Qp(ppnp) IQ,, according to chap. V, (1.8). This means, by 9 3, that every 
id&le in I t  is a norm of some idble of Q (p,). Thus C c  NCQ(,,). On the 
other hand, C Q / C t  2 (Z/mZ)* by (1.10), and therefore 

so that C c  = NCQ(,,,), and this proves the claim. 0 

According to this proposition, one may view the general ray class fields 
, K m l  K as analogues of the cyclotomic fields Q(pn,) IQ. Nonetheless, they 

are not made to take over the important r61e of the latter because all we know 
I about them is that they exist, but not how to generate them. In the case of 

local fields things were different. There the analogues of the ray class fields 
' were the Lubin-Tate extensions which could be generated by the division 
I points of formal groups - a fact that carries a long way (see chap. V, $5). 
' This local discovery does, however, originate from the problem of generating 
I 
, global class fields, which will be discussed at the end of this section. 
I Note in passing that the above proposition gives another proof of the 
, theorem of Kronecker and Weber (see chap. V, (1.10)) to the effect that 

every finite abelian extension L IQ is contained in a fieid Q(wn,)IQ, because 
by (1.8) the norm group NLIQCL lies in some congruence subgroup C c ,  
m = (m), so that L g Q(p,). 

Among all abelian extensions of K ,  the ray class field mod 1 occupies a 
special place. It is called the big Hilbert class field and has Galois group 

By (1.11), the group CI;  is linked to the ordinary ideal class group by the 
exact sequence 

1 -+ o*/o; ---+ n lR*/R; -+ cl ;  -+ CIK -+ 1. 
p real 

The big Hilbert class field has conductor f = 1 and may therefore be 
characterized by (6.6) in the following way. 

(6.8) Proposition. The big Hilbert class field is the maximal unramified 
abelian extension of K. 

Since the infinite places are always unramified, this means that all prime 
ideals are unramified. The Hilbert class field, or more precisely, the "small 
Hilbert class field", is defined to be the maximal unramified abelian extension 
H I K in which all infinite places split completely, i.e., the real places stay real. 
It satisfies the 

(6.9) Proposition. The Galois group of the small Hilbert class field H I K is 
canonically isomorphic to the ideal class group: 

In particular, the degree [H : K ]  is the class number h of K 

Proof: We consider the big Hilbert class field K'  I K and, for every infinite 
place p,  the commutative diagram (see (5.6)) 
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The small Hilbert class field HI K is the fixed field of the subgroup G, 
generated by all G(K: I Kp), plm. Under ( , K '  I K )  this is the image of 

( n K ; ) I ~ K * / I ~ K *  = I ~ ~ K * / I ~ K * ,  
Plm 

where liw = nPlm KK; x nPjm UP. Therefore by (1.3). 

G(HIK)  = G(K ' JK) /C ,  2 l K / l i w K *  2 CIK . 0 

Remark: The small Hilbert class field is in general not a ray class field 
in terms of the theory developed here. But it is in many other textbooks 
where ray class groups and ray class fields are defined differently (see for 
instance [107]). This other theory is obtained by equipping all number fields 
with the Minkowski metric 

a, = 1 if t = t, a, = $ if t # t. A ray class group can then be attached 
to any replete module 

m =  n p n p ,  

P 

where np E Z ,  np 2 0, and np = 0 or = 1 if plco. The groups u:"') attached 
to the metrized number field (K,  ( , )K)  are defined by 

1 + p n p ,  for np > 0, and U p  for np = 0, if p i m ,  

if p is real and np = 0, 

if p is real and np = 1, 

@* = KK; , if p is complex. 

The congruence subgroup mod m of (K, ( , ) K )  is then the subgroup 
C F  = IEK */K * of CK formed with the group 
I 

and the factor group C K / C F  is the ray class group mod m. The ray class 
field mod m of (K,  ( , ) K )  is again the class field of K corresponding to 
the group C F  C_ CK.  AS explained in chap. 111, $3,  the infinite places p have 
to be considered as ramified in an extension LIK if Lp # Kp. Likewise, 
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the conductor of an abelian extension LIK, i.e., the gcd of all modules 
m = n p l ' p  such that C F  2 N L ~ K C ~ ,  is the replete ideal P 

where now for an intinite place p, we have f p  = p " p  with np = 0 if Lp = K p ,  
and np = 1 if Lp  # Kp. Corollary (6.6) then continues to hold: a place p is 
ramified in L if and only if p occurs in the conductor f. 

This entails the following modifications of the above theory, as far as ray 
class fields are concerned. The ray class field mod 1 is the small Hilbert 
class field. It is now the maximal abelian extension of K which is unramified 
at all places. The big Hilbert class field is the ray class field for the module 
m = npl, p. In the case of the base field Q, the field Q ( t )  of m-lh roots 
of unity is the ray class field mod mp,, where p, is the infinite place. The 
ray class field for the module m becomes the maximal real subextension 
Q({ + ( - I ) ,  which was not a ray class field before. This is the theory one 
finds in the textbooks alluded to above. It corresponds to the number fields 
with the Minkowski metric. The theory of ray class fields according to the 
treatment of this book is forced upon us already by the choice of the standard 
metric (x, y) = x, x,y, on Ka taken in chap. I, $5. It is compatible with the 
Riemann-Roch theory of chap. 111, and has the advantage of being simpler. 

Over the field Q ,  the ray class field mod ( m )  can be generated, according 
to (6.7), by the m-th roots of unity, i.e., by special values of the exponential 
function e2=". The question suggested by this observation is whether one 
may construct the abelian extensions of an arbitrary number field in a 
similarly concrete way, via special values of analytic functions. This was 
the historic origin of the notion of class field. A completely satisfactory 
answer to this question has been given only in the case of an imaginary 
quadratic field K. The results for this case are subsumed under the name 
of Kronecker's Jugendtraum (Kronecker's dream of his youth). We will 
briefly describe them here. For the proofs, which presuppose an in-depth 
knowledge of the theory of elliptic curves, we have to refer to [96] and 1281. 

An elliptic curve is given as the quotient E = C / f  of @ by a complete 
lattice f = Zwl + Zw2 in @. This is a torus which receives the structure of 
an algebraic curve via the Weierstrass p-function 

where f '  = I' \ (0). ~ ( z )  is a meromorphic doubly periodic function, i.e., 
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and it satisfies, along with its derivative pt(z),  an identity 

The constants g2,g3 only depend on the lattice f ,  and are given by 
g~ = g2(r)  = 60 Cw+o 3 ,  g3 = g3(f) = 140Cw+o f . 83 and 63' may 
thus be interpreted as functions on @If .  If one takes away the finite set 
S c C / f  of poles, one gets a bijection 

onto the affine algebraic curve in c2 given by the equation y2 = 
4x3 - g2x - g3. This gives the torus C / f  the structure of an algebraic 
curve E over @ of genus 1. An important r61e is played by the j-invariant 

It determines the elliptic curve E up to isomorphism. Writing generators 
q , ~  of r in such an order that t = wl/w;? lies in the upper half- 
plane W, then j (E )  becomes the value j ( t )  of a modular function, i.e., 
of a holomorphic function j on W which is invariant under the substitution 

a r + b  
T H -  for every matrix 

cs + d  ( I;) E SL2@). 

Now let K & @ be an imaginary quadratic number field. Then the ring 
?K of integers forms a lattice in C, and more generally, any ideal a of O K  

does as well. The tori @/a  constructed in this way are elliptic curves with 
complex multiplication. This means the following. An endomorphism of an 
elliptic curve E = @/T is given as multiplication by a complex number z 
such that z f  & r. Generically, one has End(E) = Z. If this is not the case, 
*en End(E) Q is necessarily an imaginary quadratic number field K,  
and one says that this is an elliptic curve with complex multiplication. The 
curves @/a  are obviously of this kind. 

The consequences of these analytic investigations for class field theory 
are the following. 

(6.10) Theorem. Let K be an imaginary quadratic number field and a an 
ideal of O K .  Then one has: 

(i) The j-invariant j(a) of @/a  is an algebraic integer which depends only 
on the ideal class R of a ,  and will therefore be denoted by j (R). 

(ii) Every j (a) generates the Hilbert class field over K 
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(iii) Ii 'a, ,  . . . , ah are representatives of the ideal class group C I K ,  il~crl llic 
numbers j(ai) are conjugate to one another over K.  

(iv) For almost all prime ideals p of K one has 

where cpp E G (K ( j  (a)) I K) is the Frobenius automorphism of a prime ideal 13 
of K (j(a)) above p. 

Note that for a totally imaginary field K there is no difference between 
big and small Hilbert class field. In order to go beyond the Hilbert class field, 
i.e., the ray class field mod 1, to the ray class fields for arbitrary modules 
m # 1, we form, for any lattice r c C ,  the Weber function 

Let R E ElK be an ideal class chosen once and for all. We denote by R* the 
classes in the ray class group C1; = J p / P $  which under the homomorphism 

are sent to the ideal class (m)AT'. Let a be an ideal in A, and let b be an 
integral ideal in A*. Then abm-' = (a) is a principal ideal. The value t , ( c r )  
only depends on the class A*, not on the choice of a, b and a .  It will be 
denoted by 

t(A*) = t,(a). 

With these convenrjons we then have the 

(6.11) Theorem. (i) The invariants t (RT), t (q), . . . , for a fixed ideal 
class ff, are distinct algebraic numbers which are conjugi~te over the 
Hilbert class field K ' = K ( j (A)). 

(ii) For an arbitrary ff*, the field K ( j  (A), t (R*)) is the ray class field mod m 
over K : 

K m  = ~ ( j ( f i ) , r ( A * ) ) .  
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Exercise 1. Let K ' ( K  be the big, and H IK the small Hilbert class field. Then 
G ( K I I H )  Z (%/2%)'-', where r is the number of real places, and 2' = (o* : 0:). 

Exercise 2. Let d > 0 be squarefree, and K = ~ ( a ) .  Let E be a totally 
positive fundamental unit of K.  Then one has [K1 : H I  = 1 or = 2 ,  according as 
h k , q ( s ) = - 1  or = 1. 

Exercise 3. The group (CK)" = ( IK)"K8/K* is the intersection of the norm groups 
NLIKCL of all abelian extensions L I K of exponent n. 

Exercise 4. (i) For a number field K ,  local Tate duality (see chap. V, 3 I ,  exercise 2) 
yields a non-degenerate pairing 

of locally compact groups, where the restricted products are taken with respect to 
the subgroups Hdr(Kp,Z/nZ),  resp. Hdr(Kp,pn) .  For x = (xp)  in the first and 
a = (a,) in the second product, it is given by 

(ii) If L ( K  is a finite extension, then one has a commutative diagram 

are mutual orthogonal complements with respect to the pairing (*). 

Hint for (iii): The cokernel of the second map is CK/(CK)n ,  and one 
has H 1 ( K ,  Z / n Z )  = Hom(G(LIK), Z l n Z ) ,  where L J K  is the maximal abelian 
extension of exponent n. 

Exercise 5 (Global Tate Duality). Show that the statements of exercise 4 extend to 
an arbitrary finite GK-module A instead of Z l n Z ,  and A' = Hom(A, K*) instead 
of Pn. 

Hint: Use exercises 4-8 of chap. IV, 8 3,  and exercise 4 of chap. V, 8 1. 

Erercise 6. If S is a finite set of places of K ,  then the map 
I 

H 1 ( K , Z / n Z )  + H 1 ( K P , Z / n Z )  
P€S 

is surjective if and only if the map 

fj 7. Thc Idcal-Thcorctic Vcrsion of Class Picltl Tlicory 405 

is injective. This is the case in particular if either the extension K(w2.)JK is cyclic, 
N = 2"m, (m,2) = 1, or if S does not contain all places pi2 which are nonsplit in 
K ( p p  ) (see 8 1 , exercise 2). 

Exercise 7 (Theorem of GRUWALD). If the last condition of exercise 6 is satisfied 
for the triple (K,  n, S), then, given cyclic extensions LpIKp for p E S, there always 
cxisls a cyclic extension L ( K  which has L p l K p  as a completion for p E S ,  and 
which satisfies the identity of degrees 

[L : K ]  = scm([Lp : K,]) 

(see also [lo], chap. X, $2). 

Note: Let G be a finite group of order prime to #p(K),  let S be a finite set 01' 
places, and let LP!Kp, p E S,  be given Galois extensions whose Galois groups G ,  
can be embedded into G. Then there exists a Galois extension Ll K which on the 
one hand has Galois group isomorphic to G ,  and which on the other hand has the 
given extensions L , I K, as completions (see [109]). 

5 7. The Ideal-Theoretic Version of Class Field Theory 

Class field theory has found its idkle-theoretic formulation only after it 
had been completed in the language of ideals. From the very start, it was 
guided by the desire to classify all abelian extensions of a number field K .  
But at first, instead of the idde class group C K ,  there was only the ideal 
class group CIK at hand to do this, along with its subgroups. In terms of 
the insights that we have gained in the preceding section, this means the 
restriction to the subfields of the Hilbert class field, i.e., to the unr-amijied 
abelian extensions of K. If the base field is Q ,  this restriction is of course 
radical, for Q has no unramified extensions at all by Minkowski's theorem. 
But over Q ,  we naturally encounter the cyclotomic fields Q(p,,) IQ with 
their familiar isomorphisms G(Q(pm)IQ) 2' (Z/mZ)*. HEINRICH WEIIER 
realized, as was already mentioned, that the groups CIK and (Z/mZ)* are - 
with a grain of salt - only different instances of a common concept, that of 
a ray class group, which he defined in an ideal-theoretic way as the quotient 
group 

Cl; = J p / P p  

of all ideals relatively prime to a given module m, by the principal ideals (a) 
with cr = 1 mod m, and a totally positive. He conjectured that this group 
Cl;, along with its subgroups, would do the same for the subextensions 
of a "ray class field" KmlK (which at first was only postulated to exist) 
as the ideal class group CIK and its subgroups did for the subfields of the 
Hilbert class field. Moreover, he stated the hypothesis that every abelian 
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extension ought to be captured by such a ray class field, as was suggested 
by the case where the base field is Q ,  whose abelian extensions are all 
contained in cyclotomic fields Q ( p m ) l Q  by the Kronecker-Weber theorem. 
After the seminal work of the Austrian mathematician PHILIPP FUR~WANGLER 
[44], these conjectures were confirmed by the Japanese arithmetician TEW 
TAKAGI (1875-1960). and cast by EMIL ARTIN (1898-1962) into a definite, 
canonical form. 

The idble-theoretic language introduced by CHEVALLEY brought the 
simplification that the idble class group C K  encapsulated all abelian 
extensions of LIK at once, avoiding choosing a module m every time 
such an extension was given, in order to accommodate it into the ray class 
field Kml K ,  and thereby make it amenable to class field theory. The classical 
point of view can be vindicated in terms of the idkle-theoretic version 
by looking at congruence subgroups CF in C K ,  which define the ray class 
fields Kml K .  Their subfields correspond, according to the new point of view, 
to the groups between C p  and C K ,  and hence, in view of the isomorphism 

to the subgroups of the ray class group Cl; 

In what follows, we want to deduce the classical, ideal-theoretic version 
of global class field theory from the idble-theoretic one. This is not only an 
obligation towards history, but a factual necessity that is forced upon us by 
the numerous applications of the more elementary and more immediately 
accessible ideal groups. 

Let LlK be an abelian extension, and let p  be an unramified prime 
ideal of K and !J3 a prime ideal of L lying above p. The decomposition 
group G ( L P I K p )  5 G(L1K)  is then generated by the classical Frobenius 
automorphism 
I vp = ( n p ,  LpIKp),  
I 
hhere np is a prime element of Kp.  As an automorphism of L ,  qp is 
bbviously characterized by the congruence 
I 
I qpa  = aq mod !J3 for all a E OL 

'where q is the number of elements in the residue class field of p. We put 
1 
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Now let m be a module of K such that L lies in the ray class field mod m. 
Such a module is called an module of definition for L.  Since by (6.6) each 
prime ideal p m is unramified in L ,  we get a canonical homomorphism 

from the group JF of all ideals of K which are relatively prime to m by 
putting, for any ideal a = np pup: 

L1K 

P 

( T) is called the Artin symbol. If p  E JF is a prime ideal and np a prime 
element of K p ,  then clearly 

if (np) E CK denotes the class of the id6le (. . . , 1, 1, np,  1,  1 ,  . . .). 

The relation between the idble-theoretic and the ideal-theoretic formulation 
of the Artin reciprocity law is now provided by the following theorem. 

(7.1) Theorem. Let L I K be an abelian extension, and let m be a module of 
definition for it. Then the Artin symbol induces a surjective homomorphism 

with kernel H m / P F ,  where H m  = ( N L  I K  J T )  PF,  and we have an exact 
commutative diagram 

Proof: In § 1 ,  we obtained the isomorphism ( ) : CK /CF + CIF = .I;("/ PF 
by sending an idkle a = ( a p )  to the ideal ( a )  = nplm p ' ~ ( ~ p ) .  This 
isomorphism yields a commutative diagram 

and we show that f is given by the Artin symbol. 
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Let p be a prime ideal not dividing m ,  np a prime element of K p ,  
and c  E C K / C E  the class of the idMe (rp) = (. . . , 1, 1, n p ,  l , 1 ,  . . .). Then 
( c )  = p mod PF and 

T&S shows that f  : JF /PF  + G(L1K)  is induced by the Artin symbol 

( y) : J; +- G ( L  I K ) ,  and that it is surjective. 
'It remains to show that the image of N L I K C ~  under the map 

( ) : C K  -+ J p / P F  is the group Hm/PF .  We view the module 
m  = n,, p n p  as a module of L  by substituting for each prime ideal p 
o f l ~  the product p = n%,, v g l p .  AS in the proof of (1.9), we then get 

I 
. .. 

C i  = I ~ " ) L * / L * ,  where I f " )  = { a  E IL 1 a s  E (12~"') for !J31mm). The 
elqments of 

N L I K C L  = N L ~ K ( I ~ ) ) K * / K *  

are the classes of norm idbles N L I K  ( a ) ,  for a  E I?). AS 

(see (2.2)), and since v ~ ( N L ~ ~ K ~ ( ~ x ~ ) )  = f v l p v v ( a ~ )  (see chap. 111, (1.211, 
the idble N L ~ K  ( a )  is mapped by ( ) to the ideal 

Therefore the image of N L l  K C L  under the homomorphism ( ) : C K  + 
JF/ PF is precisely the group ( N L  I J p )  PF/ PF,  q.e.d. 0 

(7.2) Corollary. The Artin symbol ( y) , for a E J;, only depends on 
the class a mod PF. It defines an isomorphism 

The group H  = ( N L  I K  J r )  PF is called the "ideal group defined mod m" 
belonging to the extension L I K .  From the existence theorem (6.1), we see 
that the correspondence L H H m  is 1-1 between subextensions of the ray 
class field mod m  and subgroups of JF containing PF. 

The most important consequence of theorem (7.1) is a precise analysis 
of the kind of decomposition of any unramified prime ideal p  in an abelian 
extension L  I K .  It can be immediately read off the ideal group H m  JF 
which determines the field L  as class field. 
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(7.3) Theorem (Decomposition Law). Let L  I K  be an abelian extension of 
degree n ,  and let p be an unramified prime ideal. Let m  be a module of 
definition for L  I K  that is not divisible by p  (for instance the conductor), and 
let H  be the corresponding ideal group. 

I f f  is the order of p mod H  in the class group JF/  H m, i.e., the smallest 
positive integer such that 

p f  E H m ,  

then p  decomposes in L  into a product 

of r = n / f  distinct prime ideals of degree f  over p .  

Proof: Let p = . . . Y,. be the prime decomposition of p  in L. Since 
p  is unramified, the !J3i are all distinct and have the same degree f .  This 
degree is the order of the decomposition group of pi over K ,  i.e., the order 
of the Frobenius automorphism ipp  = ( y) . In view of the isomorphism 
J F / H m  2 G  ( L  IK) ,  this is also the order of p  mod Hm in JF/  H  m. This 
finishes the proof. 0 

The theorem shows in particular that the prime ideals which split 
completely are precisely those contained in the ideal group ~ f ,  if f is 
the conductor of L  I K .  

Let us highlight two special cases. If the base field is K  = Q  and we look 
at the cyclotomic field Q(pLL, ) IQ,  the conductor is the module m = (m),  
and the ideal group corresponding to Q(p,,) in J c  is the group PC. As 

Jc /P$  2 ( Z / m Z ) *  (see (1.10)), we obtain for the decomposition of 
rational primes p { m ,  the law which we had already deduced in chap. I, 
(10.4), and in particular the fact that the prime numbers which split completely 
are characterized by 

p = 1 mod m. 

In the case of the Hilbert class field L I K ,  i.e., of the field inside the 
ray class field mod 1 in which the infinite places split completely, the 
corresponding ideal group H  E J; = JK is the group PK of principal ideals 
(see (6.9)). This gives us the strikingly simple 

(7.4) Corollary. The prime ideals of K which split completely in the Hilbert 
class field are precisely the principal prime ideals. 
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I 

Another highly remarkable property of the Hilbert class field is expressed 
by the following theorem, known as the principal ideal theorem. 

(7.5) Theorem. In the Hilberr class field every ideal a of K becomes a I 

principal ideal. 

Proof: Let K1 I K  be the Hilbert class field of K and let K2 ( K 1  be the Hilbert 
class field of K I .  We have to show that the canonical homomorphism 

J K  /PK -* J K I  /PKI 

is trivial. By chap. IV, (5.9), we have a commutative diagram 

where i is induced by the inclusion C K  & C K l .  It is therefore enough to 
9how that the transfer 

Ver: G ( K I I K )  ---+ G(K21Kl) 

is the trivial homomorphism. Since K1 ( K  is the maximal unrarnified abelian 
extension of K in which the infinite places split completely, i.e., the maximal 
abelian subextension of K2 1 K  , we see that G (K2  1 K I )  is the commutator 
subgroup of G(K21K). The proof of the principal ideal theorem is thus 
reduced to the following purely group-theoretic result. 0 

(7.6) Theorem. Let G be a finitely generated group, G' its commutator 
subgroup, and G" the commutator subgroup of GI. If (G : G' )  < cm, then 
the transfer 

Ver : GIG' -+ G1/G" 

is the trivial homomorphism. 

We give a proof of this theorem which is due to ERNST WITT [141]. In the 
group ring Z[G] = { C u E G  n U a  1 nu E Z}, we consider the augmentation 
ideal IG, which is by definition the kernel of the ring homomorphism 

Z[G] -+Z ,  C n , a w C n , .  
u u 

Forevery subgroup H of G ,  we have IH C IG,  and {t - 1 I t E H ,  s  # 1) 
is a Z-basis of I H .  We first establish the following lemma, which also has 
independent interest in that it gives an additive interpretation of the transfer. 

5 7. The Ideal-Theoretic Version of Class Field Theory 41 1 

(7.7) Lemma. For every subgroup H of finite index in G ,  one has a 
commutative diagram 

Ver 
GIG' - H / H 1  

where the homomorphisms 6 are induced by a H 6a = a - 1, and the 
homomorphism S is given by 

S(x mod 12) = x  C p mod IGIH,  
P ~ R  

for a system of representatives of the left cosets R 3 1 of G / H .  

Proof: We first show that the homomorphism 

induced by t H S t  = t - 1 has an inverse. The elements p6t ,  r  E H ,  
t # 1, p E R ,  form a Z-basis of IH + 1 ~ 1 ~ .  Indeed, it follows from 

that they generate IH + IG IH,  and if 

then we conclude that n,,, = 0 because the p t , p  are pairwise distinct. 
Mapping pSt to t mod HI, we now have a surjective homomorphism 

It sends S(p t l )S t  E lclH to r ' t r l - I t - '  - 1 mod H' because 6(pr1)6s = 
p6(r1t)  - p6t1 - 6 t .  It thus induces a homomorphism which is inverse to 

6 
(*). In particular, if H = G ,  we obtain the isomorphism G / G 1  -+ l c / l i .  

The transfer is now obtained as 

Ver(a mod G') = n a, mod H',  
P ~ R  

where a p  E H is defined by ap = plap, p' E R. Ver thus induces the 
homomorphism 

S : I G / I ~  -+ (IH + IGIH)/IGIH 
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given by S(6a mod 1;) = CpER &ap mod 1 ~ 1 " .  From a p  = ptap follows 
the identity 

6p + (6a)p = 6ap + 6p' + 6p16ap. 

Since p' runs through the set R if p does, we get as claimed 

Proof of theorem (7.6): Replacing G by G/G", we may assume that 
G" = ( I ) ,  i.e., that G' is abelian. Let R 3 1 be a system of representatives 
of left cosets of G/Gt ,  and let a l ,  . . . ,  an be generators of G. Mapping 
e; = (0, . . . ,0 ,1 ,0 ,  . . . ,0)  E iZn to ai ,  we get an exact sequence 

where f is given by an n x n-matrix (mik) with det(mik) = (G : G'). 
Consequently, 

n n aYik t k  = 1 with t k  E G' . 

The formulae 6(xy) = 6x + 6y +6x6y, S(x-I) = -(Sx)x-' yield by iteration 
that 

where p;k = mik mod IG. In fact, the t k  are products of commutators of the 
ai and a;'. We view (p;k) as a matrix over the commutative ring 

which gives a meaning to the determinant p = det(pik) E ZIG/G1]. Let (Akj) 
be the adjoint matrix of (pik). Then 

so that (6a)p = 0 mod IcZIG]lct = 1 ~ 1 ~ 1  for all a. This yields 

n p ,  where p = p mod G', then for all 5 E G/G', For if we put p = CpER p 
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This implies that all np are equal, hence p = m CpER p mod ZIG]lcl, and 
as 

p = det(m;k) = (G : G') = m(G : G') mod IG, 

we even have m = 1. Applying now lemma (7.7), we see that the transfer is 
the trivial homomorphism since 

A problem which is closely related to the principal ideal theorem and 
which was first put forward by PHILIPP FURWANGLER is the problem of the 
class field tower. This is the question whether the class field tower 

where Ki+, is the Hilbert class field of Ki, stops after a finite number of 
steps. A positive answer would have the implication that the last field in the 
tower had class number 1 so that in it not only the ideals of K ,  but in fact all 
its ideals become principal. This perspective naturally generated the greatest 
interest. But the problem, after withstanding for a long time all attempts to 
solve it, was finally decided in the negative by the Russian mathematicians 
E.S. GOLOD and I.R. SAFAREVI~ in 1964 (see 1481, [24]). 

Exercise 1. The decomposition law for the prime ideals p which are ramified in an 
abelian extension L I K can be formulated like this. Let f be the conductor of L I K , 
H f  J;  the ideal group for L ,  and Hp the smallest ideal group containing H f 01. 
conductor prime to p. 

If e = (H, : H f )  and pf is the smallest power of p which belongs to H,, then 

P = ( P I  . . .  Pr) ' ,  
where the Y, are of degree f over K ,  and r = $, n = [ L  : K ] .  

Hint: The class field for H p  is the inertia field above p. 

The following exercises 2-6 concern a non-abelian example of E. ARTIN. 

Exercise 2. The polynomial f ( X )  = X S  - X + I is irreducible. The discriminant of 
a root a  (i.e., the discriminant of Z [ a ] )  is d = 19 . 15 1. 

Hint: The discriminant of a root of X5 + aX  + h is SSh4 + z8aS .  

Exercise 3. Let k = Q(a) .  Then Z [ a ]  is the ring ok of integers of k. 

Hint: The discriminant of Z [ a ]  equals the discriminant of oL because on the 
one hand, both differ only by a square, and on the other hand, it is squarefree. 
The transition matrix from 1, a ,  . . . ,an-' to an integral basis wl ,  . . . , w,, of oL is 
therefore invertible over Z.  
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Exercise 4. The decomposition field K IQ of f (X) has as Galois group the symmetric 
group G5, i.e., it is of degree 120. 

Exercise 5. K has class number 1. 

Hint: Show, using chap. I, $6, exercise 3, that every ideal class of K contains an 
ideal a with %(a) < 4. If V(a) # 1, then a has to be a prime ideal p such that 
%(p) = 2 or 3. Hence oA/p  = 2 / 2 2  or = ;2/32, so f has a root mod 2 or 3. 
which is not the case. 

Exercise 6. Show that K 1 ~ ( J 3 j T i )  is a (non-abelian!) unramified extension. 

Exercise 7. For every Galois extension L 1 K of finite algebraic number fields, there 
exist infinitely many finite extensions K' such that L n K' = K, and such that 
LK'I K' is unramified. 

Hint: Let S be the set of places ramified in L l K ,  and let L p  = Kp(ap). By the 
approximation theorem, choose an algebraic number (Y which, for every p E S, is 
close to a, when embedded into Wp. Then Kp(ap) C_ Kp(a) by Krasner's lemma, 
chap. 11, $6, exercise 2. Put K' = K(a) and show that LK'IK' is unramified. To 
show that (Y can be chosen such that L f l  K' = K use (3.7), and the fact that G (L I K) 
is generated by elements of prime power order. 

5 8. The Reciprocity Law of the Power Residues 

In class field theory Gauss's reciprocity law meets its most general and 
definite formulation. Let n be a positive integer 2 2 and K a number field 

I 
containing the group pn of n-th roots of unity. In chap. V, 5 3, we introduced, 
for every place p of K ,  the n-th Hilbert symbol 

1t/is given via the norm residue symbol by 
I 

a,b  n 
( a ,  KP(%) 1 KP) % = (-1 &. 

P 
These symbols all fit together in the following product formula. 

(8.1) Theorem. For a ,  b E K* one has 
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Proof: From (5.7), we find 

[n P ( ?) I  Z= [ n c a .  P K . ( Z ) I K ~ ) I  Z= ( U . K ( Z ) I K ) Z  = xi;. 
and hence the theorem. 0 

In chap. V, $3, we defined the n-th power residue symbol in terms of the 
Hilbert symbol: 

where p is a prime 
element of Kp. We 

ideal of K not dividing n, a E U p ,  and n is a prime 
have seen that this definition does not depend on the 

choice of the prime element n and that one has 

(:)=I a = a n m o d p .  

and more generally 

( )  a q n  mod p ,  q = Tl(p). 

(8.2) Definition. For every ideal b = npin pup prime to n ,  and every 
number a prime to 6, we define the n-th power residue symbol by 

Here = 1 when vp = 0. 

The power residue symbol ( i )  is obviously multiplicative in both 

arguments. If b is a principal ideal (b), we write for short ( i )  = (E)  . 
We now prove the general reciprocity law for the n-th power residues. 

(8.3) Theorem. If a, b E K* are prime to each other and to n ,  then 
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Proof: If p is prime to bnoo,  then we have 

where n is a prime element of K,. For if we put a = ulrUp("), then (G) = 1 
P 

b cause u ,  b E U p .  For the same reason, we find 7 

(81 1) then gives 

Here p 1 ( b )  means that p occurs in the prime decomposition of (b ) .  0 

Gauss's reciprocity law, for which we gave an elementary proof using 
the theory of Gauss sums in chap. I, (8.6), in the case of two odd prime 
numbers p, 1, is contained in the general reciprocity law (8.3) as a special 
case. For if we substitute, in the case K = Q, n = 2, into formula (8.3) the 
explicit description (chap. V, (3.6)) of the Hilbert symbol (Q) for p = 2 

P 
and p = oo, we obtain the following theorem, which is more general than 
chap. I, (8.6). 

(8.4) Gauss's Reciprocity Law. Let K = Q, n = 2,  and let a and h be 
odd, relatively prime integers. Then one has 

and for positive odd integers b ,  we have the two "supplementary theorems" 

For the last equation we need again the product formula: 
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The symbol ( f )  is called the Jacobi symbol, or also the quadratic 
residue symbol (although, for b not a prime number, the condition that the 
symbol (E)  = 1 is no longer equivalent to the condition that a is a quadratic 
residue modulo h). 

In the above formulation, the reciprocity law allows us to compute simply 
by iteration the quadratic residue symbol ( f )  . as is shown in the following 
example: 

Class field theory originated from Gauss's reciprocity law. The quest 
for a similar law for the n-th power residues dominated number theory 
for a long time, and the all-embracing answer was finally found in Artin's 
reciprocity law. The above reciprocity law (8.3) of the power residues now 
appears as a simple and special consequence of Artin's reciprocity law. But 
to really settle the original problem, class field theory was still lacking the 
explicit computation of the Hilbert symbols (@) t3 for plnm. This was 

finally completed in the 1960s by the mathematidan HELMUT B R ~ C K N E R ,  see 
chap. V, (3.7). 
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Zeta Functions and L-series 

§ 1. The Riemann Zeta Function 

One of the most astounding phenomena in number theory consists in the 
fact that a great number of deep arithmetic properties of a number field are 
hidden within a single analytic function, its zeta function. This function has 
a simple shape, but it is unwilling to yield its mysteries. Each time, however, 
that we succeed in stealing one of these well-guarded truths, we may expect to 
be rewarded by the revelation of some surprising and significant relationship. 
This is why zeta functions, as well as their generalizations, the L-series, 
have increasingly moved to the foreground of the arithmetic scene, and today 
are more than ever the focus of number-theoretic research. The fundamental 
prototype of such a function is Riemann's zeta function 

where s is a complex variable. It is to this important function that we tun1 
first. 

(1.1) Proposition. The series ((s) = x:, is absolutely and uniformly 
nS 

convergent in the domain Re(s) > 1 + 6,  for every 6 > 0. It therefore 
represents an analytic function in the half-plane Re(s) > 1 .  One has Euler's 
identity 

\ 
where p runs through the prime numbers. 

Proof: ForRe(s) = a  2 1+6, theseriesC;==, / l /nSI  = Czl l/na admits 
the convergent majorant x;=, l/nl+', i.e., ((s) is absolutely and uniformly 
convergent in this domain. In order to prove Euler's identity, we remind 
ourselves that an infinite product HE, a, of complex numbers a, is said to 
converge if the sequence of partial products PI, = a1 . . .al ,  has a nonzero 
limit. This is the case if and only if the series xr=l loga,, converges, where 
log denotes the principal branch of the logarithm (see [2], chap. V, 2.2). The 
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product is called absolutely convergent if the series converges absolutely. 
In this case the product converges to the same limit even after a reordering 
of its terms a,,. 

Let us now formally take the logarithm of the product 

1 
E (s) = n ----- . 

p 1 - p-S 

We obtain the series 
O 0 1  

log E(s) = C C - 
p ,I= 1 n/>ll,T 

It converges absolutely for Re(s) = o 2 1 + 6. In fact, since 1 / > " " 1  = p17u 3 
p ( ~ + " ~ l  , one has the convergent majorant 

This implies the absolute convergence of the product 

1 
E ( s )  = n ---- = cxp C ,) 1 - I )  -.\ ( ,, (EL)) ,,,I I Z ~ ~ ~ ~  

In this product we now expand the product of the factors 

for all prime numbers p , ,  . . . , p,. 5 N ,  and obtain the equality 

where E' denotes the sum over all natural numbers which are divisible only 
by prime numbers p 5 N. Since the sum E' contains in particular the terms 
corresponding to all n 5 N, we may also write 

Comparing now in (*) the sum C' with the series {(s), we get 

where the right hand side goes to zero as N -+ oo because it is the remainder 
of a convergent series. This proves Euler's identity. 0 

Euler's identity expresses the law of unique prime factorization of natural 
numbers in a single equation. This already demonstrates the number-theoretic 
significance of the zeta function. It challenges us to study its properties more 
closely. By its definition, the function is only given on the half-plane 
Re@) > 1. It does, however, admit an analytic continuation to the whole 
complex plane, with the point s = 1 removed, and it satisfies a functional 
equation which relates the argument s to the argument I - s .  These crucial 
facts will be proved next. The proof hinges on an integral formula for the 
zeta function ((s) which arises from the well-known gamma function. This 
latter is defined for Re(s) > 0 by the absolutely convergent integral 

and obeys the following rules (see [34], vol. I, chap. I). 

(1.2) Proposition. (i) The gamma function is analytic and admits a 
meromorphic continu;ition to ;I// of C. 

(ii) It is nowhere zero and has simple poles at s = -n, n = 0, 1,2, . . ., with 
residues (- l)"/n !. There are no poles anywhere else. 

(iii) It satisfies the functional equations 

1) r ( s  + 1) = s ~ ( s ) ,  

2) r ( ~ ) r ( i  - S) = --iI_, 
sin ns 

2JiT 3) r ( s ) T ( s  + i) = FT(2s) (Legendre's duplication formula). 

(iv) It has the special values r (1 /2)  = &, r ( 1 )  = 1 ,  T(k + I )  = k!, 
k = 0 , 1 , 2 ,  . . . .  

To relate the gamma function to the zeta function, start with the substitution 
y t-t 7sn2y,  which gives the equation 

Now sum over all n E N and get 
03 
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Observe that i t  is legal to interchange the sum and the integral because 

Now the series under the integral, 

arises from Jacobi's classical theta series 

I i.e., we have g(y) = i(8(iy) - I). The function 

is called the completed zeta function. We obtain the 

(1.3) Proposition. The completed zeta function Z(s) admits the integral 
representation 

w 

The proof of the functional equation for the function Z(s) is based on the 
following general principle. For a continuous function j' : IW; -+ (I: on the 
group IW; of positive real numbers, we define the Mellin transform to be 
the improper integral 

provided the limit f (co) = limy,, f (y) and the integral exist. The 
following theorem is of pivotal importance, also for later applications. 
We will often refer to it as the Mellin principle. 

(1.4) Theorem. Let j', g : R; -+ @ be continuous functions such that 

for y + co, with positive constants c,a. If these functions satisfy the 

for some real number k > 0 and some complex number C # 0, then onc lms: 

(i) The integrals L( f , s) and L(g , s)  converge absolutely and uniformly if s 
varies in an arbitrary compact domain contained in (s E @ I Re(s) > k ) .  
They are therefore holomorphic functions on (s E @ I Re(s) > k ) .  They 
;~dn~it  ho101110rphic continuatio~is to @ \ (0, k } .  

(ii) They have simple poles at s = 0 and s = k with residues 

Res,,~ L ( f ,  s) = -a0 , Res,,k L ( f ,  s )  = Cho , resp. 

Res,,~ L(g, s) = -bo, Res,=k L(g, s) = c - ' a o .  

(iii) They satisfy the functional equation 

Remark 1: The symbol q(y) = O(@(y)) means, as usual, that onc has 
q(y) = c(y)$(y), for some function c(y) which stays bounded under the 
limit in question, so in our case, as y -+ oo. 

Remark 2: Condition (ii) is to be understood to say that there is no pole 
if ao = 0, resp. ho = 0. But there is a pole, which is simple, if a. # 0, 
resp. ho # 0. 

Proof: If s varies over a compact subset of @, then the function c-""'".vm, 
rr = Rc(s), is bounded for y 2 I by a constant which is independent 01' 0 .  

Therefore the condition f (y) = a0 + 0(e-"ya) gives the following upper 
bound for the integrand of the Mellin integral L( f ,  s). 

for all y > 1, with constants B ,  B'. The integral l F ( f  (y) - ao)yS-I dy 
w B' therefore admits the convergent majorant ll -dy which is independent 

y2  
of s .  It therefore converges absolutely and uniformly, for all s in the compact 
subset. The same holds for [y(g(y) - h ~ ) ~ ~ ' - ' d y .  
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Now let Re(s) > k. We cut the interval of integration (0, co) into (0, 11 
and (I,  co) and write 

For the second integral, the substitution y H I/y and the equation 
f ( 1 1 ~ )  = cykg(y)  give: 

By the above, it also converges absolutely and uniformly for Re(s) > k .  We 
therefore obtain 

a0 C h  
L( f , s )  = -- + - 

s s - k  
+ F(s), 

where 
00 

I I 

Swapping f and g,  we see from g(l /y)  = C-lyk f (y) that: 

ho C-'ao 
L ( g , s ) = - -  + - 

s s - k  + G(s) 

The integrals F(s) and G(s) converge absolutely and locally uniformly on 
the whole complex plane, as we saw above. So they represent holomorphic 
functions, and one obviously has F (s) = CG (k-s). Thus L (f , s)  and L (g, s )  
have been continued to all of C \ (0, k )  and we have L (f , s )  = C L (g, k -s). 
This finishes the proof of the theorem. 0 

The result can now be applied to the integral (1.3) representing the 
function Z(s). In fact, Jacobi's theta function 8(z) is characterized by the 
following property. 

(1.5) Proposition. Tlie series 

converges absolutely and uniformly in the domain {z E @ I Im(z) > 61, 
for every S > 0. It therefore represents an analytic function on the upper 
half-plane W = (z E C 1 Im(z) > O), and satisfies the transformation formula 

e(-l/z) = ~ B ( z ) .  

We will prove this proposition in much greater generality in § 3 (see (3.6)), 
so we take it for granted here. Observe that if z lies in W then so does - 1 /z. 
The square root is understood to be the holomorphic function 

where log indicates the principal branch of the logarithm. It is determined 
uniquely by the conditions 

h ( ~ ) ~ = z / i  and h(iy) =a> 0 fory ER*,. 

(1.6) Theorem. The completed zeta function 

admits an analytic continuation to C \ (0, I) ,  has simple poles at s = 0 
and s = 1 with residues - 1 and 1,  respectively, and satisfies the functional 
equation 

Z(s) = Z(1 - s ) .  

Proof: By (1.3), we have 

i.e., Z(2s) is the Mellin transform 

of the function f (y) = O(iy). Since 
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one has f ( y )  = + O(e-r-\ ' ) .  From ( I S ) ,  we get the transformation formula 

By (1.4). L( f ,  s )  has a holomorphic continuation to C \ (0. 1/31 and simple 
poles at s  = 0, 112 with residues -112 and 112, respectively, and it satisfies 
the functional equation 

Accordingly, Z ( s )  = L ( f .  s / 2 )  has a holomorphic continuation to C \ (0. I } 
and simple poles at s = 0, I with residues - I  and 1, respectively, and satisfies 
the functional equation 

For the Riemann zeta function itself, the theorem gives the 

(1.7) Corollary. The Riemann zeta function ( ( s )  admits an analytic 
continuation to @ \ { I } ,  has a simple pole at s  = 1 with residue 1 and 
satisfies the functional equation 

Proof: Z ( s )  = n-"/2f ( s / 2 ) ( ( s )  has a simple pole at s  = 0, but so does 
f ( s / 2 ) .  Hence ((s) has no pole. At s  = 1, however, Z ( s )  has a simple pole, 
and so does ( ( s ) ,  as r ( 1 / 2 )  = f i. The residue comes out to be 

Res,,I ( ( s )  = rr 'I' f ( 1 1 2 ) ~ '  Res,,, Z ( s )  = 1 . 

The equation Z ( l  - s )  = Z ( s )  translates into 

Substituting ( I  - s ) / 2 ,  rcsp. s / 2 ,  into thc fornulac ( I  .2), ( i i i ) ,  2)  and 3) gives 

3 1 .  The Riemann Zeta Function 

and after taking the quotient, 

Inserting this into (*) now yields the functional equation claimed. 0 

At some point during the first months of studies every mathematics student 
has the suprise to discover the remarkable formula 

It is only the beginning of a sequence: 

O 0 ' l  1 O0 1 1 c - = -n4, C - = -no, etc. 
,=,n4 90 n6 945 

These are explicit evaluations of the special values of the Riemann zeta 
function at the points s  = 2k,  k  E N .  The phenomenon is explained via the 
functional equation by the fact that the values of the Riemann zeta function 
at the negative odd integers are given by Bernoulli numbers. These arise 
from the function 

t  et 
F ( t )  = - 

et - 1 
and are defined by the series expansion 

Their relation to the zeta function gives them a special arithmetic significance. 
The first Bernoulli numbers are 

In general one has B2"+, = 0 for v L 1, because F ( - t )  = F ( t )  - t . In the ' , which serves for defining classical literature, it is usually the function - 
c' - I 

I thc Bernoulli numbers. As t . ' (~)  = - + t ,  this does not change anything 
e' - 1 

except for B 1 ,  where one finds - instead of k .  But the above definition is 
more natural and better suited for the further tlcvclopmcnt of thc thcory. Wc 
now prove the remarkable 

(1.8) Theorem. For every integer k  > 0 one has 

B 
((I - k )  = -2. 

k  
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of C*,  as in (1.9), and z, zS-' are the holomorphic functions z(x,a)  = x ,  
zS-I(x, a )  = e(s-l)(logI.rl+ia). The integral converges absolutely and locally 
uniformly for all s E @. It thus defines a holomorphic function on @, and we 
find that 

1 
R ~ S , , ~  F (z )z -~- '  = - H (1 - k) . 

2~ i 
Now substitute z H -z, or more precisely, apply the biholomorphic 
transformation 

Since z o (4 = -z and 

we obtain 
dz 

H ( s )  = -e-'"' ~ ( - z ) z . ~ - ~ -  , 
z 

c, 
where the path C, = p-' o (-C,) follows the half-line from co to E ,  then the 
circumference Kt in negative direction from E to E ,  and finally the half-line 
from E to cm. The function 

has a simple pole at z = 0 so that, for Re@) > 1, (1.9) yields 

The integral on the right will now be related to the zeta function. In the 
gamma integral 

n;l 

0 

we substitute t I+ nt and get 

!j I .  Thc Ricmann Zcta Function 

Summing this over all n E W yields 

The interchange of summation and integration is again justified because 

From this and (I .2), 2), we get 

H (s) = -2i sin r s f  (s){(s) = - 
f ( I  - s )  

Since both sides are holomorphic on all of @, this holds for all s E @. Putting 
s = 1 - k we obtain, since r ( k )  = (k - 1) !, 

Applying the functional equation (1.7) for {(s) and observing that 
r (2k)  = (2k - 1) !, the preceding theorem gives the following corollary, 
which goes back to EULER. 

(1.10) Corollary. The values of {(s) at the positive even integers s = 2k, 
k = 1,2,3, . . . , are given by 

The values {(2k - I), k > 1, at the positive odd integers have been 
elucidated only recently. Surprisingly enough, it is the higher K-groups 
Ki(Z) from algebraic K-theory, which take the lead. In fact, onc 1x1s a 
mysterious canonical isomorphism 

r : K~x.-I(Z)@IW 5 R. 
Z 

The image R2k of a nonzero element in K4k-, (Z) @Z Q is called the 2k-th 
regulator. It is well-determined up to a rational factor, i.e., i t  is an clcmcnt 
of' R*/Q*, and one has 

t(2k - I) r R2k mod Q* . 
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This discovery of the Swiss mathematician ARMAND BOREL has had a 
tremendous influence on further arithmetical research, and has opened up 
deep insights into the arithmetic nature of zeta functions and L -series of the 
most general kind. These insights are summarized within the comprehensive 
Beilinson conjecture (see [117]). In the meantime, the mathematicians 

,SPENCER BLOCH and KAZUYA KATO have found a complete description of the 
special zeta values {(2k - 1) (i.e., not just a description mod Q*) via a new 
theory of the Tanlagawa nwasure. 

The zeroes of the Riemann zeta function command special attention. 
Euler's identity (1.1) shows that one has {(s) # 0 for Re@) > 1. The gamma 
function T(s )  is nowhere 0 and has simple poles at s = 0, - 1, - 2, . . . The 
functional equation Z(s)  = Z (  I - s ) ,  i.e., 

therefore shows that the only zeroes 01' {(s) in the domain Ke(s) < O are 
the poles of T(s/2),  i.e., the arguments s = -2, - 4, - 6, . . . These are 

'called the rrivial zeroes of ( ( s )  Other zeroes have to lie in the critical strip 
0 ( Re(s) _< 1, since {(s) # O for Re(s) > 1. They are the subject of the 
famous, still unproven 

Riemann Hypothesis: The non-trivial zeroes of {(s) lie on the line 
Re(s) = 4. 

This conjecture has been verified for 150 million zeroes. It has immediate 
consequences for the problem of the distribution of prime numbers within all 
the natural numbers. The distribution function 

T(X) = # ( p  prime number 5 x }  

may be written, according to RIEMANN, as the series 

where p varies over all the zeroes of {(s), and R(x) is the function 

On a microscopic scale, the function T(X) is a step-function with a highly 
irregular behaviour. But on a large scale it is its astounding smoothness 

5 1. The Riemann Zeta Function 

which poses one of the biggest mysteries in mathematics: 

On this matter, wc urgc the render to consult the essay 11421 by DON Z,K;II I: 

Exercise 1. Let c r ,  h be positive real numbers. Then the Mellin translbnns of' Ihc 
functions f ' ( y )  and ~ ( y )  = .f'(uyl') satisfy: 

L ( f  ,s/h) = h ~ " ' ~ ~ ( ~ , s ) .  

Exercise 2. The Bernoulli polynomials Bl (x) are detined by 

so that Bk = Bk(0). Show that 
nz 

B,,, (x) = ( ) B~s" ' -~  
k 0  

Exercise 3. Bk(x) - Bk(x - 1) = kxk-'. 

Exercise 4. For the power sum 

sk(n) = l k  +2' +3k  + . .  . + n k  

one has 
1 

~ k ( ~ )  = - (Bk+l (n) - Bk+l(O)) 
k + l  

Exercise 5. Let 29(2) = O ( 2 z )  = C,,,Z e2"1f122 . Then for all matrices y = 

in the group 
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The Legendre symbol ( c )  and the constant E,, are defined by 
d 

Jacobi's theta function d(z)  is thus an example of a modular form of weight 
for the group ro(4). The representation of L-series as Mellin transforms of modular 
forms, which we have introduced in the case of the Riemann zeta function, is one 
of the basic and seminal principles of current number-theoretic research (see 11061). 

I 

§ 2. Dirichlet L-series 

The most immediate relatives of the Riemann zeta function are the 
Dirichlet L-series. They are defined as follows. Let m be a natural number. 
A Dirichlet character mod nz is by definition a character 

It is called primitive if it does not arise as the composite 

of a Dirichlet character X '  mod m' for any proper divisor m'lm. In the general 1 
case, the gcd of all such divisors is called the conductor f of X .  So x is 
always induced from a primitive character X '  mod f .  Given X ,  we define 
the multiplicative function x : Z + @ by 

~ ( n  modm) for (n,m) = 1, 
x(n> = 

for (n,m) # 1 . 

The trivial character X 0  mod nz, X0(n) = 1 for (n, m) = 1, Xo(n) = 0 for 
(n, m) # 1, plays a special role. When read mod 1, we denote it by x = 1. 

3 2. Dirichlet L-series 435 

I t  is dso  callccl thc principal character. Considering i t  in the thcory to bc 
developed now has the effect of subsuming here everything we have done in 
the last section. For a Dirichlet character X ,  we form the Dirichlet L-series 

where s is a complex variable with Re@) > 1. In particular, for the principal 
character x = 1, we get back the Riemann zeta function {(s). All the results 
obtained for this special function in the last section can be transferred to 
the general L-series L(x ,  s )  using the same methods. This is the task of the 
present section. 

(2.1) Proposition. The series L (X , s)  converges absolutely and uniformly in 
the domain Re@) > 1 + 6, for any 6 > 0. It therefore represents an analytic 
function on the half-plane Re(s) > 1. We have Euler's identity 

In view of the multiplicativity of x and since Ix(n)( < 1 ,  the proof is 
literally the same as for the Riemann zeta function. Since, moreover, we will 
have to give it again in a more general situation in $8 below (see @ . I ) ) ,  we 
may omit it here. 

Like the Riemann zeta function, Dirichlet L-series also admit an analytic 
continuation to the whole complex plane (with a pole at s = 1 in the case 
x = xO), and they satisfy a functional equation which relates the argument .r 
to the argument 1 - s.  This particularly important property does in fact hold 
in a larger class of L-series, the Hecke L-series, the treatment of which 
is an essential goal of this chapter. In order to provide some preliminary 
orientation, the proof of the functional equation will be given here in the 
special case of the above L-series L(x , s ) .  We recommend it for careful 
study, also comparing it with the preceding section. 

The proof again hinges on an integral representation of the function 
L(x,  s)  which has the effect of realizing it as the Mellin transform of a 
theta series. We do, however, have to distinguish now between even and odd 
Dirichlet characters x mod m. This phenomenon will become increasingly 
important when we generalize further. We define the exponent p E (0,  1 )  

of X by 
x(-1) = ( - l>Px( l ) .  

Then the rule 
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defines a multiplicative function on the semigroup of all ideals (n) which are 
relatively prime to m. This function is called a GroJencharakter mod m. 
These GroJ?encharaktere are capable of substantial generalization and will 
play the leading part when we consider higher algebraic number fields 
(see $7). 

We now consider the gamma integral 

5 2. Dirichlet L-series 437 

Substituting y H ~ r n ~ ~ / m ,  we obtain 

We multiply this by x (n), sum over all n E W ,  and get 

Here, swapping the order of summation and integration is again justified, 
because 

M 

so that g(y) = (Q(x, iy) - ~ ( 0 ) )  with ~ ( 0 )  = 1, if x is the trivial 
character 1, and ~ ( 0 )  = 0 otherwise. When m = I,  this is Jacobi's theta 
function 

. ? 

Q(z) = C en'''-' , 
nez 

which is associated with Riemann's zeta function as we saw in Ij 1. We view 
the factor 

The series under the integral (*), 

arises from the theta series 

where we adopt the convention that 0' = 1 in case n = 0, p = 0. Indeed, 
x (n)nP = x (-n)(-n)P implies that 

in (*) as the "Euler factor" at the infinite prime. It joins with the Euler factors 
L,)(s) = 1/(1 - x (p)p-") of the product representation (2.1) of L(x,  .s) lo 
dcfinc tlic completed L-series of thc characlcr X :  

For this function (*) gives us the 

(2.2) Proposition. The function A(x,  s )  admits the integral representation 

0 

where c(x) = (%)PI2. 

Let us emphasize the fact that the summation in the L-series is only over 
the natural numbers, whereas in the theta series we sum over all integers. 
This is why the factor nP had to be included in order to link the L-series to 
the theta series. 

We want to apply the Mellin principle to the above integral representation. 
So we have to show that the theta series Q(x ,  iy) satisfies a transformation 
formula as assumed in theorem (1.4). To do this, we use the following 

(2.3) Proposition. Let a ,  h, p be real numbers, p > 0. Then the series 

converges absolutely and uniformly in the domain Im(z) 1 8, for every S > 0, 
and for z E W, one has the transformation formula 
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This proposition will be proved in 9 3 in much greater generality (see (3.6)), 
so we take it for granted here. The series @,(a, b, z )  is locally uniformly 
convergent in the variables a ,  6. This will also be shown in § 3. Differentiating 
p times ( p  = 0, 1) in the variable a ,  we obtain the function 

More precisely, we have 

and 

Applying the differentiation dP/dap to the transformation formula (2.3), we 
get the 
I 

(2.4) Corollary. For ( I ,  I), p E R ,  p > 0, one has the translbmation 
formula 

This corollary gives us the required transformation formula for the theta 
series B ( x ,  a), if we introduce the Gauss sums which are defined as follows. 

! 
(2.5) Definition. For n E Z, the Gauss sum r ( x ,  n )  associated to the 
Dirichlet character x mod m is defined to be the complex number 

Forn = 1, we write r ( x )  = r ( x ,  1 ) .  

(2.6) Proposition. For a primitive Dirichlet character x mod n7, one has 

r ( x , n )  = TT(n) t (x)  and Ir(x)I = Jm. 

Proof: The first identity in the case ( n , m )  = I follows from ~ ( v n )  = 
x ( n ) x ( v ) .  When d = ( n ,  m )  # 1,  both sides are zero. Indeed, since x 
is primitive, we may in this case choose an a 5 1 mod nzld such that 
a f 1 mod rn and x ( a )  # 1. Multiplying r ( x  , n )  by x ( a )  and observing that 
e2nivan/m - - e 2 n i v n / n ~  gives x ( a ) r ( x , n )  = t ( x , n ) ,  so that r ( x , n )  = 0. 

Further, we have 

The last sum equals m for p = 1. For p # 1, it vanishes because then 
6 = e2ni(lL-l)lm is an m-th root of unity # 1, hence a root of the polynomial 

Therefore l r (X)12  = m x ( 1 )  = m.  

We now obtain the following result for the theta series B ( x ,  z )  . 

(2.7) Proposition. If x is a primitive Dirichlet character mod m, then we 
have the transformation formula 

where is the complex conjugate character to x ,  i.e., its inverse. 

Proof: We split up the series B ( x ,  z )  according to the classes a mod 177, 

a = 0, I ,  . . . , m - I, and obtain 

By (2.4), one has 
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and this gives 

Multiplying this by ~ ( a ) ,  then summing over a ,  and observing that 
r ( x , n )  = X ( n ) r ( x ) .  we find: 

The analytic continuation and functional equation for the function A ( X  , s )  
now falls out immediately. We may restrict ourselves to the case of a 
primitive character mod m.  For x is always induced by a primitive character 
x' mod f ,  where f is the conductor of x (see p. 434), and we clearly have 

so that the analytic continuation and functional equation of A ( x ,  s )  follows 
from the one for A ( x l ,  s) .  We may further exclude the case m = 1 (this is not 
really necessary, just to make life easy), this being the case of the Riemann 
zeta function which was settled in 5 1 .  The poles in this case are different. 

I 

(2.8) Theorem. If x is a nontrivial primitive Dirichlet character, then the 
completed L  -series A  ( x ,  s) admits an analytic continuation to the whole 
complex plane C and satisfies the functional equation 

with the factor W ( x )  = This factor has absolute value 1. 
1PJ; ; ; '  

L . ( x )  4 x 1  7l p / 2  
Proof: Let f ( y )  = - -e (x , iy )  2 and g(y )  = T @ ( X , i y ) ,  C ( X )  = (%)  . 
We have x (0)  = X(0) = 0, so that 

and therefore f  ( y )  = ~ ( e - ~ ~ l ~ ' ) ,  and likewise g(y )  = ~ ( ~ - n v l " l ) .  
By (2.2), one has 

0 

Wc therefore obtain A ( x , s )  and similarly also A(X,  s )  as Mellin transforms 

A ( x , s )  = L ( f , s l )  and A(X , s )  = L(x , s l )  

of the functions f  ( y )  and g(y )  at the point s' = *. 2 The transformation 
formula (2.7) gives 

Theorem (1.4) therefore tells us that A ( x ,  s )  admits an analytic continuation 
to all of C and that the equation 

I -.\+I' A ( x , s )  = L ( f ,  y) = W ( X ) L ( ~ , P  + ; - y) = w ( x ) L ( &  T )  
= W ( x ) A ( K ,  1 - s )  

holds with W ( X )  = By (2.6), we have J W ( x ) J  = 1. 
l"&' 

0 

The behaviour of the special values at integer arguments of the Riemann 
zeta function generalizes to the Dirichlet L  -series L ( X  , s )  if we introduce, for 
nontrivial primitive Dirichlet characters x mod m ,  the generalized Bernoulli 
numbers Bk, defined by the formula 

These are algebraic numbers which lie in the field Q ( x )  generated by the 
values of X .  Since 

we find ( - l ) k ~ ~ , x  = X ( - I ) B ~ , ~ ,  so that 

Bxqx  = 0  for k + 1) mod 2 ,  

if p E (0,  I ]  is defined by x ( - 1 )  = ( - I ) / ' x ( l ) .  
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(2.9) Theorem. For any integer k  2 1, one has 

Bk. x 
L ( x , ~  - k )  =-?, 

Proof: The prool' is the same as for the Riemann zeta function (see (1.8)): 
the meromorphic function 

has poles at most at z = %, v E Z. The claim therefore reduces to showing 
that 

Multiplying the equation 
M 

by x (n), and summing over all n ,  yields 

0 

with the function 

(2.10) Corollary. Fork = p mod 2 ,  k  1 1 ,  one has 

For the values L ( x ,  k )  at positive integer arguments k  + p mod 2, 
similar remarks apply as the ones we made in 5 1 about the Riemann zeta 
function at the points 2 k .  Up to unknown algebraic factors, these values are 
ccrtain "rcgula~ors" dclined via canonical maps from higher K -groups into 
Minkowski space. A detailed treatment of this deep result of the Russian 
mathematician A.A. BEILINSON can be found in [ 1 1 0 ] .  

t &+.L)' 
Exercise 1. Let Fx ( t  , x )  = Cr=, x ( a )  =. The Bernoulli polynomials Bi.  (x) 
asssociated to the Dirichlet character x are defined by 

Thus Bk, (0) = Bk, X .  Show that 

B L , ~  ( x )  = 2 (:) B , , ~ X ~ - ' .  
i =O 

Exercise 2. Bk, ( x )  - Ba, , ( x  - m )  = k Cr=, x (a)  (a + x  - m ) k - ' ,  k 2 0. 

Exercise 3. For the numbers S k , X ( ~ )  = x:=I X ( a ) a P ,  k 2 0, one has 

Exercise 4. For a primitive odd character X ,  one has 

From the equations (2) and (3) one deduces equation (1) in exactly the same 
manner as in ( 1  A ) .  0 

§ 3. Theta Series 

The theorem immediately gives that 

L ( x , I - k ) = O  for k f p m o d 2 ,  

p E {O, I ) ,  x ( - 1 )  = (- 1 ) P x  ( I ) ,  provided that x is not the principal 
character 1. From the functional equation ( 2 . 8 )  and the fact that L ( x  , k) # 0, 
we deduce for k  2 1 that 

Bk, x L ( x , l - k ) = - -  # 0  for k r p m o d 2 .  
k  

The functional equation also gives the 

Riemann's zeta function and Dirichlet's L-series are attached to the 
field 0. They have analogues for any algebraic number field K ,  and the 
results obtained in 5 1 and 2  extend to these generalizations in the same way, 
with the same methods. In particular, the Mellin principle applies again, 
which allows us to view the L-series in question as integrals over theta 
series. But now higher dimensional theta series are required which live on 
a higher dimensional analogue of the upper half-plane W. A prior-; they do 
not have any relation with number fields and deserve to be introduced in 
complete generality. 
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The familiar objects @, R ,  R;, W, I I, log, find their higher dimensional 
analogues as follows. Let X be a finite G(CIR)-set, i.e., a finite set with an 
involution T H T ( s  E X),  and let n = #X. We consider the n-dimensional 

of all tuples z = (z , ) , ,~ ,  Z, E @, with componentwise addition and 
multiplication. If z = (z,) E C, then the element Z E C is defined to have 
the following components: 

(Z), = t,. 

We call the involution z H Z the conjugation on C. In addition, we have 
the involutions z H Z* and z H *Z given by 

z: = z,, resp. *z, = 2,. 

One clearly has 5 = *z*. The set 

forms an n-dimensional commutative R-algebra, and C = R € 3 ~  @. 
If K is a number field of degree n and X = Hom(K, @), then R is the 

Minkowski space Kw ( 2 K @Q R) which was introduced in chapter I, 5 5. 
The number-theoretic applications will occur there. But for the moment we 
leave all number-theoretic aspects aside. 

For the additive, resp. multiplicative, group C, resp. C*, we have the 
homomorphism 

T r : C + @ ,  T r ( z ) = C z , ,  resp. 
5 

Here Tr(z), resp. N(z), denotes the trace, resp. the determinant, of the 
endomorphism C + C, x H zx. Furthermore we have on C the hermitian 
scalar product 

I 
- 

(x, y) = C x r y r  = Tr(x*y). 
5 

- 
It is invariant under conjugation, (x, y)  = (-7, L) ,  and restricting it yields 
a scalar product ( , ), i.e., a euclidean metric, on the W-vector space R. 
If z E C, then *z is the adjoint element with respect to ( , ), i.e., 

In R, we consider the subspace 

R + = { x E R [ x = x * ]  = [ n ~ ] + .  , 

Thus we find for the components of x = (x,) E R* that sf = ,I-, E R. 
If S E W, we simply write x > 6 to signify that x, > S for all r .  The 
multiplicative group 

will play a particularly important part. It consists of the tuples x = (x,) 
of positive real numbers x, such that x, = x,, and it occurs in the two 
homomorphisms 

1 I :R*--+RT,,  x = (xr) - 1x1 = (Ixrl), 

log : R; -7 R* , .v = (x,) H logs = (logs,) . 

We finally define the upper half-space associated to the G(@ (EX)-set X by 

1 1 Putting Re(z) = -(z + t ) ,  Im(z) = -(z - Z), we may also write 
2 2i 

If z lies in H, then so does - l /z ,  because z Z  E R;, and Im(z) > 0 implies 
Im(- l/z) > 0, since zF Im(- l/z) = - 1m(z-'zt) = Im(z) > 0. 

For two tuples z = (z,), p = (p,) E C, the power 

is well-defined by 
zp = ,Pr 1 % ; ~  

if we agree to take the principal branch of the logarithm and assume that 
the z, move only in the plane cut along the negative real axis. The table 

MI G @ 2 R = W > IW;, 1 :  W *  log: R ; G R  , 

H G C 2 R ? R *  ? R ; ,  I I :  R*+R; ,  log: R;<R*,  

shows the analogy of the notions introduced with the familiar ones in the 
case n = I .  We recommend that the reader memorize them well, for they 
will be used constantly in what follows without special cross-reference. This 
also includes the notation 
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The functional equations we are envisaging originate in a general formula 
from functional analysis, the Poisson summation formula. It will be proved 
first. A Schwartz function (or rapidly decreasing function) on a euclidean 
vector space R is by definition a CW-function f : R + @ which tends to 
zero as x + oa, even if multiplied by an arbitrary power [lxllnl, m >- 0, 
and which shares this behaviour with all its derivatives. For every Schwartz 
function f ,  one forms the Fourier transform 

where dx is the Haar measure on R associated to ( , ) which ascribes 
the volume 1 to the cube spanned by an orthonormal basis, i.e., it is the 
Haar measure which is selfdual with respect to ( , ). The improper integral 
aonverges absolutely and uniformly and gives again a Schwartz function 5 
This is easily proved by elementary analytical techniques; we refer also 
to [98], chap. XIV. The prototype of a Schwartz function is the function 

All functional equations we are going to prove depend, in the final analysis, 
on the special property of this function of being its own Fourier transform: 

(3.1) Proposition. (i) The function h(x) = e-"(X,X) is its own Fourier 
transfonn. 

(i'i) I f f  is an arbitrary Schwartz function and A is a linear transformation 
of R, then the function f A  (x) = f (Ax) has Fourier transform 

where 'A is the adjoint transformation of A. 

Proof: (i) We identify the euclidean vector space R with R" via some 
isometry. Then the Haar measure dx  turns into the Lebesgue measure 

A 

dx, .  . . dx,. Since h(x) = n;=, e-"':, we have h = n~ , ( e - " ' : j ,  so we 
may assume n = 1. Differentiating 

3 3. Theta Series 

in y under the integral, we find by partial integration that 

d -  
- h(y) = -2ni xh(x) e-2"ixY dx = - 2 ~ ~ g ( ~ ) .  
dy -03 7 

2 
This implies that g(y) = Ce-"Y for some constant C. Putting y = 0 yields 
C = 1, since it is well-known that e - " ~ ~  dx = 1. 

(ii) Substituting x H Ax gives the Fourier transfonn of fA(x) as: 

From the proposition ensues the following result, which will be crucial 
for the sequel. 

(3.2) Poisson Summation Formula. Let f be a complete lattice in R and 
let 

rf = {g' E RI (g,gl) E Z forall g E f }  

be the lattice dual to f. Then for any Schwartz function f ,  one has: 

where vo l ( f )  is the volume of a fundamental mesh of f .  

Proof: We identify as before R with the euclidean vector space Rn via some 
isometry. This turns the measure dx into the Lebesgue measure dx-1 . . . ds,, . 
Let A be an invertible n x n-matrix which maps the lattice Zn onto f .  Hence 
f = AZil and vol(f)  = ( det A]. The lattice Zil is dual to itself, and we get 
f 1  = A*Zi' where A* = 'A-I, as 

g' E f f  # = 'n!4gf E Z for all n E Zn 

Substituting the equations 
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into the identity we want to prove, gives 

In order to prove this, let us write f instead of f A  and take the series 

It converges absolutely and locally uniformly. For since f is a Schwartz 
function, we have. if .v varies in a compact domain, 

for almost all k E Z". Hence ,q(.v) is majorized by a constant multiple of 
1 the convergent series Zkio p. This argument works just as well for all 

partial derivatives of f .  So g(s)  is a C"-function. It is clearly periodic, 

and therefore admits a Fourier expansion 

g ( ~ )  = C ane2ni'ns, 
~ E Z "  

whose Fourier coefficients are given by the well-known formula 

I I 

Swapping summation and integration gives 

= f i n ) .  

It follows that 

We apply the Poisson summation formula to the functions 

fp(a, b, X) = ~ ( ( x  + a)P) e-n(a+x,a+x)+2ni(b,x) 

'with the parameters a,  h E R and a tuple 17 = (17,) of nonnegative integers, 
such that p, E (0 , l )  if t = 7, and p,p, = 0 if t # 7. Such an element 
p E n, Z will henceforth be called admissible. 

(3.3) Proposition. The function f (x )  = f,, (a, b, x )  is a Sch wartz function 
on R. Its Fourier transform is 

Proof: It is clear that f , (a ,  h, x )  is a Schwartz function, because 

for some polynomial P ( x ) .  

Let p = 0. By (3.1), the function h(x)  = e-K("'.X) equals its own Fourier 
transform and one has 

f ( x )  = fo(a, h, x )  = h(a + x )  e 2rri (b, x )  

We therefore obtain 

For an arbitrary admissible p,  we get the formula by differentiating p lirncs 
the identity 

in the variable a. Now the functions are neither analytic in the individual 
components a, of a ,  nor are these independent of each other, when there 
exists a couple t # 7. We therefore proceed as follows. Let p vary over 
the elements of X such that p = p ,  and let a run through a system of 
representatives of the conjugation classes {t, t] such that t # 7.  Since 
p,p, = 0, we may choose a in such a way that p,- = 0. Then one has 

We now differentiate pp times both sides of (*) in the real variable u p ,  for 
all p ,  and apply p, times the differential operator 
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for all a. Here we consider a,- = (,- + iq,- as a function in the real variables 
6,-, qz ("Wirtinger calculus"). On the left-hand side 

A 

f o(a, h, v )  = e-r(a+.v.u+.v)+2ri(b..t-) - 2 r i ( . 1 ,  y)  / C 
.v. 

we may differentiate under the integral. Then, observing that p,- = 0 and 
a 

--((a, + x,)(a,- + ~ 5 ) )  = (a, + s,), we obtain aa, 

= N ( ( - 2 ~ ) ~ )  &(a, b, Y) .  

Thc right-hand side of (*), 

e-2ni(a, b)-n(-b+y, -b+y)+2ni(a, y )  = e2ni(a, -b+y)-n(-b+y. -b+y) 

in view of 

and as p,- = 0,  becomes accordingly 

N((2niY)  N((-b + y)") e-2ni(a, / J )  fo(-6, a ,  y) 
= ~ ( ( 2 ~ i ) P )  e-2ni(a,b) f p ( 4  a ,  Y) . 

Hence 
&,(a, 6, y) = ~ ( i - p )  e-2ni(a,b) fp(-b, a ,  y) .  0 

We now create our general theta series on the upper half-space 

~ = { z ~ ~ ~ z = z * , 1 m ( z ) > 0 ]  =R*+iR;.  

(3.4) Definition. For every complete lattice f of R, we define the theta 
series 

er(z)  = C e ni(&'z. &') , E H .  
 RE^ 

More generally, for a ,  b E R and any admissible p E n, Z, we put 

(3.5) Proposition. The series @(a, b, z) converges absolutely and uniformly 
on every compact subset of R x R x H. 

Proof: Let 6 E R, 6 > 0. For all z E H such that Im(z) > 6, we find 

Let 

fs (a) = N ((a + g)P) e-n6(a+gva+g) (a E R, g E f )  . 

For K R compact, put I fg I K  = sup I f,(x)I. We have to show that 
X E K  

LCI gl,  . . . ,gl, be a Z-basis 01' I , ,  and for g = xLl n~~~~ E I ' ,  Ict 
pg = max [mi I. Furthermore, define llxll = z/ix,S;i. If llgll 3 4 sup Ilx 1 1 ,  

I ~ E K  

then for all a E K: 

where E = inf C:.', j=l (g;, gj)y; yj is the smallest eigenvalue of the matrix 
cy,% 

( k i  9 gj)). 

N ((a + migi)") is a polynomial of degree q in the mi, (q = T r ( p ) ) ,  
the coefficients of which are continuous functions of a .  It follows that 

I ~ ( ( a + g ) ~ ) 1  (p:'' foral la  E K ,  

provided p, is sufficiently big. One therefore finds a subset T' G r with 
finite complement such that 

00 

I: I ~ ~ I K  5 E p ( ~ ) a ~ + '  e- i6su2  
&-' /L=o 

where P ( p )  =#(m E Z "  1 max \mi]  = p ]  = ( 2 1 ~ +  I)"  - ( 2 p -  l)".The 
I 

series on the right is clearly convergent. 0 

From the Poisson summation formula we now get the general 



452 Chapter VII. Zeta Functions and L-series 

(3.6) Theta Transformation Formula. One has 

$(a, b. - I/z) = [i"'~e2ni(a~D)vol(f)]-'~((~/i)~~)8~,(-h, a, z).  

In particular, one has tbr the function Or (z) = 8; (0,0, z) : 

Proof: Both sides of the transformation formula are holomorphic in z 
by (3.5). Therefore it suffices to check the identity for z = iy, with y E R;. 
Put t = y-'I2, SO that 

. I  
Z = I -  and - I/z = i t  2 

t2 
bbserving that t = t* =*t, so that ( ( 1 , ~ )  = (6,717) = (c, tq),  we obtain 

I @-(a, b, - l /z) = N(r-p) C N((ta  + tg)P) e-~(~~+f ,s . to+ l ,s )+2n i ( t -1h . tcs)  

.%'cr 

Let ff = f a ,  B = t-'6. We consider the function 

and similarly z = i 5 gives that 

Now apply the Poisson summation formula 
I 

to the function 
f (x> = ~ r ( a ~ B ~ x )  = f p ( ~ , B , t x ) .  

Its Fourier transform is computed as follows. Let h(x) = fiJ(a, B ,  x), so that 
f ( x )  = h(tx) = hl(x). The transformation A : x H tx of R is self-adjoint 
and has determinant N(t). Thus (3.1), (ii), gives 

3 4. The Higher-dimensional Gamma Function 453 

The Fourier transform $has been computed in (3.3). This yields 

f^(y) = [ ~ ( i ~ ) ~ ( r ) c ' " ~ ( " ~ " ] - ' , f ~ , ( - ~ , a , t - ' ~ )  

= [ ~ ( i p ) N ( t )  e2ni(a,b) ] - I ~ - l ( - ~ f f ,  y ) .  

Substituting this into (3) and multiplying by N(t-1') gives, by ( I )  and ( 7 ) :  

~ ; ( a ,  b, - I/Z) = [N(iPt2p+') e2ni(a,b) VOI(T )I - ' e ~ ~ ( - b ,  a ,  z) . 

Since t = ( ~ / i ) - ' / ~ ,  i.e., (t2P+')-' = ( z / i ) ~ + ; ,  this is indeed the transfor- 
mation formula sought. 0 

For n = 1, we obtain proposition (2.3), which at the time was used 
without proof for proving the functional equation of the Dirichlet L-series 
(and Riemann's zeta function). 

5 4. The Higher-dimensional Gamma Function 

The passage from theta series to L-series in Q: 1 and $ 2  was afforded by 
the gamma function 

In order to generalize this process, we now introduce a higher-dimensional 
gamma function for every finite G(C(R)-set X,  building upon the notation of 
the last section. First we fix a Haar measure on the multiplicative group R: : 

Let p = (t, t) be the conjugation classes in X. We call p real or complex, 
depending whether #p = 1 or #p = 2. We then have 

where 

We define isomorphisms 
R;, -7 R; 

by y H y, resp. (y, y) H y2, and obtain an isomorphism 
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We now denote by 3 the Haar measure on R; which corresponds to the 
Y 

product measure 
d t 
--F3 

d t where - is the usual Haar measure on R;. The Haar measure thus defined 
t 

is called the canonical measure on R;. Under the logarithm 

log : R: -7 R*9 

' it is mapped to the Haar measure dx on Rk which under the isomorphism 

xp H xp, resp. (xp,xp) H 2xp, corresponds to the Lebesgue measure 
on n, R. 

(4.1) Definition. For s = (s,) E C such that Re&) > 0, we define the 
gamma function associated to the G (C I R) -set X by 

The integrand is well-defined, according to our conventions from p. 445, 
and the convergence of the integral can be reduced to the case of the ordinary 
gamma function as follows. 

(4.2) Proposition. Decomposing the G(C1JR)-set X into its conjugation 
classes p,  one has 

rx (s) = n rp(sp) ,  
P 

where sp = S, for p = (51, resp. sp = (s,,si) for p = ( t ,  T), r # f .  The 
factors are given explicitly by 

r ( s P ) ,  if p real, 
fp(sp) = 

21-".(Sp) f (Tr(sp)), if p complex, 

54. The Higher-dimensional Gamma Function 455 

Proof: The first statement is clear in view of the product decomposition 

The second is relative to a G(C1R)-set X which has only one conjugation 
class. If # X  = 1, then trivially fx(s)  = f (s). So let X = ( r ,  t}, r # f. 
Mapping 

: - R t -  (A,&), 
one then gets 

and, since d(t/2)2/(t/2)2 = 2dt/ t ,  the substitution t I+ (t12)~ yields 

0 

The proposition shows that the gamma integral f (s) converges for 
s = (s,) with Re&) > 0, and admits an analytic continuation to all of C, 
except for poles at points dictated in the obvious way by the ordinary gamma 
function f (s). 

We call the function 

the L-function of the G(QIIR)-set X. Decomposing X into the conjugation 
classes p ,  yields 

LX(S) = n L p ( s p ) ,  
P 

where as before we write^^ = s r  forp = {r]andsp  = (sr,si)forp = ( r , T ) ,  
t # t. The factors Lp(sp) are given explicitly, by (4.2), as 

~ - 4 ~ f ( s ~ / 2 ) ,  if p real, 
Lp(sp) = 

2 ( 2 ~ ) - ~ ' ( ~ p ) / ~ r ( ~ r ( s ~ ) / 2 ) ,  if p complex. 

For a single complex variable s E C ,  we put 

where Tr(s,) = s, + SF. 
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where 1 = ( 1 ,  . . . , 1 )  is the unit element of C. Denoting r.1, resp. 1.2, the 
number of real, resp. complex, conjugation classes of X ,  we find 
! rx ( S )  = 2(1-2.+2 r ( s ) u  r ( 2 S ) r ?  . 

In the same way we put 

L ~ ( s ) = L ~ ( s l ) = r r - " ~ / ~ f ~ ( s / 2 ) ,  n = # X ,  

and in particular 

L R ( s ) = L x ( s ) = n - . \ / ' f ( ~ / 2 ) ,  if X = { r ] ,  

L @ ( s )  = L,y(s)  = 2 ( 2 n ) - " T ( s ) ,  if X = ( r . T ) .  r # T .  

Then we have, for an arbitrary G(@ JR) -set X  : 

Lx ( s )  = LR (s)'" LC (s)"' . 
With this notation, (1.2) implies the 

I (4.3) Proposition. (i) Lw ( 1 )  = 1 ,  L c ( l )  = 2 .  

(ii) L ~ ( s + 2 ) =  &Lw(s ) ,  L c ( s +  1 )  = & L @ ( s ) .  

1 
(iii) L w ( l  - s ) L R ( l  + s )  = - L Lc(s )Lc(I  - s )  = -. cosns/2' sin ns 

(iv) LR (s)Lw ( s  + 1 )  = Lc (s) (Legendre's duplication formula). 

As a consequence we obtain the following functional equation for the 
L -function L ( s )  : 

(4.4) Proposition. L x ( s )  = A ( s ) L x ( l  - s )  with the factor 

A(s)  = (cos r r ~ / 2 ) " + ' ~  (sin n ~ / 2 ) " ~  L @ ( s ) ~  . 

Proof: On the one hand we have 

and on the other 

= cos n s / 2  sin n s / 2  L@ (s12 

The proposition therefore results from the identity L x  ( s )  = LR (s)"' LC (s)"'. 
0 
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This concludes the purely function-theoretic preparations. They will now 
be applied to number theory. 

5 5. The Dedekind Zeta Function 

The Riemann zeta function { ( s )  = Cg"=, is associated with the field Q 
of rational numbers. It generalizes in the following way to an arbitrary 
number field K of degree n  = [K : Q]. 

(5.1) Definition. The Dedekind zeta function of the number field K is 
defined by the series 

where a varies over the integral ideals of K ,  and %(a) denotes their absolute 
norm. 

(5.2) Proposition. The series {K ( s )  converge absolutely and uniformly in 
the domain Re(s) 2 1 + 6 for every 6 > 0, and one has 

where p runs through the prime ideals of K .  

The proof proceeds in the same way as for the Rie~nann zeta function 
(see ( 1 . 1 ) ) ,  because the absolute norm %(a) is multiplicative. We do not 
go into it here, because it is the same argument that also applies to Hecke 
L-srrirs, which will be introduced in $ 8  as LI common generalization of 
Dirichlet L -series and of the Dedekind zeta function. 

Just like the Riemann zeta function, the Dedekind zeta function also 
admits an analytic continuation to the complex plane with 1 removed, and 
it satisfies a functional equation relating the argument s to 1 - s .  This is 
what we are now going to prove. The argument will turn out to be a higher 
dimensional generalization of the one used in $ 1  for the Riemann zeta 
function. 
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First we split up the series {K (s), according to the classes A of the usual 
ideal class group CIK = J / P  of K ,  into the partial zeta functions 

integral 

so that 
{K (s) = C J(%s).  

R 

The functional equation is then proved for the individual functions {(A,s). 
The integral ideals in A are described as follows. If a is a fractional ideal, 
then the unit group o* of o operates on the set a* = a \ (01, and we denote 
by a*/o* the set of orbits, i.e., the set of classes of non-zero associated 
elements in a. 

(5.3) Lemma. Let a be an integral ideal of K and A the class of the ideal 
a- I .  Then there is a bijection 

a*/o* { b E a I b integral), Z M b = aa-I 

Proof: If a E a*, then aa-' = (a)a-' is an integral ideal in A, and if 
aa-' = ba-', then (a) = (b), so that ab-' E o*. This shows the injectivity 
of the mapping. But it is surjective as well, since for every integral b E .fi, 
one has b = aa- '  with u E ab 5 a. 0 

To the G(@IR)-set X = Hom(K. @) corresponds the Minkowski space 
+ 

K R = ~ = [ n @ ]  . 
5 

The field K may be embedded into Kw. Then one finds for a E K* that 

W ( a > >  = I NK I Q ( ~ )  1 = I ~ ( a )  I , 
where N denotes the norm on R* (see chap. I, $ 5 ) .  The lemma therefore 
yields the 

1 (5.4) Proposition. {(A, s)  = %(a)s C -. 
Zea*/o* IN(@lS 

By chap. I, (5.2), the ideal a forms a complete lattice in R whose 
fundamental mesh has volume 

where d, = Ti(a)2~dK I denotes the absolute value of the discriminant of a,  
and dK is the discriminant of K .  To the series {(A, s)  we associate the theta 
scrics 

o(o, .) = i)a(r/d:/") = e " ' ( ~ ~ ~ " : " ' ~ ~ ) .  

u ea 

It is related to {(A,s) via the gamma integral associated to the G(C(R)-set 
X = Hom(K, @), 

where s E @, Re@) > 0 (see (4.1)). In the integral, we substitute 

with I I denoting the map R* +- R t ,  (x,) H (Ixs 1). We then obtain 

Summing this over a full system !73 of representatives of a*/o*, yields 

Swapping summation and integration is legal, for the same reason as in the 
case of the Riemann zeta function (see p. 422). We view the function 

as the "Euler factor at infinity" of the zeta function {(A, s )  (see $4, p. 455) 
and define 

~ ( a ,  S) = z ,w tca ,  s ) .  

The desire to realize this function as an integral over the theta series O(a, s) is 
frustrated by the fact that in the theta series we sum over all a E a, whereas 
summation in the series g(y) is only over a system of representatives of 
n*/o*. This difficul~y - which was nlrcndy hintcd at in ~ h c  casc ol' thc 
Kiemann zeta function - will now be overcome in the general case as 
follows. 
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The image lo*[ of the unit group o* under the mapping 1 I : R* + R: 
is contained in the norm-one hypersurface 

S = { X E R ; I N ( X ) = I } .  

Writing every y E R> in the form 

we obtain a direct decomposition 

Let d*x be the unique Haar measure on the multiplicative group S such that 
the canonical Haar measure dy ly  on R: becomes the product measure 

We will not need any more explicit description of d*x. 

We now choose a fundamental domain F for the action of the group 
lo*12 = { ) & 1 2  1 E E 0*) on S as follows. The logarithm map 

takes the norm-one hypersurface S to the trace-zero space H = {x E R* I 
Tr(x) = 01, and the group Io*l is taken to a complete lattice G in H 
(Dirichlet's unit theorem). Choose F to be the preimage of an arbitrary 

, fundamental mesh of the lattice 2G. Any such choice satisfies the 

(5.5) Proposition. The function Z(B, 2s) is the Mellin transform 

z ( a ,  2s) = ~ ( f ,  s) 

of the function 

f (t) = f~ (a, t )  = - ~ ( a ,  ixt Ill') d*x , 
W ' S  

F 

where w = #F(K) denotes the number of roots of unity in K .  

Proof: Decomposing R', = S x R*, , we find 

with t' = (t/d,)'lil. The fundamental domain F cuts up the norm-one 
hypersurface S into the disjoint union 

The transformation x t+ r12x of S leaves the Haar measure d*x invariant and 
maps F to i7' F, so that 

Observe here that we have to divide by w = #p(K), because p ( K )  is just 
1 the kernel of o* -+ lo*l (see chap. I, (7.1)), hence CIEl = , C,. Observe 

furthermore that a& runs through the set a* = a \ (0) exactly once, and 
1 finally that f (co) = , SF d * ~ ,  as @(a, ixco) = 1. This result does indeed 

show that 

d t 
( f ( t ) -  f (co)) tS-  = ~ ( f , s ) .  0 

t 

Using this proposition, the functional equation for the function Z(A, s) 
follows via the Mellin principle from a corresponding transformation formula 
for the function fF(a, t ) ,  which in turn derives from the general theta 
transformation formula (3.6). In order to find the precise equation, we have 
to compute the volume vol(F) of the fundamental domain F with respect 
to d*x, and the lattice which is dual to a in R. This is achievcd by the 
following two lemmas. 

(5.6) Lemma. The fundamental domain F of S has the following volume 
W ; ~ / J  I'CSpCCl 10 (I*.\- .' 

vol(F) = 2"-I R , 

where 1. is the number of infinite places and R is the regulator of K (see 
chap. I, (7.5)). 
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Proof: The canonical measure dyly on R; is transformed into the product 
measure d*x x drlr  by the isomorphism 

Since I = (I E IW; I I 5 I 5 ( 0 )  has nlc;isurc I will1 rcq)cc[ to ~ I / I ,  tllc 
quantity vol(F) is also the volume of F x I  with respect to d*x x d t l t ,  
i.e., the volume of a ( F  x I )  with respect to dyly. The composite $ of the 
isomorphisms 

R;%R+-% H R = R r  
PI00 

(see $4, p. 454) transforms dyly into the Lebesgue measure of R", 

Let us compute the image @ ( F  x I). Let 1 = (1, . . . , 1) E S. Then we find 
! 

1 
$a ( ( l , t ) )  = elogt l ln = -elogt 

n 

with the vector e = (ePI,  . . . , epr) E R", ep, = 1,  resp. = 2, depending 
whether pi is real or complex. By definition of F, we also have 

where @ denotes a fundamental mesh of the unit lattice G in trace-zero space 
H = {(xi) E Rr I E x i  = 0). This gives 

I the parallelepiped spanned by the vectors 2e1, . . . ,2erWl, , e, if e l ,  . . . , e,.-I 
span the fundamental mesh @. Its volume is :2'-' times the absolute value 
of the determinant 

Adding the first r - 1 lines to the last one, all entries of the last line become 
zero, except the last one, which is n = C ep,. The matrix above these 
zeroes has the absolute value of its determinant by definition equal to the 
regulator R.  Thus we get 

vol(F) = 2"-I R . 0 

(5.7) Lemma. The lattice f1  in R which is dual to the lattice f = a is 
given by 

*fl = (ad)-', 

where the asterisk denotes thc irivoltr~ior~ (.\.,I H (7,) OII K M  ;~nd 9 I I I C  
ditlerent of K (0. 

Proof: As (x, y) = Tr(*xy), we have 

Tr(xa) G Z implies immediately x E K ,  for if a,, . . . , a, is a %-basis of a and 
x = xla l+ .  . .+xna,, with xi E R,  then Tr(xaj) = xi xi Tr(aiaj) = nj E Z 
is a system of linear equations with coefficients Tr(aiaj) = TrK ~ ~ ( a ~ a ~ )  E Q, 
SO all xi E Q, and thus x E K .  It follows that 

By definition we have d-' = {x E K ( T r ~ l ~ ( x o )  Z], and we obtain the 
equivalences x E* f '  TrKIQ(xao) E Z for all a E a * xa & 0-' 
t-. x E (ad)-'. 0 

(5.8) Proposition. The functions f ~ ( a ,  r) satis+ the transformation formula 

and one has 

Proof: We make use of formula (3.6) 

for the lattice f = a in R,  whose fundamental mesh has volume 
vol(T) = %(a)(dK ('I2. The lattice T' dual to r is given by (5.7) 
as *f' = (ad)-'. The compatibility (*gz,*g) = (gz,g) implies that 
Qp ( 2 )  = Q*p ( z ) .  Furthermore we have 

The transformation x H x-I of the multiplicative group S fixes the Haar 
measure d*x (in the same way as x H -X fixes a Haar measure on R") 
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and maps the fundamental domain F onto the fundamental domain F - ' ,  
whose image log(F-I) is again a fundamental mesh of the lattice 2 log 10'1. 
Observing that ~ ( ~ ( r d , ) ' ~ " )  = rd ,  for x E S, we obtain 

1 
f ~  ( a .  f ) = /" 0 , ( i s / ~ )  d'x 

F 

This shows the first formula. To prove the second, we write 

The function r ( t )  satisfies r ( t )  = 0 ( e - " ' l / " ) ,  c > 0, t --+ oo, as the 
summands of 8 ( a ,  ix t  - 1 are of the form 

+ The point x  = ( x , )  varies in the compact closure F [ n, R;] of F .  
Hence x, 2 6 > 0 for all r ,  i.e., 

and so 

Writing m  = min((a,a) I a E a,a # 0) and M = #{a E a  I ( a , a )  = m } ,  it 
follows that 

where c = n6m/dA/n. We thus get as claimed 
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This last proposition now enables us to apply the Mellin principle (1.4) to 
the functions f ~ ( a ,  t ) .  For the partial zeta functions 

integral 

this yields the following result, where the notations d K ,  R ,  w ,  and r signify 
as before the discriminant, the regulator, the number of roots of unity, and 
the number of infinite places, respectively. 

(5.9) Theorem. The function 

Z ( f t , s )  = Z, ( s ) { (R ,  s ) ,  Re( s )  > 1 ,  

Z m ( s )  = IdK 1 ~ / ~ n + " ' / ~ f ~ ( s / 2 ) ,  admits an analytic continuation to @. \ 
{O,1) and satisfies the functional equation 

z ( a , ~ )  = Z(K, I - s ) ,  

where the ideal classes A  and A' correspond to each other via 3R' = [ d  1. I t  
has simple poles at s  = 0 and s  = 1 with residues 

2" 2' 
I - - -R,  resp. - R .  

W W 

Proof: Let f  ( t )  = fF(a,  t )  and ~ ( t )  = f F - I  ( ( a d ) - ' ,  t ) .  Then ( 5 . 8 )  implies 

I ? - I  with ao = -wR. Proposition (1.4) thus ensures the analytic continuation of 
the Mellin transforms of f  and g ,  and the functional equation 

I 1 
with simple poles of L ( f ,  s) at s  = 0 and s = - with residues -00, resp. uo. 

2 
Therefore 

admits an analytic continuation to @ \ (0, 1 )  with simple poles at s = 0 and 
s  = 1 and residues 

2" 
-2u0 = - - R 

2' 
, resp. 2uo = - R 

W W 
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and satisfies the functional equation 

S I - s  
Z(R. s )  = L ( f ,  ?) = L (g, --i--) = Z(ffr. I - s ) .  

This theorem about the partial zeta functions immediately implies an 
analogous result for the completed zeta function of the number ficld K ,  

(5.10) Corollary. The completed zeta function ZK (s) admits an analytic 
continuation to C \ (0, 1) and satisfies the functional equation 

ZK (s) = Z K  (1 - s) .  

It has simple poles at s = 0 and s = 1 with residues 

where h is the class number of K.  

The last result can be immediately generalized as follows. For every 
character 

x : J / P  4 S' 

6f the ideal class group, one may form the zeta function 

where 
x (a) 

< ( x , s ) =  c - 
a integral WaIs  

and ~ ( a )  denotes the value x(4i) of the class ff = [a] of an ideal a. Then 
clearly 

Z(x9s) = Ex(f f )Z( f f , s ) ,  
R 

and in view of A' = ff-'[a], we obtain from (5.9) the functional equation 

We now conclude with the original Dedekind zeta function 

The Euler factor at infinity, Z,(s), is given explicitly by $4 as 

Zco(s) = I ~ K  J ~ ' ~ L x ( s )  = I ~ K  J~ '~LR(S)"  

where 1 . 1 ,  resp. r2, denotes the number of real, resp. complex, places. By 
( 4 3 ,  (i), one has Z,(l) = 1dK ~ ' / ~ / n ' ~ .  As 

(5.11) Corollary. (i) The Dedekind zeta function < ~ ( s )  has an analytic 
continuation to @ \ { 1 ). 

I (ii) At s = 1 it has a simple pole with residue 

I Here h denotes the class number and 

w l d ~  l1I2 
g = log 

2'3 (2n)Q 

I the genus of the number field K (see chap. 111, (3.5)). 

(iii) It satisfies the functional equation 

I 

The proof of the analytic continuation and functional equation of the 
Dedekind zeta function was first given by the mathematician ERICH HECKE 
(1887-1947), along the same general lines we have presented here, albeit in a 
somewhat different formulation. Further, the theory we are about to develop 
in the following sections 8 3 6-8 also substantially goes back to HECKE 

The formula for the residue 

If x # 1, then Z(X, s )  is holomorphic on all of C, as C,@ x (8) = 0. 
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is commonly known as the analytic class number formula. It does allow 
,us  to determine the class number 11 of the field K ,  provided we know the 
law for the decomposition of primes in this field sufficiently well to lay our 
hands on the Euler product and thus compute the zeta function. 

The following application of corollary (5.1 1) to Dirichlet L-series L(x ,  s )  
(see $2) is highly remarkable. It results from studying the Dedekind zeta 
function ( K  (s) for the field K = Q(pn,)  of nz-th roots of unity, and is based 
on the 

(5.12) Proposition. If K = Q(pnI)  is the field of m -th roots of unity, then 

where x varies over all Dirichlet characters mod m ,  and 

'Proof: The proof hinges on the law of decomposition of prime numbers p in 
the field K .  Let p = (pl . . . p,.)' be the decomposition of the prime number 
p in K ,  and let f be the degree of the p,, i.e., T(p , )  = Then {K (s) 
contains the factor 

On the other hand, the L -series give the factor nx (1 - ,y (p)p-")-I. For p In? 
this is 1. So let p m. By chap. I, (10.3), f is the order of p mod m in 
(Z/mZ)* and e = 1. Since ef r = p(m), the quotient r- = p(m)/f is the 
index of the subgroup GI, generated A by p in G = (Z/n;Z)*. Associating 
x H x (p)  defines an isomorphism Gp 2 pj , and gives the exact sequence 
! 

A 

where A indicates character groups. We therefore find r = #(GIGp) = (G : 
G,,) elements in the preimage of x (p). It follows that 

= f l ( 1  - T ( p ) - y .  
PIP 

Finally, taking the product over all 11, we get cK (s) = G(s) flX L(x ,  s ) .  

For the trivial character X 0  mod m ,  we have L(xO,s)  = nl,l , l ,(l  - I?-.') 

{(s), so that 

Since ((s) and {K (s) both have a simple pole at s = 1, we obtain the 

(5.13) Proposition. For every non-trivial Dirichlet character X ,  one has 

L(x7 1) # 0.  

This innocuous looking result is in fact rather profound, and yields as a 
concrete consequence 

(5.14) Dirichlet's Prime Number Theorem. Every arithmetic progression 

i.e., every class (I  mod m, contains infinitely many prime numbers. 

Proof: Let x be a Dirichlet character mod nz. Then one has, for Re(s) > I ,  

where gx (s) is holomorphic for Re(s) > 4 - this follows from a trivial 
estimate. Multiplying by X(a-') and summing over all characters mod ni, 
yields 

X 
x("-'P) + g(r) C x ( a - ' ) l o g ~ ( x , s )  = --- 

X I '  pS 

Note here that 

When we pass to the limit s -, 1 (s real > I ) ,  log L (x ,  s) stays 
bounded for x # X" because L(x,  1 )  # 0, whereas log L(xO. s )  = 
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xplm log(1 - p-") + log((s) tends to co because ((s) has a pole. The 
left-hand side of the above equation therefore tends to co, and since g(s) is 
holomorphic at s = I ,  we find 

lim C - = 00. 
,$-+ ' ,E<,(,l,) P . ~  

Thus the sum cannot consist of only finitely many terms, and the theorem is 
proved. 0 

r For a = 1, Dirichlet's prime number theorem may be proved by pure 
algebra (see chap. I, 5 10, exercise 1). Searching for a proof in the general 
case Dirichlct was Icd to the study 01' thc L-series L ( x ,  s). This analytic 
method gives sharper results on the distribution of prime numbers among 
the classes a mod m. We will come back to this in a more general context 
in 8 13. 

5 6. Hecke Characters 

Let m be an integral ideal of the number field K ,  and let J m  be the group 
of all ideals of K which are relatively prime to m. Given any character 

x : J m - - + ~ ' = { z ~ @ I  I z I = l } ,  

we may associate to it, as a common generalization of the Dirichlet L-series 
as well as the Dedekind zeta function, the L-series 

Here a varies over all integral ideals of K , and one defines x (a)  = 0 whenever 
(a, m) # 1. Searching for the most comprehensive class of characters x for 
which the corresponding L-series could be shown to have a functional 
equation, HECKE was led to the notion of Gro$encharaktere, which we 
define as follows. 

(6.1) Definition. A Grofiencharakter mod m is a character x : J m  -+ S' 
for which there exists a pair of characters 

for every algebraic integer a E o relatively prime to m. 
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A character x of J m  is a Gro$encharakter mod m as soon as there exists 
a character X ,  of R* such that 

for all a E o such that a = 1 mod m. For if this is the case, then the rule 
x f ( a )  = X((a))X,(a)- '  defines a character xf of (o/m)* which satisfies 

for all algebraic integers a E o relatively prime to m. This last idcnlity 
underlines the fact that the restriction of a GroJencharakter to principal 
ideals breaks up into a finite and an infinite part. From 

it extends uniquely to the group 

of all fractions relatively prime to m, because every a E K(")  determines 
a well-defined class in (o /m)* .  The character x,, and thus also the 
character xf, are determined uniquely by the GroJencharakter X ,  since 
the group 

K m  = { a  E K ( ~ )  I a = I mod m }  

is dense in R*, by the approximation theorem, and one has x,(a) = x ( ( a ) )  
for a E Km.  Let us recall that the congruence a = 1 mod m signifies that 
a = b /c ,  for two integers b, c relatively prime to m, such that b = c mod m 
or, equivalently, a E u:') g K p  for plm, if m = n, p"p. 

The character X ,  factors automatically through R*/om,  where 

om= { E  E O * ~ E  = 1 modm] .  

In fact, for E E om we have x ~ ( E )  = 1, and thus x,(E) = x ~ ( E ) x , ( E )  = 

x ( ( E ) )  = 1 .  The two characters x f  and x ,  of (o /m)* ,  resp. R* /om,  
associated with a GroJencharakter x satisfy the relation 

x ~ ( E ) x , ( E )  = 1 for all E E o* , 

and it can be shown that every such pair of characters ( x ~ ,  x,) comes from 
a GroJencharakter x (exercise 5) .  

The attempt to understand GroJencharaktere in a conceptual way leads 
one to introduce ideles. In fact, all Gr@encharaktcrc. arise as characters of  
the idele class group of the number field K .  We will not use this more 
abstract interpretation in what follows, but it will be explained at the end of 
this section. 
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(6.2) Proposition. Let x be a Gri$enc.hur~rkto. mod m, and let m' be a 
divisor of m. Then the following conditions are equivalent. 

(i) x is the restriction of a G~.i~flc~nchn/.oX-te~. X I  : .I "" -+ S '  mod m'. 

(ii) xf factors through (o /m l )* .  

Proof: (i) =$ (ii). Let x be thc restriction of the Gr~i~j~( l jc /rc~/ru~~t ikl (~~.  
x' : J"" -+ S ' ,  and let x f ,  X &  be the pair of characters associated with x'.  
Let Ff, resp. F,, be the composite of 

x; ( / )  -+ ( ) *  + , resp. R*/om -+ R*/om' %- S'  . 

We then find for a E dm) 5 d m ' )  : 

so that xf = Sif and X ,  = 2, because xf and X ,  are uniquely determined 
by x .  Thus xf  factors through (o /m l )*  (and X ,  through R*/on{) .  

x; 
(ii) =+ (i). Let xf  be the composite of (o /m)*  + (o /m l )*  -+ s'. In every 

class a' mod fm '  E J""/P"",  there is an ideal a E Jn' which is relatively 
prime to m ,  i.e., a' = aa for some ( a )  E fm ' .  We put 

x1(a'> = x(a)x;(a)xoo(a).  

This definition does not depend on the choice of the ideal a E J m ,  for if 
a' = alal, a1 E . Im,  ( a l )  E pm', then one has (aa;')  E .Im, and 

The restriction of the character X' from J ~ '  to J m  is the GroJencharakter x 
of J m ,  and if (a')  is a principal ideal prime to m' and a' = ab,  ( a )  E J "', 
(b) E P m', then we have 

Thus X' is a GroJencharakter mod m' with corresponding pair of characters 
x f .  Xm. 0 

The GroJencharakter x mod m is called primitive if it is not the 
restriction of a GroJencharakter X' mod m' for any proper divisor m'lm. 

According to (6.2), this is the case if and only if the character X I  of (o /m)*  
is primitive in the sense that it does not factorize through (o /m l )*  for any 
proper divisor ml(m .  The conductor of x is the smallesl divisor f 01' 111 

such I I ~ I  x is lhc rcslriclion ol' a G I . ~ J ~ , I I C / ~ U / . U ~ ~ ~ I .  mod f. By (6.2),  f 
is the conductor of xf. i.e., the smallest divisor of m such that XI factors 
through (o / f ) * .  

Let us now have a closer look at the character xf, and then at the 
character x,. 

(6.3) Definition. Let xf be a character of (o /m)*  and y E m-la-' ,  where a 
is the different of K IQ. Then we define the Gauss sum of xf to be 

where s varies over a system of represelmtives of (o /m)* .  

The Gauss sum does not depend on the choice of representatives .\., for if 
x' = x mod m ,  then x'y - xy E rnm-'0-' = 0-' - - { a  E K ( Tr(u) E z } ,  
so that 

TI-(x'y) = Tk(sy) mod Z 

- and therefore e2"'"'("'y) - e2xiT'.(xy). The same argument shows that 
rlll(,yI., y) depends only on the coset y + a-I, i.e., it defines a function 
on the elm-module m-'a- ' /a- ' .  In the case K = Q, m = ( m ) ,  we get back 
the Gauss sum introduced in (2.5) by t ( x f ,  n )  = r,(xf, m). We will have to 
define theta series and L -series attached to Hecke's GroJencharaktere with 
a view to proving functional equations. For this, the following properties of 
Gauss sums will play a crucial rSle. 

(6.4) Theorem. Let xf be a primitive character of (o /m)* ,  let y E m-' a-  ' 
and a E o. Then one has 

and furthermore 
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The most diffcult part of the theorem is the last claim. To prove it, we 
make the following preparations. For integral ideals a = py' . . . p: , v, 1 1, 
consider the Mobius function 

if r- = 0, i.e., a = ( I ) ,  
if v 1  = . . . = v,. = 1, 

otherwise. 

For this function we have the 

(6.5) Proposition. If a # 1, then C p(b) = 0. 
bla 

Proof: If a = py' . . . p?, v; 2 1 ,  then 

Now, for y E rn-la-' and for every integral divisor a of m, we look at 
the sums 

Ta(y) = 
c e2ni f i - ( xy )  and Sa(y) = c e2ni i"r(sy) 

x mod m x mod m 
(x, m)=a alx 

These sums do not depend on the choice of representatives x ,  for if 
XI = x mod m, then (x' - x)y E a-', hence Tr(xly) = Tr(xy) mod Z. We 
find the 

I 

(6.6) Lemma. One has 

and for every divisor a 1 m, 

5 6. Hecke Characters 

Proof: In view of (6.5), we have 

If y E a-la-' and a I x ,  then xy E a-I, so that Tr(xy) E Z, i.e., all summands 
of Sa are 1 and there are #(a/m) = %(:) of them. If on the other hand 
y $ a-la-', then we can find in a/m a class z mod m such that zy 6 9- '  , 
i.e., Tr(zy) $ Z, so that eZn' "'W) # 1, and we obtain 

since x + z varies over all the classes of a/m as x does, so that we do find 
&(Y) = 0. 0 

Proof of Theorem (6.4): Let a E o, (a, m) = 1. As x runs through a system 
of representatives of (o/m)*, so does xu. We get 

Let (a,m) = ml # 1. Since xf is primitive, we can find a class 
b mod m E (o/m)* such that 

m 
xf(b) # 1 and b = 1 mod - . 

m 1 

As a consequence, ah - a mod m, so that ahy - ay E r l ,  and by what we 
have just shown, 

Finally, in view of jrf(h) # 1, we find rm(xf, ay) = 0. 

As for the absolute value of the Gauss sum, we see from (6.6) that 
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We now make use of the condition (yma, m)  = 1 .  It implies that 

m 
y(z - 1 )  E a-la-' t-. z = 1 mod -. 

a 

Indeed, if z - 1 E a-lm, then y(z - 1 )  E m-'a-la-lm = a-Id-'. If on the 
other hand z + 1 mod y ,  i.e., { ( z  - l ) ,  then up(z - 1 )  < up(:) for a 
prime divisor p of y .  Since (yma, m)  = 1 ,  we have vp(ymd) = 0,  so that 
;up ( y )  = -up (m)  - up@) and 

and thus y(z - I )  q! a-Id-'. This, together with (6.6), gives 

alnl z mod m 
z ~ l  mod m/a  

For a # 1, the last character sum vanishes since X I .  is primitive, and therefore 
nonzero on the subgroup of z mod m E (o /m)* such that z = 1 mod m/a: 
the sum reproduces itself under multiplication with a value x f ( x )  # 1 of the 
character. So we finally have that Itnl(xf,  y ) 1 2  = f l (m).  This proves all the 
statements of the theorem. U 

Having studied the characters xf of (o /m)* ,  we now turn to the characters 
xoo of R*. They are given explicitly as follows. 

(6.7) Proposition. The characters A of R*, i.e., the continuous homomor- 
phisms 

h :  R* ---t s ' ,  

are given explicitly by 

for some admissible p E n, Z (see $3 ,  p.448) and a q E Ri. p arid q ~ r c  
uniquely determined by A. 

Proof: For every .\- E R* we may write x = L l x l ,  and obtain in this way 
1x1 

a decomposition 
R* = U X  R;,  

where U  = { x  E R* I 1x1 = 1 ) .  It therefore suffices to determine separately 
the characters of U  and those of R:. We write p instead of t for elements of 
Hom(K, C) to indicate that t = t, and we choose an element a from each 
pair ( r ,  t} such that t # t. Then we have 

and S' -+ [S '  x s ' ]+ ,  x, H (x,, F,), is a topological isomorphism. The 
characters of (f I )  correspond one-to-one to exponentiating by a 11, E (0 ,  I ) , 

k and the characters of S'  correspond one-to-one to the mappings x, H xu,  
for k E Z. From the correspondence k H (k ,  O), resp. (0, - k ) ,  for k 2 0 ,  
resp. k 5 0 ,  we obtain the characters of [S' x S f ] +  in a one-to-one way from 
the pairs (p,,  p i )  with p,, pi 2 0 and p,p, = 0. The characters of U are 
therefore given by 

A(x) = N ( x P ) ,  

with a uniquely determined admissible 17 E f l ,  27, 

The characters of R: are obtained via the topological isomorphism 

Writing as above 

R + = ~ R  x f l [ W  x  w]', 
P 0 

and observing the isomorphism [ W x  W ]  + ; W ,  (x,, x,) H 2x,, we see 

that a character of R* 
rule 

It is therefore given 
isomorphism log then 

corresponds one-to-one to a system (qp ,qo)  via the 

by an element q E R* via x H ~ ( e ' 4 . ' ) .  The 
gives a character A of R: via y H ~ ( c l ~ " ' " " )  = 
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N ( ~ ' Q ) ,  with a uniquely determined q E R*. In view of the decomposition 
'x = Ix 1, we finally obtain the characters ;I of R* as 

IX I 

If the character X, associated to the GroJencharakter x : Jn' -+ S '  is 
given by 

x,(x) = ~ ( , v P l x l - p + ~ q ) ,  

then we say that x is of type (p ,q) ,  and we call p - iq the exponent 
of X .  Since X, factors through R*/om, not all exponents actually occur (see 
exercise 3). 

The class of all Gropencharaktere subsumes in particular the generalized 
Dirichlet characters defined as follows. To the module 

we associate the ray class group Jnl/P"' mod m (see chap. V1, O I). Here 
Jm is the group of all ideals relatively prime to m, and Pm is the group of 
fractional principal ideals (a) such that 

a = 1 mod m and a totally positive. 

This last condition means that t a  > 0 for every real embedding t : K + R. 

(6.8) Definition. A Dirichlet character mod m is a character 

x : Jm/Pm -, S' 

of the ray class group mod m, i.e., a character x : Jm -+ S1 such that 
x (Pm)  = 1. 

The conductor of a Dirichlet character x mod m is defined to be the 
smallest module f dividing m such that x factors through J f / P f . 

(6.9) Proposition. The Dirichlet characters x mod m are precisely the 
GroJencharaktere mod m of type (p, 0), p = (p,), such that p, = 0 for all 
complex t. In other words, one has 

for some character xr of (o/m)*. The conductor of the Dirichlet character is 
at the same time also the conductor of the corresponding GroJencharakter. 

Proof: Let x be a GriiJencharakter mod m with corresponding characters 
xf, x, of (o/m)*, R*/om, such that X, is of type (p, 0) with p, = 0 for r 
complex. For totally positive a E o such that a = 1 mod m, we then obviously 
have xf(a) = 1,  and x,(a) = 1, and then ~ ( ( a ) )  = xf(a)xm(a) = 1. 
Therefore x factorizes through J m / P m ,  and is thus a Dirichlet character 
mod m.. 

Conversely, let x be a Dirichlet character mod m, i.e., a character of Jm 
suchthatx(Pm) = 1.Let K m =  {a E K * I a  = 1 m o d m ) , K ~  = {a E K m ) a  
totally positive) and RT+, = {(x,) E R* I x, > 0 for t real). Then we have 
an isomorphism 

Km/KY - R*/R;+, S n {f 1). 
p real 

Then the composite 

defines a character of R*/RT+,. It is induced by a character X, of R* which - 
because x,(R;,.,) = I - is of thc form x,(x) = N ((I ) I J )  wih p = (p r  ), 

l.rl 
/)r E (0, 1 1  for r real, and p, = 0 for t complex. We have x ((u)) = x,(tr) 

for a E Km, and 

xf(a) = x ( W )  xm(4-I 

gives us a character of (o/m)*. Therefore x is indeed a GroJenchar.aktcr of 
the type claimed. 

Let f be the conductor of the Dirichlet character x mod m, and let f' be the 
conductor of the corresponding GroJencharakter mod m. x : Jm/ P m  -+ S ' 
is then induced by a character X' : ~ f / p f  + S 1 ,  so the GroJencharakter 
x : Jm + S 1  mod m is the restriction of the GroJencharakter X '  : J f  -+ S '  . 
This implies that f ' I  f. On the other hand, the GriJencharakter x : .In1 -+ S' 
is the restriction of a Grbpencharakter X" : J!' -+ S ' ,  so xf is the composite 

x" 
of (o/m)* -+ (o/f1)* --& S' (see (6.2)). By the above, X" gives a character 

Jf ' lpf '  -+ S' such that the Dirichlet character x : .I"'/Pm -+ S '  factors 
through Jf'l P f'. Hence f 1 f', so that f = f'. 0 

(6.10) Corollary. The characters of the ideal class group CIK = . I / P ,  
i.e., the characters x : J -+ S '  such thai x (P )  = 1,  are precisely the 
GroJencharaktere x mod 1 satisfying X, = 1. 
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Proof: For m = 1 we have (elm)' = { I ] .  A character x of J / P  is 
a Grb$'enchurakter mod 1 .  The associated character X I .  is trivial. so 
x,(a) = x f ( a ) - I X ( ( u ) )  = 1, and thus X ,  = 1, because K *  is dense 
in R*. If conversely x is a Groflencharakter mod 1 satisfying X ,  = 1, then 

for a E K*.  Therefore x ( P )  = 1, and x is a character of the ideal class 
group. U 

To conclude this section, let us study the relation of Gri$enchoroktere to 
characters of the idkle class group. 

(6.11) Definition. A Hecke character is a character of the idde class group 
C = I / K *  of the number field K , i.e., a continuous homomorphism 

x : l - s 1  

S t ,  hence finite, and so the kernel has to contain a subgroup of the form 

n,,, u:"'" where 1 1 ,  = 0 for almost all p.  For it  we can Lakc the ideal 
m = n,,, p n p  as a module of definition. 

Since ~( l ,? ' )  = I ,  the character x : C = I / K *  + S'  induces a character 

o f  thc group 
C ( m )  = I / I y K *  

But it will not in general factor through the small ray class group 
I / ~ " ' K *  Z J"'/P"' (see chap. VI, (1.7), (1.9)), which bears the following 
relation to C ( m ) .  

(6.12) Proposition. There is an exact sequence 

of the idde group I = u p K , *  such that x (K *) = 1. 
Proof: The claim follows immediately from the two exact sequences 

In order to deal with Hecke characters concretely, consider an integral 
ideal m = up p n p  of K ,  i.e., n p  2 0 and n p  = 0 for p 1 oo. We associate to 

this ideal the subgroup im of I ,  

If p f co, then u?) is the group of units U p  if n = 0. and the n-th group 
of higher units for n > 1. We interpret I, as the multiplicative group R* of 
the I-algebra R = K @Q R = up,, K p .  Observe that 7" differs slightly 

from the congruence subgroup I "' = n, u:"P' introduced in ch;p VI. I ,  in 

that, for real p, we have the factor (1;') = R; instead of the component K;. 

The effect is that l / i m ~ *  is not the ray class group J m / P m  mod m ,  but 
isomorphic to the quotient J m / P  by the group P"' of all principal ideals ( a )  
such that a = 1 mod m - this is seen as in chap. VI, (1.9). We will refer 
to J*/F'" as the small ray class group. 

We call m a module of definition for the Hecke character x if 

Every Hecke character admits a module of definition, since the image of 
x : nplW U p  + S 1  is a compact and totally disconnected subgroup of 

In the second one, one has im f l  K* = o m ,  I,?' n K* = I and 
i n l / l p  = I ,  = R*, and so ~ " K * / I ~ K *  = R * / u m .  0 

Given a Hecke character x with module of definition m, we may now 
construct a Grijflencharakter mod m as follows. For every p f oo, we choose 
a fixed prime element n, of K ,  and obtain a homomorphism 

which maps a prime ideal p { m to the class of the idde (n,) = 
(. . . , 1 ,  I,np, 1, I ,  . . .). This mapping does not depend on the choice of 
the prime elements, since the idkles ( u p ) ,  u p  E U p ,  for p j m, lie in I,?'. 
Taking the composite map 

yields a 1-1 correspondence between Hecke characters with module of 
definition m and Grb$encharaktere mod m. The reason for this is the 
following 
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(6.13) Proposition. There is a canonical exact sequence 

where S is given by 

&(a)  = ( ( a ) - ' ,  a  mod m,  a mod om) 

Proof: For every a E K ( ~ ) ,  let Z? E I be the idele with components i3;, = u 
for p 1- moo and Zp = 1 for p I moo. It is then obvious that 

Let us decompose the principal idble a according to its components in 
I = If x I, as a product a = afa,, and define the homomorphisms 

p :  (o /m)*  -+ C ( m ) ,  + : R * / o m  -+ C ( m )  

by 
p(a) = a a ,  m o d I p K * ,  +(b) =b- '  modlTK* ,  

where every b E R* = I, is considered as an idble in I .  For a E o ,  
a  = 1 mod m ,  we have a f 2 '  E I;" E I ,  so we get in C ( m )  the equation 
p(a) = [Za,] = [afa,] = [a]  = 1, where [ ] indicates taking classes. 
This shows that p is well-defined. For every E E o m ,  one has ~f E I;', SO 

[E,] = [E,E~] = [El = 1 in C ( m ) ,  and thus +(s,) = 1 .  Consequently 1// is 
well-defined. We now define the homomorphism 

I f : J m  x (o /m)*  x R* /om -+ C ( m )  

by 
f ( ( a ,  a  mod m ,  b mod om)) = c(a)p(a)$(b) ,  

and we show that the resulting sequence is exact. The homomorphism 6 is 
clearly injective. For a E K(") one has 

f  ( 6 (a ) )  = c ( ( a ) )  - 'cp(a)+(a) = Z-';inma;' mod I;'K* = 1 ,  

so that f  o S = 1. Conversely, let 

f  ( ( a ,  a  mod m ,  b mod om)) = c(a)p(a)+(b) = I ,  

and let a = npim, p u p .  Then 
! 

c(a) = y mod I;"K* 

for some idble y with components yp = rrpVp for p 1/ moo, and yp = 1 
for p I moo. This yields an identity 

yiia,b-l = t x  with 6 E I;" and x E K * .  

For p { moo one has ( y Z ~ , b - ' ) ~  = rrpVpa = ( P ~  in K p ,  and so 
O l p )  up = vp(a- 'x ) .  For p I m one has ( y ; i ~ , b - ' ) ~  = 1 = t p x ,  so that x E U p  , 

and also 0 = up = up(a- 'x )  since a is relatively prime to m. This gives 

a = (ax- ' )  

As x E (ifp), one has x z 1 mod m, hence 

Finally, for p 1 oo we find (y2a,h-')p = ah;' = x in K p ,  so that 

h = a,x-' , and thus 
+(axd1)  = +(b) .  

So we have 

(a, a  mod m,  b mod om) = ( ( a x - ' ) ,  ax-' mod m,  ax-' mod om) , 

and this shows the exactness of our sequence in the middle. 

The surjectivity of f  is proved as follows. Let a mod IfmK* be a class 
in C(m) .  By the approximation theorem, we may modify the representing 

( 1 1 ~ )  
id& a ,  multiplying it by a suitable x E K*, in such a way that a p  E Up 
for p I m. Let a = nplnlm p ' ~ ( ~ p ) .  Then we have 

c(a)  = y mod I:K*, 

U P @ , )  = where the idele y has components yp = np Epap, E,, E U p ,  for 
p + moo, and yp = 1 for p I moo. This gives ya- 'a ,  E I;', and if we define 
b =a&',then f ( ( a , l  modm,bmodom)) = yb-' - yrr, = a  modI,"K*. 

0 

By the preceding proposition, the characters of C ( m )  correspond 1 - 1 to 
the characters of J m  x (o /m)*  x R* /om that vanish on S ( K ( " ' ) / ~ ~ ) ,  i.e., to 
the triples X ,  xf, X ,  of characters of J m ,  resp. (o /m)* ,  resp. R*/on',  such 
that 

x ( ( a ) )  -'Xf(a mod m)xm(a mod om) = I 

for a E K ( ~ ) .  This makes ,y a Grb&ncharakter mod m, and since x f  and 
X ,  are uniquely determined by X ,  we obtain the 

(6.14) Corollary. The correspondence x H x oc is 1 - 1 
x of C ( m ) ,  i.e., Hecke characters with module of 
Gr6Jencharaktere mod m. 

between characters 
definition m ,  and 
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Exercise 1. Let m = n.=, m, be a decomposition of m into integral ideals which 
are pairwise relatively prime. Then one has the decompositions 

l 

and 

Let xr be a character of (o/m)*, and let xf, be the characters of (o/m,)* defined 
by xt. If y E m-'a-'/a-', and if y, E m;'a-'/~-' are the components of y with 
respect to the above decomposition, then 

Exercise 2. Prove the Mobius inversion formula: let f (a) be any function of 
integral ideals a with values in an additive abelian group, and let 

Exercise 3. Which of the characters h(x) = N ( x P J x I - ~ + ~ ~ )  of R* are characters of 
R*/om? 

Exercise 4. The characters of the "small ray class group" .Im/pm mod m are the 
GroJencharaktere mod m such that X, = I .  

Exercise 5. Show that every pair of characters xf : (o/m)* + S' and 
xbl : R*/om -+ S1 such that 

x~(E)x,(E) = 1 for all s E o* 

comes from a GroJencharakter mod m. 

Exercise 6. Show that the homomorphism c : .Im -+ C(m) is injective. 

5 7. Theta Series of Algebraic Number Fields 

The group P of fractional principal ideals (a)  is constituted from the 
elements a E K*, and it sits in the exact sequence 

In order to form the theta series we will need, let us now extend K* to a 
group K^+ whose elements represent al l  fractional ideals a E J. 

3 7. Theta Series of Algebraic Number Fields 

(7.1) Proposition. There is a commutative exact diagram 

with a subgroup K^* E C* containing K* such that la 1 E RT, and 

q(4) = I W a ) (  

for all a E 2. 

Proof: Let the ideal class group .TIP be given by a basis [bl], . . . ,[[I, 1, and 
choosc, for cvcry one of these basic classcs, an ideal b I ,  . . . , b, . Thcn cvcry 
fractional ideal a E J can be written in the form 

a = abyl . . . by' 

where a E K* is well-determined up to a unit E E o*, and the exponents 
v; mod hi are uniquely determined, hi being the order of [b;] in . l / P .  Let 
bj" = (h; ) .  For every s E Hom(K, C), we choose a tixed root 

A 
- 
A A 

in C in such a way that biF = bi, whenever t is complex. _We define K *  to 
be the subgroup of C* generated by K* and by the elements hi = (h;,) E C*. 
Each class [b] E J / P  contains a uniquely determined ideal of the form 

b = 6;' . . . b,? with 0 5 v; < h i ,  

and we consider the mapping 

It is a homomorphism, for if b = by' . . b: and b' = 6;' . . . b:!, and if 
v; + v,! = p; + hihi ,  0 5 p; < h i ,  then 6:' . . . b y  is the ideal belonging to 
the class [b][bl], and 

A 

f is clearly surjective. To show the injectivity, let . . . b,.V'. = a E K*, 
and let h = h ,  .. .h,  be the class number of K .  Then we have for 
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1 1 ~ h / h ~  I ! ,  11/11, the iieal a A = a-'6,'" . . . 6:'' E .I that a" = N - " ( I ) ,  . . .  11,. ) =  
a-"(b:' . . . b,V')I1 = (1). Since J is torsion-free, it follows that a = ( l ) ,  and 
so by' . - .  b,V' = (a )  E P .  From this we deduce that every element i? E E* 
admits a unique representation 

We define a map 
( ) : E * - J  

by A A 

a = agy' . . . b,."' - (z) = ab;' . . . b p .  

Arguing as above, we see that this is a homomorphismA It is surjective and 
obviously has kernel o*. Finally we have that 1% I = (Ib;, 1 )  E Rf and 

so that %((%.)) = I N  (6.)1, and thus /a1 E R;, %((a))  = IN(a)l for 
all a E KI*. 

The elements a of fi used to be called ideal numbers - a name which 
is somewhat forgotten but will be used in what follows. The diagram (7.1) 
implies an isomorphism 

? /K*  S J / P .  

For a ,  b E KI* we write a -- b if a and b lie in the same class, i.e., if 
ah-' E K*. We call a an ideal integer, or an integral ideal number, if  ( u )  is 
an integral ideal. The semigroup of all ideal integers will be denoted by 5. 

h A 

Furthermore we write a 1 h if 7; E 6, and for every pair a,  h E K * ,  we have 
the notion of gcd(u, h) E k* (which is lacking inside K*). The greatest 
common divisor is the ideal number d (which is unique up to a unit) such 
that the ideal ( d )  is the gcd of the ideals (a ) ,  (h) .  Observe that the ideal 
numbers are not defined in a canonical way. This is the reason why they have 
not been able to hold their own in the development of number theory. (They 
are treated in [46], [65] .) 

We now form an analogous extension of the prime residue groups 
(Z/mZ)*.  For three ideal numbers a ,  b, m,  the congruence 

a ~ b m o d m  

signifies that a -- b and 9 E 6 U (0) .  If m = (m), we also write this 

relation as a r b mod m. Let m be an integral ideal. The semigroup 8"') 
of all integral ideal numbers relatively prime to m is partitioned by the 
equivalence relation = into classes, which we will write as a mod m. They 
are given explicitly as follows. 

5 7. Theta Series of Algebraic Number Fields 

(7.2) Lemma. For every u E 8"" one has 

a mod m = a +a(a- ' )m.  

Proof: Let: b G a mod m, b  # a ,  i.e., b = aa for some a E K*, a  # 1 ,  and 
h - a  = e m ,  c E 6. Then 

a- ' (b  - a )  = a - 1 E (a - 1 )  = (a-')(c)(m) 5 (a- ' )m,  

so that b E a + a(a-')m. Let conversely b E a + a(a-')m, b  # a ,  and thus 
b/a = a E 1 + (a-')m. Then one has b - a and (b - a)  = (a)(a - 1) S 
(a)(a- ')m = (m), i.e., m 1 b  - a and therefore b E a mod m. 0 

We now consider the set 

(Z/m)* := { a mod m ( a E 8"')] 

of all equivalence classes in the semigroup 5(m) of ideal integers prime to 111. 

(7.3) Proposition. ( z / m ) *  is an abelian group, and we have :t canonical 
exact sequence 

Proof: For a ,  h  E z(m), the class nh mod m only depends on the classcs 
u mod 111, h  mod 111, so we get a well-defined product in (6 /m)*.  Every 
class a mod m has an inverse. Indeed, since (a)  + m = o, we may write 
1 = a + p, 0 # a E (a) ,  j~ E m. Consequently a 1 a ,  so that a = a x ,  
.r E i?'"", and since 1 E a(l  + a- 'm)  = a, mod m, we see that ax mod m is 
the unit class, i.e., x mod m is inverse to a mod m. 

The right-hand arrow in the sequence is induced by a I-+ (a). It is 
surjective since every class of J I P  contains an integral ideal relatively prime 
to m. If the class a mod m = a(l  + (a)- 'm) is mapped to 1 ,  then one has 
(a)  E P,  and so a E 0, (a,m) = 1. Hence a mod m = a + m is a unit 
in o /m.  The injectivity of the arrow on the left is completely trivial, i.e., we 
have shown the exactness. 0 

For an ideal class A E J / P ,  we will denote by A' E d / P  in what follows 
the class defined by 

RR' = [ma], 
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where a is the different of K JQ. Let m = ( m )  and a = ( d ) ,  with some fixed 
ideal numbers rn, d.  For m = o let m = 1. We now study characters 

x : (Z /m)*  + C*, 

and put ~ ( a )  = 0 for u E o such that ((I, m )  # I. In thc applications, x will 
come from a Groj'encharakter- mod m ,  but the treatment of the theta series 
is independent of such an origin of X .  

I 

(7.4) Definition. Let a E 3 be an ideal integer, and let f f  be the class of (a) .  
Then we define the Gauss sum 

( X ,  a )  = c (2 )  e27r1 ~ ( j a l n d )  
; mod m 

where 2 mod m runs through the classes of (3 /m)*  which are mapped to the 
class A'. In particular, we put t ( x )  = t ( X  , 1). 

The Gauss sum t ( x ,  a )  reduces immediately to the one considered in 3 6 ,  

t m ( x ,  y)  = C ( x )  e2Hi T , . ( x~ )  
.u mod m 
( x ,  m)=l 

In fact, on the one hand we have 

since the class of the ideal ( y )  = (a)(?)(m)-'(d)-I is the principal class 
f i f 7 f m - l a - 1  , so y E K*, and one finds 

I y  E ( y )  = (a2)m-'O-l 5 m-'aw' ,  

because a and 2 are integral. On the other hand, if 2 mod m is a fixed 
class of (c/m)* which maps to f f ' ,  then, in view of (7.3), we get the others 
by 2 x  mod m ,  with x  mod m varying over the classes of (o /m)* .  Therefore 

with y  = 2 / m d ,  which satisfies (yma,m)  = 1 since yma = ( 2 )  and 
( (?) ,m)  = 1. Consequently, t ( x , a )  does not depend on the choice of 
representatives 2, and theorem (6.4) yields at once the 

(7.5) Proposition. For a primitive character x of (s/m)*, onc has 

5 7. Theta Series of Algebraic Number Fields 489 

The theta series 8 ( x ,  z )  used in 9 2 in the treatment of Dirichlet L -series 
are attached to the field Q. We now have to find their analogues relative to 
an arbitrary number field K .  Given any admissible element p E n, Z (see 
$3,  p.448) and a character x of (S /m)* ,  we form the Hecke theta series 

where m ,  d are tixed ideal numbers such that ( m )  = m and ( d )  = 0. We take 
m = 1 if m = 1. The case m = 1, p = 0 is exceptional in that the constant 
term of the theta series is x (O)N(OP) = 1 ,  whereas it is 0 in all other cases. 

Let us decompose the theta series according to the ideal classes 4i E .I / P 
into partial Hecke theta series 

where a varies over all ideal integers in the class 2 E Z*/K* which 
corresponds to the ideal class R under the isomorphism ? / K *  2 J / P .  
For these partial theta series, we want to deduce a transformation formula, 
and to this end we decompose them further into theta series for which we 
have the general transformation formula (3.6) at our disposal. 

Let a be an integral ideal relatively prime to m which belongs to the 
class f f ,  and let a E 8"') be an ideal number such that (a )  = a. 

(7.6) Lemma. Assume that m # 1 or p # 0.  If x mod m varies over the 
classes of ( o / m ) * ,  then one has 

where r is the lattice m/a 2 R and 

Proof: In the theta series 81'(ff, X ,  z ) ,  it suffices to sum over the elements of 
A 

.f? n ocnl) because x is zero on the others. Every cl%ss ? mod m E (S/m)* 
is either disjoint from 4i or else it is contained in ff. In view of the exacl 
sequence (7.3) 
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are the different residue classes of (G/m)* contained in 2. This gives 

For any admissible element p  = (p,) ,  we will write p for the admissible 
element with components p,  = p ~ .  From the transformation formula (3.6) 
for the series 0; and proposition (7.5) on Gauss sums, we now obtain the 

(7.7) Theorem. For a primitive character x of (G/m)*,  one has the 
transformation formula 

BP( f f . x .  - 1/11 = w(x,~)N((z/~)'+~)B~(I',~,z) 

With the constant factor 

This factor has absolute value I W ( X  , p) I = 1 .  

Proof: The lattice f '  dual to the lattice f  = m/a 5 R is given, according 
to (5.7), by * f '  = a/ma. (Here as in $4, the asterisk signifies adjunction with 
respect to ( , ), i.e., ( x , a y )  = (*ax ,  y).) The volume of the fundamental 
mesh of f  is by chap. I, (5.2) ,  

From (3.6) we now gct 

with the factor 

A(z)  = [iTr(p)~(lm/a~)~(ldl)'i2]-'~((~md/a21z/i)p+~) 

= [iTr(p'Jn(m>] ' N ( lmd/a21p) N ( ( Z / ~ ) P ' ; )  

and the series 

Writing g' = A the rules stated in $3  give 
* ( m d / a )  ' 

( x ,  g') = Ti-(axglmd) , 

and N((*g)P) = N(gF). If g' varies over the lattice f ' ,  then g  varies over 
the set 

(nrd/a)*f f  = (md/u)a(ma)-'  = (3 n G) U ( 0 ) .  

Substituting all this into (2) yields 

Let us now consider first the special case m = 1, p  = 0  (which was 
essentially treated already in $5) .  In this case, we have (4 n 8) U ( 0 )  = 
(ag I g E K ,  (ag)  g o)  = aa-I = a f .  Consequently 

Equation (1) thus becomes 

Now assume m # I or p # 0. Then we have X ( 0 ) ~ ( O F )  = 0. Substituting 
(3)  into ( I )  and (1) into formula (7.6), with - l / z  instead of z ,  we obtain 

with the factor 

Now consider the sum in parentheses. If x varies over a system of 
representatives of (o /m)* ,  then ax varies over a system of representatives 
of those classes of (G/m)* which are mapped under ( s / m ) *  -+ J / P  to the 
class ff. Furthermore, (g )  is an integral ideal in the class A', and since 8' 
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bears the same relation .ril.ri = [ m 3 ]  to % as 3 does to .GI, we recognize the 
sum in question as the Gauss sun1 

Substituting in now the result ( 7 . 3 ,  

we finally arrive at the identity 
1 

with the factor 

- 
where one has to observe that T].(p) = Tr(/5), 01' = *a/', a*a = lal', and 
(nldlP = (*Inid()/' = lnltllF bccausc Ill~tll E R;. Sincc I s ( x ) (  = a, 
we have I W ( x , p ) I  = I.  0 

If m # 1 or p # 0, we find for the special theta series: 

e P ( x ,  Z )  = C ( a ) ~  ( a P )  e"i(azlln'dl,a) = C Op(R,  X ,  z ) ,  
a~ o ff 

and (7.7) yields the 

(7.8) Corollary. P ( x ,  - l / z )  = W ( x ,  p ) ~ ( ( z / i ) ~ + ; ) e p ( j T ,  z ) .  

We recommend that the reader who has studied the above proof allow 
himself a moment of contemplation. Looking back, he will realize the 
peculiar way in which almost all fundamental arithmetic properties of the 
number field K have been used. First they served to break up the theta 
series, then these constituents were reshuffled by the analytic transformation 
law, but in the end they are reassembled to form a new theta series. Having 
contemplated this, the reader should reflect upon the admirable simplicity of 
the theta formula which encapsulates all these aspects of the arithmetic of 
the number field. 
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There is however one important fundamental law of number theory which 
does not enter into this formula, that is, Dirichlet's unit theorem. This will 
play an essential r61e when we now pass from theta series to L-series in the 
next section. 

ExerciseJ. Define ideal prime numbers and show that unique prime factorization 
holds in K*.  

Exercise 2. Let a be the semigroup of all ideal integers. If d  = (a, b) is the gcd of 
a ,  h ,  then there exist elements x, y E a U {O] such that 

Furthermore, we have x - d l a ,  resp. y - d l b ,  unless x = 0, resp. y = 0. Here the 
notation u - j3 means uj3-l E K* .  

Exercise 3. The congruence ux = 17 mod m  has a solution in with intcgrxl .I- i f  
and only if (a, m ) ( b .  This solution is unique mod rn ,  provided (a, m )  = 1. 

Exercise 4. A systc~n of linitcly many congrucnccs with pairwisc ~.cl;ltivcly prinic 
~noduli is simulkmcously solvnblc il' cvcry congrucncc is solvable intiivitlu;~lly in 
such a way that the individual solutions are equivalent (with respect to -). 

Excrcisc 5.  I f  c r ,  r r r  E 2, then there cxisls in cvcry residue class mod rir p r i m  to r u ,  

an ideal integer prime to a .  

Exercise 6. For the factor group ./"'/Pnl by the group P"' of all principal ideals ( ( I )  
such thal tr = I mod m, one has the exact scquence 

1 -+ o * / o m  3 @/m)* + J"'/P"' -+ 1 ,  

where om = { E  E o* 1 E 3 1 mod m]. 

Exercise 7. Let 8 " ' )  be the preimage of J m  undzr KI* -+ J ,  and let 
K m =  {a E K *  I a = 1 mod m]. Then one has ( a i m ) * =  K("')/Km. 

5 8. Hecke L-series 

Let m be again an integral ideal of the number field K and let 

x : Jm -+ S' 

be a character of the group of ideals relatively prime to m. With respect to 
this character, we form the L -series 

where a varies over the integral ideals of K and we put ~ ( a )  = 0 whenever 
(a ,  m )  # 1. Then the following proposition holds in complete generality. 
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(8.1) Proposition. The L -series L (X , s) converges absolutely and uniformly 
in the domain Re(s) 2 1 + 6, for all 6 > 0, and one has 

where p varies over the prime ideals of K 

Proof: Taking fomally the logarithm of the product 

gives the series 
" x@)" logE(s) = C C - 

p n=l nfl(pIns 

t t converges absolutely and uniformly for Re(s) = a 3 1 + 6. In fact, 
ince Ix(p)I 5 1, and lfl(p)SI = I%(p)lu 2 p f ~ ( l + ' )  1 and since 

#(pip) 5 d = [K : Q] ,  it admits the following convergent upper bound 
which is independent of s : 

This shows that the product 

is absolutely and uniformly convergent for Re(s) > 1 + 6. Now develop in 
this product the factors 

for the finitely many prime ideals p l ,  . . . , p,. such that TI@;) ( N, and 
multiply them. This yields the equation 
4 

where C' denotes the sum over all integral ideals a which are divisible at 
most by the prime ideals pl , . . . , p,.. Since the sum C' contains in particular 
the terms such that %(a) 5 N,  we may also write 

Comparing now in (*) the sum C' with the series L(x, s),  we get 

For N + oo the right-hand side tends to zero, as it is the remainder term of' 
1 a convergent series, since the sequence (xli(a)6N w) NEN is monotone 

increasing and bounded from above. Indeed, with the previous notations we 
find 

1 1 

and 

We now face the task of analytically continuing the L-series L (x ,  s )  
attached to a GroDencharakter x mod m, and setting up a suitable functional 
equation for it at the same time. So we are given a character 

such that 

for all integers a E e, relatively prime to m, and there are two associated 
characters 

XI. : (o/m)* ---+ S '  and X, : R* -+ S'  . 
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The character xf extends in a unique way to a character 

,yf : (Z/m)* + S' 

such that the identity (*) holds for all integral ideal numbers a E $(m) prime 
to m. Indeed, the restriction of the function xf(a) := ~ ( ( a ) ) ~ ~ ( a ) - '  of 8m) I 
to dm) is given by the original character ~f of (o/m)*, so it is in particular 
trivial on 1 + m and thus yields a character of (s/m)*. 

The L-series of a GrbJe~dlaracter of .Im is called a Hecke L-series. 
If x is a (generalized) Dirichlet character mod m, i.e., a character of the ray 
class group J m / P m ,  then we call it a (generalized) Dirichlet L-series. The 
proof of the functional equation of the Hecke L-series proceeds in exactly 
the same way as for the Dedekind zeta function, except that it is based on 
the theta transformation formula (7.7). I 

We decompose the Hecke L-series according to the classes ff of the ideal 
class group J /P as a sum 

of the partial L-series 

integral 

and deduce a functional equation for those. If all one wants is the functional 
equation of the L -series L (X , s), this decomposition is unnecessary ; it may 
also be derived directly using the transformation formula (7.8), because we I 

know how to represent any ideal a by an ideal number (this was not yet 
the case when we were treating the Dedekind zeta function). However, we 
prefer to establish the finer result for the partial L -series. 

By (7.1). we have a bijective mapping 

(2 n 8)/0* G { a E ff 1 a integral] , a - (a) ,  

where % E F/K* corresponds to the class E J / P  with respect to the 
I 

isomorphism */K* Z J/ P .  Therefore we get 

' where 3 is a system of representatives of (g n Z)/o*. We want to write this 
function as a Mellin transform. To this end, we recall from 0 4 the I, -function 

which has been attached to the G(C IW)-set X = Hom(K, C). The character 
xm of R* corresponding to x is given by (6.7) as 

xoo(x) = N (xP IX I - ~ " ~ ) ,  

for an admissible p E n, Z and a q E R*. We put s = s l  + p - iq, where 
s E (C is a single complex variable, and 

L,(x,s) = Lx(s) = Lx(s1 + p  - iq ) .  

In the integral 

we make the substitution 

where m,d E 3 are fixed ideal numbers such that (m) = m and (d) = a is 
the different of K IQ. We then obtain 

and, since ~ ( l m d ( ' ~ / ~ )  = ( I ~ K  ~ % ( m ) ) ~ / ~ ,  

where c(x) = N(lmdl-~+'q) ' /~.  Multiplying this by xf(a)N(al') and 
summing over a E % yields, in view of 

the equation 

with the series 

We now consider the completed L-series 
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We now want to write this function as an inlcgral over thc scrics 

where the summation is extendegnot only - as in the case o L g ( y )  - over a 
system of representatives 8 of (9 n $ ) l o * ,  but over all a E A n5. We have 
E ( X )  = 1 if m = 1 and p = 0, and E ( X )  = 0 otherwise. We will proceed in 
the same way as with the Dedekind zeta function (see (5 .5 ) ) .  Just as we did 
there, using 

with n  = [K : 01, we decompose 

Then, observing that 

we obtain the identity 

with s' = ( s  + T r ( p  - i q ) / n ) .  The function under the second integral will 
be denoted by 

From it, the theta series 8 ( 9 ,  X ,  i x t ' I n )  is constructed as follows. 

(8.2) Lemma. N ( x ( P - ' ~ ) / ~ ) ( o ( A ,  X ,  i x t 1 l n )  - & ( X I )  = g m ( 1 ~  12x, t ) .  
E E O *  

Proof: For every unit E E o f ,  one has xW ( F )  xf ( E )  = x ( ( E ) )  = 1 ,  SO that 
we get 

~ ( 1 ~ 1 ~ - ' ~ )  = x w ( ~ ) N ( ~ P )  = x ~ ( E ) N ( E ~ ) .  

We put for short 6 = xt l l" / l rnd  1 and obtain 

A 

Since .G n 8 = U EM, wc gct 
E G O *  

N ( X ( P - ' ~ ) ~ ~ ) ( O ( ~ ,  ,, i x t  ' I n )  - E ( x ) )  = 

From this lemma we now obtain the desired integral representation of 
the function A ( 9 ,  X ,  s ) .  We choose as in $ 5  a fundamental domain F of S 
for the action of the group 1 0 * 1 ~ .  F is mapped by log : R; -7 R* to a 
fundamental mesh of the lattice 2 log lo* 1 .  This means that we have 

(8.3) Proposition. The function 

is the Mellin transform 

of the function 

I at s' = 2 ( ~  + T r ( p  - i q ) / n ) .  Here we have set n  = [K : Q], c ( x )  = 

N ( J r n d I - ~ + ' q ) ~ / ~ ,  and w denotes the number of roots of unity in K.  

Proof: One has 
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We have seen before that 

where 

fo(t) = C ( X )  gm(x, t ) d * x .  / S 

Since S = ~ v , l , , l  ' 1 2 ~ ,  one has 

In each one of the integrals on the right, we make the transformation 
F  + r12 F ,  x  t+ r12x, and obtain 

The fact that we'may swap summation and integration is justified in exactly 
the same way as for the case of Dirichlet L-series in $2, p.436. In view of 
the exact sequence 

1 -+ p ( K )  -+ o* -+ Jo*l -+ 1 ,  

where p ( K )  denotes the group of roots of unity in K ,  one has 
# { E  E O* I J s J  = '1) = w ,  so that we get 

C gm(b12x, t )  = wgm(q2x, t )  . 
1 4 = v  

Using (8.2), this gives 

This together with (*) yields the claim of the proposition. 0 

It is now the transformation formula (7.7) for the theta series B(R, X ,  z )  = 
OP(41, x f ,  z) which guarantees that the functions f  ( t )  = fF ( f f ,  X ,  t )  satisfy 
the hypotheses of the Mellin principle. 

(8.4) Proposition. We have fF ( f f ,  x , t )  = a0 + 0 (e-""") for some c > 0, 
and 

i. 
if m = 1 and p = 0, and a0 = 0 otherwise. Furthermore we have 

where Rf%' = [ma], and the constant factor is given by 

Proof: The first statement follows exactly as in the proof of (5.8). For the 
second, we make use of formula (7.7). It gives us 

because X,(x) = N(x" ( X  I -p+jq)  = N ( ( * X ) P I X  I - P - ' ~ )  = N(xF1.x I - P - ' ~ ) .  
Observing the fact that the transformation x  H x-' leaves the Haar measure 
d*x invariant and takes the fundamental domain F  to the fundamental domain 
F-' , (7.7) yields for z = ixt  ' /" : 

We have used in this calculation - that N ( x ' / ~ )  = N ( x ) ' / ~  = 1 and 
N(xP) = N((*x)P) = N(xP) ,  and that the character x,, the complex 
conjugate of x,, is given by 

Z,(x) = N ( X ~ I X I - ~ - ' ~ ) .  0 
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From this proposition and (1.4), we now finally get our main result. 
We may assume that x is a primitive GroJencharacter mod m, i.e., that 
the corresponding character ,yf of (elm)' is primitive (see $6, p.472). 
The L-series of an arbitrary character differs from the L-series of the 
corresponding primitive character only by finitely many Euler factors. So 
palytic continuation and functional equation of one follow from those of the 
other. 

(8.5) Theorem. Let x be a primitive Gro$'encharacter mod m. Then the 
function 

A(R,x,s)=(ld~l?ll(m))~~~~~(x,s)~(ff,x,s). R e @ ) >  1. 

has a meromorphic continuation to the complex plane C and satisfies the 
functional equation 

~ ( a ,  x ,  S )  = w ( x ) n ( a f ,  F, I - S )  

where JUT' = [mi)], and the constant factor is given by 

It has absolute value 1 W  ( X  ) I = 1 .  

A ( R ,  X ,  s )  is holomorphic except for poles of order at most one at 
s  = Tr(-p + i q ) / n  and s  = 1 + Tr(p + i q ) / n .  In the case m # 1 or p  # 0, 
h (a, x , s )  is holomorphic on all of C. 

Proof: Let f  ( I )  = f ~ ( f i ,  X ,  I )  and g ( 1 )  = j>-~( f i ' ,  X, I ) .  From f ' ( 1 )  = 

a0 + ~ ( e - ~ " / " ) ,  g ( t )  = bo + o(~-c ' "" )  and 

it follows by (1.4) that the Mellin transforms L( f ,  s )  and L(g ,  s) can be 
meromorphically continued, and from (8.3) we get 

where we have to take into account again that X,(x) = ~ ( x F l x l - P - ' 9 ) .  

According to (1.4), in the case a0 # 0, L  ( f ,  s )  has a simple pole at s  = 0 
and s  = 4 + T r ( p ) / n ,  i.e., A(& x , s )  = L ( f ,  (s  + Tr(p - i q ) / n ) )  has a 
simple pole at s  = Tr(-p + i q ) / n  and s = 1 + Tr(p + i q ) / n .  If m # 1 
or p # 0, then a0 = 0, i.e., A ( A ,  x, s )  is holomorphic on all of C. 0 

For the completed Hecke L-series 

we derive immediately from the theorem the 

(8.6) Corollary. The L -series A ( x ,  s )  admits a holomorphic continuation 
to 

C \ { Tr(-p + i q l l n ,  I + Tr(p + i q ) / n }  

and satisfies the functional equation 

It is holomorphic on all of C, if m # I or p  # 0. 

Remark 1: For a Dirichlet character x mod m, the functional equation 
can be proved without using ideal numbers, by splitting the ray class group 
J m / P m  into its classes a ,  and then proceeding exactly as for the Dedekind 
zeta function. The Gauss sums to be used then are those treated by  HA.^ 
in [52]. On thc other hi~nd, one may prove the functional equation for the 
Dedekind zeta function by using ideal numbers, imitating the above proof, 
without decomposing the ideal group at all. 

Remark 2: There is an important alternative approach to the results of 
this section. It starts from a character of the idttle class group and from 
the representation (8.1) of the corresponding L-series as an Euler product. 
The proof of the functional equation is then based on the local-to-global 
principle of algebraic number theory and on the Fourier analysis of p-adic 
number fields and their idde class group. This theory was developed by the 
American mathematician JOHN TATE, and is commonly known for short as 
Tate's thesis. Even though it does meet the goal of this book of presenting 
modem conceptual approaches, we still decided not to include it here. The 
reason for this is the clarity and conciseness of Tate's original paper [24], 
which cannot be improved upon. In addition SERGE LANG'S account of the 
theory [94] provides an illustrative complement. 
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Thus instead of idly copying this theory, we have chosen to provide a 
conceptual framework and a modem treatment of Hecke's original proof 
hhich is somewhat difficult to fathom. It turns out that Hecke's approach 
continues to have a relevance of its own, and can even claim a number of 
advantages over Tate's theory. For the functional equation of the Riemann 
zeta function and the Dirichlet L-series, for example, it would be out of 
proportion to develop Tate's formalism with all its p-adic expense, since 
they can be settled at a beginner's level with the method used here. Also, 
L-series, and the very theory of theta series has to be seen as an important 
arithmetic accomplishment in its own right. 

It was for pedagogical reasons that we have proved the analytic 
continuation and functional equation of L-series four times over: for the 
Riemann zeta function, for the Dirichlet L-series, for the Dedekind zeta 
pnction, and finally for general Hecke L-series. This explains the number 
of pages needed. Attacking the general case directly would shrink the expos6 
to little more than the size of Tate's thesis. Still, it has to be said that 
Tate's theory has acquired fundamental importance for number theory at 
large through its far reaching generalizations. 

3 9. Values of Dirichlet L-series at Integer Points 

The results of Q 1 and $2 on the values ((1 - k) and L(x ,  1 - k) of the 
Riemann zeta function and the Dirichlet L-series will now be extended to 
generalized Dirichlet L-series over a totally real number field. We do this 
using a method devised by the Japanese mathematician TAKURO SHINTANI (who 
died an early and tragic death) (see [127], [128]). 

We first prove a new kind of unit theorem for which we need the following 
notions from linear algebra. Let V be an n-dimensional R-vector space, k 
a subfield of R ,  and Vk a fixed k-structure of V, i.e., a k-subspace such 
that V = Vk @k R. By definition, an (open) k-rational simplicial cone of 
dimension d is a subset of the form 

where v l ,  . . . , vd are linearly independent vectors in Vk. A finite disjoint 
union of k-rational simplicial cones is called a k-rational polyhedric cone. 
We call a linear form L on V k-rational if its coefficients with respect to a 
k-basis of Vk lie in k. 

(9.1) Lemma. Every nonempty subset different tiom (0) of the form 

with nonzero k-rational linear forms Li,  Mi ( l  = 0 or m = 0 is allowed) is 
a dkioint union of finitely many k -rational cones, and possibly the origin. 

Proof: First let P = {x E V I L;(x) > 0, i = 1, . . . , l } ,  with k-rational 
linear forms L . . . , Le # 0. For n = 1 and n = 2 the lemma is obvious. We 
assume it is established for all R-vector spaces of dimension smaller than n .  
If P has no inner point, then there is a linear form L among the L I ,  . . . , Lc 
such that P is contained in the hyperplane L = 0. In this case the lemma 
follows from the induction hypothesis. So let u E P be an inner point, i.e., 
L I  (u) > 0, . . . , Le(u) > 0. Since Vk is dense in V, we may assume u E Vk. 
For every i = I, . . . , C, let a; P = (x E P ( L;(x) = 0). If a; P # {O), then 
a; P \ {O} is by the induction hypothesis a disjoint union of a finite number 
of k-rational simplicial cones of dimension < n. If a simplicial cone in a, P 
has a nonempty intersection with some a,P, then it is clearly contained in 
a; P n aj P. Therefore a l  P U . . . U ae P \ {0} is a disjoint union of k-rational 
simplicial cones of dimension < n ,  so that 

where Cj = C(vl ,  . . . , vd,), vl , . . . , vd, E Vk, dj < n. For every j E J 
we put C,(U) = C(v1, . . . , vdi, u). This is a (dj + 1)-dimensional k-rational 
simplicial cone. We claim that 

Indeed, if the point x E P \ (0) lies on the boundary of P ,  then it belongs 
to some a; P ,  hence to UjEJ Cj. On the other hand, if x beIongs to the 
interior of P ,  then L; (x) > 0 for all i. If x is a scalar multiple of u, then 
we have x E R:u. Assume this is not the case, and let s be the minimum 
of the numbers L1(x)/LI (u), . . . , Le(x)/Le(u). Then s > 0 and x - su  lies 
on the boundary of P .  Since x - su # 0, there is a unique j E .I such that 
x - su E Cj, and thus there is a unique j E J such that x E Cj(u). This 
proves the claim. 

Now let 

P = { x E v ( L ; ( x ) > o ,  O < i _ < l ,  Mi(x)>O, j = I  , . . . ,  m }  

Then 
P = { x  E VI Li(x)>O, Mj(x)>O] 
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is a disjoint union of a finite number of k-rational simplicial cones and (0). 
For every j = 1, . . . , rn, let a,P = (x E P I Mj(x) = 0). If a simplicial 
cone in P has nonempty intersection with a,P, then it is contained in ajP.  - 
As P = P \ UrTl a,P, we see that since P \ (0) is a disjoint union of 
finitely many k-rational simplicia1 cones, then so is P .  0 

(9.2) Corollary. If C and C' are k-rational polyhedric cones, then C \ C' 
is also a k -rational polyhedric cone. 

Proof: We may assume without loss of generality that C and C' are k- 
rational cones. Lct (1 be thc dimension of C'. Then there arc r r  k-rational 
linear forms L1, . . . , Ln-d, MI ,  . . . , Md such that 

If we define, for each i = 1, . . . , n - d ,  

and for each j = 1, ..., d ,  

then we find, as can be checked immediately, that C \ C' is the disjoint 
+ union of the sets CT, . . . , CnPd. C;, . . . , Cl;-d, C I  , . . . , Cd. By (9. I ) ,  these 

are either empty or k-rational polyhedric cones. Therefore C \ C' is also. 

It is a rare and special event if a new substantial insight is added to the 
foundations of algebraic number theory. The following theorem, proved by 
SHINTANI in 1979, falls into this category. Let K be a number field of degree 
n = [K : Q], and let R = [ fl, C] + be the corresponding Minkowski space 
(s E Hom(K, C)). Define 

(Observe that one has R;+, = Rf, only in the case where K is totally real.) 
Since R = K @Q W, the field K is a Q-structure of R. The group 

of totally positive units acts on R;+, via multiplication, and we will show that 
,this action has a fundamental domain which is a Q-rational polyhedric cone: 

(9.3) Shintani's Unit Theorem. If E is a subgroup of finite index in o;, 
then there exists a Q -rational polyhedric cone P such that 

Rf+, = E P  (disjoint union). 
E E E  

Proof: We consider in RL, the norm-one hypersurface 

Every x E R;+, is in a unique way the product of an element of S and of a 
positive scalar element. Indeed, x = IN (x) 1'1" (xll N (x) ('In). By Dirichlet's 
unit theorem, E (being a subgroup of finite index in 0') is mapped by the 
mapping 

C :  s ---, [n~]', (x,) H ( I O ~ I X , I ) ,  
5 

onto a complete lattice r of the trace-zero space H = 

{ X  E [ n, W]' I Tr(x) = 0 ) .  Let @ be a fundamental mesh of I-, let 
5 be the closure of @ in H,  and put F = [-'(F). Since 5 is bounded and 
closed, so is F. It is therefore compact, and we have 

Let x E F and Us(x) = (y  E R I Ilx - yll < 6) 2 R;,,, 6 > 0. Then there 
is clearly a basis vl, . . . , v, E Us(x) of R such that x = tl vl + . . . + t,,v,, 
with t; 0. Since K is dense in R by the approximation theorem, we may 
even choose the v; to lie in K n Us(x). Then Cs = C(vl ,  . . . , v,,) is :I 

Q-rational simplicial cone in R;+, with x E Cs, and every y E Ca is of the 
form y = hz with h E IW; and z E Us(x). We may now choose S sufficiently 
small so that 

Cs n6C8 = fl forall E E E, E # I .  

If not, then we would find sequences h,z,, hLzb E CIl, ,  A,, A:, E RS_, 
z,,, z:, E UII,(X), and E, E E, E ,  # I ,  such that h,,z,, = ~,,h{,z{,,  and thus 
P,,-, = t.,,~;. pv = hv/hL. Z,  and z: would converge to x ;  now p, would 
converge to 1 as p,"N(z,) = N(z:), i.e., x = ( l i m ~ , ) ~ .  This would mean 
that lim E, = 1, which is impossible, since E is discrete in R. 

F being compact, we thus find a finite number of Q-rational cones 
C I  , . . . , Cm in R;+, such that 



508 Chapter VII. Zeta Functions and L-series 39. Values ol' Dirichlct L-series a1 lntegcr Points 509 

and Ci fl EC; = fl for all E E E ,  E # 1, and all i = 1, . . . ,m .  From (1)  
and (2). we deduce that 

111 

In order to turn this union into a disjoint one, we put c:') = C I  and 

and Ci are disjoint for almost all E E E. Hence, by (9.2), c!') is a 
Q-rational polyhedric cone. Observing that C; fl EC; = 6? for E E E ,  E # 1, 
we obtain 

and EC;') n c!') = 0 for all E E E and i = 2, . . . , m. 

We now assume by induction that we have found a finite system of 
(") Q-rational polyhedric cones c,("), . . . , Cm , v = 1, . . . , m - 2 satisfying the 

following properties: 

(iii) EC!") n Cj = 0 for all E E E, if i 5 v and i # j 

c!"+') = c!") \ u EcSV+), for i 2 v + 2.  

Then c,("+'), . . . ,c$+') is a finite system of Q-rational polyhedric cones 
which enjoys properties (i), (ii), and (iii) with v+l instead of v. Consequently, 

(m-1) , . . . , C is a system of Q-rational polyhedric cones such that 

Based on Shintani's unit theorem, we now obtain the following description 
of Dirichlet's L -series. Let m be an integral ideal, Jm/ P the ray class group 
mod m. Let x : J m / P n '  -+ @* be a Dirichlet character mod m, and 

the associated Dirichlet L-series. If fi  varies over the classes of . Im/Pm,  
llicn wc have 

with the partial zeta functions 

a integral 

Let fi  be a fixed class, and a an integral ideal in fi. Furthermore let 
(1 + a-'m)+ = (1 + a-lm) n R;+, be the set of all totally positive elements 
in 1 + a-'m. The group 

acts on (1 + aP'm)+, and we have the 

(9.4) Lemma. There is a bijection 

(1  + a - ' m ) + / ~  -7 $in,, ii t-+ a a ,  

onto the set Bin, of integral ideals in fi. 

Proof: Let a E ( 1  + aP'rn)+. Then we have (a - I)a c m, and since a and 
m are relatively prime, we get a - 1 E m, i.e., (a) E P("'). Hence a a  lies 
in R. Furthermore, we have a a  2 a(1 + a-'m) = a + m = o, so that ua is 
integral. Therefore a H a a  gives us a mapping 

It is surjective, for if aa ,  a E Pm,  is an integral ideal in A, then 
(a - 1)a 2 ma 2 m, so that a E 1 + a-'m, and also a E Ry+,, and so 
a E (1  + aP1m)+. For a , h  E ( I  + a-lm)+, we have a a  = ha if and only 
if (a) = (b), so that a = b~ with E E o*. Since E E (1 + aP'm)+, it follows 
that E E E, i.e., a and b have exactly the same image if and only if they 
belong to the same class under the action of E .  0 

The lemma implies the following formula for the partial zeta function 
((A, s):  

1 
( ( f i , ~ )  = - 

I 
C ------ %(a)s ",, IN (u )  1 "  
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where 8 runs through a system of representatives of ( 1  + a-'m)+/E. To this 
we now apply Shintani's unit theorem. Let 

be a disjoint decomposition of R:+, into finitely many Q-rational simplicia1 
cones C;. For every i = 1, . . . , m ,  let v;, , . . . , v;d, be a linearly independent 
system of generators of C,. Multiplying if  necessary by a convenient torally 
positive integer, we may assume that all vie lie in m. Let 

Then we have the 

(9.5) Proposition. The sets R(A, C;) 

with the zeta functions 

are finite, and one has 

where z = ( z  1 ,  . . . , zd; ) varies over all d; -tuples of nonnegative integers. 

!Proof: R(A, C ; )  is a bounded subset of the lattice a-'m in R,  translated 
by 1. It is therefore finite. Since C; R;+, is the simplicia1 cone generated 
by v ; ~ ,  . . . , v;di E m, every a E ( 1  + a-'m) n C; can be written uniquely as 

with rational numbers ye > 0. Putting 

we have C xevie E 1 + a-'m because C zevie E m S a-'m. In other words, 
every a E ( 1  + a-'m) n Ci can be written uniquely in the form 

$9. Values of Dirichlet L-series at.Integer Points 

with x = C xev;e E R(41, C;) .  Since 
m 

(1 + a-'m)+ = u LJ (1 -t- a-'m) n EC;, 
i=I E E E  

a = x+ C zev;! runs through a system % of representatives of (1 +a-'m)+/E 
if i runs through the numbers 1,  . . . , rn, x through the elements of R (J?, C, ), 
and z = ( z l ,  . . . , z d , )  through integer tuples with ze >_ 0. Thus we indeed 
find that 

I ,,I 

(9.6) Corollary. For the Dirichlet L -series attached to the Dirichlet character 
x : Jm/  Pm -+ C*,  we have the decomposition 

where A runs through the classes Jm/Pm,  and a denotes an integral ideal 
in A, one for each class. 

The relation between zeta functions and Bernoulli numbers hinges on a 
purely analytic fact which is independent of number theory. This is what we 
will describe now. 

Let A be a real r x n -matrix, r 5 n ,  with positive entries aj; , 1 5 j ( r , 
1 5 i 5 n.  From this matrix we construct the linear forms 

n I' 

L j ( t l ,  . . . ,  t n ) =  Ca,;t;  and L ; ( Z ~ ,  ..., z,.) = C a j ; z j .  
i=l j = l  

For an r-tuple x = ( x l ,  . . . ,x,.) of positive real numbers, we write the 
following series 

On the other hand we define the generalized Bernoulli polynomials Bk ( A ,  x )  

where B ~ ( A ,  s ) ( ' ) / ( k  !)" is the coefficient ol 
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in the Laurent expansion at 0 of the function 

in the variables u ,  tl, . . . ,ti-, , [;+I, . . . , r,. For r  = n  = 1 and A = a,  
, we have Bk(a, x )  = ak-I Bk(s) ,  with the usual Bernoulli polynomial Bk(s) 

(see 5 1, exercise 2). The equation 

where 1 - x signifies (1 - X I ,  . . . , 1 - x,), is easily proved. 

(9.7) Proposition. The series { ( A ,  x, s) is absolutely convergent tor Re(s) > 
r l n ,  and it can be meromorphically continued to the whole complex plane. 
Its values at the points s = 1 - k ,  k = 1,2, . . ., are given by 

Proof: The absolute convergence for Re(s) > r l n  is deduced from the 
I convergence of a series C;==, by the same arguments that we have used 

repeatedly. It will be left to the reader. The remainder of the proof is similar 
to that of (1.8). In the gamma function 

we substitute 

ti - Li"(z +x)t;, 

and obtain 

Summing this over all z = (zl , . . . , z,), zi E Z, zi > 0, and observing that 

I? r 

yields the equation 

with the function 

exp((1 - xj)Li (t)) 
g(t> = & I ,  . . . , t  ,,) = i=l n 

exp(L,(t)) - 1 

We cut up the space R" into the subsets 

for i  = 1, . . . ,  n,andget 

t = uy = u(y1, . . . , yn), 

where 0 < u ,  0 5 yL 5 1 for C # i and y; = I .  This gives 

r (s)-PI L, &)(,I . . . t,,)"-ldtl . . dt,, 

For 0 < E < I ,  let now / , ( I ) ,  resp. /,(+oo), denote the path in @ consisting 
of the interval [ I ,  E], resp. [ + w ,  E ] ,  followed by a circle around 0 of radius 
E in the positive direction, and the interval [E, I], resp [E, + a ] .  For E 

sufficiently small, the right-hand side of the last equation following (1.9) 
becomes 

with the factor 

where one has to observe that the linear forms L I ,  . . . , L,. have positive 
coefficients. It is easy to check that the above expression, as a function of the 
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variable s ,  is meromorphic on all of @. As for the factor A ( s ) ,  (1 .2)  implies 
that 

1 r (1 - s)" 
A(s )  = - 

(2~7;)" (e2nins - l)(e2nis - 1 ) - I  ennis 

Let us now put s  = 1 - k.  The function enniS(e2ninS - l ) / ( e 2 n i s  - 1 )  takes 
the value ( - l ) n ( k - l ) n  at s  = 1 - k .  Thus expression ( 2 )  turns into 

where K, denotes the positively oriented circumference of the circle of radius 
E, and where we have to observe that the integrals over (w, E ]  and [ E ,  w),  
resp. over [ l ,  E ]  and [ E ,  I ] ,  kill each other in ( 2 )  if s  = I - k.  This value is 
obviously ( ( - I ) " ( ~ - ' ) T  ( k ) " / n )  times the coefficient of M " ( ~ - ' ) ( & # ~  ye)'-' 
in the Laurent expansion of the function 

which is a holomorphic function of u ,  t i ,  . . . , ti-1, ti+, , . . . , t, in the direct 
product of n copies of the punctured disc of radius E. Therefore the value 
of (2) at s = 1 - k equals ( - l ) n ( k - ' ) k - n ~ k ( ~ ,  1 - x ) ( ' ) / n .  Inserting this 
into ( 1 )  gives 

1 "  
{ ( A ,  x ,  1 - k )  = ( - ~ ) ~ ( ~ - ' ) k - f l -  E Bk ( A ,  1 - x)(;) 

i=l 

Together with the equation Bk(A,  1 - x )  = (- l )n(k-')+r B ~ ( A ,  x )  mentioned 
above, this gives the desired result. 0 

Theorems (9.5) and (9.6)  now imply our main result concerning the values 
of Dirichlet L-series L(x, s )  at integer points s  = 1 - k ,  k  = 1 ,2 ,  . . . If K 
is not totally real, then these values are all zero (except if x is the trivial 
character, for which s = 0 is not a zero). This can be read off immediately 
from the functional equation (8.6)  and (5.1 1 ) .  

' So we let K be a totally real number field of degree n. Numbering 
the embeddings t : K -+ R identifies the Minkowski space R with R n ,  
and R;+, = R: with the set R: of vectors ( X I ,  . . . , x,) with positive 
coefficients xi. Given the Q-rational simplicia1 cone C; E IW: generated by 
vil, . . . , Vid,, we again consider the zeta functions 

then Ai = (a:;)) is a (di x n)-matrix with positive &tries, and the k-th 
component of z vi 1 + . - . + zd, vid, becomes 

For x  E R;, we therefore get 

n 

[ ( C ; ,  a ,  s )  = n L;(zl, . . . , z,ll )-" = [ ( A ; ,  x, s )  , 
z k = l  

and, from (9.5)  and (9 .6) ,  we obtain by putting s = I - k the 

(9.8) Theorem. The values of the partial zeta function { (ff, s) at the integral 
~"'illrs s = I - k ,  X = 1,2,3, . . . , ilw givc11 by 

and the values of the Dirichlet L -series L (x, s )  are given by 

Here a is an integral ideal in the class R of J m / P m .  

This result about the Dirichlet L-series L(x, s) also covers the Dedekind 
zeta function { K  ( s ) .  The theorem says in particular that the values L ( x  , 1 - k ) ,  
for k  2 1 ,  are algebraic numbers which all lie in the cyclotomic field Q ( x f )  
generated by the values of the character xf. The values { K  ( 1  - k )  are even 
rational numbers. From the functional equation (5.1 I ) ,  

we deduce that c K ( 1  - k) = 0 for odd k > 1 ,  and it is # 0 for even k > 1. 
If the number field K is not totally real, then we have [ ~ ( s )  = 0 for all 
s = - 1 ,  - 2 ,  - 3 ,  . . .  

(9.9) Corollary (SIEGEL-KLINGEN). The values of the partial zeta function 
{(ff, S )  at the points s  = 0, - 1 ,  - 2 ,  . . . are rational numbers. 
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Proof: Let a , ,  . . . ,a,. be nonzero numbers in K ,  and let A be the ( r  x n)-  
matrix (aj;), where a,; is the i-th component of a,, after identifying R = R" 
according to the chosen numbering of the embeddings t : K -+ IW: It is 
enough to show that Rx(A. .v )  is a rational numbcr for cvcry r-tuple of 
rational numbers x = ( X I ,  . . . ,x,.). To see this, let LIQ be the normal 
closure of KIQ and a E G(L1Q). Then a induces a permutation of the 
indices (1,2. . . . , n )  so that 

aa,; = aja(;) (1 -< j j r ,  i = 1, . . . , n) .  

Now we had Bk(A,x) = C:=, B~(A,X) ( ' ) ,  where Bk(A,x)(') was the 
coefficient of u"(~- ')+" (t l ,  . . . ,ti-,, ti+], . . . , tnlk-' in the Taylor expansion 
of the function 

exp(xjuLj(t)) '"2 exp(uLj(t) - 1) 

with Lj(t) = ajltl + . . + ajntn. This makes it clear that B ~ ( A ,  x)(') lies 
in L and that a Bk (A, x)(;) = Bk (A, x ) ( ~ ( ~ ) ) .  Therefore Bk (A, x) is invariant 
under the action of the Galois group G(L lo ) ,  and thus belongs to Q.  0 

The nature of the special values of L -series at integer points has recently 
found increasing interest. Like in the class number formula, which expresses 
the behaviour of the Dedekind zeta function at the point s = 0, the properties 
of all the special values indicate a deep arithmetic law which appears 
to extend to an extremely widc class of L-series, the L-series attached 
to "motives". According to a conjecture of the American mathematician 
STEPHEN LICHTENBAUM, the significance of these L-values can be explained 
by a strikingly simple geometric interpretation: they appear according to 
the Lichtenbaum conjecture as Euler characteristics in ttale cohomology 
(see [99], [12]). The proof of this conjecture is a great, if still remote, goal 
of number theory. On the way towards it, the insights into the nature of 
&-series which we have encountered may prove to be important. 

Finally we want to mention that the French mathematicians DANIEL BARSKY 
and PIERETTE CASSOU-NOGUES have used SHINTANI'S result to prove the existence 
of p-adic L-series. These play a major r61e in Iwasawa theory, which we 
have mentioned before. The p-adic zeta function of a totally real number 
field K is a continuous function 

c/J :ZIJ \ { ' I  - Q p ?  

which is related to the ordinary Dedekind zeta function {K (s) by 

for all n E N such that -17 r 1 mod d, where d = [K(p?l,) : K] denotes 
the degree of the field K (pZp) of 2p-th roots of unity over K .  The p-adic 
zeta function is uniquely determined by this relation. Its existence hinges on 
the Ihct that the rational valucs ( - 1 1 )  ;)re sul~jcctcd to scvcrc congrucnccs 
with respect to p. 

5 10. Artin L-series 

So far, all L-series we have considered were associated to an individual 
number field K.  With the Artin L -series, a new type of L-series enters the 
stage; these are derived from representations of the Galois group G(L I K)  
of a Galois extension L (K. This new kind of L-series is intimately related 
to the old ones via the main theorem of class field theory. In this way they 
appear as far-reaching generalizations of the old L-series. Let us explain this 
for the case of a Dirichlet L-series 

attached to a Dirichlet character 

Let G = G(Q(p,,,)IQ) bc the Galois group of the lield Q(p,,,) of nl-th roots 
of unity. The main theorem of class field theory in this particular case simply 
describes the familiar isomorphism 

which sends the residue class p mod m of a prime number p m to the 
Frobenius automorphism qp,  which in turn is defined by 

Using this isomorphism we may interpret x as a character of the Galois 
group G,  or in other words, as a 1-dimensional representation of G,  i.e., a 
homomorphism 

x : G --+ GL,(C) 

This interpretation describes the Dirichlet L-series in a purely Galois- 
theoretic fashion, 

1 

and allows us the following generalization. 
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Let LIK be a Galois extension of finite algebraic number fields with 
Galois group G = G(L I K).  A representation of G is an action of G on a 
finite dimensional C-vector space V, i.e., a homomorphism 

Our shorthand notation for the action of a E G on v E V is av ,  instead of 
the complete expression p(a)v.  Let p be a prime ideal of K ,  and let be 
a prime ideal of L lying above p. Let Gv be the decomposition group and 
I? the inertia group of P over p. Then we have a canonical isomorphism 

I 

onto the Galois group of the residue field extension ~ ( 9 )  ( ~ ( p )  (see chap. I, 
(9.5)). The factor group G?/IV is therefore generated by the Frobenius 
automorphism pp whose image in G ( K ( ~ ) ~ K ( P ) )  is the q-th power map 
x n x9, where q = %(p). (orp is an endomorphism of the module V'Q of 
invariants. The characteristic polynomial 

only depends on the prime ideal p, not on the choice of the prime ideal P 
above p. In fact, a different choice v l p  yields an endomorphism conjugate 

,!to cpq, as the decomposition groups GT and G v ,  the inertia groups Icp 
und Iv, and the Frobenius automorphisms (PP and (PV are simultaneous 
conjugates. We thus arrive at the following 

(10.1) Definition. Let L I K be a Galois extension of algebraic number fields 
with Galois group G, and let (p, V) be a representation of G. Then the Artin 
L-series attached to p is defined to be 

where p runs through all prime ideals of K 

The Artin L-series converges absolutely and uniformly in the half-plane 
Re(s) 2 1 + 6, for any 6 > 0. It thus defines an analytic function on the 
half-plane Re(s) > 1. This is shown in the same way as for the Hecke 
L-series (see (%I)), observing that the &i in the factorization 

are roots of unity because the endomorphism p~ of V'S~' has finite order. 

For the trivial representation (p,C), p (a)  = 1, the Artin L-series is 
simply the Dedekind zeta function <K (s). An additive expression analogous 
to the expansion 

1 

does not exist for general Artin L-series. But they exhibit a perfectly regular 
behaviour under change of extensions LI K and representations p. This 
allows to deduce many of their excellent properties. As a preparation for this 
study, we first collect basic facts from representation theory of finite groups. 
For their proofs we refer to [ I  251. 

The degree of a representation (p, V) of a finite group G is the dimension 
of V. The representation is called irreducible if the G-module V does not 
admit any proper G-invariant subspace. An irreducible representation of an 
abelian group is simply a character 

p : G --+ C* = GLl (C) .  

Two representations (p, V )  and (p', V') are called equivalent if the G-  
modules V and V' are isomorphic. Every representation (p, V )  factors into 
a direct sum 

v = v ,  @. . .@V.$  

of irreducible representations. If an irreducible representation (p,, V,) is 
equivalent to precisely r, among the representations in this decomposition, 
then I., is called the multiplicity of pa in p ,  and one writes 

where p, varies over all non-equivalent irreducible representations of G.  

The character of a representation (p, V )  is by definition the function 

One has xp(l)  = dimV = degree@), and X p ( a t a - ' )  = x p ( t )  for 
all a ,  t E G. In general, a function f : G --+ @ with the property 
that f ( a t a - I )  = f (t) is called a central function (or class function). 
The special importance of characters comes from the following fact: 

Two representations are equivalent if and only if their characters are equal. 
If p -- C, r, Pa, then 

Xp = CraxpU. .  
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! 
The character of the trivial r-epresentation p : G + GL(V) ,  dim V = 1,  

p ( a )  = 1 for all a E G ,  is the constant function of value 1,  and is denoted 
by lc ,  or simply 1. The regular- representation is given by the G-module 

V = @ [ G I  = { C s,r I s, E C}, 
?€C 

on which the a E G act via multiplication on the left. It decomposes 
into the direct sum of the trivial representation Vo = C CaEG a ,  and 
the augmentation representation { CuEG xaa I X u  xu = 0 1 .  The character 
associated with the regular, rcsp. the augmentation representation, is dcnolcd 
by r c ,  resp. u c .  We thus have r c  = u c  + l G ,  and explicitly: r G ( u )  = 0 
for u # 1 ,  r G ( l )  = g = #G. 

A charactcr x is callcd i ~~~~ i~r l rrc~ ih lc  i f  i t  bclongs lo a n  irrcducihlc 
representation. Every central function cp can be written uniquely as a linear 
combination 

c p = C c , x ,  c,  E@, 

of irreducible characters. q is a character of a representation of G if and only 
if the c, are rational integers 2 0. For instance, for the character rc  of the 
regular representation we find 

where x varies over all irreducible characters of G. Given any two central 
functions cp and + of G ,  we put 

where is the function which is the complex conjugate of $. For two 
irreducible characters x and x' ,  this gives 

In other words, ( , ) is a hermitian scalar product on the space of all central 
functions on G,  and the irreducible characters form an orthonormal basis of 
this hermitian space. 

For the representations itself, this scalar product has the following 
meaning. Let 

v =  VI @ . . . @ V , .  

be the decomposition of a representation V with character x into the direct 
sum of irreducible representations Vi. If V' is an irreducible representation 
with character x ' ,  then ( x ,  x ' )  is the number of times that V'  occurs 

among the Vi ,  up to isomorphism. For if xi is the character of Vi, then 
x = X I  +. . -+x, . ,  SO that 

( x ~ x ' )  = ( ~ 1 9 ~ ' )  + . . . + ( x ~ ~ x ' ) ,  
and we have ( x i ,  x ' )  = 1 or 0, depending whether Vi is or is not isomorphic 
to V ' .  Applying this to the trivial representation V' = C, we obtain in 
particular that 1 

d imvG = - C ~ ( u ) ,  g = # G .  
g U E G  

Now let h : H  -+ G be a homomorphism of finite groups. If p is a central 
function on G,  then h*(cp) = cp o h is a central function on H .  Conversely, 
one has the following proposition. 

(10.2) Frobenius Reciprocity. For every central function $ on H  there is 
one and only one central function h,(+) on G such that one has 

( 9 ,  h * W )  = (h*(cp). $) 
for all central functions cp on G. 

This will be applied chiefly to the following two special cases. 

a) H is a subgroup of G and h is inclusion. 
In this case we write cp 1 H or simply cp instead of h* (cp), and $, instead 

of h,(+) (the induced function). If cp is the character of a representation 
( p ,  V )  of G,  then c p l  H is the character of the representation (pI H,  V). If $ 
is the character of a representation ( p ,  V )  of H ,  then +, is the character of 
the representation (ind(p), 1nd; (v ) )  given by the induced G-module 

1nd;(V) = { f : G  --+ V I f ( r x )  = r f ( x )  forall r E H } .  

on which a E G acts by ( a  f ) ( x )  = f (xu) (see chap. IV, $7). One has 

+*(a> = C 5 + ( r a t - ' ) ,  

where t varies over a system of representatives on the right of G / H ,  and we 
put + ( t a r - ' )  = 0  if r a t - '  4 H.  

b) G is a quotient group H / N  of H and h is the projection. 
We then write cp instead of h*(cp), and +b instead of h,($). One has 

If cp is the character of a representation ( p ,  V )  of G,  then h*(q)  is the 
character of the representation ( p  o h ,  V ) .  

The following result is of great importance. 
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(10.3) Brauer's Theorem. Every character x of a finite group G is a Z -  
linear combination of characters xi, induced from characters X; of degree 1 
associated to subgroups Hi of G. 

Note that a character of degree 1 of a group H is simply a homomorphism 
x : H += C*. 

After this brief survey of representation theory for finite groups, we 
now return to Artin L-series. Since two representations (p, V )  and (p', V') 
are equivalent if and only if their characters x and X'  coincide, we will 
henceforth write 

instead of L(L 1 K ,  p ,  s) .  These L -series exhibit the following functorial 
behaviour. 

(10.4) Proposition. (i) For the principal character x = 1,  one has 

(ii) If x , X'  are two characters of G (L I K),  then 

(iii) For a bigger Galois extension L'I K , L' 1 L 1 K , and a character x of 
G(L1K) one has 

L(L'IK,x,s)  = C(LIK,x ,s ) .  

(iv) If M is an intermediate field, L 2 M > K,  and x is a character 
of G(LIM), then 

L(LIM,x,s)  = W I K ,  x,,s). 

Proof: We have already noted (i) earlier. (ii) If (p, V), (p', V') are 
representations of G(L(K)  with characters X ,  x', then the direct sum 
(p $ p', V $ V') is a representation with character x + x', and 

This yields (ii). 
(iii) Let !Q'Ipjp be prime ideals of L'I L I K ,  each lying above the next. Let x 
be the character belonging to the G(L IK)-module V. G(LfIK) acts on V via 
the projection G(L'1 K)  + G(L I K). It induces surjective homomorphisms 

of the decomposition and inertia groups. The latter maps the Frobenius 
I automorphism q ~ v  to the Frobenius automorphism (op so that ( p p ,  V @ ) = 

(vp. v'Q), i.e., 

This yields (iii). 
(iv) Let G = G(L1K) and H = G(L1M). Let p be a prime ideal of K ,  
ql, . . . , q, the various prime ideals of M above p, and pi a prime ideal 
of L above q;, i = 1,  . . . , r .  Let G;, resp. I;, be the decomposition, resp. 
inertia, group of pi over p. Then Hi = Gi n H ,  resp. 1: = I; n H ,  are the 
decomposition, resp. inertia, groups of pi over q;. The degree of q; over p 
is f; = (G; : Hi l i ) ,  i.e., 

n(qi)  = n(p)fi . 
We choose elements r; E G such that pi = p;. Then G; = r i l G  I t i ,  
and I; = r;'llr;. Let q E G I  be an element which is mapped to the 
Frobenius pp, E G I  / I1. Then q; = t;'qx; E Gi is mapped to the Frobenius 

qpi E Gil l ; ,  and the image of boF in Hill,! is the Frobenius of pi over q;. 
Now let p : H -+ GL(W) be a representation of H with character X .  

Then X, is the character of the induced representation ind(p) : G -+ GL(V), 
V = ~ n d g ( ~ ) .  Clearly, what we have to show is that 

det(1 - q t ;  v")  = det(1 - q ~ p t . ~ ~  ; w?) .' 
;= l 

We reduce the problem to the case G I  = G, i.e., r = 1. Conjugating by t; , 
we obtain 

det(l - IpFth ; wl:) = det(l - s.hlf; ; (r iW)' ln"Hr~'  1 

and f; = (GI : (GI 0 r; H t;')ll). For every i we choose a system of 
representatives on the left, a;j, of GI mod G I  n r; H t i 1 .  One checks 
immediately that then (aijt;} is a system of representatives on the left of 
G mod H .  We thus have (see chap. IV, $ 5 ,  p.297) the decomposition 

Putting V; = $, aij ri W, we obtain a decomposition -V = $; V, of V as a 
G 1 -module. Hence 

It is therefore sufficient to prove that 
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We simplify the notation by replacing G I  by G,  1, by I ,  G I  n r; H r i l  by 
H,  fi by f = (G : H I ) ,  V; by V, and ti W by W. Then we have still 
V = 1nd; (W), i.e., we are reduced to the case r = 1, G I  = G. 

Wemayfunherassumethat1 - = l . ~ o r i f w e ~ u t G =  G I I , H =  H I I n H ,  

then V' = 1nd!(wInH). Indeed, a function f : G + W in V is invariant 
G 

' under I if and only if one has f (x t )  = f (x) for all r E I ,  i.e., if and only if 
it is constant on the right (and therefore also on the left) cosets of G mod I ,  
i.e., if and only if it is a function on G. It then automatically takes values in 
w ' " ~ ,  because tf ( x )  = f ( rx)  = f (x) for r E I n H. 

So let I = 1. Then G is generated by (o, f = (G : H), and thus 

Let A be the matrix of q ~ f  with respect to a basis wl, . . . , wd of W. If E 
denotes the (d x d) unit matrix, then 

is the matrix of (o with respect to the basis {(o'wj) of V .  This gives 

1 

det(1 - pt ; V )  = det - tE  
- t A  0 . . .  E 

as desired. The last identity is obtained by first multiplying the first column 
by t and adding it to the second, and then multiplying the second column 
by t and adding it to the third, etc. 0 

The character 1, induced from the trivial character 1 of the subgroup 
{I} c G(L I K)  is the character rc = Ex x( l )x  of the regular representation 
of G ( L ]  K). We therefore deduce from (10.4) the 

I 

(10.5) Corollary. One has 

where x varies over the nontrivial irreducible characters of G(L I K) .  

The starting point of Artin's investigations on L-series had been the 
question whether, for a Galois extension L I K ,  the quotient ( L  (s)/{K (s) is 
an entire function, i.e., a holomorphic function on the whole complex plane. 
Corollary (10.5) shows that this could be deduced from the famous 

Artin Conjecture: For every irreducible character x # 1, the Artin L -series 
L(L I K ,  X ,  s) defines an entire function. 

We will see presently that this conjecture holds for ahelian extensions. In 
general it is not known. In view of its momentous consequences, it constitutes 
one of the big challenges in number theory. 

We will show next that the Artin L -series in the case of abelian extensions 
L ( K  coincide with certain Hecke L-series, more precisely, with generalized 
Dirichlet L-series. This means that the properties of Hecke's series, and in 
particular their functional equation, transfer to Artin series in the abelian 
case. Via functoriality (10.4) they may then be extended to the non-abelian 
case. 

The link between Artin and Hecke L-series is provided by class field 
theory. Let L I K be an abelian extension, and let f be the conductor of L I K ,  
i.e., the smallest module 

f = n vP 
ptm 

such that L I K lies in the ray class field K f 1 K (see chap. VI, (6.2)). The 
Artin symbol ( q) then gives us a surjective homomorphism 

J f lp f  -+ G(LIK), a mod f f  I-+ (y), 
from the ray class group Jf lpf .  Here J f is the group of fractional ideals 
prime to f, and pf  is the group of principal ideals (a) such that a = 1 mod f 
and a is positive in K p  = R if p is real. 

Now let x be an irreducible character of the abelian group G(L (K) ,  i.e., 
a homomorphism 

x : G(L(K)  + C*. 

Composing with the Artin symbol ( M) , this gives a character of the ray 
class group . I f / f f ,  i.e., a Dirichlet character mod f. It induces a character 
on ~f , which we denote by 

By (6.9), this character on ideals is a GroBencharacter mod f of type ( p ,  O), 
and we have the 
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(10.6) Theorem. Let L I K be an abelian extension, let f be thc conductor of 
'L I K ,  let x # 1 be an irreducible character of G ( L  / K ) ,  and x the associated 
Gr@encharakter mod f. 

Then the Artin L -series for the character x and the Hcckc L -series liw 
the GroJencharakter 2 satisfy the identity 

where S = { p l f  I ~ ( 1 ~ )  = I ) .  

Proof: The representation of G(L IK) associated to the character x is 
given by a 1-dimensional vector space V = C on which G ( L I K )  acts via 

 multiplication by ,y , i.e., a v  = x ( a ) v .  Since f is the conductor of L ] K , we 
find by chap. VI, (6.6), that 

p ( f  p i s  ramified e~ I? # 1 .  

If x ( I Q )  # 1, then V ~ Q  = { O } ,  and the corresponding Euler factor does not 
occur in the Artin L-series. If on the other hand x (I?) = 1, then V'V = C,  
so that 

det(1 - cpvT?(p)-" ; V ' V )  = I - ~ ( c p ~ ) T ? ( p ) - " .  

We thus have 

and 
1 

For p { f, one has ( y) = pp ,  and so j ( p )  = ~ ( p p ) .  This proves the 
claim. 0 

Remark: If the character x : G ( L  I K )  + C* is injective, then S = 0, and 
one has complete equality 

L ( L I K , x , s )  = L(F , s> .  

In this case is a primitive Gropencharakter mod f. 
If on the other hand x is the trivial character l ~ ,  then is the trivial 

Dirichlet character mod f, and we have 

Thc thcorem implies that the Artin conjecture holds for all Artin L- 
series L ( L  ( K ,  x , s )  which correspond to nontrivial irreducible characters x 
of ahclian Galois groups G ( L ( K ) .  For if L, is the fixed field of the kernel 
of x and 2 is thc Gri~r~ic.huruX-rfr i ~ s ~ ~ ~ i i l t e d  with x : G ( L X  ( K )  c). @*,  
then the above remark shows that L ( L  1 K ,  x , s )  = C(L, I K ,  x , s )  = L ( y ,  s). 
Hence L(L I K , x , s )  is holomorphic on all of C ,  because the same is true 
for L ( j ,  s), as was shown in (8.5). This also settles the Artin conjecture for 
every solvable extension L I K .  

Our goal now is to prove a functional equation for Artin L-series. The 
basis for this will be the above theorem and the functional equation we have 
already established for Hecke L -series. We however have to complete the 
Artin L-series by the right "Euler factors" at the infinite places. In  looking 
for these Euler factors, the first natural guideline is provided by the case of 
Hecke L-series. But in order to go the whole way, we need an additional 
Galois-theoretic complement which will be dealt with in the next section. 

§ 11. The Artin Conductor 

The discriminant = D L ~ K  of a Galois extension L I K of algebraic number 
fields admits a fine structure based on group theory. It is expressed by a 
product decomposition 

a = n K X ) ~ ( ?  

where x varies over the irreducible characters of the Galois group 
G = G ( L  I K ) .  The ideals f (x )  are given by 

with 

where V is a representation with character X ,  Gi  is the i-th ramification 
group of L p I K p ,  and gi denotes its order. This discovery goes back to EMIL 
ARTIN and HELMUT HASSE. The ideals f ( ~ )  are called Artin conductors. They 
play an important r6le in the functional equation of the Anin L -series, which 
we are going to prove in the next section. Here we collect the properties 
needed for this, following essentially the treatment given by J.-P. SEKKE 
in [122]. 
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First let us consider a Galois extension L IK of local fields, with Cjalois 
group G  = G ( L I K ) .  Let f  = f L I K  = [A : K ]  be the inertia degree of L I K .  
In chap. 11, 3 10, we defined, for any a  E G ,  

where x is an element such that O L  = oK [ X I ,  and V L  is the normalized 
valuation of L. With this notation we can write the i  -th ramification group as 

One has i c ( r a s - ' )  = i G ( a ) ,  and i H ( u )  = i c ( a )  for every subgroup 
H G. If L ( K  is unramified, then i G ( a )  = 0  for all a  E G,  a  # 1 .  We put 

- f  i c ( 0 )  for a  # I , 
a c ( a )  = , f  CTZI i c ( s )  for a = 1 . 

aG is a central function on G ,  and we have 

We may therefore write 

with x varying over the irreducible characters of G.  Our chief problem 
is to prove that the coefficients f ( x )  are rational integers 2 0. Once we 
have shown this, we may form the ideal f p ( x )  = pf(x), which will be the 
p-component of the global Artin conductor that we want. First we prove that 
the function a c  satisfies the following properties (we use the notation of the 
preceding section). 

(11.1) Proposition. (i) If H is a normal subgroup of G ,  then 

(ii) If H is any subgroup of G ,  and if K' is the fixed field with discriminant 
! K ~ I K  = p V ,  then 

UG ( H  = vrH + ~ K ~ ~ K ~ H .  

(iii) Let Gi be the i-th ramification group of G,  ui the augmentation 
character of Gi , and ( u ; ) ,  the character of G induced from u; . Then one has 

Proof: (i) lbllows immediately from chap. 11, (10.5). 
(ii) Let a  E H, a  # 1 .  Then 

a c ( a )  = - f ~ ~ ~ i c ( a ) ,  a ~ ( a )  = - fL(K'iH(a), r ~ ( a )  = 0 .  

Since i c ( a )  = i ~ ( a )  and f L I K  = f L I K /  f K I I K r  this implies 

aC(a)  = vrH(0) + f ~ ' ~ K a H ( a ) .  

Now let a  = 1, and let D L I K  be the di'erent of LIK.  Let O L  = o ~ [ x ]  and 
g ( X )  be the minimal polynomial of x over K.  By chap. 111, (2.4), D L I K  is 
then generated by gl (x )  = no+, ( a x  - x). Consequently, 

By chap. 111, (2.9), we know, on the other hand, that a L I K  = N L I K  ( D L I K ) ,  
so V K  o N L l ~  = , f L I K  V L  gives the identity 

ac (1 )  = ~ L I K V L @ L I K )  = V K @ L I K ) ,  

and in the same way a H ( l )  = ~ ~ ' ( a ~ ~ ~ ' ) .  From chap. 111, (2.10), we get 
furthermore that 

O L ~ K  = ( ~ K ' I K )  
I L : K I I N  K / I K @ L I K ~ ) .  

Thus / . , , ( I )  = (L  : K'I and v = v ~ ( a ~ / ~ ~ )  yields the formula 

a c ( l )  = [ L  : K ' ] ~ K ( ~ K ' I K )  + ~ K ' I K V K ' @ L ~ K ' )  = v r ~ ( 1 )  + ~ K ~ ~ K U H ( ~ ) .  

(iii) Let gi = #Gi ,  g = #G. Since Gi is invariant in G,  we have ( u i ) ,  ( a )  = 0 
if a  6 Gi ,  and (ui) , (a)  = -g/g; = - f  . go/gi if a  G G ; ,  a  # 1, and 
CaEG (u;)*((T)  = 0. For a  E Gk \ Gn+l, we thus find 

This implies the identity for the case a  = 1 as well, since both sides are 
orthogonal to l c  . 0 

For the coefficients f  ( x )  in the linear combination 

ac  = C f ( x l x ,  
we have, in view of ac ( a p ' )  = ac  ( a ) ,  that 

1 1 
f ( X I  = ( ac l  x )  = - C a c ( a ) x ( a - ' )  = - C u c ( a - ' ) x ( a )  = ( x , a c ) ,  

g  0€G g a& 

g  = #G. For any central function p  of G ,  we put 

f ( P I  = ( p , a c )  
and 
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(11.2) Proposition. ( i )  Ifcp is a central function on the quotient group G / H ,  
and (o' is the corresponding central function on G ,  then 

.f ((o) = f (PO. 
(ii) If (o is a central function on a subgroup H of G, and (o, is the central 
function induced by (o on G ,  then 

(iii) For a central function (o on G,  one has 

If x is the character of a representation ( p ,  V) of G,  then ~ ( 1 )  = dim V 
and x (G;) = dim vGi, hence 

I 

Now consider the function 
s 

which was introduced in chap. 11, $10. For integers m > -1, it is given by 
V L I K ( - ~ )  = -1, VL(K(O) = 0, and 

gi 
~ I L ~ K ( ~ )  = C - form > 1. 

i=l go 
The theorem of HASSE-ARF (see chap. V, (6.3)) now gives us the following 
integrality statement for the number f (x)  in the case of a character x of 
degree 1. 

(11.3) Proposition. Let x be a character of G of degree 1. Let j be the 
biggest integer such that x IG, # lcj (when x = lc we put j = -1). Then 
we have 

f (x)  = V L I K ( . ~ )  + 1 .  
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Proof: If  i 5 j ,  then x(Gi)  = 0, so that ~ ( 1 )  - x (G;) = 1. If i > j ,  then 
x(G;) = 1, and so ~ ( 1 )  - x(G;) = 0. From (ll.2), (iii), it thus follows that 

provided j > 0. If j = -1, we have ~ ( 1 )  - x(G;) = 0 for all i 1 0, and 
hence by (1 1.2), (iii), f (x)  = 0 = r,yI,y (- 1) + 1. 

Let H be the kernel of x and L' the fixed field of H.  By Herbrand's 
theorern (chap. 11, (10.7)) one has 

Gj(LIK)H/H = Gj~(L1IK) with j1 = qLIL!(j) .  

In terms of the upper numbering of the ramification groups, this translates 
into 

G ' (L IK)H/H = Gt(L'IK), 

where t = qLIK(j) = q L ~ I ~ ( r ] L I L / ( j ) )  = qLlIK(j1) (see chap.11, (10.8)). But 
x(Gj(LIK)H/H) # 1, and x ( G ~ + ~ ( L I K ) H / H )  = x ( G j + ~  (LlK)H/H)  
= 1 for all 6 > 0, and in particular Gj(LIK)H/H # Gj+a(LIK)H/H for 
all 6 > 0. Since ~ L I K ( S )  is continuous and strictly increasing, i t  follows that 

for all E > 0, i.e., t is a jump in the ramification filtration of L'IK. The 
extension L'l K is abelian and therefore t = ~ L I K ( ~ )  is an integer, by the 
theorem of HASSE and ARE 0 

Now let x be an arbitrary character of the Galois group G = G(L I K ) .  
By Brauer's theorem (10.3), we then have 

where xi, is the character induced from a character x; of degree I of a 
subgroup Hi. By (1 1.2), (ii), we have 

where K; is the fixed field of Hi. Therefore f ( x )  is a rational integer. On the 
other hand, (1 ].I), (iii) shows that goac is the c A aracter of a representation 
of G ,  so go f (x)  = (x,  goac) > 0. We have thus ehblished the 

(1 1.4) Theorem. If x is it character of the Galois group G = G (L I K ) , thcn 
f (x)  is a rational integer > 0. and this is a rational integer > 0. 
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(11.5) Definition. We define the (local) Artin conductor of the character x 
of G  = G(L1K) to be the ideal 

In chap. V, (1.6), we defined the conductor of an abelian extension L  IK 
of local fields to be the smallest power of p, f = pn, such that the 11-th higher 
unit group (It' is contained in the norm group N L I K  L*. The latter is the 
kernel of the norm residue symbol 

which maps to the higher ramification group G'(L I K )  = G j  ( L  I K )  with 
i = ~ L I K ( ~ )  - see V ,  (6.2). The conductor f = pn is therefore given by the 
smallest integer n 2 0 such that Gn ( L  I K )  = 1. From ( 1  1.3) we thus obtain 
the following result. 
I 

(11.6) Proposition. Let L  I K  be a Galois extension of local fields, and let x 
be a character of G  ( L  I K )  of degree 1. Let L ,  be the fixed field of the kernel 
of x , and f the conductor of L x  I K .  Then one has 

Proof: By (11.3), we have f ( x )  = qLIK( j )  + 1, where j is the largest 
integer such that G j ( L I K )  G ( L I L x )  =: H .  Let t = q L I K ( j ) .  Then one 
has 

! G ' ( L ,  I K )  = G ' ( L I K ) H / H  = G j ( L I K ) H / H ,  

and G'+F(LxIK)  E G,+l(LIK)H/H = 1 for all E > 0. Hence t is the 
largest number such that G f ( L X  IK) # 1 .  By the theorem of HASSE-AIW, t is 
an integer, and we conclude that f  ( x )  = t + 1 is the smallest integer such 
that G f ( x ) ( ~ ,  IK) = 1, i.e., f ( x )  = n. 0 

We now leave the local situation, and suppose that LIK is a Galois 
extension of global fields. Let p be a prime ideal of K ,  a prime 
ideal of L  lying above p. Let L g l K p  be the completion of LIK ,  and 
G y  = G ( L p I K p )  the decomposition group of p over K .  We denote the 
function a c ,  on G p  by u q ,  and extend it  to G  = G ( L I K )  by zero. The 
central function 
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immediately turns out to be the function (av)* induced by a g J G q .  It is 
therefore the character of a representation of G. If now x is a character of G .  
then we put 

. f ( x , p )  = ( x 3 a p >  = . f ( x I G p ) .  

Then fp (x )  = p f ' ( x . p )  is the Artin conductor of the restriction of x to 
G P  = G(LV1Kp).  In particular, we have f p ( x )  = 1 if p is unramified. We 
define the (global) Artin conductor of x to be the product 

Whenever precision is called for, we write f(L I K ,  X )  instead of f(x). The 
properties ( 1  1.2) of the numbers f ( x ,  p )  transfer immediately to the Artin 
conductor f ( x ) ,  and we obtain the 

(11.7) Proposition. (i) f(x + x t )  = f ( x ) f ( x l ) ,  f (1 )  = (1) 

(ii) If L ' (K  is a Galois subextension of LIK ,  and x is a character of 
G(LtI K ) ,  then 

f (L IK3x )  = f W 1 I K , x ) .  

(iii) If H is a subgroup of G  with fixed field K t ,  and if x is a character 
of H  , then 

~ ( L I K . x * )  = D:! I :NK/ IK(~ (L IK ' .  x ) )  . 

Proof: (i) and (ii) are trivial. To prove (iii), we choose a fixed prime ideal 9 
of L ,  put 

with p = !$3 f l  K ,  and consider the decomposition 

into double cosets. Then representation theory yields the following formula 
for the character x of H :  

where x T  is the character x T ( u )  = X ( r - ' u t )  of G q  f l r ~ r - I ,  and is the 
character of GV induced by x T  (see 1 1  191, chap. 7, prop. 22). Furthermore 
9; = pr fl K t  are the different prime ideals of Kt  above p (see chap. 1, 39, 
p. 55), and we have 
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Now let D , p r  = pU$ be the discriminant ideal of K& I Kp, and let fQ; be the 

degree of 71: over K.  Thus NKIK (71;) = pi%. Since 

,.f(xlHVr) 
fp(LIK.x*) = P f c x * l c ~ '  and fGU; (L I K'. X )  = 71 , 

wd have to show that 

.f(x+IGq~) = ~ ~ ~ ~ ; x ( l ) + . f p ; , f ( ~ I H ~ r ) .  
r 

or, in view of (1 1.2), (ii), that 

(**) f (x*IGQ) = x f ((x1HQr)*) 
r 

But HQI = ~ - ' ( G Q  n r HT- ' ) r ,  and x I H Q ~  , resp. (X  I Hpr),, arises by 
conjugation a H tar- '  from x r ,  resp. x f .  Therefore f ( (x  IHyr)*) = 
f (x:), and (**) follows from (*). 0 

We apply (iii) to the case x = l H ,  and denote the induced character X, 
by SG/H Since f(x)  = 1, we obtain the 

(11.8) Corollary. D K ~ ~ K  = f(L I K ,  SGIH 1. 

(11.10) Proposition. Let L 1 K be a Galois extension of global fields, x a 
character of G (L I K) of degree 1, L the fixed field of the kernel of x , and f 
the conductor of Lx I K . Then one has 

f = Kx).  

Now let L I K be a Galois extension of algebraic number fields. We form 
thc idcal 

W K .  X )  = D $ $ v ~ ~ ~ ( ~ ( L I K .  X I )  
of 7,. The positive generator of this ideal is the integer 

Applying (1 1.7) and observing the transitivity of the discriminant (chap. HI, 
(2.10)), we get the 

(11.11) Proposition. (i) c(LI K,  x + x') = c(LI K, x)c(LI K ,  x'), c,(LIK, 1) 
= I ~ K I ,  

(ii) c(L I K ,  X )  = c(L1I K ,  x) ,  

(iii) c(LIK,x,) = c(LIK1,x) . 
Here the notation is that of (1 1.7). 

If in particular H = (11, then s c / ~  is the character rC of the regular 
representation. Its decomposition into irreducible characters x is given by 

This yields the 

(11.9) Conductor-Discriminant-Formula. For an arbitrary Galois exten- 
sion L ( K of global fields, one has 

where x varies over the irreducible characters of G ( L  I K ) . 

For an aheliun extension L I K of global fields, we defined the conductor 
f in VI, (6.4). By chap. VI, (6.5), it is the product 

of the conductors f p  of the local extensions LQI Kp. (1 1.6) now gives rise to 
the following 

5 12. The Functional Equation of Artin L-series 

The first task is to complete the Artin L-series 

for the character x of G = G(L I K), by the appropriate gamma factors. For 
every infinite place p of K we put 

Lp(L I K ,  x ,  S) = ( Lc(S)X(I)' 
if p is complex, 

L R  (s)"' L R  ( S  + I)"-, if p is real, 

with the exponents n+ = X (  I )+X( 'PW)  , ,- = X ( ~ ) - , X ( ~ V ) .  Here cpQ is the 2 
distinguished generator of G (LT 1 Kp), and 

(see $4). For p real, the exponents n+, n- in Lp(L 1 K, x ,  s) have the 
following meaning. 
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The involution pu on V induces ;in cigcnspacc clccomposi~ion V = 
V +  @ V - ,  where 

V +  = ( .V E V ( (/I7-'.\. = . V }  . V -  = ( .V  E I/ ( (a8.\. = - .V )  . 
and it follows from the remark in Q: 10, p. 52 1, that 

The functions C p ( L  I K ,  X ,  s )  exhibit the same behaviour under change of 
fields and characters as the L-series and the Artin conductor. 

(12.1) Proposition. (i) L p ( L  I K ,  x + x ' ,  s )  = C p ( L  I K ,  X ,  s )Cp(L I K ,  x ' ,  s) .  

(ii) If L'I K is a Galois subextension of L  ( K  and x a character of G(L'1 K ) ,  
then 

Lp(LIK ,  X * J )  = L p ( L 1 J K ,  x , s ) .  

(iii) I f  K' is an intermediate field of L 1 K and x a character of G  ( L  I K ' )  , 
then 

C p ( L I K , x * , ~ )  = n L q ( L I K 1 , x 3 s ) ,  
q l p  

where q  varies over the places of Kt  lying above p. 

Proof: (i) is trivial. 
(ii) If $)Q'lp are places of L  2 L' 2 K ,  each lying above the next, 
then q ~ p  is mapped under the projection G(L1K) + G(L1IK)  to cpp. 
s o  X ( v p )  = X (QY). 
(iii) If p is complex, then there are precisely nz = [ K t  : K ]  placcs q above p. 
They are also complex, and the claim follows from x,( l )  = m x  ( 1 ) .  
Suppose p is real. Let G  = G ( L I K ) ,  H  = G ( L I K f ) ,  and let H\G/Gp be 
the set of double cosets HrCQ with a fixed place $ of L above p. Then we 
have a bijection 

H\G/GV ---+ { q  place of K' above p},  H r C p  ++ q s  = tP lK!  
(see chap. I, $9, p.55). qT is real if and only if pTcp = t p p t - l  E H ,  i.e., 

' Grv = rGTr-' C H .  The latter inclusion holds if and only if the double 
coset H  t G q  consists of only one coset mod H  : 

We thus obtain the real places among the q, by letting r  run through a 
system of representatives of the cosets H t  of H\C such that t ( o v t - '  E H. 
But, for such a system, one has 

x*(vp)  = C x ( r q J ~ r - I ) =  C X ( ( P T ~ ) .  

Putting Q = r q ,  makes q = run through the real places of K' ahove p. 

On the other hand we have 

Legendre's duplication formula LR(s)La(s  + 1 )  = Lc(s)  (see (4.3)) turns 
this into 

We finally put 

and obtain immediately from the above proposition the equations 

(12.2) Definition. The completed Artin L-series for the character x of 
G  ( L  1 K )  is defined to be 

The behaviour of the factors c(LIK,  x), C,(LIK, x,.s), C (L IK ,  x , s )  on 
thc right-hand side, which we studied in (10.4), ( 1  1 . 1  I ) ,  and abovc. cnrrics 
over to the function A (L I K  , x , s ) ,  i.e., we have the 
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(12.3) Proposition. (i) A(L IK, x + x', s )  = A(LIK, x,s)A(LIK, x', s).  

(ii) If L'I K is a Galois subextension of L 1 K and x a character of G(Lt I K) ,  
then 

A(LIK,x , s )  = A(LIIK,x , s ) .  

(iii) If K t  is an intermediate field of L I K and x a character of G(L I Kt),  
then 

A(LIK,x+.s )  = A(LIK1,x , s ) .  

For a character x of degree 1, the completed Artin L -series A(L I K ,  x , s) 
coincides with a completed Hecke L-series. To see this, let Lx 1 K be the 

' fixed field of the kernel of X ,  and let f = np pnp be the conductor of L, I K.  
By (1 1. lo), we then have 

f = f (x ) .  

Via the Artin symbol 

x becomes a Dirichlet character of conductor f ,  i.e., by (6.9), a primitive 
GroJencharakter mod f (x )  with exponent p = (p,), so that p, = 0 if t is 
complex. This GroJencharakter will be denoted z. 

We put pp  = p, if p is the place corresponding to the embedding 
t : K + C. The numbers pp  have the following Galois-theoretical meaning. 

(12.4) Lemma. For every real place p of K one has 

I 

Proof: We consider the isomorphism 

where l f  = np u:') is the congruence subgroup mod f of the idde group 
I = upKp* (see chap. VI, (1.9)), and consider the composite map 

I / I 'K* - J f / p f  -+ C ( L , I K ) &  C * .  

Let p be a real place of K ,  and let a E I be the idble with components 
ap = -1 and a,  = 1 for all places q different from p. By chap. VI, (5.6), 

,the image q!y = (a, LxlK)  = ( -1 ,  LxPlKp) in G(LxIK) is a generator of 
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the decomposition group Gp  = G(LxpIKp). By the approximation theorem, 
we may choose an a E K* such that a = 1 mod f, a < 0 in Kp,  and a > 0 
in K,, for all real places q # p. Then 

p = o o  E I ( ' )=  {.r E I ~ x ,  EU: 'P )  for p l f w ] ,  i f i = n p p t 1 . .  

As explained in the proof of chap. VI, (1.9), the image of a mod I f  K * in 
J f l f f  is the class of ( B )  = (a), which therefore maps to pq. Consequently, 

0 I' Since a 1 mod f ,  we have xf(a) = 1 and x,(a) = N ((-) ) = 
101 

( L) ')"= (- l)pp, i.e., x (pp) = (- I)/'', so that (o!y = 1 for pp = 0, 
lalp 

and (PV # 1 for pp  = 1. But this is the statement of the lemma. 0 

(12.5) Proposition. The completed Artin L-series for the character x of 
degree 1 and the completed Hecke L -series for the GriiJSrncharakter 
coincide : 

A(LIK,x ,s )  = A(z , s ) .  

Proof: The completed Hecke L-series is given, according to $8, by 

and s = s l  + p ,  where 
L X W  = n ~ , ( s , )  

P b  

is the L-function of the G(CIR)-set X = Hom(K,@) defined in $4. The 
factors LP(sp) are given explicitly by 

if p complex, 
(*I Lp(sp) = [ , if p real, 

(see p.454). On the other hand we have 



540 Chapter VII. Zeta Functions and L-serics 

Let L ,  be the fixed field of the kernel of X .  By (1 1.1 l ) ,  (ii), and the remark 
preceding lemma (12.4). one has 

c (L IK ,  x )  = c(Lx IK, X )  = I d ~ l q ( f ( ? ) ) ,  

and by (10.4). (ii), and (10.6). and the subsequent remark. one has 

C ( L I K , x , s )  = C ( L x I K , x , s )  = L ( y , s ) .  

1 We are thus reduced to proving 

for ploo and s = s l +  p. Firstly, we have C p ( L I K , x , s )  = L p ( L X I K , x , s )  
(see p. 537). Let cplp be the generator of G(Lxv IKp) .  Since x is injective 
on G ( L x I K ) ,  we get x ( p p )  = - 1  if pp # 1, and ~ ( q ~ p )  = 1 if pg = 1 .  
Using (12.4) this gives 

I LC ( s )  , for p complex, 

C p ( L x  I K ,  X, S )  = L R ( s ) ,  for p real and real, i.e., pp = 0 ,  

Lw ( s  + 1 )  , for p real and complex, i.e., pp = 1 . 
Hence (*) shows that indeed C p  (L I K ,  x , s )  = L p  (sp) .  0 

! 

In view of the two results (12.3) and (12.5), the functional equation for 
Artin L-series now follows from Brauer's theorem (10.3) in a purely formal 
fashion, as a consequence of the functional equation for Hecke L-series, 
which we have already established. 

(12.6) Theorem. The Artin L  -series A ( L  ( K  , x , s )  admits a meromorphic 
continuation to @ and satisfies the functional equation 

with a constant W ( X )  of absolute value 1. 

Proof: By Brauer's theorem, the character x is an integral linear combination 

where the xi, are induced from characters xi of degree 1 on subgroups 
Hi = G ( L  I Ki) .  From propositions (12.3) and (12.5), it follows that 

A ( L I K , x , s )  = n A ( L l K , ~ i * , s ) ~ ~  
I 
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where Ti is the Gropencharakter of K; associated to xi. By (8.6), the Hecke 
L-series A(?;,s) admit meromorphic continuations to @ and satisfy the 
functional equation 

Therefore A  ( L  

A ( L l K , x  

1 K ,  x , s )  satisfies the functional equation 

where W ( X )  = ni W ( 5 )  is of absolute value 1. 0 

The functional equation for the Artin L-series may be given the following 
explicit form, which is easily deduced from (12.6) and (4.3): 

with the factor 

and the exponents 

Here the summations are over the real places p of K .  This gives immediately 
the zeroes of the function C(LIK ,  x , s )  in the half-plane Re($) 5 0. If x is 
not the principal character, they are the following: 

I at s = 0,  - 2, - 4,  . . . zeroes of order E x ( l )  2 + C - ~ ( ( p ~ ) ,  
p real 2 

1 at s  = -1, - 3, - 5,  . . . zeroes of order C x ( l )  - - X ( ( P ~ )  2 p real 2 

Remark: For the proof of the functional equation of the completed Artin 
L-series, we have made essential use of the fact that "Euler factors" 
C p  ( L  1 K ,  X ,  s )  at the infinite places p, which are made up out of gamma 
functions, behave under change of fields and characters in exactly the same 
way as the Euler factors 
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at the finite places. This uniform behaviour is in striking contrast to the 
great difference in the procedures that lead to the definitions of the Euler . 

factors for ploo and p { GO. It is in this context that the mathematician 
CHRISTOPHER DENINGFIR recently made a very interesting discovery (see 1261, 
[27]). He shows that the Euler factors for all places p can all be written in 
the same way: 

LP(LIK,x ,s )  = det, (sid-(9,); H ( X ~ / L ~ ) ) - ' .  

Here H(Xp/ILp) is an i17frnitc dinlensional @-vector space which can be 
canonically constructed, Op is a certain linear "Frobenius" operator on it, 
and det, is a "regularized determinant" which generalizes the ordinary 
notion of determinant for finite dimensional vector spaces to the infinite 
dimensional case. The theory based on this observation is of the utmost 
generality, and reaches far beyond Artin L-series. It suggests a complete 
analogy for the theory of L-series of algebraic varieties over finite fields. 
The striking success which the geometric interpretation and treatment of the 
L-series has enjoyed in this analogous situation adds to the relevance of 
DENINGER'S theory for present-day research. 

3 13. Density Theorems 

Dirichlet's prime number theorem (5.14) says that in every arithmetic 
progression 

. a ,  a f  nz, a f  2n7, a f  3m, . . .  , 

a, m E N, (a,m) = 1, there occur infinitely many prime numbers. Using 
L-series, we will now deduce a far-reaching generalization and sharpening 
of this theorem. 

(13.1) Definition. Let M be a set of prime ideals of K .  The limit 

C 'WP)-~  

d(M) = lim PEM 

s+I+O C'Y-&(p)-s 

From the product expansion 

we obtain as in $8, p.494, 

The latter sum obviously defines an analytic function at s = 1. We write 
.f ( s )  - g(s)  if f ( s )  - g(s) is an analytic function at s = 1. Then we have 

because the sum Cdeg(p)22 9?(p)-S taken over all p of degree > 2 is analytic 
I at s = 1. Furthermore, by (5.1 l ) ,  (ii), we have { K  (s) - -, and so 

s-l 

I 1 

f w  - log - . 
s - l  

So we may also write the Dirichlet density as 

d(M) = lim 
C p E M  'WP) -~  

I s+I+O logx 

Since the sum C 9 Q P S  over all prime ideals of degree > 1 converges, the 
definition of Dirichlet density only depends on the prime ideals of degree 1 
in M. Adding or omitting finitely many prime ideals also does not change 
anything as far as existence or value of the Dirichlet density is concerned. 
One frequently also considers the natural density 

It is not difficult to show that the existence of S(M) implies the existence 
of d(M), and that one has S(M) = d(M). The converse is not always true 
(see [123], p. 26). In the notation of chap. VI, $1  and $7, we prove the 
generalized Dirichlet density theorem. 

(13.2) Theorem. Let m be a module of K and H m  an ideal group such that 
Jm 2 H m  > P m  with index hm = ( J m  : Hm). 

For every class fi E J m/H m, the set P (A) of prime ideals in fi has density 
P 

provided it exists, is called the Dirichlet density of M 
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For the proof we need the following 

(13.3) Lemma. Let x be a nontrivial (irreducible) character of Jm/ P m  (i.e., 
a character of degree I). Then the Hecke L -series 

(X (p) = 0 for p lm) satisfies 

L(x3 1) # 0 .  

Proof: By (8.5) and the remark following (5.10) (in the case m = 1 ), L (X , s) 
does not have a pole at s = 1. Let LI K be the ray class field mod m, 
so G(L(K)  S J m / P m .  Interpreting x as a character of the Galois group 
G (L I K),  the function L (X , s )  agrees with the Artin L -series C(L I K , x , s) 
up to finitely many Euler factors - see (10.6). Like L (x , s ) ,  this Artin 
L-series does not have a pole at s = 1. So all we have to show is that 
L(L I K ,  X ,  1) # 0. According to (10.5), we have 

CL(S) = ~ K ( s )  n L ( L I K , X , S ) ~ ( ' ) ,  
x#l 

where ,y runs through the nontrivial irreducible characters of G(L(K).  
By (5.1 l ) ,  both { ~ ( s )  and { ~ ( s )  have simple poles at s = 1, i.e., the 
product is nonzero at s = 1. Since none of the factors has a pole, we 
find L(LIK,x ,  1) # 0. 0 

Proof of (13.2): Exactly as for the Dedekind zeta function above, we obtain 
for the Dirichlet L -series 

Multiplying this by x (A-' ) and summing over all (irreducible) x yields 
1 

log{K(s)f E x ( . R - ' ) ~ o ~ L ( x ~ ~ )  -- E xx(.@ff-') -. 
x#I f f ' d m / P "  X p& %(p)" 

Since L(x, 1) # 0, log L ( x , s )  is analytic at s = 1. But 

Hence we get 

and the theorem is proved. 

The theorem shows in particular that the density of the prime ideals 
in a class of J m / H m  is the same for every class, i.e., the prime ideals 
are equidistributed among the classes. In the case K = Q, m = (m), 
and H m  = P m ,  we have . Im/Pm S (Z/mZ)* (see chap. VI, (] . lo)),  
and we recover the classical Dirichlet prime number theorem recalled at 
the beginning, in the stronger form which says that the prime numbers 
in an arithmetic progression, i.e., in a class a mod m, (a, m) = I, have 
density & = I/#(Z/mZ)*. 

Relating the prime ideals p of a class of J m / P m ,  via the class field 
theory isomorphism J m / P m  2 G(L I K) ,  to the Frobenius automorphisms 
q, = (F) , gives us a Galois-theoretic interpretation of the Dirichlet 
density theorem. We now deduce a more general density theorem which 
is particularly important in that it concerns arbitrary Galois extensions (nor 
necessarily abelian). For every a E G(L 1 K), let us consider the set 

of all unramified prime ideals p of K such that there exists a prime ideal p i p  
of L satisfying 

where ( y) is the Frobenius automorphism qp of Q over K. It is clear 
that this set depends only on the conjugacy class 

(a) = { t a t - ' ( r  E G ( L I K ) }  

of a and that one has PLIK(a) f? P L I ~ ( t )  = fl if (a) # ( r ) .  What is the 
density of the set P L I K ( a ) ?  The answer to this question is given by the 
~ebotarev density theorem. 

(13.4) Theorem. Let L J K  be a Galois extension with group G. Then for 
every a E G,  the set PL I K ( a )  has a density, and it is given by 

Proof: We first assume that G is generated by a .  Let m be the conductor of 
L I K.  Then L 1 K is the class field of an ideal group Hm,  Jm 2 H m  2 Pm.  
Let ff E Jnl /Hnl  be the class corresponding to the element a under the 
isomorphism 
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Then P L I K ( u )  consists precisely of the prime ideals p which lie in the 
class ft. By the Dirichlet density theorem (13.2), we conclude that PLIK(a)  
has density 

1 1 # ( a )  
d ( P L I K ( a ) )  = - = - = -. 

12, #G #G 
In the general case, let C be the fixed field of a.  If f is the order of a ,  
then, as we just saw, d ( P L l z ( o ) )  = f. Let P(o) be the set of prime ideals 

!J3 of L  such that Q / p  E PLI  ( a )  and ( y) = o .  Then P(o)  corresponds 
bijectively to the set P l l c ( ~ )  of those prime ideals q in P L l c ( a )  such 
that C, = K,, q l p .  Since the remaining prime ideals in P L l c ( a )  are either 
!ramified or have degree > 1 over Q, we may omit them and obtain 

Now we consider the surjective map 

P : P L l z ( a )  P L I K ( ~ ) ,  q H q n K .  

As PLlc (0)  S P ( o ) ,  we get, for every p E P L I K  (n), 

The Cebotarev density theorem has quite a number of surprising 
consequences, which we will now deduce. If S  and T are any two sets 
of primes, then let us write 

S ~ T  

to indicate that S is contained in T  up to finitely many exceptional elements. 

Furthermore, let us write S  = T  if S T  and T  c S.  
Let L  1 K  be a finite extension of algebraic number fields. We denote by 

P ( L  I K )  the set of all unramified prime ideals p of K  which admit in L  a 
prime divisor !J3 of degree 1 over K . So, if L  1 K  is Galois, then P  ( L  I K )  is 
just the set of all prime ideals of K  which split completely in L .  

(13.5) Lemma. Let N  I K  be a Galois extension containing L ,  and let 
G = G ( N I K ) ,  H = G ( N 1 L ) .  Then one has 

P  ( L  1 K )  = (J PN ( a )  (disjoint union). 
(o)nH#M 
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Proof: A prime ideal p of K  which is unramified in N  lies in P  ( L  / K )  if 
and only if the conjugacy class (o)  of o = ( y) , for some prime ideal 
Q / p  of N ,  contains an element of H, i.e., if and only if p E P N I K  ( a )  for 
some a E G  such that ( a )  n H # Id. 0 

(13.6) Corollary. If L  1 K  is an extension of degree n ,  then the set P  (L I K )  
has density d ( P  ( L  (K)) 2 i. Furthermore, one has 

I 
d ( P ( L 1 K ) )  = - LIK is Galois. 

n 

Proof: Let N  I K  be a Galois extension containing L ,  and let G  = G  ( N  I K )  
and H = G ( N  I L ) .  By (13.5), we have 

The cebotarev density theorem (13.4) then yields 

= - #( (J ( a ) )  . 

Since H E ( I I ( o ) n H + M ( ~ ) ,  it follows that 

L  I K  is Galois if and only if H is a normal subgroup of G ,  and this is the 
case if and only if ( a )  G H whenever ( a )  n H # Id, and so this holds if and 
only if H = ( J (n )nH+f l (a ) .  This implies the second claim. 0 

(13.7) Corollary. If almost all prime ideals split completely in the finite 
extension L  I K  , then L  = K .  

Proof: Let N  I K be the normal closure of LI K ,  i.e., the smallest Galois 
extension containing L .  A prime ideal p of K  splits completely in L  if and 
only if it splits completely in N 1 K  (see chap. I, $9, exercise 4) .  Under the 
hypothesis of the corollary, we therefore have 

1 
1 = d ( P ( L I K ) )  = d ( P ( N I K ) )  = - 

[ N :  K ] '  

so that [ N :  K ] =  1 andN = L  = K .  
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(13.8) Corollary. An extension L  I K  is Galois if and only if every prime 
ideal in P  ( L  I K ) splits completely in L  . 

Proof: Let again N  I K  be the normal closure of L  I K .  Then P ( N  1 K )  
consists precisely of those prime ideals which split completely in L. Hence 
if P ( N J K )  = P ( L I K ) ,  then by (13.6), 

1 1 
= d ( P ( N 1 K ) )  = d ( P ( L I K ) )  > 7 

[ N :  K ]  [ L  . K ] '  

i.e., [ N  : K ]  ( [ L  : K ] ,  so L = N  is Galois. The converse is trivial. 0 

(13.9) Proposition (M.  BAUER). If L  I K  is Galois and MI K  is an arbitrary 
finite extension, then 

Proof: L  G M  trivially implies that P ( M  I K )  5 P ( L  I K ) .  So assume 

conversely that P ( L  I K )  5 P ( M  I K ) .  Let N  ( K  be a Galois extension 
containing L and M, and let G  = G ( N ( K ) ,  H = G ( N I L ) ,  H' = G ( N I M ) .  
Then we have 

Let a E H'. Since P N I K ( f f )  is infinite by (13.4), there must exist some 
p E P,wIK(a) such that p E P N I ~ ( t )  for a suitable s E G  such that 
( t )  n H # O. But then a  is conjugate to 5 ,  and since H is a normal 
subgroup of G,  we find ( a )  = ( t )  c H .  We therefore have H' 5 H, and 
hence L G M .  0 

(13.10) Corollary. A Galois extension L I K  is uniquely determined by the 
set P (L I K )  of prime ideals which split completely in it. 

This beautiful result is the beginning of an answer to the programme 
formulated by LEOPOLD KRONECKER ( 1  82 1-1 89 I), of characterizing the 
extensions of K ,  with all their algebraic and arithmetic properties, solely 
in terms of sets of prime ideals, "in a similar way as Cauchy's theorem 
determines a function by its boundary values". The result raises the question 
of how to characterize the sets P ( L  I K )  of prime ideals solely in terms of 
the base field K .  For abelian extensions, class field theory gives a concise 

answer to this, in that it recognizes P ( L 1 K )  as the set of prime ideals lying 
in the ideal group HI1' for any module of definition m (see chap. VI, (7.3)). 
If for instance L I K  is the Hilbert class field, then P ( L  I K )  consists precisely 
of the prime ideals which are principal ideals. If on the other hand K = Q 
and L = Q(,u,,,), then P  ( L  I K )  consists of all prime numbers p = 1 mod ni. 

In the case of nonabelian extensions LI K ,  a characterization of the sets 
P ( L  1 K )  is essentially not known. However, this problem is part of a much 
more general and far-reaching programme known as "Langlands philosophy", 
which is undergoing a rapid development at the moment. For an introduction 
to this circle of ideas, we refer the interested reader to [106]. 
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